
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstract Interpretation:
Principles and Applications

Patrick Cousot

 SCS Distinguished Lecture Series
Gates & Hillman Centers, Rashid Auditorium 4401

CMU, Pittsburgh — April 12th, 2012

cims . nyu . edu /~pcousot
di.ens.fr/~cousot

1

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstract Interpretation:
Principles and Applications

Patrick Cousot

 SCS Distinguished Lecture Series
Gates & Hillman Centers, Rashid Auditorium 4401

CMU, Pittsburgh — April 12th, 2012

cims . nyu . edu /~pcousot
di.ens.fr/~cousot

2

Radhia Cousotjoint work

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstract
Abstract interpretation is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal
description of complex or infinite systems and the inference or
verification of their combinatorial or undecidable properties. Developed
in the late seventies with Radhia Cousot, it has been since then applied to
many aspects of computer science (such as static analysis and verification,
contract inference, type inference, termination inference, model-checking,
abstract ion refinement, program transformation (including
watermarking), combination of decision procedures, security, malware
detection, database queries, etc.) and more recently, to system biology.

The talk will consist in an introduction to the basic notions of abstract
interpretation and the induced methodology for the systematic
development of sound abstract interpretation-based tools. Examples of
abstractions will be provided, from semantics to typing, grammars to
safety, reachability to potential/definite termination, numerical to protein-
protein abstractions, as well as applications (including in industrial use) to
software, hardware and system biology.

3

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Examples of abstraction

4

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Pixelation of a photo by Jay Maisel

5

/www.petapixel.com/2011/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/
Image credit: Photograph by Jay Maisel

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

An old idea...

6

The concrete is not always well-known!

20 000 years old picture in a spanish cave:

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstractions of a man / crowd

7

Height

Fingerprint

Eye color

DNA

...

...

,

Individual heights

min, max

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Motivation

• A touch of theory of abstract interpretation, with
many examples of abstractions

• A short overview of a few applications and on-
going work on software verification

For a rather complete basic introduction to abstract interpretation and applications to cyber-physical
systems, see:

Content

8

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier
Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In AIAA
Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22
April 2010. © AIAA.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fundamental motivations

9

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Scientific research
• in Mathematics/Physics:

" works towards unification and synthesis

" it is science of structure and change aiming at
" universal principles

• in Computer science

" works towards dispersion and parcelization

" it is a collection of local techniques for
" computational structures aiming at specific
" applications

An exponential process, will stop!
10

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: reasoning on computational structures

11

Steganography

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: reasoning on computational structures

12

Abstract interpretation

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Applied motivations

13

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

All computer scientists have experienced bugs

14

� � � � � � �
 � � � �
 � � � � � � � � �
 � � �
 � �
 � �
 	 � � � �

� " � � � � � 	
 � � � � % " � � � $ " � $ � � � � % " � � � " # " � � $ � " � # #
� & � " � ' � � � � $ " % � � � � � � � % � � $ � " " " �

� $ � # ! " � � � " � � � � $ & � " � � ($ � � $ � � # # � � � # � � � $ (� � " � $ � � � � ! " �
� " � � # � � $ � ' " � � � � � " � " % � � � � � $ � � � �

� � ! � � � 	 	 � � � ! $ � � � � " � � 	 	 � � !!! � � � [] � � """ � ľ � � Cousot

• Checking the presence of bugs is great

• Proving their absence is even better!

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

A Touch of Abstract
Interpretation Theory

15

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris,
France, pages 106—130, April 13-15 1976, Dunod, Paris.

A Touch of Abstract
Interpretation Theory

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Semantics

16

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Semantics

17

• Formal system: syntax to describe computations
(e.g. programming language = set of programs):

• Semantics: formal model of computations (e.g. set of
execution traces)

• Semantic domain (set of semantics):

• Formal system semantics (maps syntactic system
descriptions to their semantics)

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

4

 P 2 L

D

S 2 L! D

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Example: partial trace semantics

18

• Program

infinite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

finite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

states
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

transitions
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: partial trace semantics

• Partial trace semantics generated by the
small-step operational semantics of a
program :

19

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

⌧+̈1JPK , ⌧+̈JPK [⌧1JPK

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

�

�

�

�

�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

,

n > 0
⌧+̈JPK ,

[

n>0

⌧ n̈JPK,
⌧1JPK ,

n

� 2 ⌃1
�

�

�

�

�

�

�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

small-step operational semantics of a small-step operational semantics of a hsmall-step operational semantics of a small-step operational semantics of a ⌃small-step operational semantics of a small-step operational semantics of a ,small-step operational semantics of a small-step operational semantics of a ⌧small-step operational semantics of a small-step operational semantics of a ismall-step operational semantics of a
 :P

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Concrete properties

20

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Program concrete property: set of possible
semantics of the program

• Concrete property domain:

more generally or

• Collecting semantics: (maps programs to their
strongest property)

Concrete properties

21

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , {SJPK}

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

4

P , }(D) hP, ✓, ;, D, [, \i

CJPK , �SJPK

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i hP, 6, 0, _i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i hP, 6, 0, _i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

(it implies “ ’‘ all other properties)

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: concrete properties of trace semantics

• A trace in is a finite or infinite sequence of
states in

• A trace semantics in is a set of traces

• A trace semantics property in is a set of
trace semantics

• The collecting semantics of a program with trace
semantics is the strongest trace
semantics property

22

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

 in is a set of traces } in is a set of traces } in is a set of traces (in is a set of traces (in is a set of traces in is a set of traces ⌃ in is a set of traces in is a set of traces + in is a set of traces in is a set of traces 1 in is a set of traces) in is a set of traces) in is a set of traces

 in is a finite or infinite sequence of in is a finite or infinite sequence of (in is a finite or infinite sequence of in is a finite or infinite sequence of ⌃ in is a finite or infinite sequence of in is a finite or infinite sequence of + in is a finite or infinite sequence of in is a finite or infinite sequence of 1 in is a finite or infinite sequence of

 in is a set of } in is a set of } in is a set of (in is a set of (in is a set of } in is a set of } in is a set of (in is a set of (in is a set of in is a set of ⌃ in is a set of + in is a set of + in is a set of in is a set of 1 in is a set of)). in is a set of)). in is a set of

�

⇥+1JPK

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstract properties

23

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstract properties

• Abstract property: encodes a concrete property (e.g.
a logical formula, a geometric object, etc)

• Abstract property domain:

• a set of abstract properties

• encodes selected concrete properties of interest

24

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

hA, v, ?, >, t, ui

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example of abstract properties: reachability

• A reachability property in is a set of states
in that can be reached during execution from
given initial states

25

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Example of abstract properties: intervals
 : interval of values between and
 (including -∞ and +∞)
⊥ : empty set (false)

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [(⌃ ⇥ {?}))

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h} [{?}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [(⌃ ⇥ {?}))

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h} [{?}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [(⌃ ⇥ {?}))

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h} [{?}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [(⌃ ⇥ {?}))

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

5

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.
Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris, France,
pages 106—130, April 13-15 1976, Dunod, Paris.

 in is a set of states } in is a set of states } in is a set of states (in is a set of states (in is a set of states in is a set of states ⌃ in is a set of states) in is a set of states) in is a set of states

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstraction

26

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Abstraction: maps concrete to abstract properties

 is assumed to be increasing (so is the abstrac-
tion of).

• Abstract semantics: abstraction of the collecting
semantics

Abstraction

27

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

4

↵ 2 P! A

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Concretization

28

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Concretization

• Concretization: maps abstract properties to
concrete properties

 is assumed to be increasing (so is the
concretization of)

• Abstract properties either describe exactly the
concrete properties in , or

• Abstract properties must approximate the concrete
properties in

29

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

� 2 A! P

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

4

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

5

concrete properties in , concrete properties in , �concrete properties in , (concrete properties in , (concrete properties in , Aconcrete properties in , Aconcrete properties in ,)concrete properties in ,)concrete properties in ,

P \ �(A)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Soundness

30

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Soundness

• Definition: An abstract property over-
approximates a concrete property if and
only if

• Definition: an abstraction is sound if and only if

• Under-approximation is dual(*)

31

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

P 2 P Q 2 A P ✓ �(Q)

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

P 2 P Q 2 A P ✓ �(Q)

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

� 2 A! P

S 2 L! A
SJPK , ↵

�CJPK� = ↵ ��SJPK �

)
(

P 2 P Q 2 A P ✓ �(Q)

4

Definition: An abstract property Definition: An abstract property
Q

Definition: An abstract property Definition: An abstract property 2Definition: An abstract property Definition: An abstract property ADefinition: An abstract property
 a concrete property if and a concrete property if and

P

 a concrete property if and a concrete property if and 2 a concrete property if and a concrete property if and P a concrete property if and

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

5

8P 2 P : P ✓ �(↵(P))

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

(*)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Best abstraction

32

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Best abstraction

33

• If any concrete property has a best abstrac-
tion , then the correspondence is given by
a Galois connection

i.e.

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

hP, 6i ���! ���↵
�
hA, vi

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

258

[1] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

[3] Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

258

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

S 2 L! A
SJPK , ↵(C)JPK = ↵ ��SJPK �

)
(

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK

↵ 2 P! A

S 2 L! A
SJPK , ↵(C)JPK = ↵ ��SJPK �

)
(

4

Sound abstraction
Best abstraction

• Concrete properties:

• Abstract properties:

Ultimately stationary at rank ✏

Converges to F

✏ = lfp

v
F

✏ = ! F

h⌃, I, ⌧i
2 ⌃ I ✓ ⌃

post[⌧?]I = lfp

✓ �X

.I [post[⌧]X

⌧? = lfp

✓ �X

.1 [X

� ⌧

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states

post[⌧?]I ✓ ¬B no bad state is reachable

9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵
1

�
1 hA

1

, v
1

i

hP, 6i ����! ����↵
2

�
2 hA

2

, v
2

i

A
1

⌦A
2

,
{h↵

1

(�
1

(P

1

) ^ �
2

(P

2

)), ↵
2

(�
1

(P

1

) ^ �
2

(P

2

))i | P
1

2 A
1

^ P

2

2 A
2

}
hP, 6i �������! �������

↵
1

⇥↵
2

�
1

⇥�
2 hA

1

⌦A
2

, v
1

⇥ v
2

i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

3

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i hP, 6, 0, _i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

[1,2]

[2] Equivalently upper closures, principal ideals, complete join congruences, Moore families, etc, see [3]

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Examples of abstraction/
concretization

34

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example I of abstraction: maximal trace semantics

35

• Program

infinite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

finite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

states
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

blocking states
in

transitions
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

P ⌧+1JPK

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

5

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

�

�

�

�

�

�

� �n�1 2 �⌧JPK o

[T1

Example I of abstraction: maximal trace semantics

• Blocking states of a transition system :

• Maximal trace abstraction (eliminates all traces that
are not terminated):

• Maximal trace semantics (terminated finite and
infinite traces generated by the transition system):

36

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

�⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example II of abstraction: trace property

• Trace property abstraction:

• Trace property abstraction of the collecting
semantics:

(common confusion between semantics and
properties)

37

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

↵⇥(P) ,
[

P

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Loss of information in the trace property abstraction

• “Always terminate with the same value, either 0 or 1’’

• Trace property abstraction:

“Always terminate, either with 0 or 1’’
38

0

0

1

1

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

0
0

1
1

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

always same
result

results can
be different

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

2 }(⌃+1).↵⇥(P)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example III of abstraction: relational abstraction
• Relational abstraction:

• Intuition:

39

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! (⌃ ⇥ ⌃) [(⌃ ⇥ {?})

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

5

Patrick Cousot, Radhia Cousot: Invited Talk: Higher Order Abstract Interpretation (and Application to Comportment Analysis Generalizing Strictness, Termination,
Projection, and PER Analysis. ICCL 1994: 95-112
Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example IV of abstraction: safety trace property

• Prefix abstraction (program executions can be
observed only for a finite time):

• Limit abstraction (non-termination cannot be
observed):

• Safety abstraction (finite observations of executions):

40

� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00

pf(T) ,
[

�

pf(�)
�

�

� � 2 T

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T)).

The limit abstraction of a set of traces is the topological closure

lm(T) , T [�

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)

=
�

P 2}(⌃+1) | sf(P) = P

.

We have the Galois isomorphism

hSF, ✓i ����!�! �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T) = pf(T)+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.

247

� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00

pf(T) ,
[

�

pf(�)
�

�

� � 2 T

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T)).

The limit abstraction of a set of traces is the topological closure

lm(T) , T [�

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)

=
�

P 2}(⌃+1) | sf(P) = P

.

We have the Galois isomorphism

hSF, ✓i ����!�! �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T) = pf(T)+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.

247

� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00

pf(T) ,
[

�

pf(�)
�

�

� � 2 T

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T)).

The limit abstraction of a set of traces is the topological closure

lm(T) , T [�

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)

=
�

P 2}(⌃+1) | sf(P) = P

.

We have the Galois isomorphism

hSF, ✓i ����!�! �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T) = pf(T)+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.

247

pf(�) , �

�0 2 ⌃+1
�

�

�

�

�

�

�

�

� 9�00 2 ⌃⇤1 : � = �0�00

pf(T) ,
[

�

pf(�)
�

�

�

�

�

�

�

�

� � 2 T

.

sf , lm � pf = pf � lm � pf

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

5

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example V of abstraction: reachability

41

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

248

Initial states

� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00

pf(T) ,
[

�

pf(�)
�

�

� � 2 T

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T)).

The limit abstraction of a set of traces is the topological closure

lm(T) , T [�

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)

=
�

P 2}(⌃+1) | sf(P) = P

.

We have the Galois isomorphism

hSF, ✓i ����!�! �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T) = pf(T)+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.

247

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

5

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Initialization abstraction:

• Reachability abstraction:

• Reachability abstract semantics:

Example V of abstraction: reachability

42

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

249

↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

249

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

249

↵r(↵i(I)(⌧+1JPK))

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

5

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example VI of abstraction: potential termination

• Potential termination:

• Potential termination abstraction:

43

may
terminate

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

248

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example VII of abstraction: definite termination

• Definite termination:

• Definite termination abstraction:

44

must
terminate

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

248

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example VIII: elementwise abstraction

• Morphism

• Abstraction

• Galois connection

• Example: rule of signs

45

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Eager lambda calculus:

• Semantic domains:

Example IX: typing

46
Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331

Types as Abstract Interpretations

(invited paper)

Patrick Cousot

LIENS, École Normale Supérieure

45, rue d’Ulm

75230 Paris cedex 05 (France)

cousot@dmi.ens.fr, http://www.ens.fr/

~

cousot

Abstract

Starting from a denotational semantics of the eager untyped
lambda-calculus with explicit runtime errors, the standard
collecting semantics is defined as specifying the strongest
program properties. By a first abstraction, a new sound
type collecting semantics is derived in compositional fix-
point form. Then by successive (semi-dual) Galois con-
nection based abstractions, type systems and/or type in-
ference algorithms are designed as abstract semantics or
abstract interpreters approximating the type collecting se-
mantics. This leads to a hierarchy of type systems, which
is part of the lattice of abstract interpretations of the un-
typed lambda-calculus. This hierarchy includes two new
à la Church/Curry polytype systems. Abstractions of this
polytype semantics lead to classical Milner/Mycroft and
Damas/Milner polymorphic type schemes, Church/Curry
monotypes and Hindley principal typing algorithm. This
shows that types are abstract interpretations.

1 Introduction

The leading idea of abstract interpretation [6, 7, 9, 12] is
that program semantics, proof and static analysis methods
have common structures which can be exhibited by abstrac-
tion of the structure of run-time computations. This leads
to an organization of the more or less approximate or refined
semantics into a lattice of abstract interpretations. This uni-
fying point of view allows for a synthetic understanding of
a wide range of works from theoretical semantical specifica-
tions to practical static analysis algorithms.

It will be shown that this point of view can be applied to
type theory, in particular to type soundness and à la Curry
type inference which, following [17, 29], have been dominat-
ing research themes in programming languages during the
last two decades, at least for functional programming lan-
guages [1, 19, 31]. Traditionally the design of a type system
“involves defining the notion of type error for a given lan-
guage, formalizing the type system by a set of type rules,
and verifying that program execution of well-typed programs
cannot produce type errors. This process, if successful, guar-
antees the type-soundness of a language as a whole. Type-
checking algorithms can then be developed as a separate con-

Permission to make digital/hard copies of all or part of this material for
personnal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
POPL 97, Paris, France
c� 1997 ACM 0-89791-853-3/96/01 ..$3.50

cern, and their correctness can be verified with respect to a
given type system; this process guarantees that type checkers
satisfy the language definition.” [2]. Abstract interpreta-
tion allows viewing all these di↵erent aspects in the more
unifying framework of semantic approximation. Formaliza-
tion of program analysis and type systems within the same
abstract interpretation framework should lead to a better
understanding of the relationship between these seemingly
di↵erent approaches to program correctness and optimiza-
tion.

2 Syntax

The syntax of the untyped eager lambda calculus is:

x, f, . . . 2 X : program variables

e 2 E : program expressions

e ::= x | �x · e | e1(e2) | µf ·�x · e |
1 | e1 � e2 | (e1 ? e2 : e3)

�x · e is the lambda abstraction and e1(e2) the application.
In µf ·�x · e, the function f with formal parameter x is de-
fined recursively. (e1 ? e2 : e3) is the test for zero.

3 Denotational Semantics

The semantic domain S is defined by the following equations
[20]:

W 4
= {!} wrong

z 2 Z integers

u, f, ' 2 U ⇠= W? � Z? � [U 7! U]? values

R 2 R 4
= X 7! U environments

� 2 S 4
= R 7! U semantic domain

where ! is the wrong value, ? denotes non-termination, D?
is the lift of domain D (with up injection "(•) 2 D 7! D?
and partial down injection #(•) 2 D? 7�6! D), D1 � D2 is
the coalesced sum of domains D1 and D2 (with left and
right injections • :: D1 2 D1 7! D1 � D2 and • :: D2 2
D2 7! D1 � D2), ⌦

4
= "(!) :: W? and [D1 7! D2] is the

domain of continuous, ?-strict, ⌦-strict functions from D1

into D2. v is the computational ordering on U and t is the
least upper bound (lub) of increasing chains.

In the metalanguage for defining the denotational seman-
tics below, ⇤x

.

. . . or ⇤x2S

.

. . . is the lambda abstraction.
(. . . ? . . . | . . . ? . . . | . . .) is the conditional expression.

316

Types as Abstract Interpretations

(invited paper)

Patrick Cousot

LIENS, École Normale Supérieure

45, rue d’Ulm

75230 Paris cedex 05 (France)

cousot@dmi.ens.fr, http://www.ens.fr/

~

cousot

Abstract

Starting from a denotational semantics of the eager untyped
lambda-calculus with explicit runtime errors, the standard
collecting semantics is defined as specifying the strongest
program properties. By a first abstraction, a new sound
type collecting semantics is derived in compositional fix-
point form. Then by successive (semi-dual) Galois con-
nection based abstractions, type systems and/or type in-
ference algorithms are designed as abstract semantics or
abstract interpreters approximating the type collecting se-
mantics. This leads to a hierarchy of type systems, which
is part of the lattice of abstract interpretations of the un-
typed lambda-calculus. This hierarchy includes two new
à la Church/Curry polytype systems. Abstractions of this
polytype semantics lead to classical Milner/Mycroft and
Damas/Milner polymorphic type schemes, Church/Curry
monotypes and Hindley principal typing algorithm. This
shows that types are abstract interpretations.

1 Introduction

The leading idea of abstract interpretation [6, 7, 9, 12] is
that program semantics, proof and static analysis methods
have common structures which can be exhibited by abstrac-
tion of the structure of run-time computations. This leads
to an organization of the more or less approximate or refined
semantics into a lattice of abstract interpretations. This uni-
fying point of view allows for a synthetic understanding of
a wide range of works from theoretical semantical specifica-
tions to practical static analysis algorithms.

It will be shown that this point of view can be applied to
type theory, in particular to type soundness and à la Curry
type inference which, following [17, 29], have been dominat-
ing research themes in programming languages during the
last two decades, at least for functional programming lan-
guages [1, 19, 31]. Traditionally the design of a type system
“involves defining the notion of type error for a given lan-
guage, formalizing the type system by a set of type rules,
and verifying that program execution of well-typed programs
cannot produce type errors. This process, if successful, guar-
antees the type-soundness of a language as a whole. Type-
checking algorithms can then be developed as a separate con-

Permission to make digital/hard copies of all or part of this material for
personnal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
POPL 97, Paris, France
c� 1997 ACM 0-89791-853-3/96/01 ..$3.50

cern, and their correctness can be verified with respect to a
given type system; this process guarantees that type checkers
satisfy the language definition.” [2]. Abstract interpreta-
tion allows viewing all these di↵erent aspects in the more
unifying framework of semantic approximation. Formaliza-
tion of program analysis and type systems within the same
abstract interpretation framework should lead to a better
understanding of the relationship between these seemingly
di↵erent approaches to program correctness and optimiza-
tion.

2 Syntax

The syntax of the untyped eager lambda calculus is:

x, f, . . . 2 X : program variables

e 2 E : program expressions

e ::= x | �x · e | e1(e2) | µf ·�x · e |
1 | e1 � e2 | (e1 ? e2 : e3)

�x · e is the lambda abstraction and e1(e2) the application.
In µf ·�x · e, the function f with formal parameter x is de-
fined recursively. (e1 ? e2 : e3) is the test for zero.

3 Denotational Semantics

The semantic domain S is defined by the following equations
[20]:

W 4
= {!} wrong

z 2 Z integers

u, f, ' 2 U ⇠= W? � Z? � [U 7! U]? values

R 2 R 4
= X 7! U environments

� 2 S 4
= R 7! U semantic domain

where ! is the wrong value, ? denotes non-termination, D?
is the lift of domain D (with up injection "(•) 2 D 7! D?
and partial down injection #(•) 2 D? 7�6! D), D1 � D2 is
the coalesced sum of domains D1 and D2 (with left and
right injections • :: D1 2 D1 7! D1 � D2 and • :: D2 2
D2 7! D1 � D2), ⌦

4
= "(!) :: W? and [D1 7! D2] is the

domain of continuous, ?-strict, ⌦-strict functions from D1

into D2. v is the computational ordering on U and t is the
least upper bound (lub) of increasing chains.

In the metalanguage for defining the denotational seman-
tics below, ⇤x

.

. . . or ⇤x2S

.

. . . is the lambda abstraction.
(. . . ? . . . | . . . ? . . . | . . .) is the conditional expression.

316

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example IX: typing

• Denotational semantics:

47
Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.

317

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.

317

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Church/Curry monotypes:

Example IX: typing

48

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations

317

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example IX: typing

• Properties:

• Monotype concretization:

49

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.

317

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.

317

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example IX: typing

• Galois connection:

implies

50

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.

317

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[•]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[•]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 (int)

4
= {"(z) :: Z? | z 2 Z} [{?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [{?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.

317

hP, ✓i ����! ��������! ��������!
↵C

�C

hTC
, ◆i

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example X: Protein–Protein interaction abstraction

51

Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Jérôme Feret 20 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

•
•
•

•

•

Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

Jérôme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering
(ICCMSE'2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

•

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example XI: numerical abstractions

52

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

In absence of best
abstraction

53

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

In absence of best abstraction

54

• Best abstraction of a disk by a rectangular
parallelogram

• No best abstraction of a disk by a polyhedron
(Euclid)

use only concretization or abstraction or widening
(introduced in the following) (I)

Best Abstraction (Cont' d)

� If we want to over-approximate a
disk in two dimensions by a poly-
hedron there is no best (smallest)
one, as shown by Euclid.

� However if we want to over-
approximate a disk by a rectangu-
lar parallelepiped which sides are
parallel to the axes, then there is
de� nitely a best (smallest) one.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 172 � ? [] � � " ""I ľ P. Cousot

Best Abstraction (Cont' d)

� If we want to over-approximate a
disk in two dimensions by a poly-
hedron there is no best (smallest)
one, as shown by Euclid.

� However if we want to over-
approximate a disk by a rectangu-
lar parallelepiped which sides are
parallel to the axes, then there is
de� nitely a best (smallest) one.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 172 � ? [] � � " ""I ľ P. Cousot

(I) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example XII of abstraction: polyhedra

• Abstract polyhedral properties:

• Concretization:

Transformers and widenings have no more precise
solution and make arbitrary choices (e.g. governed
efficiency considerations)

55

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X | AX 6 B}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

5

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Transformer abstraction

56

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Transformers

• Concrete transformer:

increasing (or continuous)

57

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

5

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Transformer abstraction

• An abstract transformer is

• Sound iff

• Sound and complete iff

• Example (rule of sign)

• Addition: sound, incomplete

• Multiplication: sound, complete

58

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

 isF isF is2 is2 isA isA is is! isA isA is

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example abstract transformer: rule of signs

{-1, -2, -7} * {0, -2, -5} = {0, 2, 4, 14, 5, 10, 35}

 {-1} * {-1,0} = {1,0}

Negative Negative Positive
 or zero or zero

59

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

Δ

Δ
=

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example abstract transformer: rule of signs

{-3, -4, -7} + {1, 2, 3} = {-2,-3,-6,-1,-2,-5,0,-1,-4}

 {-1,0}

 {-1} + {1} = {-1,0,1}

Negative Positive Unkown

60

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

Δ

Δ
⊆

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoints

61

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoint

62

• Set

• Transformer

• Fixpoint

• Poset

• Least fixpoint

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F (written x = lfp6F)
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
I ✓ ⌃
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoints of increasing functions (Tarski)

63

x

f(x)

+∞-∞
Another fixpoint at +∞ ↑

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Program properties as fixpoints

64

• Program semantics and program properties can be
formalized as least/greatest fixpoints of increasing
transformers on complete lattices (1)

• Complete lattice / cpo of properties

• Properties of program

• Transformer of program

 (1)

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

258

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoints: inversion, converse and duality

• Forward (→) or backward (←) transformers

• Join (U) or meet (U) merge duality

• Least (↓) or greatest (↑) fixpoint duality

65

U

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example I: partial finite trace semantics

•
• Forward transformer:

• Backward transformer:

• Fixpoint finite partial traces:

66

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃⇤1), ✓, ;, ⌃⇤1, [, \i

5

⌧+̈JPK = lfp✓; �
 �
�
 �
� +̈⌧ JPK = lfp✓;

�!
�
�!
�
�!+̈
⌧ JPK

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example II: infinite traces

•

• Backward transformer:

• Fixpoint infinite traces:

67

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

h}(⌃+1), ✓, ;, ⌃+1, [, \i

5

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

⌧1JPK = gfp✓⌃1 �
 �
�
 �
� 1⌧ JPK

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example III: partial finite and infinite traces (a)

•
• Fixpoint partial finite and infinite traces semantics:

68

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

h}(⌃+1), ✓, ;, ⌃+1, [, \i

5

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

⌧+̈1JPK = lfp✓; �
 �
�
 �
� +̈⌧ JPK [gfp✓⌃1 �

 �
�
 �
� 1⌧ JPK

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example III: partial finite and infinite traces (b)

• Computational order:

• Transformer:

• Fixpoint partial finite and infinite traces semantics:

69

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

h}(⌃+1), v, ⌃1, ⌃+, t, ui

6

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

= lfpv⌃1 �
 �
�
 �
� +̈1⌧ JPK⌧+̈1JPK

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: reachable states

• Transition system (set of states , initial states ,
transition relation)

• Right-image of a set of states by transitions

• Reachable states from initial states

70

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

258

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

258

h⌃, I, ⌧i

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
I ✓ ⌃
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
I ✓ ⌃
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Proof methods

71

Patrick Cousot & Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. POPL 1977, 238—252,.

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

Patrick Cousot and Radhia Cousot. Reasoning about program invariance proof methods. Research Report CRIN-80-P050, Institut National Polytechnique de Lorraine, Nancy, France, July 1980, 22p.

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot & Radhia Cousot. Induction principles for proving invariance properties of programs. In D. Néel, editor, Tools & Notions for Program Construction: an Advanced Course, pages 75—
119. Cambridge University Press, Cambridge, UK, August 1982.

Patrick Cousot. A Hoare-style axiomatization of Burstall's intermittent assertion method for non-deterministic programs Research report LRIM-83-04, University of Metz, September 1983.

Patrick Cousot and Radhia Cousot. “À la Burstall” induction principles for proving inevitability properties of programs. Research Report LRIM-83-08, University of Metz, November 1983.

Patrick Cousot & Radhia Cousot. Principe des Méthodes de Preuve de Propriétés d'Invariance et de Fatalité des Programmes Parallèles. (Principle of invariance and inevitability proof methods of
concurrent programs.) In « Parallélisme, communication et synchronisation », J.-P. Verjus et G. Roucairol (Eds.), Éditions du CNRS, Paris, pp. 129—149, 1985.

Patrick Cousot & Radhia Cousot. “À la Floyd” induction principles for proving inevitability properties of programs. In «Algebraic methods in semantics», M. Nivat & J. Reynolds (Eds.), Cambridge
University Press, Cambridge, UK, pp. 277—312, December 1985.

Patrick Cousot & Radhia Cousot. Sometime = Always + Recursion ≡ Always, On the Equivalence of the Intermittent and Invariant Assertions Methods for Proving Inevitability Properties of
Programs. Acta Informatica 24, 1—31 (1987).

Patrick Cousot & Radhia Cousot. A language independent proof of the soundness and completeness of generalized Hoare logic. Information and computation 80(2):165—191 (1989).

Patrick Cousot. Methods and Logics for Proving Programs. In J. van Leeuwen, editor, Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, chapter 15, pages 843
—993. Elsevier Science Publishers B.V. , 1990.
Radhia Cousot. Fondements des méthodes de preuve d'invariance et de fatalité de programmes parallèles. Thèse ès Sciences Mathématiques, Institut national polytechnique de
Lorraine, Nancy, France, 15 November 1985.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Proof methods

• Proof methods directly follow from the fixpoint
definition

(proof by Tarski’s fixpoint theorem for increasing
transformers on complete lattice or Pataria for
cpos)

72

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

258

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F (written x = lfp6F)
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp6F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
I ✓ ⌃
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: Turing/Floyd Invariance Proof

• Bad states:

• Prove that no bad state is reachable:

 ie
• Turing/Floyd proof method:

73

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

258

B ✓ ⌃

9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoint abstraction

74

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoint abstraction

• For an increasing and sound abstract transformer, we
have a fixpoint approximation

• For an increasing, sound, and complete abstract
transformer, we have an exact fixpoint abstraction

75

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example XIII: trace to reachability abstraction

• Transition system:

• Fixpoint concrete partial trace semantics:

 with

• Reachability abstraction from initial states I:

• Sound and complete abstract transformer

• Fixpoint reachability:

76

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

h}(⌃+1), v, ⌃1, ⌃+, t, ui

h⌃JPK, ⌧JPKi

6

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i

h}(⌃+1), ✓i �������! �������
↵r�↵i

(I)

�i

(I)

��r

h}(⌃), ✓i

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i

h}(⌃+1), ✓i �������! �������
↵r�↵i

(I)

�i

(I)

��r

h}(⌃), ✓i

↵r � ↵i

(I)(⌧+̈JPK) = ↵r � ↵i

(I)

⇣

lfp

✓
;
�!� +̈⌧ JPK

⌘

= lfp

✓
; �X

.

I [post[⌧JPK]X

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i

h}(⌃+1), ✓i �������! �������
↵r�↵i

(I)

�i

(I)

��r

h}(⌃), ✓i

↵r � ↵i

(I)

� �!� +̈⌧ JPK = �X

.

I [post[⌧JPK]

� ↵r � ↵i

↵r � ↵i

(I)(⌧+̈JPK) = ↵r � ↵i

(I)

⇣

lfp

✓
;
�!� +̈⌧ JPK

⌘

= lfp

✓
; �X

.

I [post[⌧JPK]X

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [(⌃ ⇥ {?})), ✓i

↵�(T) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[{h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

5

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fixpoint iteration and
convergence acceleration

77

(*)

(**)

In absence of direct solution (e.g. by elimination)
In absence of finite convergence (e.g. ascending chain condition)

(*)

(**)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Fixpoint of increasing transformers on cpos can be
computed iteratively as limits of (transfinite) iterates

• when is continuous

• Finite iterates when operates on a cpo satisfying
the ascending chain condition

Iterative fixpoint computation

78

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

258

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

F0 , ?
F�F�F +1 , F(F�F�F), � + 1 successor ordinal

F� , F�<� F�F�F , � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Expressiveness of finite abstractions is weak

79

• Finite state abstraction is impossible for termination
and unsound for non-termination of unbounded
programs

• Unbounded executions:

• Finite homomorphic abstraction:

• Termination: impossible (lasso)

• Non-termination (lasso): unsound
(*) Excluding trivial solutions, see: Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

(*)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Widening

• Definition (widening)

• poset

• Over-approximation

• Termination

80

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A

259

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A
hA, vi

259

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A
hA, vi
8x, y 2 A : x v xOy ^ y v xOy

259

8x, y 2 A : x v xOy ^ y v xOy

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A
hA, vi
8x, y 2 A : x v xOy ^ y v xOy
Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni

y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

259

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example: (simple) widening for polyhedra

• Iterates

• Widening

81

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• Iterates with widening for transformer

• The widening speeds up convergence (at the cost of
imprecision)

• Can be improved by a narrowing.

Iteration with widening

82

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A
hA, vi
8x, y 2 A : x v xOy ^ y v xOy
Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni

y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

F 2 A! A

259

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy
Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni

y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

F 2 A! A

F
0 , ?

F
n+1 , F

n
when F(F

n
) v F

n

F
n+1 , F

nOF(F
n
) otherwise

259

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy
Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni

y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

F 2 A! A

F
0 , ?

F
n+1 , F

n
when F(F

n
) v F

n

F
n+1 , F

nOF(F
n
) otherwise

Theorem (Limit of iterates with widening) The iterates of F with
widening O from ? on a poset hA, v, ?i converge to a limit F

`

such that F(F
`
) v F

`
(and so lfpvF v F

`
when F is increasing).

259

TheoremTheorem (Limit of iterates with widening) The iterates of F with
widening O from ? on a poset hA, v, ?i converge to a limit F

`

such that F(F
`
) v F

`
(and so lfpvF v F

`
when F is increasing).

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Convergence acceleration with widening

83

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the

derivative as in Newton-Raphson method)

F

lfp F

F

lfp F x

F(x)6x

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Reduced product

• The reduced product combines abstractions by
performing their conjunction in the abstract

• Example: (positive or zero) odd = <positive,odd>

84

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃, bad states
post[⌧?]I ✓ ¬B, no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B, Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

258

hP, 6i ����! ����↵����!↵����!1
�1 hA1, v1i

hP, 6i ����! ����↵����!↵����!2
�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥�������!⇥�������!↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy
Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni

y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

F 2 A! A

F
0 , ?

F
n+1 , F

n
when F(F

n
) v F

n

F
n+1 , F

nOF(F
n
) otherwise

Theorem (Limit of iterates with widening) The iterates of F with
widening O from ? on a poset hA, v, ?i converge to a limit F

`

such that F(F
`
) v F

`
(and so lfpvF v F

`
when F is increasing).

259

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Undecidability and
complexity

85

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Fighting undecidability and complexity
in automatic program verification

• Any automatic semantic program verification method
will definitely fail on infinitely many programs (Gödel)

• Solutions:

• Ask for human help (theorem-prover/proof
assistant based deductive methods) → high labor
cost

• Consider finite/decidable systems (model-checking)
→ combinatorial explosion

• Do sound approximations or complete abstractions
(abstract interpretation) → false alarms

86

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

What to do about false
alarms?

abstraction refinement

87

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

What to do about false alarms?
(I) Automatic refinement

88

• Inefficient and may not terminate (Gödel)

• Refinement needs intelligence

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Set of functions abstraction

89

t

fi(t)

i=0
i=1
i=2

i=3

i=4

How to approximate { f1, f2, f3, f4 } ?

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

t

f(t)

Set of functions abstraction

90

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot 91

t

f(t)

M

m
∃ i, t ∈ [l, h]: fi(t) < m ? No

∃ i, t ∈ [l,h] : fi(t) > M ?

l h

Min/max questions on the fi

Concrete questions on the fi answered in the abstract

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Concrete questions on the fi answered in the abstract

92

t

f(t)

M

∃ i, t ∈ [l,h] : fi(t) < m ? No
m

∃ i, t ∈ [l,h]: fi(t) > M ? I don’t know

Min/max questions on the fi

l h

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

A more precise/refined abstraction

93

t

f(t)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

An even more precise/refined abstraction

94

t

f(t)

Note: this is already much more elaborate than CEGAR that goes
counter-example by counter-example!

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Intelligent passing to the limit

95

t

f(t)

Sound and complete abstraction for min/max questions on
the fi

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

A non-comparable abstraction

96 11

t

f(t)

Sound and incomplete abstraction for min/max questions on
the fi

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

The hierarchy of abstractions

97
Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

(I) Automatic refinement: Astrée example

98

• Filter invariant abstraction:

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

� Computes Xn =

� Xn`1 + � Xn`2 + Yn
In

� The concrete computation is bounded, which
must be proved in the abstract.

� There is no stable interval or octagon.
� The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 369 � ? [] � � " ""I ľ P. Cousot

2nd order filter: Execution trace:

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

� Computes Xn =

� Xn`1 + � Xn`2 + Yn
In

� The concrete computation is bounded, which
must be proved in the abstract.

� There is no stable interval or octagon.
� The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 369 � ? [] � � " ""I ľ P. Cousot

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

� Computes Xn =

� Xn`1 + � Xn`2 + Yn
In

� The concrete computation is bounded, which
must be proved in the abstract.

� There is no stable interval or octagon.
� The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 369 � ? [] � � " ""I ľ P. Cousot

Unstable polyhedral
abstraction:

Stable ellipsoidal
abstraction:

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
AIAA Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot 99

What to do about false alarms?
(II) Domain specific refinement

• Adapt the abstraction to the programming
paradigms typically used in given domain-specific
applications

• e.g. Astrée for synchronous control/command
programs: no recursion, no dynamic memory
allocation, maximum execution time, filters,
integrators, quaternions, etc.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

So, what is Abstract
Interpretation

100

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

A narrow view ...

• Define the syntax of the system descriptions

• Define the semantics of the system descriptions

• Define the collecting semantics (strongest property of
interest)

• Preferably express the collecting semantics in fixpoint
form

• Define abstractions of properties

• Infer abstractions of transformers

• Infer abstractions of fixpoints to get abstract semantics

• Iterate to compute fixpoints with convergence
acceleration (widening/narrowing)

• Combine abstractions (e.g. reduced product) to refine

101

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example XIV: grammar abstraction

102

• Meta-syntax of grammars

• Semantics of grammars (by induction on the meta-syntax):
the language generated by the grammar

• Fixpoint semantics: Chomsky-Schützenberger th.

• Example of abstraction: FIRST

• Fixpoint abstraction: FIRST classical algorithm (expressed as
a fixpoint)

Patrick Cousot, Radhia Cousot: Grammar semantics, analysis and parsing by abstract interpretation. Theor. Comput. Sci. 412(44): 6135-6192 (2011)
Patrick Cousot, Radhia Cousot: Grammar Analysis and Parsing by Abstract Interpretation. Program Analysis and Compilation, LNCS 4444, 2006: 175-200
Patrick Cousot, Radhia Cousot: Parsing as abstract interpretation of grammar semantics. Theor. Comput. Sci. 290(1): 531-544 (2003)

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

h}(⌃+1), ✓, ;, ⌃+1, [, \i

h}(⌃+1), v, ⌃1, ⌃+, t, ui

h⌃JPK, ⌧JPKi

SJX ::= Xa | bK = lfp

✓ �X

.

X · {a} [{b}

↵first(X) , {a | 9� : a� 2 X}

F JX ::= Xa | bK = ↵first(SJX ::= Xa | bK)

= lfp

✓ �X

.

X [{a | " 2 X} [{b}

6

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

h}(⌃+1), ✓, ;, ⌃+1, [, \i

h}(⌃+1), v, ⌃1, ⌃+, t, ui

h⌃JPK, ⌧JPKi

SJX ::= Xa | bK = lfp

✓ �X

.

X · {a} [{b}

↵first(X) , {a | 9� : a� 2 X}

F JX ::= Xa | bK = ↵first(SJX ::= Xa | bK)

= lfp

✓ �X

.

X [{a | " 2 X} [{b}

6

h•, ?i

A , {[`, h] | ` 2 Z [{�1} ^ h 2 Z [{+1} ^ ` 6 h}
[{?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

h}(⌃+1), ✓, ;, ⌃+1, [, \i

h}(⌃+1), v, ⌃1, ⌃+, t, ui

h⌃JPK, ⌧JPKi

SJX ::= Xa | bK = lfp

✓ �X

.

X · {a} [{b}

↵first(X) , {a | 9� : a� 2 X}

F JX ::= Xa | bK , ↵first(SJX ::= Xa | bK)

= lfp

✓ �X

.

X [{a | " 2 X} [{b}

6

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Abstraction in a more general setting...

103

• Reasoning on complex [computer] system behaviors is
too complex (for humans)

• Analyzing/verifying [computer] system behaviors is
undecidable or subject to combinatorial explosion (for
machines)

• Abstraction is necessary to apprehend complexity

• Abstract interpretation is a formal framework for
reasoning/computing on formal models of [computer]
objects, systems and computations and their relations

• Applications include the systematic construction of
methods and effective algorithms to solve/approximate
undecidable or very complex problems in various areas of
computer science (and more recently system biology)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Recent advances

• The same principles apply to termination verification

Patrick Cousot, Radhia Cousot: An abstract interpretation
framework for termination. POPL 2012: 245-258

• and to probabilistic verification

104

Patrick Cousot, Radhia Cousot: An abstract interpretation
framework for termination. POPL 2012: 245-258

Patrick Cousot and Michaël Monerau. Probabilistic Abstract Interpretation. In H.
Seidel (Ed), 22nd European Symposium on Programming (ESOP 2012), Tallinn,
Estonia, 24 March—1 April 2012. Lecture Notes in Computer Science, vol.
7211, pp. 166—190, © Springer, 2012.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Applications of abstract
interpretation

105

Applications of abstract
interpretation

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Static analysis
and verification

106

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Software

107

• Ait: static analysis of the worst-case execution time of control/command
software (www.absint.com/ait/)

• Astrée: proof of absence of runtime errors in embedded synchronous
real time control/command software (www.absint.com/astree/),
AstréeA for asynchronous programs (www.astreea.ens.fr/)

• C Global Surveyor, NASA, static analyzer for flight software of NASA
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

• IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

• Checkmate: static analyzer of multi-threaded Java programs
(www.pietro.ferrara.name/checkmate/)

• CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

• Fluctuat: static analysis of the precision of numerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

• C Global Surveyor, NASA, static analyzer for flight software of NASA C Global Surveyor, NASA, static analyzer for flight software of NASA C Global Surveyor
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

• IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

• CodeContracts Static Checker, Microsoft (CodeContracts Static Checker, Microsoft (CodeContracts Static Checker msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Software

108

• Infer: Static analyzer for C/C++ (monoidics.com/)

• Ju l i a : s t a t i c a n a l y z e r f o r J av a a nd And ro i d p ro g r ams
(www.juliasoft.com/juliasoft-android-java-verification.aspx?
Id=201177234649)

• Predator: static analyzer of C dynamic data structures using separation
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

• Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/
Invader/Invader/Invader_Home.html)

• etc.

• Apron numerical domains library (apron.cri.ensmp.fr/library/)

• Parma Polyhedral Library (bugseng.com/products/ppl/)

• etc.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Hardware

• (Generalized) symbolic trajectory evaluation (Intel)

109

Example of ternary simulation
If some inputs are undefined, the output often is too, but not
always:

X
X
1
X
1
X
X

X
7-input
AND gate

X
X
0
X
X
X
X

0
7-input
AND gate

16

Quaternary simulation

It’s theoretically convenient to generalize ternary to quaternary
simulation, introducing an ‘overconstrained’ value T .
We can think of each quaternary value as standing for a set of
possible values:

T = {}
0 = {0}
1 = {1}
X = {0, 1}

This is essentially a simple case of an abstraction mapping, and we
can think of the abstract values partially ordered by information.

18

Intel’s Successes with Formal Methods

John Harrison

Intel Corporation

15 March 2012

1

����������������������	��������������
����������������������������������

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume
2517/2002, 70–87.
Jin Yang; Seger, C.-J.H.; Introduction to generalized symbolic trajectory evaluation, IEEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345–353.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Biology
• Kappa – A language for modeling protein interaction networks by a set

of rules and analyse that set directly deploying techniques from

abstract interpretation (www.kappalanguage.org/ and
fontana.med.harvard.edu/www/Documents/Lab/research.signaling.htm)

110

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

ASTRÉE

111

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? Formal Methods in System Design 35(3): 229-264 (2009)

Patrick Cousot, Radhia Cousot, Jérôme Feret, Antoine Miné, Laurent Mauborgne, David Monniaux, Xavier Rival: Varieties of Static Analyzers: A Comparison with ASTREE. TASE 2007: 3-20

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Combination of Abstractions in the ASTRÉE Static Analyzer. ASIAN 2006:
272-300

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: The ASTREÉ Analyzer. ESOP 2005: 21-30

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static analyzer for large safety-critical software. PLDI
2003: 196-207

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Design and Implementation of a Special-Purpose Static
Program Analyzer for Safety-Critical Real-Time Embedded Software. The Essence of Computation 2002: 85-108

Project Members

Bruno Blanchet 68 Patrick Cousot Radhia Cousot JÈ rÙ me Feret

Laurent Mauborgne Antoine MinÈ David Monniaux 69 Xavier Rival

68 Nov. 2001 � � Nov. 2003.
69 Nov. 2001 � � Aug. 2007.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 332 � ? [] � � " ""I ľ P. Cousot

Example of Analysis Session

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 397 � ? [] � � " ""I ľ P. Cousot

ASTRÉE

70 Nov. 2001 – Aug. 2010.

70 L

ET

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Target language and applications

112

• C programming language

• Without recursion, longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

• With all its horrors (union, pointer
arithmetics, etc)

• Reasonably extending the standard (e.g. size &
endianess of integers, IEEE 754-1985 floats, etc)

• Originally for synchronous control/command

• e.g. generated from Scade

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

The semantics of C implementations
is very hard to define

113

The Semantics of C is Hard (Ex. 2: Runtime Errors)

What is the e⇥ect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields di⇥erent results on di⇥erent machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

MPI, 8/26/2008 — 46 — � P. Cousot

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Implicit specification

114

• Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alignment errors, …

• Semantics of runtime errors:

• Terminating execution: stop (e.g. floating-point
exceptions when traps are activated)

• Predictable outcome: go on with worst case
(e.g. signed integer overflows result in some
integer, some options: e.g. modulo arithmetics)

• Unpredictable outcome: stop (e.g. memory
corruption)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Example of domain-specific abstraction: ellipses

115

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — © P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌅ [a, b] x ⇥ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.

10 of 38

American Institute of Aeronautics and Astronautics

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot 116

A common believe on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

– May be simple to state (no overflow)

– But harder to discover (P 2 [`1325:4522; 1325:4522])
– And di⌃cult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

MPI, 8/26/2008 J�� � – 37 –? []¨ –⇥ ⇥⇥I � P. Cousot

An erroneous common belief on static analyzersExample of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — © P. Cousot

()

[Fer04] Jérôme Feret: Static Analysis of Digital Filters. ESOP 2004: 33-48

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Industrial applications

117

Daniel Kästner, Christian Ferdinand, Stephan Wilhelm, Stefana Nevona, Olha Honcharova, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival, and
Élodie-Jane Sims. Astrée: Nachweis der Abwesenheit von Laufzeitfehlern. In Workshop ``Entwicklung zuverlässiger Software-Systeme'', Regensburg, Germany, June 18th, 2009.

Olivier Bouissou, Éric Conquet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Khalil Ghorbal, Éric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival, &
Michel Turin. Space Software Validation using Abstract Interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7
pages. ESA.

Jean Souyris, David Delmas: Experimental Assessment of Astrée on Safety-Critical Avionics Software. SAFECOMP 2007: 479-490

David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451

Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randimbivololona, Marc Langenbach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software. DSN 2003: 625-632

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Examples of applications

118

• Verification of the absence of runtime-errors in

• Fly-by-wire flight control systems

• ATV docking system

• Flight warning system
(on-going work)

(*)

(*)

(*) No false alarm at all!

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

• 8 years of research/development (CNRS/ENS/INRIA):
www.astree.ens.fr

• Industrialization by AbsInt (since Jan. 2010):

• Can be used for formal software certification in
avionics (DO–178C & DO–333)

Industrialization

119

www.absint.com/astree/

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Conclusion

120

Conclusion

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

On research

If you reason/compute on computer/biological/...
systems behaviors, you probably do abstract
interpretation

121

If you reason/compute on computer/biological/...
systems behaviors, you probably do abstract
interpretation

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

On applications

122

If the simulation/analysis/checking of your
computer/biological/… systems model does not
scale up, consider using (sound (and complete))
abstract interpretations

If the simulation/analysis/checking of your
computer/biological/… systems model does not
scale up, consider using (sound (and complete))
abstract interpretations

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

The End, Thank You

123

