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Limitations of  “abstract and model-check” for liveness

• For unbounded transition systems, finite abstractions 
are

• Incomplete for termination;

• Unsound for non-termination; 

• And so the limitation is similar for liveness, no 
counter-example to infinite program execution
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Unless ...
• One is only interested in liveness in the finite abstract 

(or the concrete is bounded) → decidable

• Or, model-checking is used for checking the 
termination proof inductive argument (e.g. given 
variant functions) → decidable 
Ittai  Balaban,  Amir  Pnueli,  Lenore  D.  Zuck:  Ranking  Abstraction  as  Companion  to  Predicate 
Abstraction. FORTE 2005: 1-12

• Of very limited interest: 

• Program executions are unbounded → undecidable

• The hardest problem for liveness proofs is to infer 
the inductive argument, then the proof is “easy”
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Origin of the limitations
• Model-checking is impossible because counter-

examples are unbounded infinite 
                              versus

• We need automatic verification not checking

• This requires

• Infinitary abstractions

• of well-founded relations / well-orders

• and effectively computable approximations

i.e.  Abstract Interpretation
4

...



CMACS PI Meeting, May 16th, 2013:  Work in Progress Toward Liveness Verification by Abstract Interpretation                                                                                                                            © P. Cousot

Analysis and verification 
with well-founded 

relations and well-orders
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• A transition system: 〈Σ, τ〉 

                          states            transition relation 

• Maximal trace operational semantics: set of

• Finite traces: 

• Infinite traces:

Maximal trace operational semantics
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• Well-founded relation:  

• Well-order:

Well-founded relations / Well-orders
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CHAPTER 5. MATHEMATICAL PROOFS

5.11 Well-founded Relations
A generalisation of the proof by strong recurrence consists in replacing hN, <i by
an arbitrary well-founded relation.

Definition 20 Well-founded Relation:

A relation r 2 }(X⇥X) on a set X is well-founded if and only if 3 there is no
infinite descending chain x0, x1, . . . , xn

, . . . of elements x
i

, i 2 N of X such
that 8n 2 N : hx

n+1, x
n

i 2 r (or equivalently hx
n

, x
n+1i 2 r�1).

We write Wf(X) for the class of all well-founded relations on the set X and
hX, ri 2Wf to mean that r 2Wf(X) e

Example 21 The relation < is well founded on N but not on Z or R. By abuse of
language 6 is said to well founded on N since the trivial infinite descending chains
n = n = n = . . ., n 2 N are implicitly eliminated. 2

Example 22 In classical set theory the “belongs to” relation 2 is well-founded in
that there is no infinite sequence of sets S0 3 S1 3 S2 3 S3 3 . . . . In particular
the collection U of all sets cannot be a set since then U 2 U so 2 would no longer
be well-founded. Peter Aczel has studied a variant of set theory where 2 is not
well-founded (?). 2

Definition 23 Noetherian Relation: A relation r 2 }(X ⇥ X) on a set X is
Noetherian 4 if and only if the inverse relation r�1 , {hy, xi | hx, yi 2 r} is
well-founded on X. e

5.12 Characteristic Properties of Well-founded Re-
lations

5.12.1 Subsets have minimal elements
Given a relation r 2 }(X ⇥ X) on a set X, a subset S ✓ X and an element
m 2 X, we say that m is a r-mimimal element of S if and only if m 2 S and
8x 2 X : (x r m)) (x 62 S) (we use the infix notion “x r m , hx, mi 2 r” so that
the relation r can be thought as being <).

3Assuming the axiom of choice in set theory.
4A Noetherian relation (after Emmy Noether) is also said to be converse well-founded,

upwards well-founded, or to satisfy the ascending chain condition.
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CHAPTER 28. WELL-ORDERS

28.5 Well Orders
Recall from sections 5.11, 5.12, and 8.1 that a well-founded relation hX, ri 2Wf is
characterized by lemma 24 (non-empty subsets have minimal elements), lemma 27
(proper lower sets have successors), theorem 32 (strong induction is sound), or
theorem 38 (inductive definitions are well-defined), each one being equivalent to
definition 20 1 (there is no infinite chain for r�1).

A partial order v is called well-founded if the corresponding strict order @ is
a well-founded relation.

Definition 135 Well-founded Partial Order: A partial order v 2 }(X ⇥ X)
on a set X is well-founded if and only if hX, @i 2Wf, in which case we write
hX, vi 2Wf, by abuse of language.

. e

A partial order hX, vi is called total or linear when any two elements x, y 2 X are
comparable that is either x v y or y v x.

Definition 136 Well-Order: xxx

A well-order (or well-order or well-ordering) is a poset hX, vi, which is
well-founded and total.

We write Wo for the class of all well-orders 2.

Example 137 The less than or equal relation 6 between integers is a well-order
on the set of naturals numbers N but not on the set of integers Z (since 0 > �1 >
�2 > . . .). 2

Lemma 138 Any subset X ✓ X of a well-order hX, <i 2Wo is a well-order hX,
<i 2Wo. e

Proof If Y ✓ X then Y ✓ X so Y has a minimum m 2 Y so every subset of X
has a minimum. Moreover < restricted to X is total since it is total on X. ⌅

Lemma 24 can be strengthened as follows for well-orders.

Lemma 139 If hX, vi 2 Wo has an element with a property P then it has a
(necessarily unique) smallest element with that property P . e

1assuming the axiom of choice (every set can be well-ordered).
2It cannot be a set since all sets X are well-orders hX , =i.

...⊐ ⊐ ⊐ ⊐ ⊐ ⊐ ⊐
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Relevance to Termination Proof
• Program termination is 

     〈Σ, τ-1〉 is well-founded 
i.e. no infinite execution ((τ-1) -1 = τ)

8
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Relevance to LTL verification
• P ⋃ Q for transition system 〈Σ, τ〉 

if and only if 
〈{x ∈ Σ ∣ P(x) ∨ Q(x)}, {〈y,x〉 ∈ τ-1 ∣ ¬Q(x) ∧¬ Q(y)〉  
is well-founded 
 

9

...τ τ τ τ τ τ τ
P∧¬Q P∧¬Q P∧¬Q P∧¬Q P∧¬Q P∧¬Q P∧¬Q

invariant variant
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General idea of the abstraction
• Combine two abstractions:

• Abstraction of a relation to its well-founded part 
(to get a necessary condition for wellfoundedness)

• Asbtraction of this well-founded part to a well-
order (to get a suffic ient condit ion for 
wellfoundedness)

10

CHAPTER 30. TERMINATION

Proof Let w 2 Wf(X) and ⌫ 2 X 67! O. We first observe that w 2 Wf(X) is
well-founded and so, by strong induction of section 5.13, hy, xi 2 w implies that
↵o(w)y is well-defined by induction hypothesis, so ↵o(w)x =

S
{↵o(w)y + 1 | hy,

xi 2 w} is well-defined that is dom(↵o(w)) = X.

↵o(w) 4̇ ⌫

, dom(⌫) ✓ dom(↵o(w)) ^ 8x 2 dom(⌫) : ↵o(w)(x) 6 ⌫(x) ^ 8x, y 2 dom(⌫) :
(⌫(x) < ⌫(y)), (↵o(w)(x) < ↵o(w)(y)) Hdefinition (30.7) of 4̇I

, 8x 2 dom(⌫) : ↵o(w)(x) 6 ⌫(x)^8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)),(↵o(w)(x) <
↵o(w)(y)) Hsince ⌫ 2 X 67! O so dom(⌫) ✓ X = dom(↵o(w))I

TODO
, 8x, y 2 X : (hx, yi 2 w \ dom(⌫)⇥ dom(⌫))) ⌫(x) < ⌫(y) HI
, 8x, y 2 X : (hx, yi 2 w \ X⇥ dom(⌫))) ⌫(x) < ⌫(y) HI
, 8x, y 2 X : (hx, yi 2 w)) ⌫(x) < ⌫(y) _ hx, yi 62 X⇥ dom(⌫) HI
, w ✓ {hx, yi 2 dom(⌫)⇥ dom(⌫) | ⌫(x) < ⌫(y)} [ ¬(X⇥ dom(⌫))Hsince w 2 }(X⇥ X), def. ✓, [ and ¬I
, w ✓ �o(⌫) Hdefinition (30.6) of �oI ⌅

Theorem 181 ↵o(w) = lfp
✓

� f . � x . .if x 2 min
w

(D) then 0 else

S
{f(y) +

1 | y 2 dom(f) ^ hy, xi 2 w} fi. e

Proof TODO ⌅

30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

h}(X⇥ X), ✓i ����!�! �����
↵

wf

�

wf
hW(X), Fi hWf(D), ✓i ���! ���

↵

o

�

o
hD 7! O, wi

h}(X⇥ X), ✓i ����!�! �����
↵

wf

�

wf
hW(X), Fi ���! ���

↵

o

�

o
hX 67! O, wi

Le problème est que l’union de well-founded n’est pas well-founded mais est ce
que l’union infinie de well-founded sets aver la meme abstraction ⌫ set bien found?

Le gamma est l’ensemble des relations qui ont meme well-founded part mais
leur union peut elle ne pas avoir la meme wellfounded part

A REVOIR APRES We have a Galois embedding.

relation well-founded
part

well-order on 
founded part
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• We encode relations by a domain and a set of 
connections between elements of the domains (some 
may be unconnected) 

• Well-founded relations do not form a lattice for ⊆:
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R(X) , {hD, ri | D 2 }(X) ^ r 2 }(D ⇥D)} (30.1)
W(X) , {hD, ri 2 R(X) | r 2Wf(D)}

W(X) is the set of well-founded relations on subsets of the set X.
One may wonder why we do not try to be even more abstract by adding extra

connections between the well-founded part that would preserve well-foundedness
in the abstract. This is because there is not a unique way to extend a well-founded
relation into a larger well-founded relation and taking the union of all these well-
founded relations may not be well-founded, as illustrated below.

a

b c
U =

a

b c

a

b c

a

b c

⇒

We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵wf(r) , hd(r), r \ (X⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�wf(hD, wi) , w [ ¬(X⇥D)

We define a well-founded relation over-approximation relation F on W(X) as fol-
lows

hD, wi F hD0, w0i , D ◆ D0 ^ w \ (D ⇥D0) ✓ w0 .

The idea is illustrated below.

(↵wf(r))�1 hD, wi
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i
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(X) . 0(x) 6
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� x 2 min
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⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

!
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⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r
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(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min
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(X).
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, dom(⌫) ✓ dom(� x 2 min

r
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⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

! " #
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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and P ) false iff ¬P by def. )I
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
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↵
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hWf(d(r)), ✓i.
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and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
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2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w
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R(X) , {hD, ri | D 2 }(X) ^ r 2 }(D ⇥D)} (30.1)
W(X) , {hD, ri 2 R(X) | r 2Wf(D)}

W(X) is the set of well-founded relations on subsets of the set X.
One may wonder why we do not try to be even more abstract by adding extra

connections between the well-founded part that would preserve well-foundedness
in the abstract. This is because there is not a unique way to extend a well-founded
relation into a larger well-founded relation and taking the union of all these well-
founded relations may not be well-founded, as illustrated below.

a

b c
U =

a

b c

a

b c

a

b c

⇒

We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵wf(r) , hd(r), r \ (X⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�wf(hD, wi) , w [ ¬(X⇥D)

We define a well-founded relation over-approximation relation F on W(X) as fol-
lows

hD, wi F hD0, w0i , D ◆ D0 ^ w \ (D ⇥D0) ✓ w0 .

The idea is illustrated below.

(↵wf(r))�1 hD, wi
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
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↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have
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D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
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⌫ 2 D 7! O with D 2 }(dom(↵�(r))).
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If � = 0, then dom(↵0(r)) = min
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(X) by hypothesisI
, � x 2 min
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, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
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⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.
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and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
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2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

Since b has been eliminated from the domain we can only state the well-roundedness
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(as in 1 for a instead of 0 with the best abstraction).
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example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
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Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
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and w 2Wf(d(r)). We have

↵(r) ✓ w
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• Example of well-founded part of a relation: 

• Formally

CHAPTER 30. TERMINATION

30.1 Well-Founded Part of a Relation
The idea of well-founded part of a relation is illustrated by the following diagram
(representing X = {a, b, c, d, e} and r = {hc, bi, hc, ei, he, di, hd, ei} so that elements
related by the inverse relation r�1 = {hb, ci, he, ci, hd, ei, he, di} are connected
by an arrow in the diagram, bidirectional arrows standing for two arrows in both
directions).

(↵wf(r))�1 where d(r) = {a, b}

! " #

CHAPTER 30. TERMINATION

↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I

$ %

&
! " #

e
! " #

& e

r�1 (�wf � ↵wf(r))�1

The inverse relation r�1 can be interpreted as a transition relation on states. For
example a and c are blocking/final states while there are transitions from e to
d or c, from d to e, and from b to c. So an execution starting from e is not
guaranteed to terminate when choosing the trace eded . . .. So [in]finite decreasing
chains correspond to [in]finite executions.

All elements starting an infinite decreasing chain (d starting (d r�1 e)! and e
starting (e r�1 d)!) are eliminated by the abstraction ↵ so that the possible inverse
connections (hb, ci) between remaining states (a, b and c) can contribute to finite
decreasing chains only. The abstract part ↵wf(r) of the relation r is therefore
well-founded.

The concretization �wf(↵wf(r)) contains the well-founded part ↵wf(r) of the
relation r plus any connection between two states not changing that well-founded
part. This includes the inverse connections between any two states already be-
longing to an infinite decreasing chain (hd, di, hd, ei, he, di, he, ei), as well as
the inverse connections between a state already belonging to an infinite decreasing
chain and a state starting finite decreasing chains only (hd, ai, he, ai, hd, bi, he,
bi, hd, ci, he, ci).

Observe that the abstraction includes a in the abstract because it can start no
infinite decreasing chain for r in the concrete. This information is not encoded by
the filed of relations since a 62 fld(r) and a 62 fld(↵wf(r)) = {b, c}. So to be able to
include this concrete information in the abstract, we encode a relation on X as a
domain D and a set r of connections between elements of the domain so that the
elements of D \ fld(r) are unconnected.

CHAPTER 30. TERMINATION

R(X) , {hD, ri | D 2 }(X) ^ r 2 }(D ⇥D)} relations (30.1)
W(X) , {hD, ri 2 R(X) | r 2Wf(D)} well-founded relations

W(X) is the set of well-founded relations on subsets of the set X.
One may wonder why we do not try to be even more abstract by adding extra

connections between the well-founded part that would preserve well-foundedness
in the abstract. This is because there is not a unique way to extend a well-founded
relation into a larger well-founded relation and taking the union of all these well-
founded relations may not be well-founded, as illustrated below.

a

b c
U =

a

b c

a

b c

a

b c

⇒

30.1.1 Abstraction
We encode relations as a pair hD, wi of a domain D ✓ X and a relation w 2
}(D ⇥D) on that domain to keep track of isolated elements (like a in the above
example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵wf(r) , hd(r), r \ (X⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�wf(hD, wi) , w [ (X⇥ ¬D)

Lemma 169 8r 2 }(X⇥ X), D ✓ d(r) : r \ (X⇥D) = r \ (d(r)⇥D). e

Proof If hy, xi 2 r and x 2 D ✓ d(r) then y 2 d(r) since otherwise there
would exist an infinite decreasing chain y = y0 r�1 y1 r�1 y2 r�1 . . . and so
x r�1 y = y0 r�1 y1 r�1 y20 r�1 . . . would also be an infinite descending chain, in
contradiction with x 2 d(r). So r \ (X⇥D) ✓ r \ (d(r)⇥D). Moreover d(r) ✓ X
so r \ (d(r)⇥D) ✓ r \ (X⇥D). By antisymmetry, r \ (d(r)⇥D) = r \ (X⇥D).⌅

Lemma 170 If r 2 }(X ⇥ X) and hD, wi 2 W(X) then r \ (X ⇥ D) ✓ w )
D ✓ d(r). e
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R(X) , {hD, ri | D 2 }(X) ^ r 2 }(D ⇥D)} (30.1)
W(X) , {hD, ri 2 R(X) | r 2Wf(D)}

W(X) is the set of well-founded relations on subsets of the set X.
One may wonder why we do not try to be even more abstract by adding extra

connections between the well-founded part that would preserve well-foundedness
in the abstract. This is because there is not a unique way to extend a well-founded
relation into a larger well-founded relation and taking the union of all these well-
founded relations may not be well-founded, as illustrated below.

a

b c
U =

a

b c

a

b c

a

b c

⇒

We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵wf(r) , hd(r), r \ (X⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�wf(hD, wi) , w [ ¬(X⇥D)

We define a well-founded relation over-approximation relation F on W(X) as fol-
lows

hD, wi F hD0, w0i , D ◆ D0 ^ w \ (D ⇥D0) ✓ w0 .

The idea is illustrated below.

(↵wf(r))�1 hD, wi

!
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I

" #

" $ #
% e

" $ #

CHAPTER 30. TERMINATION

↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

!
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

! " #
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^
x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

r�1 (�wf(↵wf(r)))�1 (�wf(hD, wi))�1
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R(X) , {hD, ri | D 2 }(X) ^ r 2 }(D ⇥D)} relations (30.1)
W(X) , {hD, ri 2 R(X) | r 2Wf(D)} well-founded relations

W(X) is the set of well-founded relations on subsets of the set X.
One may wonder why we do not try to be even more abstract by adding extra

connections between the well-founded part that would preserve well-foundedness
in the abstract. This is because there is not a unique way to extend a well-founded
relation into a larger well-founded relation and taking the union of all these well-
founded relations may not be well-founded, as illustrated below.

a

b c
U =

a

b c

a

b c

a

b c

⇒

30.1.1 Abstraction
We encode relations as a pair hD, wi of a domain D ✓ X and a relation w 2
}(D ⇥D) on that domain to keep track of isolated elements (like a in the above
example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵wf(r) , hd(r), r \ (X⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�wf(hD, wi) , w [ (X⇥ ¬D)

Lemma 169 8r 2 }(X⇥ X), D ✓ d(r) : r \ (X⇥D) = r \ (d(r)⇥D). e

Proof If hy, xi 2 r and x 2 D ✓ d(r) then y 2 d(r) since otherwise there
would exist an infinite decreasing chain y = y0 r�1 y1 r�1 y2 r�1 . . . and so
x r�1 y = y0 r�1 y1 r�1 y20 r�1 . . . would also be an infinite descending chain, in
contradiction with x 2 d(r). So r \ (X⇥D) ✓ r \ (d(r)⇥D). Moreover d(r) ✓ X
so r \ (d(r)⇥D) ✓ r \ (X⇥D). By antisymmetry, r \ (d(r)⇥D) = r \ (X⇥D).⌅

Lemma 170 If r 2 }(X ⇥ X) and hD, wi 2 W(X) then r \ (X ⇥ D) ✓ w )
D ✓ d(r). e
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Proof If, by reductio ad absurdum, D 6✓ d(r) then there is an x 2 D \ d(r) hence
a minimal one x 2 min

w

(D \ d(r)) since w is well-founded on D. Because x 62 d(r)
there in an infinite decreasing chain starting from x for r hence some y 2 X such hx,
yi 2 r�1 i.e. hy, xi 2 r. It follows that hy, xi 2 r\ (X⇥D) since x 2 D \ d(r) ✓ D.
Then by hypothesis r \ (X⇥D) ✓ w we have hy, xi 2 w so y 2 D \ d(r) and this
is in contradiction with the minimality of x 2 min

w

(D \ d(r)). ⌅

30.1.2 Partial Order
We define a well-founded relation over-approximation relation F on W(X) ex-
pressing a loss of information on the well-founded relation. The idea is illustrated
below.

(↵wf(r))�1 hD, wi

!
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
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if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)
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↵�(r)x ,
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� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
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D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
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Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
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(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min
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� x 2 min
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(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min
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(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

!
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↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))
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, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

! " #
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

r�1 (�wf(↵wf(r)))�1 (�wf(hD, wi))�1

Since b has been eliminated from the domain, the abstraction can only state the
well-foundedness for a and c. Moreover the maximal length of finite chains may
be over-estimated in the abstraction (as in 1 for a instead of 0 with the best
abstraction).

F 2 }(W(X)⇥W(X)) (30.3)
hD, wi F hD0, w0i , �wf(hD, wi) ✓ �wf(hD0, w0i)

Lemma 171 hW(X), Fi is a poset. e

Proof By definition, F is obviously reflexive and transitive since ✓ is reflexive
and transitive. For antisymmetry, we have

hD, wi F hD0, w0i ^ hD0, w0i F hD, wi
) �wf(hD, wi) = �wf(hD0, w0i) Hdefinition (30.3) and ✓ antisymmetricI
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) w [ (X⇥ ¬D) = w0 [ (X⇥ ¬D0) Hdefinition (30.2) of �wfI
Assume, by reductio ad absurdum that w 6= w0. Then 9hx, yi 2 w : hx, yi 62 w0

(the proof is the same for the symmetric case). Then we have
hx, yi 2 w ^ hx, yi 62 w0 Hby hypothesisI

) hx, yi 2 X⇥ ¬D0 Hsince w [ (X⇥ ¬D) = w0 [ (X⇥ ¬D0)I
) y 2 ¬D0 Hdef. Cartesian productI
) hy, yi 2 X⇥ ¬D0 Hsince y 2 XI
) hy, yi 2 w [ (X⇥ ¬D) Hsince w [ (X⇥ ¬D) = w0 [ (X⇥ ¬D0)I
) hy, yi 2 (X⇥ ¬D) Hsince hy, yi 62 w since w is well-foundedI
) y 2 ¬D Hdef. Cartesian product, in contradiction with hx, yi 2 w ✓ (D ⇥D)

so y 2 D, proving w = w0I
Because w ✓ (D ⇥D) and w0 ✓ (D0 ⇥D0), we have

w [ (X⇥ ¬D) = w0 [ (X⇥ ¬D0)

) w [ (X⇥ ¬D) = w [ (X⇥ ¬D0) Hsince w = w0I
) (X⇥ ¬D) = (X⇥ ¬D0) Hsince w ✓ (D ⇥D) so w \ (X⇥ ¬D) = ; and

w = w0 ✓ (D0 ⇥D0) so w [ (X⇥ ¬D0) = ;I
) D = D0 Hdef. Cartesian product and De Morgan’s lawI ⌅

The next lemma states that hD, wi F hD0, w0i, that is hD0, w0i is an approximation
of hD, wi if and only if the domain of well-roundedness is smaller and no connection
in w is forgotten, either in w0 for the elements of D0⇥D0 or in the non-wellfounded
part for the elements of ¬D0 ⇥D0. This last point is illustrated below.
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
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� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))
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Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).
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, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w
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Proof If, by reductio ad absurdum, D 6✓ d(r) then there is an x 2 D \ d(r) hence
a minimal one x 2 min

w

(D \ d(r)) since w is well-founded on D. Because x 62 d(r)
there in an infinite decreasing chain starting from x for r hence some y 2 X such hx,
yi 2 r�1 i.e. hy, xi 2 r. It follows that hy, xi 2 r\ (X⇥D) since x 2 D \ d(r) ✓ D.
Then by hypothesis r \ (X⇥D) ✓ w we have hy, xi 2 w so y 2 D \ d(r) and this
is in contradiction with the minimality of x 2 min

w

(D \ d(r)). ⌅

30.1.2 Partial Order
We define a well-founded relation over-approximation relation F on W(X) ex-
pressing a loss of information on the well-founded relation. The idea is illustrated
below.

(↵wf(r))�1 hD, wi

!
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x ! 0 x 2 minr(X) is a minimal element of X for r
↵0(r)x ! ? x not minimal, so 9y 2 X : hy, xi 2 r

↵δ+1(r)x ! ↵δ(r)x if x 2 dom(↵δ(r))

↵δ+1(r)x !
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{↵δ(r)y + 1 | y 2 dom(↵δ) ^ hy, xi 2 r}

if x 62 dom(↵δ(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵δ)
↵δ+1(r)x ! ? if x 62 dom(↵δ(r)) and 9y 2 X \ dom(↵δ) : hy, xi 2 r

↵λ(r)x !
[

δ<λ ∧ x∈ dom(α�(r))

↵δ(r)x � limit ordinal and 8� < � : x 2 dom(↵δ(r))

↵λ(r)x ! ? undefined if 9� < � : x 62 dom(↵δ(r))

Lemma 170 For all � 2 O, we have
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where
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Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵δ(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = minr(X).
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⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ minr(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
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Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.
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� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))
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Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
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A REFAIRE!
If � = 0, then dom(↵0(r)) = min
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(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min
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(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min
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(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
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(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min
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(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min
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(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

! " #
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

r�1 (�wf(↵wf(r)))�1 (�wf(hD, wi))�1

Since b has been eliminated from the domain, the abstraction can only state the
well-foundedness for a and c. Moreover the maximal length of finite chains may
be over-estimated in the abstraction (as in 1 for a instead of 0 with the best
abstraction).

F 2 }(W(X)⇥W(X)) (30.3)
hD, wi F hD0, w0i , �wf(hD, wi) ✓ �wf(hD0, w0i)

Lemma 171 hW(X), Fi is a poset. e

Proof By definition, F is obviously reflexive and transitive since ✓ is reflexive
and transitive. For antisymmetry, we have

hD, wi F hD0, w0i ^ hD0, w0i F hD, wi
) �wf(hD, wi) = �wf(hD0, w0i) Hdefinition (30.3) and ✓ antisymmetricI
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Proof If, by reductio ad absurdum, D 6✓ d(r) then there is an x 2 D \ d(r) hence
a minimal one x 2 min

w

(D \ d(r)) since w is well-founded on D. Because x 62 d(r)
there in an infinite decreasing chain starting from x for r hence some y 2 X such hx,
yi 2 r�1 i.e. hy, xi 2 r. It follows that hy, xi 2 r\ (X⇥D) since x 2 D \ d(r) ✓ D.
Then by hypothesis r \ (X⇥D) ✓ w we have hy, xi 2 w so y 2 D \ d(r) and this
is in contradiction with the minimality of x 2 min

w

(D \ d(r)). ⌅

30.1.2 Partial Order
We define a well-founded relation over-approximation relation F on W(X) ex-
pressing a loss of information on the well-founded relation. The idea is illustrated
below.

(↵wf(r))�1 hD, wi

!
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x ! 0 x 2 minr(X) is a minimal element of X for r
↵0(r)x ! ? x not minimal, so 9y 2 X : hy, xi 2 r

↵δ+1(r)x ! ↵δ(r)x if x 2 dom(↵δ(r))

↵δ+1(r)x !
[
{↵δ(r)y + 1 | y 2 dom(↵δ) ^ hy, xi 2 r}

if x 62 dom(↵δ(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵δ)
↵δ+1(r)x ! ? if x 62 dom(↵δ(r)) and 9y 2 X \ dom(↵δ) : hy, xi 2 r

↵λ(r)x !
[

δ<λ ∧ x∈ dom(α�(r))

↵δ(r)x � limit ordinal and 8� < � : x 2 dom(↵δ(r))

↵λ(r)x ! ? undefined if 9� < � : x 62 dom(↵δ(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
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γ
h
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D ∈ ℘(dom(α�(r)))

D 7! O, "̇i

where
�(⌫) ! {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵δ(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = minr(X).

↵0(r) "̇ ⌫ Hwhere dom(⌫) ✓ minr(X) by hypothesisI
, � x 2 minr(X) . 0 "̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 minr(X) . 0) ^ 8x 2 dom(⌫) : �x 2 minr(X) . 0(x) #

⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 minr(X) . 0(x) <
� x 2 minr(X) . 0(y)) Hdef. "̇I

, dom(⌫) ✓ minr(X) ^ 8x 2 dom(⌫) : 0 # ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ minr(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as
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�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.
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(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I

" #

" $ #
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I

& !

%
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi � hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.

! " #
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min
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↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^
x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^
x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min
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↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r
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� < � ^
x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�
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D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

r�1 (�wf(↵wf(r)))�1 (�wf(hD, wi))�1

Since b has been eliminated from the domain, the abstraction can only state the
well-foundedness for a and c. Moreover the maximal length of finite chains may
be over-estimated in the abstraction (as in 1 for a instead of 0 with the best
abstraction).

F 2 }(W(X)⇥W(X)) (30.3)
hD, wi F hD0, w0i , �wf(hD, wi) ✓ �wf(hD0, w0i)

Lemma 171 hW(X), Fi is a poset. e

Proof By definition, F is obviously reflexive and transitive since ✓ is reflexive
and transitive. For antisymmetry, we have

hD, wi F hD0, w0i ^ hD0, w0i F hD, wi
) �wf(hD, wi) = �wf(hD0, w0i) Hdefinition (30.3) and ✓ antisymmetricI

Lemma 172 hD, wi F hD0, w0i =
= D0 ✓ D ^ w \ (D0 ⇥D0) ✓ w0 ^ w \ (¬D0 ⇥D0) = ;. e
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Best abstraction of the well-founded part

• Any relation can be abstracted to its most precise 
well-founded part 

• The best abstraction provides a necessary and 
sufficient condition for well-foundedness

• An    -over-approximation of this best abstraction 
yields a sufficient  condition for well-foundedness 
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Since b has been eliminated from the domain, the abstraction can only state the
well-foundedness for a and c. Moreover the maximal length of finite chains may
be over-estimated in the abstraction (as in 1 for a instead of 0 with the best
abstraction).

Lemma 169 8r 2 }(X⇥ X), D ✓ d(r) : r \ (X⇥D) = r \ (d(r)⇥D). e

Proof If hy, xi 2 r and x 2 D ✓ d(r) then y 2 d(r) since otherwise there
would exist an infinite decreasing chain y = y0 r�1 y1 r�1 y2 r�1 . . . and so
x r�1 y = y0 r�1 y1 r�1 y20 r�1 . . . would also be an infinite descending chain,
in contradiction with x 2 d(r). So (X ⇥ D) ✓ (d(r) ⇥ D). Moreover d(r) ✓ X
so (d(r) ⇥ D) ✓ (X ⇥ D). By antisymmetry, (d(r) ⇥ D) = (X ⇥ D) and so
r \ (d(r)⇥D) = r \ (X⇥D). ⌅

Lemma 170 If r 2 }(X ⇥ X) and hD, wi 2 W(X) then r \ (X ⇥ D) ✓ w ,
D ✓ d(r) ^ r \ (X⇥D) ✓ w. e

Proof One direction (() is trivial. Reciprocally ()), if, by reductio ad absur-
dum, D 6✓ d(r) then there is an x 2 D\d(r) hence a minimal one x 2 min

w

(D\d(r))
since w is well-founded on D. Because x 62 d(r) there in an infinite decreasing chain
starting from x for r hence some y 2 X such hx, yi 2 r�1 i.e. hy, xi 2 r. It fol-
lows that hy, xi 2 r \ (X ⇥ D) since x 2 D \ d(r) ✓ D. Then by hypothesis
r \ (X ⇥D) ✓ w we have hy, xi 2 w so y 2 D \ d(r) and this is in contradiction
with the minimality of x 2 min

w

(D \ d(r)). ⌅

Theorem 171 h}(X⇥ X), ✓i ����!�! �����
↵

wf

�

wf
hW(X), Fi 1 e

Proof First observe that F is a partial order (reflexive, antisymmetric, and
transitive) since ✓ and ◆ are partial orders.

By lemma 169, ↵wf(r) = hd(r), r\(X⇥d(r))i = hd(r), r\(d(r)⇥d(r))i 2W(X)
by definition of d(r) ✓ X which elements can only start finite decreasing chains for
r in d(r).

Let r 2 }(X⇥ X) and hD, wi 2W(X). We have

↵wf(r) F hD, wi
, hd(r), r \ (X⇥ d(r)) F hD, wiiHby def. ↵ where d(r) = {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N :
x

i

r�1 x
i+1}I

1Up to now, we have considered Galois connections between powersets partially ordered by
subset inclusion only, but the notion is easy to generalize to partial orders are shown by exer-
cice 18-20.
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, hd(r), r \ (X⇥ d(r))i F hD, wi Hdefinition (30.2) of ↵wfI
, hd(r), r \ (d(r)⇥ d(r))i F hD, wiHby lemma 169, ↵wf(r) = hd(r), r\ (X⇥d(r))i = hd(r), r\ (d(r)⇥d(r))i 2

W(X) by definition of d(r) ✓ X which elements can only start finite
decreasing chains for r in d(r)I

, D ✓ d(r) ^ r \ (d(r)⇥ d(r)) \ (D ⇥D) ✓ w ^
r \ (d(r)⇥ d(r)) \ (¬D ⇥D) = ; Hby lemma 172I (30.4)

, D ✓ d(r) ^ r \ (d(r)⇥ d(r)) \ (D ⇥D) ✓ wHsince D ✓ d(r) so (d(r)⇥ d(r)) \ (¬D ⇥D) = ;I
, D ✓ d(r) ^ r \ (D ⇥D) ✓ wHsince D ✓ d(r) so (d(r)⇥ d(r)) \ (D ⇥D) = (D ⇥D)I
, r \ (X⇥D) ✓ wH(() By lemma 170, since r \ (X ⇥ D) ✓ w implies D ✓ d(r) and

r \ (D ⇥D) ✓ r \ (X⇥D) ✓ w.
()) By lemma 169 since D ✓ d(r) implies that r\(X⇥D) = r\(d(r)⇥
D) = r\ ((D[ (d(r)\D))⇥D) = (r\ (D⇥D))[ (r\ ((d(r)\D)⇥D)) ✓
w[ (r\ ((d(r) \D)⇥D)) = w since, by (30.4) and D ✓ d(r), (r\ ((d(r) \
D)⇥D)) = r\ (d(r)⇥D)\ (¬D⇥D) ✓ r\ (d(r)⇥ d(r))\ (¬D⇥D) = ;I

, r ✓ w [ ¬(X⇥D) Hby exercice 18-2I
, r ✓ �wf(hD, wi) Hdef. �wfI

Consider hD, wi 2 W(X) and define r = w [ {hx, xi | x 2 X \ D}. Then
d(r)(r) = D since w 2Wf(D) and any x 2 X\D starts an infinite decreasing chain
x r�1 x r�1 x . . .. It follows that ↵wf(r) = hD, wi proving ↵ to be surjective. ⌅

The interest of this abstraction is that
if ↵wf(r) F hD, wi then r is well-founded on D since r ✓ �wf(hD, wi) and

�wf(hD, wi) is well-founded on D.

Theorem 174 If hD, wi 2W(X) then �wf(hD, wi) is well-founded on D and so
r ✓ �wf(hD, wi) implies r 2Wf(D). e

Proof By reductio ad absurdum, assume that w [ ¬(X ⇥ D) = �wf(hD, wi) 62
Wf(D). This means that there exists an infinite decreasing chain of elements of D
such that x0 (w [ ¬(X⇥D))�1 x1 (w [ ¬(X⇥D))�1 . . .. Since hD, wi 2 W(X),
we cannot have x

i

w�1 x
i+1 w�1 . . . for all i > 0. This means that there exists

some j with x
j

(¬(X⇥D))�1 x
j+1 that is hx

j+1, x
j

i 2 ¬(D⇥X) But x
j

2 X so we
must have x

j+1 62 D, a contradiction.
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Proof If, by reductio ad absurdum, D 6✓ d(r) then there is an x 2 D \ d(r) hence
a minimal one x 2 min

w

(D \ d(r)) since w is well-founded on D. Because x 62 d(r)
there in an infinite decreasing chain starting from x for r hence some y 2 X such hx,
yi 2 r�1 i.e. hy, xi 2 r. It follows that hy, xi 2 r\ (X⇥D) since x 2 D \ d(r) ✓ D.
Then by hypothesis r \ (X⇥D) ✓ w we have hy, xi 2 w so y 2 D \ d(r) and this
is in contradiction with the minimality of x 2 min

w

(D \ d(r)). ⌅

30.1.2 Partial Order
We define a well-founded relation over-approximation relation F on W(X) ex-
pressing a loss of information on the well-founded relation. The idea is illustrated
below.

(↵wf(r))�1 hD, wi

!
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r
↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e
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We encode relations as a pair hD, wi of a domain D ✓ X and a relation
w 2 }(D ⇥ D) on that domain to keep track of isolated elements (like a in the
above example, which is not part of the relation field {b, c}).

Let us formally define the well-founded part of a relation r 2 }(X⇥ X) as

↵(r) , hd(r), r \ (d(r)⇥ d(r))i where
d(r) , {x 2 X |6 9hx

i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}

�(hD, wi) , w [ ¬(X⇥D)

Moreover, we define a well-founded relation over-approximation as follows

hD, wi F hD0, w0i , D ◆ D0 ^ w ✓ w0 .

The idea is illustrated below.
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Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

Since b has been eliminated from the domain we can only state the well-roundedness
for a and c. Moreover the maximal length of finite chains may be over-estimated
(as in 1 for a instead of 0 with the best abstraction).

We do not have a Galois connection h}(X⇥X), ✓i ��! ��
↵

�

hWf(X), ✓i, a counter-
example is as follows (showing that over-approximations in the abstract should
remain in the wellfoundedness domain) However, we can prove that hr 2 }(X⇥X),
✓i ��! ��

↵

�

hWf(d(r)), ✓i.

Proof Notice that ↵(r) = r\ (d(r)⇥ d(r)) 2Wf(d(r)) by definition of d(r) which
elements can only start finite decreasing chains for r in d(r). So let r 2 }(X⇥ X)
and w 2Wf(d(r)). We have

↵(r) ✓ w

, r \ (d(r)⇥ d(r)) ✓ wHwhere d(r) = {x 2 X |6 9hx
i

2 X, i 2 Ni : x = x0 ^ 8i 2 N : x
i

r�1 x
i+1}I

, r \ (X⇥ d(r)) ✓ w

r�1 (�wf(↵wf(r)))�1 (�wf(hD, wi))�1

Since b has been eliminated from the domain, the abstraction can only state the
well-foundedness for a and c. Moreover the maximal length of finite chains may
be over-estimated in the abstraction (as in 1 for a instead of 0 with the best
abstraction).

F 2 }(W(X)⇥W(X)) (30.3)
hD, wi F hD0, w0i , �wf(hD, wi) ✓ �wf(hD0, w0i)

Lemma 171 hW(X), Fi is a poset. e

Proof By definition, F is obviously reflexive and transitive since ✓ is reflexive
and transitive. For antisymmetry, we have

hD, wi F hD0, w0i ^ hD0, w0i F hD, wi
) �wf(hD, wi) = �wf(hD0, w0i) Hdefinition (30.3) and ✓ antisymmetricI
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Fixpoint characterization of the well-founded part of a relation

•   

•   

• We have recent results on under-approximating such 
fixpoint equations by Abstract Interpretation using 
abstraction and convergence acceleration by 
widening/narrowing
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, D ✓ d(r) ^ r \ (X⇥ d(r)) \ (d(r)⇥D) ✓ w Hdef. FI
, D ✓ d(r) ^ r \ (d(r)⇥D) ✓ w Hdef. \ since D ✓ d(r) ✓ XI
, D ✓ d(r) ^ r \ (X⇥D) ✓ w Hby lemma 169I
, r \ (X⇥D) ✓ w Hby lemma 170I
, r ✓ w [ ¬(X⇥D) Hby exercice 18-2I
, r ✓ �wf(hD, wi) Hdef. �wfI

Consider hD, wi 2 W(X) and define r = w [ {hx, xi | x 2 X \ D}. Then
d (r) = D since w 2Wf(D) and any x 2 X \ D starts an infinite decreasing chain
xxx . . .. It follows that ↵wf(r) = hD, wi proving ↵ to be surjective. ⌅

The interest of this abstraction is that �wf(hD, wi) is well-founded on D and so
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Recent results
• We have studied in 

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, Francesco Logozzo: Automatic Inference 
of Necessary Preconditions. VMCAI 2013: 128-148 

Patrick Cousot, Radhia Cousot, Francesco Logozzo: Precondition Inference from Intermittent 
Assertions and Application to Contracts on Collections. VMCAI 2011: 150-168 
the static inference of such under-approximations

• The same infinitary under-approximation techniques 
do work for the inference of sufficient conditions for 
well-foundedness
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Example

18

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, Francesco Logozzo: Automatic Inference of Necessary Preconditions. VMCAI 2013: 128-148

void f(string x, string y) {
Assert(x != null);
g(x, y);

}

void g(string u, string v) {
Assert(v != null);
f(u, v);

}

Fig. 10. An example of inference of preconditions for mutually recursive methods
requiring a fixpoint computation.

Fig. 11. A screenshot of the error reporting with the precondition inference.

Example 8. Let us consider the two mutual procedures in Fig. 10. Ignore non-
termination: we choose a minimalistic example to illustrate the inter-method
fixpoint computation. Let us suppose f is the first method to be picked up.
The intra-method precondition inference algorithm obtains PreconditionsOf(f) =
{x! = null}. The preconditions for g are then {u! = null, v! = null}. The pro-
cedure f is a caller of g, so it is added to the continuation set. The re-analysis is
enough to reach the fixpoint: PreconditionsOf(f) = {x! = null, y! = null}. ut

7.1 Provenance

Each precondition p in PA originates from at least one failing proof obligation
hc, bi 2 A. We can construct a provenance relation p � b, with the intuitive
meaning that if p does not hold at the method entry, then b will fail later. We use
the provenance chain pn�1 � · · · � p0 � b to report an inter-method error trace
to the user. Furthermore, we can suppress the warning for b if we detect that p
is also su�cient to prove b safe, i.e., p holds at the entry point if and only if b
holds at program point c. This is the case when at least one of these conditions
holds: (i) the method m does not contain loops; (ii) p is inferred using APPA
(Sec. 5.1); (iii) p is inferred using CPPA (Sec. 5.2) and no loop is encountered
in the path between entry and c. Essentially, if we detect that the generated
necessary precondition p is also su�cient to discharge b, we can push the full

burden of the proof to the callers of m. Otherwise, we report the warning to the
user and we propagate p to the callers, as failure to establish it will definitely
cause an error in b: by propagating p we make explicit to the callers thay they
must establish p before calling m.

12

• Implemented in Visual Studio contract checker
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Abstraction of a 
relation’s well-founded 
part to a well-order
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Why well-orders?
• It is always possible to prove that a relation is well-

founded by abstraction to a well order (〈ℕ, <〉, 〈/, 
<〉, etc).

• Well-orders are easy to represent in a computer 
(while arbitrary well-founded relations may not be)

20
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Well-order abstraction of a well-founded relation

• Abstraction to a ranking function: 

• Formally

21

CHAPTER 30. TERMINATION

30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

30.2.2 Partial Order
The idea of over-approximated a ranking function ⌫1 by the less precise ranking
function ⌫2 is that the approximate ranking function ⌫2 has larger values which
over-estimate the maximal length of the finite descending chains starting from that
element. However, this is not always precise enough, since one must also loose no
possible connection in the concrete. An example is given below where ⌫3 looses
possible connections between concrete elements which are allowed by ⌫2.
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⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
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nation in section 30.4 as well as to more complicated liveness properties in next
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on this domain so are equal partial functions. Transitivity follows from the fact
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If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define
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Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
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x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

30.2.2 Partial Order
The idea of over-approximated a ranking function ⌫1 by the less precise ranking
function ⌫2 is that the approximate ranking function ⌫2 has larger values which
over-estimate the maximal length of the finite descending chains starting from that
element. However, this is not always precise enough, since one must also loose no
possible connection in the concrete. An example is given below where ⌫3 looses
possible connections between concrete elements which are allowed by ⌫2.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define
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Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
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x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
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on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever
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D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.

CHAPTER 30. TERMINATION

30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
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i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r

↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r

↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have
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D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
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(X) by hypothesisI
, � x 2 min
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(X) . 0 4̇ ⌫ Hdef. ↵0I
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(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
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(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min
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(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min
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(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
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sont bien fondes alors ↵(R
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).
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by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
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x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
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bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
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Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
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characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
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on this domain so are equal partial functions. Transitivity follows from the fact
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire
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Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
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Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.

(�o(⌫1))
�1 (�o(⌫2))

�1 (�o(⌫3))
�1

The partial order w between well-orders is defined as follows.

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8y 2 D : g(y) >

[�
g(x) + 1

�� f(x) < f(y)
 

Lemma 175 w is a partial order on Wf(D). e

30.2.3 Best Abstraction

Theorem 176 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.

↵o(w) w ⌫

, 8x, y 2 D : ↵o(w)(x) 6 ⌫(x) ^ ↵o(w)(x) < ↵o(w)(y)) ⌫(x) < ⌫(y)Hdefinition (30.3) of wI
, 8x, y 2 D : hx, yi 2 w) ⌫(x) < ⌫(y)
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
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i
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i

) n’est
pas bien fondée et donc ↵(
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i

) 6=
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r

↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I

CHAPTER 30. TERMINATION

↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min
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(X) is a minimal element of X for r

↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))
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↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have
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Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r
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↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
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� x 2 min
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, dom(⌫) ✓ min
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(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
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which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
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sont bien fondes alors ↵(R
i
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define
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8x 2 dom(g) : f(x) 6 g(x)
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Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

CHAPTER 30. TERMINATION

↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i

CHAPTER 30. TERMINATION

values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define
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8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
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Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.
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Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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nation in section 30.4 as well as to more complicated liveness properties in next
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Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
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x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
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sont bien fondes alors ↵(R
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mais ↵(
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pas bien fondée et donc ↵(
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.

(�o(⌫1))
�1 (�o(⌫2))

�1 (�o(⌫3))
�1

The partial order w between well-orders is defined as follows.

w 2 }((D 7! O)⇥ (D 7! O)) (30.6)
f w g , �o(f) ✓ �o(g) (30.7)

8x, y 2 D : (f(x) < f(y))) (g(x) < g(y))NON

Lemma 178 w is a partial order on Wf(D). e

Proof By definition, w is reflexive, antisymmetric and transitive since hO, 6i is
a poset. ⌅

Lemma 179 (f w g) , 8y 2 D : g(y) > f(y) [
S�

g(x) + 1
�� f(x) < f(y)

 
. e

Proof Assume that f w g.
[�

g(x) + 1
�� f(x) < f(y)

 

6
[�

g(x) + 1
�� g(x) < g(y)

 Hsince f(x) < f(y)) g(x) < g(y)I
=

[�
g(x) + 1

�� g(x) + 1 6 g(y)
 Hby lemma 164I

6 g(y) Hby def. least upper boundI
proving 8y 2 D : g(y) > f(y) [

S�
g(x) + 1

�� f(x) < f(y)
 

since f w g implies
8y 2 D : g(y) > f(y) by definition (30.6).

Reciprocally, assume that 8y 2 D : g(y) > f(y) [
S�

g(x) + 1
�� f(x) < f(y)

 

so 8y 2 D : g(y) > f(y) by def. lub.
If f(x) < f(y) then g(y) > g(x) + 1 by def. least upper bound [ and so

g(x) < g(y). It follows that 8x, y 2 D : (f(x) < f(y)) ) (g(x) < g(y)) and so
f w g by definition (30.6). ⌅
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Best abstraction
• Any well-founded relation can be abstracted to a 

most precise well-order 

• An over-approximation of this best abstraction yields 
over estimates of the (transfinite) lengths of maximal 
decreasing chains 

• The generalized Turing-Floyd method is sound for any 
such well-order and complete for the best one.

23

CHAPTER 30. TERMINATION

⌫1 ⌫2 ⌫3

0

1

2a

b c

CHAPTER 30. TERMINATION

30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i

CHAPTER 30. TERMINATION

values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
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) = R
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mais ↵(
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pas bien fondée et donc ↵(
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().

a

b

c

d

e

a

b

c
e

a

b

c
e

30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
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i
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i

) n’est
pas bien fondée et donc ↵(
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) 6=
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i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
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i

) n’est
pas bien fondée et donc ↵(
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i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
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sont bien fondes alors ↵(R
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o
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o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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↵ 2 O 7! }(X⇥ X) 7! (X 67! O) (30.2)
↵0(r)x , 0 x 2 min

r

(X) is a minimal element of X for r

↵0(r)x , ? x not minimal, so 9y 2 X : hy, xi 2 r

↵�+1(r)x , ↵�(r)x if x 2 dom(↵�(r))

↵�+1(r)x ,
[

{↵�(r)y + 1 | y 2 dom(↵�) ^ hy, xi 2 r}
if x 62 dom(↵�(r)) and 8y 2 X : hy, xi 2 r) y 2 dom(↵�)

↵�+1(r)x , ? if x 62 dom(↵�(r)) and 9y 2 X \ dom(↵�) : hy, xi 2 r

↵�(r)x ,
[

� < � ^ x2 dom(↵�(r))

↵�(r)x � limit ordinal and 8� < � : x 2 dom(↵�(r))

↵�(r)x , ? undefined if 9� < � : x 62 dom(↵�(r))

Lemma 170 For all � 2 O, we have

hr 2 }(X⇥ X), ✓i ���! ���
↵

�

�

h
[

D 2 }(dom(↵�(r)))

D 7! O, 4̇i

where
�(⌫) , {hx, yi | x, y 2 X \ dom(⌫)} [ {hx, yi | y 2 X \ dom(⌫) ^ x 2 dom(⌫)}

[ {hx, yi | x, y 2 dom(⌫) ^ ⌫(x) < ⌫(y)} e

Proof The proof is by transfinite induction on �. So let r 2 }(X ⇥ X) and
⌫ 2 D 7! O with D 2 }(dom(↵�(r))).

A REFAIRE!
If � = 0, then dom(↵0(r)) = min

r

(X).

↵0(r) 4̇ ⌫ Hwhere dom(⌫) ✓ min
r

(X) by hypothesisI
, � x 2 min

r

(X) . 0 4̇ ⌫ Hdef. ↵0I
, dom(⌫) ✓ dom(� x 2 min

r

(X) . 0) ^ 8x 2 dom(⌫) : �x 2 min
r

(X) . 0(x) 6
⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) < ⌫(y)) ) (�x 2 min

r

(X) . 0(x) <
� x 2 min

r

(X) . 0(y)) Hdef. 4̇I
, dom(⌫) ✓ min

r

(X) ^ 8x 2 dom(⌫) : 0 6 ⌫(x) ^ 8x, y 2 dom(⌫) : (⌫(x) <
⌫(y))) (0 < 0) Hdef. dom and � . notationI

, 8x, y 2 dom(⌫) : ⌫(x) 6< ⌫(y)Hsince dom(⌫) = D ✓ min
r

(X) by hypothesis and ⌫ is O-valued so positive
and P ) false iff ¬P by def. )I
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
S

i

R
i

) n’est
pas bien fondée et donc ↵(

S
i

R
i

) 6=
S

i

R
i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().

0

1

2

3

4
a

b

c

d

e 0

1

2

3

4

0

1

2

3

4

CHAPTER 30. TERMINATION

values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.
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ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
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8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
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where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.
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on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.
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30.2 Abstraction of Well-Founded Relations by Well-
Orders

One way of proving that a relation is well-founded, is to abstract it to a well-order
(as done when using variants in program termination proofs).

30.2.1 Abstraction
The abstraction of hD, wi 2W(X) is

↵o 2 Wf(D) 7! (D 7! O) (30.2)
↵o(w) , � y 2 D . [

{↵o(w)x + 1 | hx, yi 2 w}
�o 2 (D 7! O) 7!Wf(D)

�o(⌫) , {hx, yi 2 D ⇥D | ⌫(x) < ⌫(y)}

Here is an example of abstraction of a well-founded relation to a ranking function
⌫1 and concretization back to a larger well-founded relation.
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↵o 2 hD, wi 2W(X) 7! (D 7! O)

↵ohD, wi , �x 2 D . [
{↵ohD, wi(y) + 1 | hy, xi 2 r}

�o 2 (D 2 }(X) 7! O) 7!W(X)

�o(�) , hD, {hx, yi 2 D ⇥D | �(x) < �(y)i
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values (which over-estimate the maximal number of transitions before reaching a
state without successor). As shown by the motivating example of section 28.1, the
range of the ranking function ↵(r) must in general be an ordinal (see example 168).

This leads us to study the abstractions of well-founded relations in section 30.1
by ordinal ranking functions, which yields a proof method in section 30.2 which is
proved sound and complete in section 30.3 and is finally applied to prove termi-
nation in section 30.4 as well as to more complicated liveness properties in next
chapter 31.

30.1 Abstracting a Well-Founded Relation by a Rank-
ing Function

Let X be a set and r 2 }(X ⇥ X) be a binary relation on X. We would like to
characterize a subset D of X such that the restriction r \ (D ⇥ X) to that subset
D is well-founded, and prove it.

For that purpose, we consider the set V , X 67! O of partial maps from X to
O. For all f, g 2 V, we define

f 4̇ g , dom(g) ✓ dom(f) ^
8x, y 2 dom(g) : (f(x) < f(y))) (g(x) < g(y)) ^
8x 2 dom(g) : f(x) 6 g(x)

Lemma 169 hV, 4̇i is a partial order. e

Proof 4̇ is obviously reflexive. For antisymmetry, ✓ and 6 are antisymmetric
which implies that the two partial functions have the same domain and are equal
on this domain so are equal partial functions. Transitivity follows from the fact
that ✓, ), and 6 are all transitive. ⌅

If f 2 X 67! Y is a partial function then, following Scott, we can define f(x) = ?
where ? 62 Y to mean that the value of f is undefined for x. This encodes a partial
function in X 67! Y by a total function in X 7! Y[{?}. If hY, 6i is a partial order,
then 4̇ on X 67! Y can be extended to X 7! Y [ {?} by defining Scott’s ordering
Pas sur f 4̇ g , 8x 2 X : f(x) 6̇ g(x) such that ? 6̇ ? <̇ y 6̇ z for all y, z 2 X
such that y 6 z.

Consider the abstraction ↵ 2 }(X⇥ X) 7! V defined as follows ().
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30.3 Abstraction of Relations by Well-Orders
By combining the abstractions of sections 30.1 and 30.2, we can abstract the
well-founded part of a relation by a well-order, this ignoring completely the non-
well-founded part of the relation.

Tout ceci est a refaire ou enlever

30.4 Motivation

30.4.1 The Wellfoundedness Proof Problem
Plus exactement on veut trouver la partie bien fonde d’une relation R c’est a dire

D = {x 2 X |6 9hx
i

x 2 X, i 2 Ni : x = x0 r�1 x1 r�1 x2 . . .} et R \ (D ⇥D).
Ce n’est pas une abstraction car l’union de relations bien fondées n’est pas

bien fondee. Donc si les R
i

sont bien fondes alors ↵(R
i

) = R
i

mais ↵(
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i

) n’est
pas bien fondée et donc ↵(
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) 6=
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i

Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.
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Er donc il n’y a pas de most precise
well-founded part. Par exemple pour {ha, bi, hb, ai, hb, ci, hc, di} on peut prendre
{ha, bi, hb, ci, hc, di} ou {hb, ai, hb, ci, hc, di} et il n’y a pas de meilleur choix.
Cependant, si on ne garde que les états sur des chaines descendantes finies soit
{c, d} on a un meilleur choix soit {hc, di}. L’avantage est qu’on a un invariant que
l’on peut tester a l’exécution.

hD, w�1i 2W(X) ⌫1 = ↵o(w) �o(⌫1) ◆ w

The well-founded relation w 2 Wf(D) is abstracted to a ranking function ⌫1 =
↵o(w). ⌫1 is a total function from D to N. The value ⌫1(x) of ⌫1 for x 2 D specifies
the maximal length of the (necessarily finite) descending chains starting from x.
For example, ⌫1(a) = 3 since a de is of length 2 and a b c e is of length 3 and these
are the only maximal decreasing chains starting from a.

Reprendre le texte apres qui introduit l’ordre en disant qu’on peu majorer

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8x, y 2 D : f(x) 6 g(x) ^ f(x) < f(y)) g(x) < g(y)

Theorem 175 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.

(�o(⌫1))
�1 (�o(⌫2))

�1 (�o(⌫3))
�1

The partial order w between well-orders is defined as follows.

w 2 }(Wf(D)⇥Wf(D)) (30.3)
f w g , 8y 2 D : g(y) >

[�
g(x) + 1

�� f(x) < f(y)
 

Lemma 175 w is a partial order on Wf(D). e

30.2.3 Best Abstraction

Theorem 176 hWf(D), ✓i ���! ���
↵

o

�

o
hD 7! O, wi. e

Proof Let w 2Wf(D) and ⌫ 2 D 7! O.

↵o(w) w ⌫

, 8x, y 2 D : ↵o(w)(x) 6 ⌫(x) ^ ↵o(w)(x) < ↵o(w)(y)) ⌫(x) < ⌫(y)Hdefinition (30.3) of wI
, 8x, y 2 D : hx, yi 2 w) ⌫(x) < ⌫(y)
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Generalized Turing/Floyd Proof method
• 〈Σ, τ-1〉 is well-founded if and only if there exists a 

ranking function  
      ν ∈ Σ ↛ / 
(↛ is for partial functions, the class / of ordinals is a 
canonical representative of all well-orders) such that 
∀ x ∈ 345(ν): ∀ y ∈ Σ:  
        〈x, y〉 ∈ τ ⟹ ν(y) < ν(x) ∧ y ∈ 345(ν) 

• 345(ν) determines the domain of well-foundedness of 
τ-1 on Σ

24
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Fixpoint characterization of the ranking function

• The best/most precise ranking function is  
Lfp⊆ 78⋅{〈x, 0〉 ∣ x ∈ Σ ∧ ∀ y ∈ Σ: 〈x, y〉 ∉ τ} ⋃   
{〈x, ⋃{ δ + 1 ∣ ∃ 〈y, δ〉 ∈ 8: 〈x, y〉 ∈ τ}〉   ∣  x ∈ Σ  ∧ 
∃ 〈y, δ〉 ∈ 8: 〈x, y〉 ∈ τ ∧ ∀ y ∈ Σ: 〈x, y〉 ∈ τ ⟹ ∃ δ ∈ 
: 〈y, δ〉 ∈ 8}

• Examples: 
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Proof For all � 2 Ord(hX, vi) and x 2 X,

◆
O 67!X(�) v x

, minv(X \ {◆
O 67!X(�) | � < �}) v x Hdef. ◆

O 67!XI
TODO
, � 6 min6(O \ {◆X 7!O(y) | y @ x}) HI
, � 6 ◆X 7!O(x) Hdef. ◆X 7!OI
29.9.2 Ordinal Rank
The ordinal rank ⇢o

hX, vi
(x) of an element x 2 X of a well-founded relation hX,

vi 2Wf, is the ordinal

⇢o

hX, vi(x) ,
[

{⇢o

hX, vi(x
0) + 1 | x0 @ x} .

In particular for minimal elements m of X, ⇢o

hX, vi
(m) =

S
; = ; = 0. This

inductive definition 42 of the rank function ⇢o

hX, vi
2 X 7! O is well-defined since

hX, vi 2 is well-founded. Here is a simple example

CHAPTER 29. ORDINALS

We have � ⇥ 0 = 0, � ⇥ (�0 + 1) = (� ⇥ �0) + � for successor ordinals,
� ⇥ � =

S
�

0
<�

� ⇥ �0 for limit ordinals.

ordinal exponentiation �0 = �, ��

0+1 = ��

0 ⇥ � for successor ordinals, and �� =S
<�

� when � is a limit ordinal.

29.8 Canonical Ordinals
von Neumann introduced a canonical representation of ordinals, as follows

0 = ; < 1 = {;} = {0} < 2 = {0, 1} = {;, {;}} < 3 = {0, 1, 2} = (29.3)
{;, {;}, {;, {;}}} < . . . < ! = {0, 1, 2, 3, . . .} < ! + 1 = {0, 1, 2, 3, . . . ,!} < . . .

so that ; is an ordinal, if � is an ordinal then its successor ordinal is � + 1 =
� [ {�}, and � =

S
�<�

� for limit ordinals, the strict order is set membership 2
(� 6 �0, � 2 �0_ � = �0), and each ordinal � = [0, �) 2 O is the well-ordered set of
all smaller ordinals. So a set � is an ordinal if and only if � is strictly well-ordered
with respect to set membership and every element of � is also a subset of �.

29.9 Rank
Given a well-founded relation v 2Wf(X) on a set X, the ordinal rank ⇢(x) of an
element x 2 X for the well-founded relation v is the ordinal

⇢(x) ,
[

{⇢(x0) | x0 @ x} .

For well-orders v 2Wo(X), this is an order isomorphism

hX, vi ���!�!  ����
⇢

�⇢

hO, 6i .

so that Ord(hX, vi) , S
x2X

⇢(x).

Proof TODO ⌅

Revoir ci-dessous and the order type is

Ord(hX, vi) ,
[

x2X

⇢(x)

hWf(X), ✓i ���!�! ����
⇢

�⇢

hO, 6i .
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We have � ⇥ 0 = 0, � ⇥ (�0 + 1) = (� ⇥ �0) + � for successor ordinals,
� ⇥ � =

S
�

0
<�

� ⇥ �0 for limit ordinals.

ordinal exponentiation �0 = �, ��

0+1 = ��

0 ⇥ � for successor ordinals, and �� =S
<�

� when � is a limit ordinal.

29.8 Canonical Ordinals
von Neumann introduced a canonical representation of ordinals, as follows

0 = ; < 1 = {;} = {0} < 2 = {0, 1} = {;, {;}} < 3 = {0, 1, 2} = (29.3)
{;, {;}, {;, {;}}} < . . . < ! = {0, 1, 2, 3, . . .} < ! + 1 = {0, 1, 2, 3, . . . ,!} < . . .

so that ; is an ordinal, if � is an ordinal then its successor ordinal is � + 1 =
� [ {�}, and � =

S
�<�

� for limit ordinals, the strict order is set membership 2
(� 6 �0, � 2 �0_ � = �0), and each ordinal � = [0, �) 2 O is the well-ordered set of
all smaller ordinals. So a set � is an ordinal if and only if � is strictly well-ordered
with respect to set membership and every element of � is also a subset of �.

29.9 Rank
Given a well-founded relation v 2Wf(X) on a set X, the ordinal rank ⇢(x) of an
element x 2 X for the well-founded relation v is the ordinal

⇢(x) ,
[

{⇢(x0) | x0 @ x} .

For well-orders v 2Wo(X), this is an order isomorphism

hX, vi ���!�!  ����
⇢

�⇢

hO, 6i .

so that Ord(hX, vi) , S
x2X

⇢(x).

Proof TODO ⌅

Revoir ci-dessous and the order type is

Ord(hX, vi) ,
[

x2X

⇢(x)

hWf(X), ✓i ���!�! ����
⇢

�⇢

hO, 6i .

0

1

2

.

29.9.3 Well Order Isomorphism
For all well-orders hX, vi 2Wf, we have an order isomorphism

hX, vi ������!�!  �������
⇢

o

hX, vi

◆

O 67!X
hOrd(hX, vi), 6i

Proof By induction on the well-founded order hX, vi 2 Wf. For all x 2 X and
� 2 Ord(hX, vi), assume, by induction hypothesis, that 8x0 @ x : ⇢o

hX, vi
(x0) 6

�, x0 v ◆
O 67!X(�). Then
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Recent results
• We have recent results on approximating such fixpoint equations 

by Abstract Interpretation using abstraction and convergence 
acceleraion by widening/narrowing 
Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

• Combined with segmentation 
Patrick Cousot, Radhia Cousot, Francesco Logozzo: A parametric segmentation functor for fully automatic and scalable array content 
analysis. POPL 2011: 105-118 

these techniques have been successfully implemented for 
termination proofs 

Catarina Urban, The Abstract Domain of Segmented Ranking Functions, to appear in SAS 2013.

• The same techniques do work for the inference of ranking 
functions in any other contexts.
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void InitPartial(int[] A, int[] C) {

Contract.Requires(A.Length == C.Length);

int i = 0, j = 0;

while (i < A.Length) {

if (p(A[i])) // For some predicate p

C[j++] = 1;

i++;

} }

Figure 3. Partial array initialization. Partition-based techniques
use four partitions encoding the fact that at loop exit C may be
empty, partially filled, almost-totally filled or totally filled. Our
analysis: (i) compactly represents the same information with only
one segmentation; and (ii) infers the segmentation automatically.

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=A.Length] = A: {0} 0 {A.Length,i}?

where A.Length = i since the segmentation of p2 provides the
information that 0 6 i 6 A.Length.

The array content analysis always terminates since the only two
reasons for non-termination are impossible:

1. The array might have infinitely many symbolic segments as in
{0} ... ... {n-3} ... {n-2} ... {n-1} ... {n} which is prevented
by segmentation unification and widening;

2. A segment might take successive strictly increasing abstract
values which is prevented by the use of a widening/narrowing
convergence acceleration for segment content analysis [7]. No
widening was necessary for constant propagation which satisfies
the ascending chain condition (? @ i @ >, i 2 Z).

4.4 Partial Array Initialization
Full array initialization is a very well studied example, and array-
partitioning techniques perform reasonably well on it [17, 19].
However, partial array initialization (Fig. 3) illustrates the multipli-
cation of partitions which makes those techniques not-scalable. At
the end of the loop, our analysis (instantiated with constant propa-
gation) infers the following segmentation for C:

{0} 1 {j}? T {i,A.Length,C.Length}?

which compactly captures the fact that C may be empty (when
0 = j = i), may be not initialized (when j = 0), may be partially
initialized (when 0 < j < i), may be fully initialized (when
0 < j = i). Compare it with partition-based approaches where
the abstract state at the end of the loop contains four disjuncts:
one representing the concrete state when none of the C elements
is initialized (j = 0), two representing the partial initialization of C
distinguishing when j+1 < C.Length or j < C.Length, and one
representing the total initialization (j == C.Length) ([17, 7.2]).
We tried this example using our early implementation of [19] and
we got a 2⇥ slow-down with respect to a normal run of Clousot
(it is worth noting that the experimental results reported in [17] and
those in [18] are even worse than our first implementation). For this
example, Clousot lifted with the functor abstract domain was so
fast that we were unable to measure its impact on the performances:
the additional cost is in the order of magnitude the noise of the
virtual machine (JIT, garbage collector . . . ) i.e. few milliseconds.

4.5 Array in-situ rearrangement example
The in-situ array rearrangement algorithm of Fig. 4 [4, 23] maintains
an invariant

[0,100] [-100,100] [-100,-1]

0 a b A.length

void Rearrangement(int[] A) {

Contract.Requires(A.length > 1);

Contract.Requires(Contract.Forall(0,A.length,

i => (-100 <= A[i] && A[i] <= 100)));

int a = 0, b = A.length;

/* 1: */ while /* 2: */ (a < b) {

/* 3: */ if A[a] >= 0 then {

/* 4: */ a = a + 1;

/* 5: */ } else {

/* 6: */ b = b - 1;

/* 7: */ int x = A[a]; A[a] = A[b]; A[b] = x;

/* 8: */ } }

/* 9: */ }

Figure 4. The array in-situ rearrangement example.

where positive numbers are on the left of a, the negative numbers
are on the right, from b included, and in the middle, between a and
b � 1 the numbers remain to be handled. If A[a] is positive, the
limit a is moved to the right. Otherwise, A[a] is exchanged with
A[b-1] and b is moved to the left. The algorithm terminates when
the central zone is empty. This invariant which is automatically
inferred by the automatic array segmentation analysis illustrates the
interest of using possibly empty segments:
p1 = (A: {0 a} [-100,100] {b A.length}

a:[0,0] b:[2,+oo] A.length:[2,+oo])

p2 = (A: {0}[0,100]{a}?[-100,100]{b}?[-100,-1]{A.length}?

a:[0,+oo] b:[0,+oo] A.length:[2,+oo])

p9 = (A: {0} [0,100] {b a}? [-100,-1] {A.length}?

a:[0,+oo] b:[0,+oo] A.length:[2,+oo])

5. Abstract Domains and Functors
An abstract domain D includes a set D of abstract properties as
well as abstract functions and operations D.op for the partial order
structure of abstract properties (v), the join (t), the meet (u),
convergence acceleration operators: widening (`) and narrowing
(
a

), the abstract property transformers involved in the definition of
the semantics of the programming language: the abstract evaluation
of program arithmetic and Boolean expressions, the assignment
to scalar variables . . . [7]. A monotonic concretization function �

provides the meaning of abstract properties in terms of concrete
properties.

An abstract domain functor D is a function from the pa-
rameter abstract domains D1, . . . ,Dn

to a new abstract domain
D(D1, . . . ,Dn

). The term “functor” is mutated from OCaml ter-
minology. The formal parameters D1, . . . ,Dn

of the abstract do-
main functor D can be instantiated to various actual abstract do-
mains without needing to rewrite the code of the static analyzer.
So various abstractions can be experimented at no programming
cost. The abstract domain functor D(D1, . . . ,Dn

) composes ab-
stract properties D1, . . . ,Dn

of the parameter abstract domains
D1, . . . ,Dn

to build a new class of abstract properties D (e.g.
abstract environments mapping program numerical variables to in-
tervals) and operations (e.g. assignment of an interval to a variable).
For short, we can omit the parameters writing D or op when the
parameters D1, . . . ,Dn

are clear from the context.

6. Concrete Semantics
We describe the elements of the semantics of programming lan-
guages to which our array content analysis does apply, that is scalar
variables, simple expressions, and unidimensional arrays and cor-
responding assignments.

6.1 Scalar Variables Semantics The operational semantics of
scalar variables with basic types (bool, char, int, float, etc.) is
assumed to be concrete variable environments ⇢ 2 R

v

mapping
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Examples
•  Segmented ranking function abstract domain:
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No widening:

to simple loops, as in [19]. Moreover, the domain infers su�cient conditions for
program termination. The analysis uses over-approximations but we prove its
soundness, meaning that all program executions respecting these su�cient con-
ditions are indeed terminating, while a program execution that does not respect
these conditions might not terminate.

We employ segmentations to handle disjunctions arising in static program
analysis, as proposed in [14] for array content analysis. The analysis automati-
cally partitions the space of values for the program variables by means of abstract
environments. A segment is a pair of an abstract environment and an abstract
function. During the analysis, segments are split by tests, modified by assignment
and joined when merging control flows. Widening limits the number of segments
of a ranking function to a maximum given as a parameter of the analysis.

The segmented ranking functions abstract domain is parameterized by the
choice of the abstract environments (e.g. intervals, as in Section 3.1) and the
choice of the abstract functions (e.g. a�ne functions, as in Section 3.2). This
parameterization allows a wide range of instantiations of the domain making it
possible to easily tune the trade-o↵ between analysis precision and cost.

Motivating Example. To illustrate the potential of segmentations, let us consider
the following program annotated with numbered labels to denote control points:

while 1(x � 0) do
2
x := �2x+ 10

od3

The program always terminates if we consider variables with integer values (if
we admit non-integer values, for x = 10

3 the program will never terminate).
However, it does not have a linear ranking function. As a consequence, well-
known methods to synthesize ranking functions like [19,4], would not be capable
to guarantee its termination.

Figure 1 illustrates the details of our backward invariance analysis. We will
map each program control point to a function f 2 Z 7! N of the variable x. We
denote by 2[x � 0] the function obtained from the test x � 0 applied to the
function at program point 2. Similarly, 3[x < 0] denotes the function obtained
from the test x < 0 applied to the function at program point 3.

The analysis is performed backwards starting with the totally undefined func-
tion ? at each program point. The first iteration begins from the total function
f(x) = 0 at program point 3. The test x < 0 enforces loop exit: it splits the
domain of the function and enforce termination in 1 step. At program point 1,
the function 3[x < 0] is unmodified by the join with the yet totally undefined
function 2[x � 0]. At program point 2, the assignment x := �2x+10 propagates
the function increasing its value to 2. Then, the test x � 0, since it does not
need to split further the function domain, just propagates the function increas-
ing again its value to 3. Finally, a second iteration starts joining once more the
functions 3[x < 0] and 2[x � 0] at program point 1.

2

1st iteration 2nd iteration . . . 5th/6th iteration

3 ? f(x) = 0 f(x) = 0 . . . f(x) = 0

3[x < 0] ? f(x) =

(
1 x < 0

? x � 0
f(x) =

(
1 x < 0

? x � 0
. . . f(x) =

(
1 x < 0

? x � 0

1 ? f(x) =

(
1 x < 0

? x � 0
f(x) =

8
><

>:

1 x < 0

? 0  x  5

3 x > 5

. . . f(x) =

8
>>>>>><

>>>>>>:

1 x < 0

5 0  x  2

9 x = 3

7 4  x  5

3 x > 5

2 ? f(x) =

(
? x  5

2 x > 5
f(x) =

8
><

>:

4 x  2

? 3  x  5

2 x > 5

. . . f(x) =

8
>>><

>>>:

4 x  2

8 x = 3

6 4  x  5

2 x > 5

2[x � 0] ? f(x) =

(
? x  5

3 x > 5
f(x) =

8
>>><

>>>:

? x < 0

5 0  x  2

? 3  x  5

3 x > 5

. . . f(x) =

8
>>>>>><

>>>>>>:

? x < 0

5 0  x  2

9 x = 3

7 4  x  5

3 x > 5

Fig. 1: Motivating Example Analysis. The analysis starts from f(x) = 0 at pro-
gram point 3. At program point 1, the functions 3[x < 0] (obtained from the
test x < 0) and 2[x � 0] (obtained from the test x � 0) are joined.

In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fix-point is reached providing
the following ranking function f 2 Z 7! N as loop invariant at program point 1:

f(x) =

8
>>>>>><

>>>>>>:

1 x < 0

5 0  x  2

9 x = 3

7 4  x  5

3 x > 5

Unlike [19,4], our method is not impaired from the fact that the program
does not have a linear ranking function.

Our Contribution. In summary, this paper proposes a new abstract domain for
proving termination of imperative programs. We introduce the family of param-
eterized abstract domains of segmented ranking functions (Section 3). We also
describe the design (Section 3.3) and implementation (Section 4) of a particular
instance of these generic domains based on a�ne functions.
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Fig. 1: Motivating Example Analysis. The analysis starts from f(x) = 0 at pro-
gram point 3. At program point 1, the functions 3[x < 0] (obtained from the
test x < 0) and 2[x � 0] (obtained from the test x � 0) are joined.

In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fix-point is reached providing
the following ranking function f 2 Z 7! N as loop invariant at program point 1:

f(x) =
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Unlike [19,4], our method is not impaired from the fact that the program
does not have a linear ranking function.

Our Contribution. In summary, this paper proposes a new abstract domain for
proving termination of imperative programs. We introduce the family of param-
eterized abstract domains of segmented ranking functions (Section 3). We also
describe the design (Section 3.3) and implementation (Section 4) of a particular
instance of these generic domains based on a�ne functions.
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Fig. 1: Motivating Example Analysis. The analysis starts from f(x) = 0 at pro-
gram point 3. At program point 1, the functions 3[x < 0] (obtained from the
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In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fix-point is reached providing
the following ranking function f 2 Z 7! N as loop invariant at program point 1:
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Unlike [19,4], our method is not impaired from the fact that the program
does not have a linear ranking function.

Our Contribution. In summary, this paper proposes a new abstract domain for
proving termination of imperative programs. We introduce the family of param-
eterized abstract domains of segmented ranking functions (Section 3). We also
describe the design (Section 3.3) and implementation (Section 4) of a particular
instance of these generic domains based on a�ne functions.
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Fig. 1: Motivating Example Analysis. The analysis starts from f(x) = 0 at pro-
gram point 3. At program point 1, the functions 3[x < 0] (obtained from the
test x < 0) and 2[x � 0] (obtained from the test x � 0) are joined.

In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fix-point is reached providing
the following ranking function f 2 Z 7! N as loop invariant at program point 1:

f(x) =

8
>>>>>><

>>>>>>:

1 x < 0

5 0  x  2

9 x = 3
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Unlike [19,4], our method is not impaired from the fact that the program
does not have a linear ranking function.

Our Contribution. In summary, this paper proposes a new abstract domain for
proving termination of imperative programs. We introduce the family of param-
eterized abstract domains of segmented ranking functions (Section 3). We also
describe the design (Section 3.3) and implementation (Section 4) of a particular
instance of these generic domains based on a�ne functions.
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Widening (cont’d)
•   

• Widenings enforce convergence (at the cost of loss 
of precision on the termination domain and maximal 
number of steps before termination)
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Fig. 7: Example of widening of abstract piecewise-defined ranking functions. The
result of widening v

#
1 (shown in (a)) with v

#
2 (shown in (b) is shown in (c).

S#JX := AKv , ASSIGNV(X := A, v)

S#Jif B then S1 else S2 fiKv , FILTERS(B,S

#JS1Kv) gV FILTERS(¬B,S

#JS2Kv)

S#Jwhile B do S odKv , lfp

#4V

?V
�

#

where �

# , �x. FILTERS(¬B, v) gV FILTERS(B,S

#JSKx)
S#JS1;S2Kv , S#JS1K(S#JS2Kv)

Fig. 8: Abstract Semantics

Note that this widening does not respect the traditional definition [9], since
the property �V(v

#
1 ) t �V(v

#
2 ) v �V(v

#
1 OVv

#
2 ) does not always hold.

However, we are able to prove the following weaker result:

Lemma 3. X OV Y = X ) Y vV X

Proof. When X OV Y = X, we have Y 4V X. Moreover, since the widening
force the segmentation of X on Y , having X OV Y = X means that X and Y

are defined on the same segments. In this case, as we have already observed, the
partial orders vV and 4V coincide, and we have Y vV X. ut

3.4 Abstract Termination Semantics

We now use the operators of V(E,P) to define the statement abstract semantics
S

#JSK 2 V

# 7! V

# by induction on the syntax of programs in Figure 8.
The program abstract semantics r

#
⌧ 2 L 7! V# is computed through back-

ward invariance analysis, starting from the program final control point e 2 L
with the constant function equals to 0. The ranking function is then propagated
towards the program initial control point i 2 L taking assignments and tests
into account with widening around loops [3]. The upward iteration sequence
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partial orders vV and 4V coincide, and we have Y vV X. ut

3.4 Abstract Termination Semantics

We now use the operators of V(E,P) to define the statement abstract semantics
S

#JSK 2 V

# 7! V

# by induction on the syntax of programs in Figure 8.
The program abstract semantics r

#
⌧ 2 L 7! V# is computed through back-

ward invariance analysis, starting from the program final control point e 2 L
with the constant function equals to 0. The ranking function is then propagated
towards the program initial control point i 2 L taking assignments and tests
into account with widening around loops [3]. The upward iteration sequence
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Widening (cont’d)
• Example of loss of precision by widening on the 

termination domain (x ∈ ℚ) 

(terminates iff x > 0), at least a partial result!

• But with x ∈  ℤ, 

29

The presence of the test within the loop does not impair our method.
We run our analysis delaying widening of 2 iterations, and we obtained the

following loop invariant at program point 1:

f(x1, x2) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1 x1 < 0

1 x2 < 0

3 0  x1 < 1 ^ 0  y < 1

5 0  x1 < 1 ^ 1  y < 2

5 1  x1 < 2 ^ 0  y < 1

2x1 + 3 2  x ^ 0  y < 1

2x2 + 3 0  x < 1 ^ 2  y

2x1 + 2x2 + 3 1  x1 ^ 1  x2

ut

Example 10. Let us consider the following program:

while 1(x < 10) do
2
x := 2x

od3

Such program always terminates if and only if x > 0.
Our tool, with delayed widening of 2 iterations, is able to provide the follow-

ing loop invariant:

f(x) =

(
3 5  x < 10

1 10  x

We can see that even when the analysis fails to prove whole program termination,
it can still infer useful su�cient conditions for termination.

Besides, in this case, if we assume that the variable x takes values in Z, it
is su�cient to further delay the widening, to obtain the most precise ranking
function:

f(x) =

8
>>>>>><

>>>>>>:

9 x = 1

7 x = 2

5 3  x  4

3 5  x  9

1 10  x

ut

5 Related Work

Termination analysis has attracted increased interest over the years (cf. [7]).
Proving termination of programs is necessary for ensuring the correct behavior
of systems, especially those for which unexpected behavior can be catastrophic.
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Conclusion
• For well-foundedness/liveness, Abstract interpretation with 

infinitary abstractions and convergence acceleration ⋙ 
finitary abstractions

• The well-foundedness/liveness analysis:

• requires no given satisfaction precondition [1], 

• requires no special form of loops (e.g. linear, no test in 
[1])

• is not restricted to linear ranking functions [1],  

• always terminate thanks to the widening (which is not the 
case of ad-hoc methods à la Terminator and its numerous 
derivators based on the search of lasso counter-examples 
along a single path at a time) [2]
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What Next?
• Verification of LTL specifications for infinite 

unbounded transition systems (including software)

• Full automatic verification not debugging/bounded 
checking/etc (there are no counter-examples for 
infinite unbounded non-wellfoundedness)
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