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Abstract
Abstract interpretation is a theory of abstraction and constructive 
approximation of the mathematical structures used in the formal 
description of complex or infinite systems and the inference or 
verification of their combinatorial or undecidable properties. Developed 
in the late seventies with Radhia Cousot, it has been since then applied to 
many aspects of computer science (such as static analysis and verification, 
contract inference, type inference, termination inference, model-checking, 
abstract ion refinement, program transformation ( including 
watermarking), combination of decision procedures, security, malware 
detection, database queries, etc.) and more recently, to system biology.

The talk will consist in an introduction to the basic notions of abstract 
interpretation and the induced methodology for the systematic 
development of sound abstract interpretation-based tools. Examples of 
abstractions will be provided, from semantics to typing, grammars to 
safety, reachability to potential/definite termination, numerical to protein-
protein abstractions, as well as applications (including in industrial use) to 
software, hardware and system biology.
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Examples of abstraction
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Pixelation of a photo by Jay Maisel
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/www.petapixel.com/2011/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/
Image credit: Photograph by Jay Maisel
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An old idea...
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The concrete is not always well-known!

20 000 years old picture in a spanish cave:
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Abstractions of a man / crowd
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• Motivation

• A touch of theory of abstract interpretation, with 
many examples of abstractions

• A short overview of a few applications and on-
going work on software verification

For a rather complete basic introduction to abstract interpretation and applications to cyber-physical 
systems, see:

Content
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Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier 
Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In AIAA 
Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 
April 2010. © AIAA.
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Fundamental motivations
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Scientific research
• in Mathematics/Physics:

" works towards unification and synthesis

" it is science of structure and change aiming at 
" universal principles

• in Computer science

" works towards dispersion and parcelization

" it is a collection of local techniques for 
" computational structures aiming at specific 
" applications

An exponential process, will stop!
10
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Example: reasoning on computational structures
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Example: reasoning on computational structures
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Applied motivations
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All computer scientists have experienced bugs

14

� 
 
 � � � � � � 
 � � � � 
 � � � � � � � � � 
 � � � 
 � � 
 � � 
 	 � � � �

� " � � � � 
 � 	 
 � � � � % " � � � $ " �  $ � � � � % " � � � " #  " � � $ � " �  # #
�  & � " �  ' � � �  � $ "  % � � � � � � � % � � $ � " "  " �

� $ � # ! " � � � " � � � � $  & � " � � ( $ � � $ � � # # �  � � # � � � $ ( � � " � $ � � � � ! "  �
� " � � # �  �  $ �  ' "  � � � � �  " � " % � � � � � $ � � � �

� � ! � 
 � � 	 	 � � � ! $ � � � � " 
 � � 	 	 � � !!! � � � [] � � """ � ľ � � Cousot

• Checking the presence of bugs is great

• Proving their absence is even better!
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Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble, 
France. 125 pages. 23 September 1975.

A Touch of Abstract 
Interpretation Theory
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Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences 
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Semantics

16



SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

Semantics
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• Formal system:  syntax to describe computations 
(e.g. programming language = set of programs):

    

• Semantics: formal model of computations (e.g.  set of 
execution traces)

• Semantic domain (set of semantics):

• Formal system semantics (maps syntactic system 
descriptions to their semantics)
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n
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�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0
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�
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The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M
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↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Example: partial trace semantics
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• Program 
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lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].
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traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �
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 � 1
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⌧ JPK where
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⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

finite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

states
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

transitions
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �
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brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.
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7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).
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traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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The idea is that to prove an invariant S , one has to check (in
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Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
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surjective (hence the concretization � is injective), hA, vi ����!  ����↵
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�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
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hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵
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hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �
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⌧ JPK where
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Example: partial trace semantics

• Partial trace semantics               generated by the 
small-step operational semantics           of a 
program    :
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵
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�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
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(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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⌧ JPK where
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
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The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
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�⇥ h}(⌃+1), ✓i such that
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
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�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
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and finite or infinite traces over the states ⌃ where " is the empty
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length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
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(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
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�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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246

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .
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The idea is that to prove an invariant S , one has to check (in
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of existence of a best abstraction, similar results can be obtained
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
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The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
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�⇥ h}(⌃+1), ✓i such that
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
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�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
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10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
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8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
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sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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The partial trace semantics of a program P can be given in fixpoint
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length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �
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 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵
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surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

246

⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

�

�

�

�

�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

,

n > 0
⌧+̈JPK ,

[

n>0

⌧ n̈JPK,
⌧1JPK ,

n

� 2 ⌃1
�

�

�

�

�

�

�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

small-step operational semantics           of a small-step operational semantics           of a hsmall-step operational semantics           of a small-step operational semantics           of a ⌃small-step operational semantics           of a small-step operational semantics           of a ,small-step operational semantics           of a small-step operational semantics           of a ⌧small-step operational semantics           of a small-step operational semantics           of a ismall-step operational semantics           of a 
    :P

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

Concrete properties

20



SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 
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strongest property)

Concrete properties

21

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , {SJPK}

4

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy

Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni
y

0 , x

0, . . . , yn+1 , y

nOx

n, . . .

converges to a limit y

`
(such that 8m > ` : y

m = y

`
)

F 2 A! A

F

0 , ?
F

n+1 , F

n

when F(F

n

) v F

n

F

n+1 , F

nOF(F

n

) otherwise

Theorem (Limit of iterates with widening) The iterates of F with widening O from ?
on a poset hA, v, ?i converge to a limit F

`
such that F(F

`
) v F

`
(and so lfp

v
F v F

`

when F is increasing).

P 2 L

D

S 2 L! D

P , }(D) hP, ✓, ;, D, [, \i

C 2 L! P
CJPK , �SJPK  

4

P , }(D) hP, ✓, ;, D, [, \i

CJPK , �SJPK  

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i hP, 6, 0, _i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i hP, 6, 0, _i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

(it implies  “   ’‘  all other properties)

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
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hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,
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Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵
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hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n
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�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[
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n
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Example: concrete properties of trace semantics

• A trace in         is a finite or infinite sequence of 
states in

• A trace semantics in             is a set of traces 

• A trace semantics property in                  is a set of 
trace semantics 

• The collecting semantics of a program     with trace 
semantics                             is the strongest trace 
semantics property  
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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⌧ JPKT , ⌧JPK # T �
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⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where
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 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
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We define the following operations on traces, writing |�| for the
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(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
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�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).
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4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵
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hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
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surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵
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hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵
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hB, �i between posets hA, vi and hB, �imeaning
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properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).
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s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
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T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
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The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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n
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� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0
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⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N
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� 2 T \ ⌃n
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� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK
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 � 1
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 � +̈1
⌧ JPK

�
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� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �
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⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �
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⌧ JPK where
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⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Abstract properties

• Abstract property: encodes a concrete property (e.g.  
a logical formula, a geometric object, etc)

• Abstract property domain: 

• a set of abstract properties

• encodes selected concrete properties of interest
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P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
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() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)
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Example of abstract properties: reachability

• A reachability property in          is a set of states 
in     that can be reached during execution from 
given initial states
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK
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⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
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�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
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⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where
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 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
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We let ⌃n (⌃0 , ;), ⌃+ = S
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n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵
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hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
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hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
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hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
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hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵
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hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
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We let ⌃n (⌃0 , ;), ⌃+ = S
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Example of abstract properties: intervals
          :     interval of values between    and   
               (including -∞ and +∞)
⊥        :     empty set (false)

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [ (⌃ ⇥ {?}))

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h} [ {?}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [ (⌃ ⇥ {?}))

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h} [ {?}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [ (⌃ ⇥ {?}))

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h} [ {?}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

↵� 2 }(⌃+1)! }((⌃ ⇥ ⌃) [ (⌃ ⇥ {?}))

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h}
[ {?}

5

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble, 
France. 125 pages. 23 September 1975.
Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris, France, 
pages 106—130, April 13-15 1976, Dunod, Paris.

 in          is a set of states } in          is a set of states } in          is a set of states ( in          is a set of states ( in          is a set of states  in          is a set of states ⌃ in          is a set of states ) in          is a set of states ) in          is a set of states 

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h}
[ {?}

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

Abstraction

26

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

• Abstraction: maps concrete to abstract properties

    is assumed to be increasing (so     is the abstrac-
tion of    ).

• Abstract semantics: abstraction of the collecting 
semantics

Abstraction

27
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Concretization

• Concretization: maps abstract properties to 
concrete properties

    is assumed to be increasing (so     is the 
concretization of     )

• Abstract properties either describe exactly the 
concrete properties in           , or

• Abstract properties must approximate the concrete 
properties in 

29
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Soundness

• Definition:  An abstract property               over-
approximates a concrete property             if and 
only if 

• Definition:  an abstraction is sound if and only if

•  Under-approximation is dual(*)

31
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Best abstraction

33

• If any concrete property           has a best abstrac-
tion               , then the correspondence is given by 
a Galois connection

i.e.
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�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)
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Sound abstraction
Best abstraction

• Concrete properties:

• Abstract properties:

Ultimately stationary at rank ✏

Converges to F

✏ = lfp

v
F

✏ = ! F

h⌃, I, ⌧i
2 ⌃ I ✓ ⌃

post[⌧?]I = lfp

✓ �X

.I [ post[⌧]X

⌧? = lfp

✓ �X

.1 [ X

� ⌧

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states

post[⌧?]I ✓ ¬B no bad state is reachable

9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd
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2 A
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hP, 6i �������! �������

↵
1

⇥↵
2

�
1

⇥�
2 hA

1

⌦A
2

, v
1

⇥ v
2

i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

3

P
F 2 P! P
x 2 P is a fixpoint of F

() F(x) = x

hP, 6i
x 2 P is the least fixpoint of F (written x = lfp

6
F)

() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp

6
F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i hP, 6, 0, _i

S JPK = lfp

6
FJPK

FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp

6
FJPK 6 P

, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A
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hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F

� ↵(P)

8P 2 P : ↵ � F(P) = F

� ↵(P)

↵(lfp

6
F) v lfp

v
F

↵(lfp

6
F) = lfp

v
F

F

0 , ?
F

�+1 , F(F

�
), � + 1 successor ordinal

F

� , F�<� F

�
, � limit ordinal

2

[1,2] 

[2] Equivalently upper closures, principal ideals, complete join congruences, Moore families, etc, see [3] 
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Example I of abstraction: maximal trace semantics
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• Program 

infinite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

finite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N
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[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �
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⌧ JPK

⌧+̈1JPK = lfp✓; �
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⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where
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 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

states
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].
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a state and its immediate successor states during program execu-
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transition system h⌃JPK, ⌧JPKi. When restricting to initial states
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length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
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for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
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�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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a set of non-empty execution traces. In particular, the partial trace
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
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complete (=)) proof method since for all S 2 A,
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The idea is that to prove an invariant S , one has to check (in
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
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a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
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4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
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and finite or infinite traces over the states ⌃ where " is the empty
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We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵
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hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
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semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
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�⇥ h}(⌃+1), ✓i such that
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to the trace property abstraction of the collecting semantics
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10 strongest in that the collecting semantics implies all other program
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Example I of abstraction: maximal trace semantics

• Blocking states of a transition system           :

• Maximal trace abstraction (eliminates all traces that 
are not terminated):

• Maximal trace semantics (terminated finite and 
infinite traces generated by the transition system):
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
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�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
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(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
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�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �
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4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
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8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
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traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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�⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK 

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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n

� 2 ⌃n
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� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N
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� 2 T \ ⌃n
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� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
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 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where
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 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Example II of abstraction: trace property

• Trace property abstraction:

• Trace property abstraction of the collecting 
semantics:

(common confusion between semantics and 
properties)
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK
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⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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↵⇥(P) ,
[

P

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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⌧+̈JPK ,
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n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where
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⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
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lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �
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(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
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T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
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and finite or infinite traces over the states ⌃ where " is the empty
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We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
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�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
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(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
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T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of
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ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).
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traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
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↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Loss of information in the trace property abstraction

• “Always terminate with the same value, either 0 or 1’’

• Trace property abstraction:

“Always terminate, either with 0 or 1’’
38

0

0

1

1

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK
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 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
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checking/verification methods), to guess (in proof methods) or to
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lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
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4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
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4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
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complete (=)) proof method since for all S 2 A,
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S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
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ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
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sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
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�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
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�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
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hB, �i, the su�cient commutation
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.
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T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of
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connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
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4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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n
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�
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� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0
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n
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� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

2 }(⌃+1).↵⇥(P)
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Example III of abstraction: relational abstraction
• Relational abstraction:

• Intuition:
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Example IV of abstraction: safety trace property

• Prefix abstraction (program executions can be 
observed only for a finite time):

• Limit abstraction (non-termination cannot be 
observed):

• Safety abstraction (finite observations of executions):
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� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1 

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00
 

pf(T ) ,
[

�

pf(�)
�

�

� � 2 T
 

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T )).

The limit abstraction of a set of traces is the topological closure

lm(T ) , T [ �

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T
 

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)
 

=
�

P 2}(⌃+1) | sf(P) = P
 

.

We have the Galois isomorphism

hSF, ✓i ����!�!  �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T ) = pf(T )+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [ T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [ ⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T ) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T
 

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R
 

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T ) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

 

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R
 

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X ] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.
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� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
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�

� � 2 ⌃+1 

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00
 

pf(T ) ,
[

�

pf(�)
�

�

� � 2 T
 

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T )).

The limit abstraction of a set of traces is the topological closure

lm(T ) , T [ �

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T
 

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)
 

=
�

P 2}(⌃+1) | sf(P) = P
 

.

We have the Galois isomorphism

hSF, ✓i ����!�!  �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T ) = pf(T )+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [ T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [ ⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T ) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T
 

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R
 

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T ) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

 

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R
 

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X ] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.
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) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13
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The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T )).

The limit abstraction of a set of traces is the topological closure

lm(T ) , T [ �

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T
 

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
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sf(P) | P 2}(⌃+1)
 

=
�

P 2}(⌃+1) | sf(P) = P
 

.

We have the Galois isomorphism

hSF, ✓i ����!�!  �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T ) = pf(T )+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
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⌧ JPK = lfp✓; �
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⌧ JPK where
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� sf
⌧ JPKT , ⌃1 [ T # ⌧JPK forward trace transformer
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 � sf
⌧ JPKT , ⌃1 [ ⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
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h}(⌃ ⇥ ⌃), ✓i such that
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(1)
�R(R) , �
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abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
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that
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abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X ] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.
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.

sf , lm � pf = pf � lm � pf

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [ (⌃ ⇥ {?})), ✓i

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h}
[ {?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i
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Example V of abstraction: reachability

41

�!
� R⇤
⌧ JPK(R) , 1⌃ [ R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [ ⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T ) , T [ {�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T )}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[ l:loop [] e:skip ]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T ) , T \ ⌃+, �mt(S ) , S [ ⌃1 and �
0mt(S ) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T ) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T ) = {ab, aba,
ba, bb} and ↵Mt(T ) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [ {0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.
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Initial states

� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1 

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00
 

pf(T ) ,
[

�

pf(�)
�

�

� � 2 T
 

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T )).

The limit abstraction of a set of traces is the topological closure

lm(T ) , T [ �

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T
 

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)
 

=
�

P 2}(⌃+1) | sf(P) = P
 

.

We have the Galois isomorphism

hSF, ✓i ����!�!  �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T ) = pf(T )+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [ T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [ ⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T ) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T
 

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R
 

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T ) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

 

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R
 

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X ] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.
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P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)
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⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [ ⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [ (⌧JPK # T \ ¬(⌧JPK # ¬T ))

where the term ¬(⌧JPK #¬T ) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T ) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [ ⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [ (⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I
 

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T ) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T
 

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.
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while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is
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where the term ¬(⌧JPK #¬T ) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����
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h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T ) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .
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�!
� wmt
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�!
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⌧ JPK(R) , �⌧JPK [ ⌧JPK�1[R]
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9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded
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abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.
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is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [ ⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [ (⌧JPK # T \ ¬(⌧JPK # ¬T ))

where the term ¬(⌧JPK #¬T ) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T ) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [ ⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [ (⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I
 

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T ) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T
 

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.
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↵r(↵i(I)(⌧+1JPK))

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [ (⌃ ⇥ {?})), ✓i

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h}
[ {?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

↵i 2 }(⌃)! (}(⌃+1)! }(⌃+1))

h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [ (⌃ ⇥ {?})), ✓i

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h}
[ {?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

5
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may
terminate

�!
� R⇤
⌧ JPK(R) , 1⌃ [ R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [ ⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T ) , T [ {�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T )}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[ l:loop [] e:skip ]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T ) , T \ ⌃+, �mt(S ) , S [ ⌃1 and �
0mt(S ) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T ) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T ) = {ab, aba,
ba, bb} and ↵Mt(T ) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [ {0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.
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must
terminate

�!
� R⇤
⌧ JPK(R) , 1⌃ [ R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [ ⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T ) , T [ {�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T )}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[ l:loop [] e:skip ]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T ) , T \ ⌃+, �mt(S ) , S [ ⌃1 and �
0mt(S ) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T ) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T ) = {ab, aba,
ba, bb} and ↵Mt(T ) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [ {0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.
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{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259
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hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

259

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

• Eager lambda calculus:

• Semantic domains:

Example IX: typing

46
Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331

Types as Abstract Interpretations

(invited paper)

Patrick Cousot
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Abstract

Starting from a denotational semantics of the eager untyped
lambda-calculus with explicit runtime errors, the standard
collecting semantics is defined as specifying the strongest
program properties. By a first abstraction, a new sound
type collecting semantics is derived in compositional fix-
point form. Then by successive (semi-dual) Galois con-
nection based abstractions, type systems and/or type in-
ference algorithms are designed as abstract semantics or
abstract interpreters approximating the type collecting se-
mantics. This leads to a hierarchy of type systems, which
is part of the lattice of abstract interpretations of the un-
typed lambda-calculus. This hierarchy includes two new
à la Church/Curry polytype systems. Abstractions of this
polytype semantics lead to classical Milner/Mycroft and
Damas/Milner polymorphic type schemes, Church/Curry
monotypes and Hindley principal typing algorithm. This
shows that types are abstract interpretations.

1 Introduction

The leading idea of abstract interpretation [6, 7, 9, 12] is
that program semantics, proof and static analysis methods
have common structures which can be exhibited by abstrac-
tion of the structure of run-time computations. This leads
to an organization of the more or less approximate or refined
semantics into a lattice of abstract interpretations. This uni-
fying point of view allows for a synthetic understanding of
a wide range of works from theoretical semantical specifica-
tions to practical static analysis algorithms.

It will be shown that this point of view can be applied to
type theory, in particular to type soundness and à la Curry
type inference which, following [17, 29], have been dominat-
ing research themes in programming languages during the
last two decades, at least for functional programming lan-
guages [1, 19, 31]. Traditionally the design of a type system
“involves defining the notion of type error for a given lan-
guage, formalizing the type system by a set of type rules,
and verifying that program execution of well-typed programs
cannot produce type errors. This process, if successful, guar-
antees the type-soundness of a language as a whole. Type-
checking algorithms can then be developed as a separate con-
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are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
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to republish, to post on servers or to redistribute to lists, requires specific
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c� 1997 ACM 0-89791-853-3/96/01 ..$3.50

cern, and their correctness can be verified with respect to a
given type system; this process guarantees that type checkers
satisfy the language definition.” [2]. Abstract interpreta-
tion allows viewing all these di↵erent aspects in the more
unifying framework of semantic approximation. Formaliza-
tion of program analysis and type systems within the same
abstract interpretation framework should lead to a better
understanding of the relationship between these seemingly
di↵erent approaches to program correctness and optimiza-
tion.

2 Syntax

The syntax of the untyped eager lambda calculus is:

x, f, . . . 2 X : program variables

e 2 E : program expressions

e ::= x | �x · e | e1(e2) | µf ·�x · e |
1 | e1 � e2 | (e1 ? e2 : e3)

�x · e is the lambda abstraction and e1(e2) the application.
In µf ·�x · e, the function f with formal parameter x is de-
fined recursively. (e1 ? e2 : e3) is the test for zero.

3 Denotational Semantics

The semantic domain S is defined by the following equations
[20]:

W 4
= {!} wrong

z 2 Z integers

u, f, ' 2 U ⇠= W? � Z? � [U 7! U]? values

R 2 R 4
= X 7! U environments

� 2 S 4
= R 7! U semantic domain

where ! is the wrong value, ? denotes non-termination, D?
is the lift of domain D (with up injection "( •) 2 D 7! D?
and partial down injection #( •) 2 D? 7�6! D), D1 � D2 is
the coalesced sum of domains D1 and D2 (with left and
right injections • :: D1 2 D1 7! D1 � D2 and • :: D2 2
D2 7! D1 � D2), ⌦

4
= "(!) :: W? and [D1 7! D2] is the

domain of continuous, ?-strict, ⌦-strict functions from D1

into D2. v is the computational ordering on U and t is the
least upper bound (lub) of increasing chains.

In the metalanguage for defining the denotational seman-
tics below, ⇤x

.

. . . or ⇤x2S

.

. . . is the lambda abstraction.
(. . . ? . . . | . . . ? . . . | . . .) is the conditional expression.
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The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[ •]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[ •]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 ( int)

4
= {"(z) :: Z? | z 2 Z} [ {?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [ {?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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= {"(z) :: Z? | z 2 Z} [ {?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [ {?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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• Church/Curry monotypes:

Example IX: typing

48

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[ •]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[ •]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 ( int)

4
= {"(z) :: Z? | z 2 Z} [ {?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [ {?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
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49

The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[ •]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[ •]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 ( int)

4
= {"(z) :: Z? | z 2 Z} [ {?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [ {?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[ •]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[ •]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 ( int)

4
= {"(z) :: Z? | z 2 Z} [ {?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^

8u 2 �

C
1 (m1) : '(u) 2 �

C
1 (m2)} [ {?}

�

C
2 2 HC 7! }(R)

�

C
2 (H)

4
= {R 2 R | 8x 2 X : R(x) 2 �

C
1 (H(x))}

�

C
3 2 IC 7! P

�

C
3 (hH, mi) 4

= {� 2 S | 8R 2 �

C
2 (H) : �(R) 2 �

C
1 (m)}

�

C 2 TC 7! P

�

C(T)
4
=

T

✓2 T
�

C
3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[ •]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = z1 :: Z? ^ S[[e2]]R = z2 :: Z? ?
"(#(z1)� #(z2)) :: Z? | ⌦)

S[[(e1 ? e2 : e3)]]
4
= ⇤R.(S[[e1]]R = ? ? ? | S[[e1]]R =

z :: Z? ? (#(z) = 0 ? S[[e2]]R | S[[e3]]R) |
⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[ •]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings hH, mi sta-
ting that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {hH,

m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type

The meaning of types is defined by the concretization
function �

C as follows:

�

C
1 2 MC 7! }(U)

�

C
1 ( int)

4
= {"(z) :: Z? | z 2 Z} [ {?}

�

C
1 (m1 ->m2)

4
= {"(') :: [U 7! U]? | ' 2 [U 7! U] ^
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C
1 (m1) : '(u) 2 �

C
1 (m2)} [ {?}
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= {R 2 R | 8x 2 X : R(x) 2 �
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�
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1 (m)}

�

C 2 TC 7! P

�
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=
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3 (✓), �

C(;) 4
= S

One has:

�

C(
S

i2�
Ti) =

T

i2�
�

C(Ti)

so that there exists a unique upper adjoint ↵

C 2 P 7! TC

such that h↵C
, �

Ci is a Galois connection [9], a fact that is
denoted:

hP, ✓i ����! ����
↵C

�C

hTC
, ◆i

The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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The assignment R[x u] is such that R[x u](x) = u and

R[x u](y) = R(y) when x 6= y. lfp

v

? ' is the v-least fix-
point of the monotone operator ' 2 L 7! L on a complete
partial order (cpo) hL, vi, which is greater than or equal to
? [8, 20].

The denotational semantics [19, 29]

S[[ •]] 2 E 7! S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ⇤R.R(x)

S[[�x · e]] 4= ⇤R. "
⇣

⇤u.(u = ? _ u = ⌦ ? u |
S[[e]]R[x u])

⌘

:: [U 7! U]?

S[[e1(e2)]]
4
= ⇤R.(S[[e1]]R = ? _ S[[e2]]R = ? ? ? |

S[[e1]]R = f :: [U 7! U]? ? #(f)
⇣

S[[e2]]R
⌘

|
⌦)

S[[µf ·�x · e]] 4= ⇤R. lfp

v

"(⇤ u.?)::[U7!U]?
⇤'

.S[[�x · e]]R[f ']

S[[1]]
4
= ⇤R. "(1) :: Z?

S[[e1 � e2]]
4
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4
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⌦)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
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for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P 2 P 4
= }(S)

is a complete boolean lattice hP, ✓, ;, S, [, \, ¬i for subset
inclusion ✓, that is logical implication.

The standard collecting semantics:

C[[ •]] 2 E 7! P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics
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ting that the standard evaluation of the program e in an
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m ->mi | H 2 HC ^m 2 MC}. The syntax of types and type
semantic domains are:

m 2 MC
, m ::= int | m1 ->m2 monotype

H 2 HC 4
= X 7! MC type environment

✓ 2 IC 4
= HC ⇥MC typing

T 2 TC 4
= }(IC) program type
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function �

C as follows:
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C
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4
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C
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such that h↵C
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Ci is a Galois connection [9], a fact that is
denoted:
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The notation hL, i ���! ���↵

� hM, �i for semi-dual Galois con-

nections (that are called Galois connection for short) means
that hL, i and hM, �i are posets such that the pair of ab-
straction function ↵ 2 L 7! M and concretization function
� 2M 7! L satisfy, for all x 2 L and y 2M :

↵(x) � y () x  �(y)

The abstraction ↵ preserves existing lubs while the con-
cretization � preserves existing glbs. Reciprocally, if ↵ pre-
serves existing lubs or � preserves existing glbs then there is

a unique adjoint such that hL, i ���! ���↵

� hM, �i where ↵(x)

= glb{y | x  �(y)} and �(y) = lub{x | ↵(x) � y}.
The intuition is that ↵

C(P ) is the best possible (i.e.
most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image �(y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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hP, ✓i ����! ��������! ��������!
↵C

�C

hTC
, ◆i
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Example X: Protein–Protein interaction abstraction
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Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Jérôme Feret 20 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012
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Local views

E

R

E

R
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E
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l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012
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•  

•  

Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

Jérôme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering 
(ICCMSE'2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.
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Example XI: numerical abstractions

52

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F ( x1, . . . , xn⌦) � ⇥( F1(x1), . . . ,
Fn(xn⌦) and  r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥( [0, 100], odd⌦) =  [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics
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In absence of best 
abstraction
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In absence of best abstraction

54

• Best abstraction of a disk by a rectangular 
parallelogram

• No best abstraction of a disk by a polyhedron 
(Euclid)

use only concretization or abstraction or widening 
(introduced in the following) (I)

Best Abstraction (Cont' d)

� If we want to over-approximate a
disk in two dimensions by a poly-
hedron there is no best (smallest)
one, as shown by Euclid.

� However if we want to over-
approximate a disk by a rectangu-
lar parallelepiped which sides are
parallel to the axes, then there is
de� nitely a best (smallest) one.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 172 � ? [] � � " ""I ľ P. Cousot

Best Abstraction (Cont' d)

� If we want to over-approximate a
disk in two dimensions by a poly-
hedron there is no best (smallest)
one, as shown by Euclid.

� However if we want to over-
approximate a disk by a rectangu-
lar parallelepiped which sides are
parallel to the axes, then there is
de� nitely a best (smallest) one.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 172 � ? [] � � " ""I ľ P. Cousot

(I) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)
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Example XII of abstraction: polyhedra

• Abstract polyhedral properties:

• Concretization:

Transformers and widenings have no more precise 
solution and make arbitrary choices (e.g.  governed  
efficiency considerations)

55

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X | AX 6 B}

5

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

5

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.
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Transformer abstraction
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Transformers

• Concrete transformer:

increasing (or continuous)

57

P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

5

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
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Transformer abstraction

• An abstract transformer                           is

• Sound iff

• Sound and complete iff

• Example (rule of sign)

• Addition: sound, incomplete

• Multiplication: sound, complete

58

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A
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Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

                           isF                           isF                           is2                           is2                           isA                           isA                           is                           is!                           isA                           isA                           is
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Example abstract transformer: rule of signs

{-1, -2, -7}  *  {0, -2, -5}    =    {0, 2, 4, 14, 5, 10, 35} 

                                               

  {-1}       *      {-1,0}       =            {1,0}

Negative       Negative                 Positive
                    or zero                   or zero

59

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
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{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

Δ

Δ
=
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Example abstract transformer: rule of signs

{-3, -4, -7}  +  {1, 2, 3}    =    {-2,-3,-6,-1,-2,-5,0,-1,-4} 

                                               

                                                   {-1,0}

  {-1}       +       {1}         =           {-1,0,1}

Negative       Positive                  Unkown
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{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
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{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|

259

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}
hP, 6i �������! �������

↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P 7! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
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Δ

Δ
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Fixpoints 
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Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.
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Fixpoint

62

• Set

• Transformer

• Fixpoint

• Poset

• Least fixpoint

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
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↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,

258

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F (written x = lfp6F)
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
I ✓ ⌃
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i
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Fixpoints of increasing functions (Tarski)

63

x

f(x)

+∞-∞
Another fixpoint at +∞  ↑
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Program properties as fixpoints

64

• Program semantics and program properties can be 
formalized as least/greatest fixpoints of increasing 
transformers on complete lattices (1) 

• Complete lattice / cpo of properties

• Properties of program

• Transformer of program 

 (1)

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

258

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)
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↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)
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↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)
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hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
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Fixpoints: inversion, converse and duality

• Forward (→) or backward (←) transformers

• Join (U) or meet (U) merge duality

• Least (↓) or greatest (↑) fixpoint duality
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Example I: partial finite trace semantics

•  
• Forward transformer:

• Backward transformer:

• Fixpoint finite partial traces:
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �
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⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK
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 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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The idea is that to prove an invariant S , one has to check (in
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Following [19, 21], abstraction is formalized by Galois connec-
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
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f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
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� 2 ⌃n
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� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0
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� 2 ⌃1
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� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
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n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M
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↵M(T ) ,
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n2N
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�

�
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[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
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 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Example II: infinite traces

•  

• Backward transformer:

• Fixpoint infinite traces:
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵
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hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
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The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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P 2 P Q 2 A P ✓ �(Q)

�(A)

P \ �(A)

8P 2 P : P ✓ �(↵(P))

F 2 P! P

2 Z

�⌧

↵r � ↵i

(I)

A , {hA, B, ni | A 2 Rn ⇥ Rn ^ B 2 Rn ^ n > 0}

�
P

(hA, B, ni) , {X 2 Rn | AX 6 B}

h}(⌃+1), ✓i ����! ����
↵�

��

h}((⌃ ⇥ ⌃) [ (⌃ ⇥ {?})), ✓i

↵�(T ) , {h�
0

, �
n�1

i | � 2 T \ ⌃n}
[ {h�

0

, ?i | � 2 T \ ⌃⇤1}

h•, •i

h•, ?i

A , {[`, h] | ` 2 Z [ {�1} ^ h 2 Z [ {+1} ^ ` 6 h}
[ {?}

h}(⌃+1), ✓i ���! ���
sf

1 h}(⌃+1), ✓i

h}(⌃+), ✓, ;, ⌃+, [, \i

h}(⌃1), ✓, ;, ⌃1, [, \i

h}(⌃+1), ✓, ;, ⌃+1, [, \i

5

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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�
 �
� +̈⌧ JPK [ gfp✓⌃1 �

 �
�
 �
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Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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 � 1
⌧ JPK = lfpv⌃1 �
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⌧ JPK where
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⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S
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n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
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We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
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(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
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�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of
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ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).
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sequencing of sets of traces T, T 0 2 }(⌃⇤1).
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The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
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semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
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s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
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n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
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7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).
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a set of non-empty execution traces. In particular, the partial trace
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that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [ ⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T ) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[ T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [ ⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [ T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Example: reachable states

• Transition system (set of states   , initial states           , 
transition relation     )

• Right-image of a set of states by transitions

• Reachable states from initial states 
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x � y

x > y
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f1 vv f2
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n
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�
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8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))
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k = ⌫(x, y)
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hP, 6, 0, 1, _, ^i
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, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P
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8P 2 P : ↵ � F(P) v F � ↵(P)
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↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}
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A1 ⌦A2 ,
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Proof methods

• Proof methods directly follow from the fixpoint 
definition

(proof by Tarski’s fixpoint theorem for increasing 
transformers on complete lattice or Pataria for 
cpos)
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↵t(⌧+1JPK) = ⌧+1JPK
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x > y
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↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P
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lfp6F =
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hA, v, ?, >, t, ui
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hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
I ✓ ⌃
post[⌧?]I = lfp✓ �X .I [ post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i
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Example: Turing/Floyd Invariance Proof 

• Bad states:

• Prove that no bad state is reachable:

  ie
• Turing/Floyd proof method:
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�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i
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B ✓ ⌃

9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
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Fixpoint abstraction
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Fixpoint abstraction

• For an increasing and sound abstract transformer, we 
have a fixpoint approximation

• For an increasing, sound, and complete abstract 
transformer, we have an exact fixpoint abstraction
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Example XIII: trace to reachability abstraction

• Transition system:

• Fixpoint concrete partial trace semantics:

                                with 

• Reachability abstraction from initial states I:

• Sound and complete abstract transformer

• Fixpoint reachability:
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [ gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �
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⌧ JPK where
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⌧ JPKT , �⌧JPK [ ⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����!  ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�!  ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [ {"}, ⌃1, ⌃+1 ,

⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].
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where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
(T1 t T2) , (T+1 [ T+2 ) [ (T11 \ T12 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
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5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
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P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).
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S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.
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condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f ) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f ) � lfp�↵(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.
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⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
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�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
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�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T, T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9
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4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
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computational order (T1 v T2) , (T+1 ✓ T+2 ) ^ (T11 ◆ T12 ) and
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semantics of a program P is calculated by abstraction with ↵M .
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Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
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⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
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to the trace property abstraction of the collecting semantics
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Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
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9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
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Fixpoint iteration  and
convergence acceleration

77

(*)

(**)

In absence of direct solution (e.g. by elimination)
In absence of finite convergence (e.g. ascending chain condition)

(*)

(**)
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• Fixpoint of increasing transformers on cpos can be 
computed iteratively as limits of (transfinite) iterates

•            when     is continuous

• Finite iterates when     operates on a cpo satisfying 
the ascending chain condition 

Iterative fixpoint computation

78
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Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

F0 , ?
F�F�F +1 , F(F�F�F ), � + 1 successor ordinal

F� , F�<� F�F�F , � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF
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Expressiveness of finite abstractions is weak

79

• Finite state abstraction is impossible  for termination 
and unsound for non-termination of unbounded 
programs

• Unbounded executions:

• Finite homomorphic abstraction:

• Termination: impossible (lasso)

• Non-termination (lasso): unsound
(*) Excluding trivial solutions, see:  Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

(*)
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Widening

• Definition (widening                               )

•               poset

• Over-approximation

• Termination

80

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
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Example: (simple) widening for polyhedra

• Iterates

• Widening

81

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.
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• Iterates with widening for transformer

• The widening speeds up convergence (at the cost of 
imprecision)

• Can be improved by a narrowing.

Iteration with widening

82
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259
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Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
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Convergence acceleration with widening

83

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the 

derivative as in Newton-Raphson method)

F

lfp F

F

lfp F x

F(x)6x
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Reduced product

• The reduced product combines abstractions by 
performing their conjunction in the abstract

• Example: (positive or zero)    odd = <positive,odd>

84
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Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

hP, 6i ����! ����↵2

�2 hA2, v2i

A1 ⌦A2 ,
{h↵1(�1(P1)^�2(P2)), ↵2(�1(P1)^�2(P2))i | P1 2 A1^P2 2 A2}

hP, 6i �������! �������
↵1⇥↵2

�1⇥�2 hA1 ⌦A2, v1 ⇥ v2i

h 2 P! A
↵(X) , {h(x) | x 2 X}
h}(P), ✓i ���! ���↵

�
h}(A), ✓i

h : Z! {�1, 0, 1}
h(z) , z/|z|
{�1, 0, 1}

{�1, 0}
{0, 1}
{�1, 1}
{�1}
{0}
{1}
;

O 2 A ⇥A! A

hA, vi
hA, v, ?i
8x, y 2 A : x v xOy ^ y v xOy
Given any sequence hxn, n 2 Ni, the widened sequence hyn, n 2 Ni

y0 , x0, . . . , yn+1 , ynOxn, . . .

converges to a limit y` (such that 8m > ` : ym = y`)

F 2 A! A

F
0 , ?

F
n+1 , F

n
when F(F

n
) v F

n

F
n+1 , F

nOF(F
n
) otherwise

Theorem (Limit of iterates with widening) The iterates of F with
widening O from ? on a poset hA, v, ?i converge to a limit F

`

such that F(F
`
) v F

`
(and so lfpvF v F

`
when F is increasing).

259
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Undecidability and 
complexity

85
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Fighting undecidability and complexity
in automatic program verification

• Any automatic semantic program verification method 
will definitely fail on infinitely many programs (Gödel)

• Solutions:

• Ask for human help (theorem-prover/proof 
assistant based deductive methods) → high labor 
cost

• Consider finite/decidable systems (model-checking) 
→ combinatorial  explosion

• Do sound approximations or complete abstractions 
(abstract interpretation) → false alarms 

86
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What to do about false 
alarms?

abstraction refinement

87
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What to do about false alarms?
(I) Automatic refinement

88

• Inefficient and may not terminate (Gödel)

• Refinement needs intelligence
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Set of functions abstraction

89

t

fi(t)

i=0
i=1
i=2

i=3

i=4

How to approximate { f1, f2, f3, f4 } ?

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

t

f(t)

Set of functions abstraction

90
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t

f(t)

M

m
∃ i, t ∈ [l, h]: fi(t) < m ?   No

∃ i, t ∈ [l,h] : fi(t) > M ?  

l h

Min/max questions on the fi

Concrete questions on the fi answered in the abstract
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Concrete questions on the fi answered in the abstract

92

t

f(t)

M

∃ i, t ∈ [l,h] : fi(t) < m ?   No
m

∃ i, t ∈ [l,h]: fi(t) > M ?   I don’t know

Min/max questions on the fi

l h
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A more precise/refined abstraction

93

t

f(t)
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An even more precise/refined abstraction

94

t

f(t)

Note: this is already much more elaborate than CEGAR that goes 
counter-example by counter-example!
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Intelligent passing to the limit

95

t

f(t)

Sound and complete abstraction for min/max questions on 
the fi
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A non-comparable abstraction

96 11

t

f(t)

Sound and incomplete abstraction for min/max questions on 
the fi



SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.                                                                                                                                                                                                                                           © P Cousot 

The hierarchy of abstractions

97
Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
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(I) Automatic refinement: Astrée example

98

• Filter invariant abstraction:

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

� Computes Xn =


� Xn`1 + � Xn`2 + Yn
In

� The concrete computation is bounded, which
must be proved in the abstract.

� There is no stable interval or octagon.
� The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 369 � ? [] � � " ""I ľ P. Cousot

2nd order filter: Execution trace:

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

� Computes Xn =


� Xn`1 + � Xn`2 + Yn
In

� The concrete computation is bounded, which
must be proved in the abstract.

� There is no stable interval or octagon.
� The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 369 � ? [] � � " ""I ľ P. Cousot

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

� Computes Xn =


� Xn`1 + � Xn`2 + Yn
In

� The concrete computation is bounded, which
must be proved in the abstract.

� There is no stable interval or octagon.
� The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 369 � ? [] � � " ""I ľ P. Cousot

Unstable polyhedral 
abstraction:

Stable ellipsoidal 
abstraction:

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In 
AIAA Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.
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What to do about false alarms?
(II) Domain specific refinement

• Adapt the abstraction to the programming 
paradigms typically used in given domain-specific 
applications 

• e.g. Astrée for synchronous control/command 
programs: no recursion, no dynamic memory 
allocation, maximum execution time, filters, 
integrators, quaternions, etc.
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So, what is Abstract 
Interpretation

100
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A narrow view ...

• Define the syntax of the system descriptions

• Define the semantics of the system descriptions

• Define the collecting semantics (strongest property of 
interest)

• Preferably express the collecting semantics in fixpoint 
form

• Define abstractions of properties

• Infer abstractions of transformers

• Infer abstractions of fixpoints to get abstract semantics

• Iterate to compute fixpoints with convergence 
acceleration (widening/narrowing)

• Combine abstractions (e.g. reduced product) to refine

101
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Example XIV: grammar abstraction

102

• Meta-syntax of grammars

• Semantics of grammars (by induction on the meta-syntax): 
the language generated by the grammar

• Fixpoint semantics: Chomsky-Schützenberger th.

• Example of abstraction: FIRST

• Fixpoint abstraction: FIRST classical algorithm (expressed as 
a fixpoint)

Patrick Cousot, Radhia Cousot: Grammar semantics, analysis and parsing by abstract interpretation. Theor. Comput. Sci. 412(44): 6135-6192 (2011)
Patrick Cousot, Radhia Cousot: Grammar Analysis and Parsing by Abstract Interpretation. Program Analysis and Compilation, LNCS 4444, 2006: 175-200
Patrick Cousot, Radhia Cousot: Parsing as abstract interpretation of grammar semantics. Theor. Comput. Sci. 290(1): 531-544 (2003)
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Abstraction in a more general setting...

103

• Reasoning on complex [computer] system behaviors is 
too complex (for humans)

• Analyzing/verifying [computer] system behaviors is 
undecidable or subject to combinatorial explosion (for 
machines)

• Abstraction is necessary to apprehend complexity

• Abstract interpretation is a formal framework for 
reasoning/computing on formal models of [computer ] 
objects, systems and computations and their relations

• Applications include the systematic construction of 
methods and effective algorithms to solve/approximate 
undecidable or very complex problems in various areas of 
computer science (and more recently system biology)
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Recent advances

• The same principles apply to termination verification

Patrick Cousot, Radhia Cousot: An abstract interpretation 
framework for termination. POPL 2012: 245-258

• and to probabilistic verification

104

Patrick Cousot, Radhia Cousot: An abstract interpretation 
framework for termination. POPL 2012: 245-258

Patrick Cousot and Michaël Monerau. Probabilistic Abstract Interpretation. In H. 
Seidel (Ed), 22nd European Symposium on Programming (ESOP 2012), Tallinn, 
Estonia, 24 March—1 April 2012. Lecture Notes in Computer Science, vol. 
7211, pp. 166—190, © Springer, 2012.
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Applications of abstract 
interpretation

105

Applications of abstract 
interpretation
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Static analysis 
and verification

106
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Software

107

• Ait: static analysis of the worst-case execution time of control/command 
software (www.absint.com/ait/) 

• Astrée: proof of absence of runtime errors in embedded synchronous 
real time control/command software (www.absint.com/astree/), 
AstréeA for asynchronous programs (www.astreea.ens.fr/)

• C Global Surveyor, NASA, static analyzer for flight software of NASA 
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

• IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

• Checkmate: static analyzer of multi-threaded Java programs  
(www.pietro.ferrara.name/checkmate/) 

• CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

• Fluctuat: static analysis of the precision of numerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

• C Global Surveyor, NASA, static analyzer for flight software of NASA C Global Surveyor, NASA, static analyzer for flight software of NASA C Global Surveyor
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

• IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

• CodeContracts Static Checker, Microsoft (CodeContracts Static Checker, Microsoft (CodeContracts Static Checker msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)
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Software

108

• Infer: Static analyzer for C/C++ (monoidics.com/)

• Ju l i a : s t a t i c a n a l y z e r f o r J av a a nd And ro i d p ro g r ams    
(www.juliasoft.com/juliasoft-android-java-verification.aspx?
Id=201177234649)

• Predator: static analyzer of C dynamic data structures using separation 
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

• Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/
Invader/Invader/Invader_Home.html)

• etc.

• Apron numerical domains library (apron.cri.ensmp.fr/library/)

• Parma Polyhedral Library (bugseng.com/products/ppl/)

• etc.
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Hardware

• (Generalized) symbolic trajectory evaluation (Intel)

109

Example of ternary simulation
If some inputs are undefined, the output often is too, but not
always:

X
X
1
X
1
X
X

X
7-input
AND gate

X
X
0
X
X
X
X

0
7-input
AND gate

16

Quaternary simulation

It’s theoretically convenient to generalize ternary to quaternary
simulation, introducing an ‘overconstrained’ value T .
We can think of each quaternary value as standing for a set of
possible values:

T = {}
0 = {0}
1 = {1}
X = {0, 1}

This is essentially a simple case of an abstraction mapping, and we
can think of the abstract values partially ordered by information.

18

Intel’s Successes with Formal Methods

John Harrison

Intel Corporation

15 March 2012

1


����������������������	��
������������
����������������������������������

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume 
2517/2002, 70–87.
Jin Yang;   Seger, C.-J.H.;  Introduction to generalized symbolic trajectory evaluation, IEEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345–353.
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Biology
• Kappa – A language for modeling protein interaction networks by a set 

of rules and analyse that set directly deploying  techniques from 

abstract interpretation  (www.kappalanguage.org/ and 
fontana.med.harvard.edu/www/Documents/Lab/research.signaling.htm)

110
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ASTRÉE

111

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? Formal Methods in System Design 35(3): 229-264 (2009)

Patrick Cousot, Radhia Cousot, Jérôme Feret, Antoine Miné, Laurent Mauborgne, David Monniaux, Xavier Rival: Varieties of Static Analyzers: A Comparison with ASTREE. TASE 2007: 3-20

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Combination of Abstractions in the ASTRÉE Static Analyzer. ASIAN 2006: 
272-300

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: The ASTREÉ Analyzer. ESOP 2005: 21-30

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static analyzer for large safety-critical software. PLDI 
2003: 196-207

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Design and Implementation of a Special-Purpose Static 
Program Analyzer for Safety-Critical Real-Time Embedded Software. The Essence of Computation 2002: 85-108

Project Members

Bruno Blanchet 68 Patrick Cousot Radhia Cousot JÈ rÙ me Feret

Laurent Mauborgne Antoine MinÈ David Monniaux 69 Xavier Rival

68 Nov. 2001 � � Nov. 2003.
69 Nov. 2001 � � Aug. 2007.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 332 � ? [] � � " ""I ľ P. Cousot

Example of Analysis Session

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J!! ! � 397 � ? [] � � " ""I ľ P. Cousot

ASTRÉE

70 Nov. 2001 – Aug. 2010.

70 L

ET
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Target language and applications

112

• C programming language

• Without recursion, longjump, dynamic 
memory allocation, conflicting side effects, 
backward jumps, system calls (stubs)

• With all its horrors (union, pointer 
arithmetics, etc)

• Reasonably extending the standard (e.g. size & 
endianess of integers,  IEEE 754-1985 floats, etc)

• Originally for synchronous control/command

• e.g.  generated from Scade 
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The semantics of C implementations 
is very hard to define

113

The Semantics of C is Hard (Ex. 2: Runtime Errors)

What is the e⇥ect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields di⇥erent results on di⇥erent machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

MPI, 8/26/2008 — 46 — � P. Cousot
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Implicit specification

114

• Absence of runtime errors: overflows, division by 
zero, buffer overflow, null & dangling pointers, 
alignment errors, …

• Semantics of runtime errors:

• Terminating execution: stop (e.g. floating-point 
exceptions when traps are activated)

• Predictable outcome: go on with worst case 
(e.g. signed integer overflows result in some 
integer, some options: e.g. modulo arithmetics)

• Unpredictable outcome: stop (e.g. memory 
corruption)
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Example of domain-specific abstraction: ellipses

115

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — © P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌅ [a, b] x ⇥ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.

10 of 38

American Institute of Aeronautics and Astronautics
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A common believe on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

– May be simple to state (no overflow)

– But harder to discover (P 2 [`1325:4522; 1325:4522])
– And di⌃cult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.
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An erroneous common belief on static analyzersExample of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — © P. Cousot
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[Fer04]      Jérôme Feret: Static Analysis of Digital Filters. ESOP 2004: 33-48
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Industrial applications
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Examples of applications
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• Verification of the absence of runtime-errors in 

• Fly-by-wire flight control systems

• ATV docking system 

• Flight warning system
(on-going work)

(*)

(*)

(*) No false alarm at all!
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• 8 years of research/development (CNRS/ENS/INRIA):
www.astree.ens.fr

• Industrialization by AbsInt (since Jan. 2010):

• Can be used for formal software certification in 
avionics (DO–178C & DO–333)

Industrialization
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www.absint.com/astree/
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Conclusion
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Conclusion
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On research

If you reason/compute on computer/biological/... 
systems behaviors, you probably do abstract 
interpretation
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If you reason/compute on computer/biological/... 
systems behaviors, you probably do abstract 
interpretation
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On applications
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If the simulation/analysis/checking of your 
computer/biological/… systems model does not 
scale up, consider using (sound (and complete)) 
abstract interpretations

If the simulation/analysis/checking of your 
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scale up, consider using (sound (and complete)) 
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The End, Thank You
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