Abstract Interpretation:
Principles and Applications

Patrick Cousot

cims.nyu.edu/~pcousot

di.ens.fr/~cousot

SCS Distinguished Lecture Series
Gates & Hillman Centers, Rashid Auditorium 4401
CMU, Pittsburgh — April 12,2012

Abstract

Abstract interpretation is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal
description of complex or infinite systems and the inference or
verification of their combinatorial or undecidable properties. Developed
in the late seventies with Radhia Cousot, it has been since then applied to
many aspects of computer science (such as static analysis and verification,
contract inference, type inference, termination inference, model-checking,
abstraction refinement, program transformation (including
watermarking), combination of decision procedures, security, malware
detection, database queries, etc.) and more recently, to system biology.

The talk will consist in an introduction to the basic notions of abstract
interpretation and the induced methodology for the systematic
development of sound abstract interpretation-based tools. Examples of
abstractions will be provided, from semantics to typing, grammars to
safety, reachability to potential/definite termination, numerical to protein-
protein abstractions, as well as applications (including in industrial use) to
software, hardware and system biology.

3

Abstract Interpretation:
Principles and Applications

Patrick Cousot
joint work Radhia Cousot

cims.nyu.edu/~pcousot

di.ens.fr/~cousot

SCS Distinguished Lecture Series
Gates & Hillman Centers, Rashid Auditorium 4401
CMU, Pittsburgh — April 12,2012

2

Examples of abstraction

Pixelation of a photo by Jay Maisel

MILES BVIS
-

|

/www.petapixel.com/201 1/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/

Image credit: Photograph by Jay Maisel

5

Abstractions of a man / crowd

<
\

A\
\
N\
\

" Height

\\ Fingerprint

\ \

\ ‘
Al

Eye color

DNA

An old idea...

20 000 years old picture in a spanish cave:

The concrete is not always well-known!

Content
® Motivation

® A touch of theory of abstract interpretation, with
many examples of abstractions

® A short overview of a few applications and on-
going work on software verification

For a rather complete basic introduction to abstract interpretation and applications to cyber-physical
systems, see:

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, & Xavier
Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In AJAA
Infotech@ @ Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22
April 2010. © AIAA.

Fundamental motivations

Example: reasoning on computational structures

WCET . i
Security protocole gystems biolo Operathnal
Axiomatic verification y OI08Y semantics
i analysis Abstraction
semantics s io
Confidentiality Dataflow Model Database ' efinement
analysis . analysis checking query Type
Program evzzlll::taillon Obfuscation Dependence inference
synthesis Effece Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical rac€ combination transformation Proof

model-checking semantics

Invariance Symbolic contracts Integrity

Interpolants Abstract Shape
Code model analysis

proof execution analysis checking Malware
Probabilistic Quantum entanglement Bisimulation detection
verification detection
SMT solvers Code

Parsing Type theory Steganography refactoring

Scientific research

® in Mathematics/Physics:
works towards unification and synthesis

it is science of structure and change aiming at
universal principles

® in Computer science
works towards dispersion and parcelization

it is a collection of local techniques for
computational structures aiming at specific
applications

An exponential process, will stop!

10

Example: reasoning on computational structures

Abstract interpretation

TSR Security protocole gyctems biolo Operational
Axiomatic verification Y 0lOgY semantics
[CUE AL Abstraction
semantics
Confidentiality Dataflow Model = Database (efinement
analysis ~ analysis checking query Type
Program evz?::::ziin Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical rac€ combination transformation Proof
model-checking Semantics

Code Interpolants Abstract Shape
Invariance Symbolic contracts Integrity model analysis
proof execution analysis checking Malware
Probabilistic ~ Quantum entanglement Bisimulation detection
verlﬁc':atlon detection SMT solvers Code'
Parsing Type theory Steganography refactoring

12

Applied motivations

A Touch of Abstract
Interpretation Theory

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,

France. 125 pages. 23 September 1975.
on'F ing, Paris,

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, 7 ings of the second i
France, pages 106— 130, April 13-15 1976, Dunod, Paris.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése Es Sciences
‘Mathématigues, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In $.5. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, US.A., 1981.

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 13 ©P Cousc iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 15 ©P Cousc
Semantics
® Checking the presence of bugs is great
® Proving their absence is even better!

iCS Disting

Lecture Series, CMU, Pittsburgh, April 12th, 2012

sc

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 16

Semantics

® Formal system: syntax to describe computations
(e.g. programming language = set of programs):

Pel

® Semantics: formal model of computations (e.g. set of
execution traces)

® Semantic domain (set of semantics):

D

® Formal system semantics (maps syntactic system
descriptions to their semantics)

SelL-9D

Example: partial trace semantics

® Partial trace semantics 77 °°[P] generated by the
small-step operational semantics (X, 7) of a
program P :

Tﬁ[[P]] = {O'EE”
] 2 | J<"[P],

n>0

=[] 2 {O-EZOO|Vi€D\I:<O-i, <Ti+1>€T[[P]]}

Vie[0,n—1): {0y, oiy1) € T[P] }
n=>0

P[] £ F[P]u[P]

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979 269-282
e o . 19

Example: partial trace semantics

e ProgramP —— t*t®[p] € p(T*)

finite traces o—bo—so—bo

. + L | e—>e—po—po—>o—>o
in X 3

[e—ro—se—be—sre—sre—se—re—sre—re---0—>e
. . i | e—>o—po—po—>o—po—ro—>0—>0—>o---
infinite traces: |-

in X%

states transitions
. .
in X in T

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

18

S >0 ' *—> HHHHHHO - @—P® - -~ .j

Concrete properties

20

Concrete properties

® Program concrete property: set of possible
semantics of the program

® Concrete property domain:
P2=pD) (P,C0,D, U, N)
more genel"a”)’ <¢)9 <’ 09 1’ V, /\> or <¢)9 <7 O, V>

® Collecting semantics: (maps programs to their
strongest property)

Clp] = {S[r]}

¢

(it implies “C

all other properties)

ation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
rogram Analysis Frameworks. POPL 1979: 269-282

21

Abstract properties

23

Example: concrete properties of trace semantics

® A trace in £** is a finite or infinite sequence of
states in X

® A trace semantics in @(Z*%) is a set of traces

® A trace semantics property in @(p(X7%)) is a set of
trace semantics

® The collecting semantics of a program P with trace
semantics @**[P] € p(Z**) is the strongest trace
semantics property

{©*[P]} € p(p(Z*))

22

Abstract properties

® Abstract property: encodes a concrete property (e.g.
a logical formula, a geometric object, etc)

® Abstract property domain:
® a set of abstract properties

® encodes selected concrete properties of interest

<ﬂ’ ;7 J_, T’ |—|, |_|>

retation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
ign of Program Analysis Frameworks. POPL 1979: 269-282

24

Example of abstract properties: reachability

® A reachability property in (X) is a set of states
in X that can be reached during execution from

given initial states

Example of abstract properties: intervals

[€,h] : interval of values between £ and &

Abstraction

® Abstraction: maps concrete to abstract properties

aeP—->A

a is assumed to be increasing (so T is the abstrac-
tion of C).

® Abstract semantics: abstraction of the collecting

(including -0 and +x) semantics
1 : empty set (false) —
AE2{L,h]|LeZU{—0}AheZU{+c0} Al < h) S cl=4A
= € /L Ui—0f An € U {4+o0ot A —
’ h S[P] £ a(C[P]) = a({S[P]}
UL}
. '“°°}::i":u‘::I:':’::::f'h:": I;L"i::’:::"""'""IR":TURIN‘;H'Uﬁ'Lahm‘m[MAG'U"" “iw‘)“‘i:::“cc IS :ztgg: ! f‘el':“no":Q;;T;f‘;iﬂyf\f::;x:iﬂl;‘:iE'}gg;inlggsfzﬂﬁg_’;gfamsbyConswuelw"wAwmxi"'al‘o"owavoinfS-POP'-'977'238'252
25 d 27
Abstraction Concretization

26

28

Concretization

® Concretization: maps abstract properties to
concrete properties

yEA—-P

Y is assumed to be increasing (so C is the
concretization of C)

® Abstract properties either describe exactly the
concrete properties in Y(A) ,or

® Abstract properties must approximate the concrete
properties in £ \ Y(A)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 29

Soundness

® Definition: An abstract property Q € ‘A over-
approximates a concrete property P € ? if and
only if
P cy(Q)

® Definition: an abstraction is sound if and only if
VP e®P :PCvy(a(P))

® Under-approximation is dual®

Patrick Cousot, Radhia Cousot: Abstra
Patrick C t, Radhia Cousot: Systc

erpretation: A Ul d Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Design of P al ks. POPL 1979: 269-282

jon et s dlopérateurs monotones sur un treillis, analyse sémantique des programmes.
5. Université Joseph Fourier, Grenoble, France, 21 March 1978.

31

Soundness

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012. 30

Best abstraction

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 32

Best abstraction

® Concrete properties: (P, <)
® Abstract properties: (A, C)

® |f any concrete property P € P has a best abstrac-
tion a(P) € A, then the correspondence is given by
a Galois connection

(P, <) S (A ©)
i.e.
VPeP:VQeA:a(P)EQ & P < ¥(Q)

Sound abstraction =
Best abstraction <«

[1] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
[2) Equivalently upper closures, principal ideals, complete join congruences, Moore families, etc, see [3]
3] Patrick Cousot, Radhia Cousot: Systemal f Program Analysis Frameworks. POPL 1979: 269-282

33

Example | of abstraction: maximal trace semantics

® ProgramP+— T +.°° [[P]] e X+

. blocking states
in IB T

[o—p®
o—>o—>o—>o
o—po—po—po—po—p0

finite traces
in = ;
H—r0—> 00— 0—>0—>0—>0—>0—>0—>0---0—>0
. . i | e—bo—po—po—ro—po—ro—>0—>0—>o---
infinite traces- |0

in X%

S >e . *—> HHHHHHO - @—P® - -~ ./

“states “transitions

in X inT
Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
Distinguished Series, CMU, Pittsburgh, April 12th, 2012. 35

Examples of abstraction/
concretization

34

Example | of abstraction: maximal trace semantics

® Blocking states of a transition system (X, 7):
B:[P] = {s € Z[P] | Vs’ € Z[P] : (s, s') ¢ T[P]}

® Maximal trace abstraction (eliminates all traces that
are not terminated):

ay(T) 2 U{o-eTOE”

neN
YM

(PE™), O == (P(E™), 9

out €B[PIJUT™

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
S Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012

Example Il of abstraction: trace property

® Trace property abstraction:
ae(P) 2 UP
Y
(POE™)).C) = (p(E™), ©)

® Trace property abstraction of the collecting
semantics:

ae({T"[P[}) = 77 [P € p(=*)

37

Example Il of abstraction: relational abstraction
® Relational abstraction:

(T) & {{oo, on1) o €T NEY
U{{oo, Ly |0 € T NE}

(P(E), ©) &= (PIEX D) UE x (L)), €
® Intuition: ¢

? (o o)
o—po—po—>o (o, @)
—>o—ro—ro—ro—>e (o, @)
e e e e e e e @’ e
—>0—>0—>0—>0—>0—>0—>0—>0—>0 ---0—>O (o, @)
*—>0—>0—>0—>0—>0—H>0—>O0—H>O—>O--- (o, 1)

o—p0 J (o, 1)

Invited Talk: Higher Order Abstract Interpretation (and Application to Comportment Analysis Generalizing Strictness, Termination,
CCL 1994: 95-112

ign of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

ttsburgh, April 12th, 2012.

39

—>0—> 00— 0—>0—>p0—>0—>0—>0—>0e---
at ‘ousot, Radhia
‘onsts

Loss of information in the trace property abstraction

® “Always terminate with the same value, either 0 or |”

Pep(pE*D

always same
result

ae(P)e p(X7)

results can
be different

“Always terminate, either with 0 or 1”

38

Example IV of abstraction: safety trace property

® Prefix abstraction (program executions can be
observed only for a finite time):

pf(c) = [0/ €eZ*™ | 0" € o =0'0"}
pf(™) = | J{pf(o) | reT}.
® Limit abstraction (non-termination cannot be

observed):
ImM(T) £ Tu{loceX®|VneN:o[0,n] €T}

® Safety abstraction (finite observations of executions):
A

sf = Imopf = pfolmopf
1
(PE™), ©) — (PE™), ©)

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258
ished Lecture Series, CMU, Pittsburgh, 12th, 2012

ExampleV of abstraction: reachability

Initial states|. |(*)’

o o ()

jon: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
f Program Analysis Frameworks. POPL 1979: 269-282
2 41

G
E

Example VI of abstraction: potential termination

® Potential termination:

may

terminate -

>

/

~..
~s

® Potential termination abstraction:

d™T) & TNt

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

43

ExampleV of abstraction: reachability

® |nitialization abstraction:

d()T £ (ceT|oyel)
@ € p(T) = (PE*) — P(T*))
® Reachability abstraction:

' (T)2{s|Joc e o’ eX™ 050 €T}

(P(Z*), C) L—> (P(Z), S

ion: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977 238-252
f Program Analysis Frameworks. POPL 14?%9: 269-282

Example VII of abstraction: definite termination

® Definite termination:

must
terminate ..

o\.\

® Definite termination abstraction:

() £ {oeT"|pflo) Npf(T™) = 0}

tation framework for termination. POPL 2012: 245-258

44

Example VlII: elementwise abstraction

® Morphism =101}
Abstraction
a(X) £ {h(x) | x € X)
14
Example: rule of signs
h(z) £ 2/l

hePr— A
{-1,0} ‘< {0, 1}
{—1} {1
® Galois connection
h:7 —{-1,0,1}

Example IX: typing

® Denotational semantics: S[e] € E— S

S[x]
S[Ax - €]

AR-R(x)
AR-T(Au-(u:J_\/u:Q?u|
S[[e]]R[x<—u])) 2 [U— U],

>l

Slei(e2)] £ AR+(S[e1]R = LV S[ea]R = L 7 L |
S[es]R = 2 [U U], 7 1(f) (S[[eg]]R) |

Q)
[
S[pf-Ax-e] = AR- Ifp | . Ap- S[Ax - e]R[f—¢]
S[1] £ AR-1(1) = Z,
S[er — e2] = AR(S[e1]R = LV S[ea]R = L 7 L |

S[lei]R=2z1:Z, AS[e2]R=22::7Z, 7
T(H(z1) — H(z2)) 2 Z1 | Q)

AR-(S[[el]]R = 1 7 L | S[[el]]R =
?)) Zi ?(L(z) =07 S[e2]R | S[es]R) |

Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331
s 1 Ls ire S s, CMU, Pitts| 1 2

1>

S[(ex ? ez :e3)]

47

Example IX: typing
® Eager lambda calculus:
xf,...eX program variables

ec€E : program expressions
e n=x|Ax-e|ei(e2) | uf-Ax-e

1‘61—62’(61?62:63)

® Semantic domains:

W £ {w} wrong

zeZ integers
ufpeU=W,®dZ &[U—U], values
RER 2 X—U environments
pES 2 R—U semantic domain

Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331 o ErTLian o oalht Lt ARG Wb b MR vstd o -ale
s 1 Ls ire S s, CMU, Pitts| 1 2

46

Example IX: typing

® Church/Curry monotypes:

m € MC, m = int | m; >mo monotype
He H° 2 X+— M° type environment
9 € I° = H x M° typing

T e T = o(I°) program type

48

Example IX: typing
® Properties: P £ p(S)
® Monotype concretization:
M € M p(U)
A(int) £ {1(2) 2. |zeZy U {L}

2 {1(9) = [U~T], |9 €[U—T]A
Vu € 7f (m1) : #(u) € 4f (ms)} U {1}

”Yf (ml -> IH2)

s € H° — p(R)
¥ (H) = {ReR|Vx € X: R(x) € 7 (H(x))}
vs € I°C—P
Vs ((H, m)) = {¢ €S| VR €5 (H) : ¢(R) € 4{(m)}
7 e TC—P
A(T) = nTw?(@), 7°0) =S

Example X: Protein—Protein interaction abstraction

® Let Species be the set of all chemical species (C, c1,cf, ..., cx, ¢p, ... € Species)

e Let Local view be the set of all local views

e Let « € p(Species) — p(Local _view) be the function that maps any set of
complexes into the set of their local views.

a({R(Y1~u,I1), E(rl1)})
= {R(Y1~u,IIr.E); E(rl.R)}

. Y ,
e The function o defines a Galois connexion: (Species) % o(Local view)

e (The function vy maps a set of local views into the set of complexes that can
be built with these local views).

Jérome Feret. Reachability Analysis of Biological Signalling Pathways by Abstract ion. In ings of the Conference of C Methods in Sciences and Engineering
(Ed.). 2007, American Institute of Physics conference proceedings 963.(2). pp 619--622.
ne: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

51

Example IX: typing

® Galois connection:

Y(UT) = NA°(T)

€A 1EA
implies
’YC C
(8

Example Xl: numerical abstractions

Yy Yy o o Loh o o
f [] [] [] [) []
f / o o o o o
®a, $ x x [] [] [) [] [] X
° [] [] [) [] []
[] [] [) [] []
Collecting semantics: Intervals: Simple congruences:’
partial traces X € [a, b] x = alb]
Y Yy YA
t
Octagons: Ellipses:’ Exponentials:
+tx+y<a x2+by? —axy<d —a® <y(t) <a¥

iCS Distinguished Lecture Series, CMU, Pittsburgh, 2th, 2012. 52

In absence of best
abstraction

53

Example Xll of abstraction: polyhedra

® Abstract polyhedral properties:

AL2UA, B, n)|AcR'xXR"ABeR" An > 0}

® Concretization:
yr({A, B, n)) = {X € R" | AX < B}

Transformers and widenings have no more precise
solution and make arbitrary choices (e.g. governed
efficiency considerations)

Patrick Cousot. M imation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Grenoble, France, 21 March 1978.

estraints Among Variables of a Program. POPL 1978: 84-96

55

In absence of best abstraction

® Best abstraction of a disk by a rectangular
parallelogram

® No best abstraction of a disk by a polyhedron
(Euclid)

use only concretization or abstraction or widening
(introduced in the following) ®

(I) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)

Transformer abstraction

56

Transformers

® Concrete transformer:

FeP—->P

increasing (or continuous)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

57

Example abstract transformer: rule of signs

{-1,-2,-7} * {0,-2,-5) {0,2,4, 14,5, 10, 35}

a a (04

L

Ly {10 {1,0}

Negative Negative Positive
or zero or zero

s

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979 269-282

59

Transformer abstraction
e An abstract transformer F € A — A s
® Sound iff

VPeP:aoF(P)C F o aP)
® Sound and complete iff
VPeP:ao- F(P)=F -a(P)

® Example (rule of sign)
® Addition: sound, incomplete
® Multiplication: sound, complete

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

58

Example abstract transformer: rule of signs

A
{-3,-4,-7} + {1,2,3} = {-2,-3,-6,-1,-2,-5,0,-1,-4}

a a a

{-1,0}
C

CyF 1,01}

Negative Positive Unkown

e

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979 269-282

60

Fixpoints

Patrick Cousot & Radhia Cousot. Constructive v

ersions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

Fixpoints of increasing functions (Tarski)

A

f(x)

Another fixpoint at +00 1

Fixpoint Program properties as fixpoints
® Set P ® Program semantics and program properties can be
formalized as least/greatest fixpoints of increasing
® Transformer F €% — % transformers on complete lattices
® Fixpoint ® Complete lattice / cpo of properties
x € P is a fixpoint of F
— F(x)=x P, <, 0,1, v, A)
® Properties of program P
® Poset (P, <) s[p] = |fp<F[[P]]
® [east fixpoint

x € P is the least fixpoint of F (written x = prgF)
S Fx)=xAVyeP:(Fy)=y)=x<Yy)

62

® Transformer of program P
F[P] € # — P, increasing (or continuous)

(I') Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

64

Fixpoints: inversion, converse and duality

i 3 __fl"l ro)
L
I 1|‘_| 1
|'r !'} o]fr'-']
Loy Wil i 3

® Forward (—) or backward (<) transformers
® Join (U) or meet (N) merge duality

® |least () or greatest (1) fixpoint duality

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

65

Example Il: infinite traces
® <p(zoo)’ g’ @’ 2007 U’ m)
® Backward transformer: <52"[[P]]T 2 7[P] 5T

® Fixpoint infinite traces:

[P = gfpS. ¢ [Pl

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
\guished Lecture Series, CMU, Pittsburgh 12th, 2012

67

Example I: partial finite trace semantics
(P(E"), €, 0, X7, U, N)
Forward transformer: $>T+ [P]T =& ='UT s7[P]

Backward transformer: @ F[P]T 2 ' U[P]sT

Fixpoint finite partial traces:

7P| = Ifp§ 6 F[P] = Ifp5 ¢ [Pl

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

66

Example Ill: partial finite and infinite traces (a)
([<80(2+00), g, 09 E+00, U’ m)

® Fixpoint partial finite and infinite traces semantics:

o+°P] = Ip§ G [P U gips. G [P

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
Distinguished ure Series, CMU, Pittsburgh, 12th, 2012.

68

Example llI: partial finite and infinite traces (b)

® Computational order:
T £ TNzt
T 2 TNE®
(T\ S Ty) 2 (T} CT;) AT
(P(ZF), C, =, *, U, M)

T3)

® Transformer:
ﬁ

6 CPIT £ 2 urlp] 3

® Fixpoint partial finite and infinite traces semantics:

t¥p] = Ifp§ G F[P]ugfps. FT[P] = IfpS. @ [P

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
S Distinguished Lecture Se 1 69

Proof methods

>S Distinguished Lecture Series

Patrick Cousot & Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. POPL 1977, 238—252..

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
These Es Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

Patrick Cousot and Radhia Cousot. Reasoning about program invariance proof methods. Research Report CRIN-80-P050, Institut National Polytechnique de Lorraine, Nancy, France, July 1980, 22p.

Patrick Cousot. Semantic foundations of program analysis. In $.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303 —342, Prentice-Hall, Inc...
Englewood Cliffs, New Jersey, US.A., 1981.

Patrick Cousot & Radhia Cousot. Induction principles for proving invariance properties of programs. In D. Néel, editor, Tools & Notions for Program Construction: an Advanced Course, pages 75—
119. Cambridge University Press, Cambridge, UK, August 1982.

Patrick Cousot. A Hoare-style axiomatization of Burstall's intermittent assertion method for non-deterministic programs Research report LRIM-83-04, University of Metz, September 1983.

Patrick Cousot and Radhia Cousot. “A la Bu

11" induction principles for proving inevitability properties of programs. Research Report LRIM-83-08, University of Metz, November 1983.

Ptk Cousot & Radhia Couso, Principe des Méthodes de Preuve de Propriéés dInvariance et de Fatali des Programmes Paraldles. (Principl of nariance and inevitabilty proof methods of
concurrent programs.) In « I »,J.-P. Verjus et G. Roucairol (Eds.), Editions du CNRS, Paris, pp. 120— 149, 1985.

. communication et

Patrick Cousot & Radhia Cousot. “A la Floyd” induction principles for proving inevitability properties of program
University Press, Cambridge, UK, pp. 277312, December 1985.

In «Algebraic methods

semantics», M. Nivat & J. Reynolds (Eds.), Cambridge

Patrick Cousot & Radhia Cousot. Sometime = Always + Recursion = Always, On the Equivalence of the Intermittent and Invariant Assertions Methods for Proving Inevitability Properties of
Programs. Acta Informatica 24, 1—31 (1987).

Patrick Cousot & Radhia Cousot. A language independent proof of the soundness and of ized Hoare logic

and ion 80(2):165—191 (1989).

Patrick Cousot. Methods and Logics for vam" Programs. In J. van Leeuwen, editor, Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, chapter 15, pages 843
—993. Elsevier Science Publishers B.V. , 1990.

Radhia Cousot. Fondements des méthodes de preuve d'invariance et de fatalité de programmes paralléles. Theése &s Sciences

Lorraine, Nancy, France, 15 November 1985.

MU, Pittsburgh. 12th, 2012. 71

de

Institut national p iq

CS Distinguished Lecture Series

Example: reachable states

® Transition system (set of states 2, initial states / C X
transition relation 7)

, I, 1)

® Right-image of a set of states by transitions

post[t]X = {5’ | As € X : (s, 5'))

® Reachable states from initial states J

post[t*]7 = Ifp= A X « T U post[r]X

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. These Es Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303 —342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, US.A., 1981.

MU, Pittsburgh, 12th, 2012. 70

Proof methods

® Proof methods directly follow from the fixpoint
definition

S[P] < P
o IfpSFP] < P
& 31 : F[P]()

(proof by Tarski’s fixpoint theorem for increasing
transformers on complete lattice or Pataria for

P p<F = Al F <

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analy:
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 197

MU, Pittsburgh, April 12th, 2012 72

INI<P

of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
69-282

Example: Turing/Floyd Invariance Proof

® Bad states:
BCX

® Prove that no bad state is reachable:
post[t*]1 C -8B
ie Ifp“AX eI Upost[t]X C =B

® Turing/Floyd proof method:
dlep): I CIApostit]ICIANTIC -8B

lysis Frameworks. POPL 1979: 269-282

73

Fixpoint abstraction

® For an increasing and sound abstract transformer, we
have a fixpoint approximation

a(fpSF) C Iip=F

® For an increasing, sound, and complete abstract
transformer, we have an exact fixpoint abstraction

a(IfpSF) = IfpcF

75

Fixpoint abstraction

74

Example XIll: trace to reachability abstraction

® Transition system: (Z[P], 7[P])
Fixpoint concrete partial trace semantics:
T [P] = 105 6 [P wich ¢ [PIT £ X' U T 5[]

Reachability abstraction from initial states I:
iy

(PE™),) :a) (P, <)

Sound and complete abstract transformer
@ oa()op F[P] = AX + U post[z[P]] e a' = &
Fixpoint reachability:
a o ()T F[P]) = o o o'(1) (Ifp§ & [P])
= Ifp; AX<lU post[r[P]]X

76

Fixpoint iteration” and
convergence acceleration”

(1 In absence of direct solution (e.g. by elimination)
) In absence of finite convergence (e.g. ascending chain condition)

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 77

Expressiveness of finite abstractions is weak”

® Finite state abstraction is impossible for termination
and unsound for non-termination of unbounded
programs

® Unbounded executions:

*—>0e

*—>o—>o—>0
—>0—>0—>0—>0—>0
*—>0—>0—>0—>0—>0—>0—>0

*—>0—>0—>0—>0—>0—>0—>0—>p0—>0---0—>0

® Finite homomorphic abstraction:
RN SN
® Termination: impossible (lasso)

® Non-termination (lasso): unsound

(*) Excluding trivial solutions, see: Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 79

Iterative fixpoint computation
® Fixpoint of increasing transformers on cpos can be
computed iteratively as limits of (transfinite) iterates
At =
FF*1 2 F(FP), B+ 1 successor ordinal
F'2 | |5, F, Alimit ordinal
Ultimately stationary at rank €

Converges to F€ = Ifp=F
® ¢ = w when F is continuous

® Finite iterates when I’ operates on a cpo satisfying
the ascending chain condition

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43 —57.

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 78

Widening
® Definition (widening V € AX A — A)
o (A, C) poset
® Over-approximation
Vx,ye A: xE xVyAyLE xVy

® Termination

Given any sequence (x", n € N), the widened sequence (y", n € N)

A A
YW £ X0,y 2 yuan, L

converges to a limit y (such that Vm > € : y" = y")

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 80

Example: (simple) widening for polyhedra

® |terates

® Widening

Patrick Cousot. Méthodes itérat
These Es Scien
Patrick Cousot,

g
c
Ss

s de construction et dapproximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
h Fourier, Gren ce, 21 March 1978
s Among Variables of a Program. POPL 1978: 84-96

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012. 81

Convergence acceleration with widening

F (__F
Ifp F Ifp F'

Infinite iteration Accelerated iteration with widening

(e.g. with a widening based on the
derivative as in Newton-Raphson method

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012. 83

iCS Di

Iteration with widening

® [terates with widening for transformer F' € A — A

—0

F £ 1

F'loaF when F(F)C F'
Foa F' VF(F') otherwise

® The widening speeds up convergence (at the cost of
imprecision)
Theorem (Limit of iterates with widening) The iterates of F with

widening V from L on a poset (A, C, L) converge to a limit f{)
such that f(f{;) E f€ (and so pr;f g F{) when F is increasing).

® Can be improved by a narrowing.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

stinguished Lecture Series, CMU, Pittsburgh, 12th, 2012. 82

Reduced product

® The reduced product combines abstractions by
performing their conjunction in the abstract

(P, <) S (T, T

(P,) = (P, B2)

y
A Ay £
{a1(y1(P1) Aya(P2)), as(y1(P1) Aya(Pr))) | Py € Ay APy € Ay
(P, <) % (A @A, £ X 5y)
)

X,

® Example: (positive or zero) ® odd = <positive,odd>

Patrick Cousot, Radhia Cousot: Systematic Design of Prog
Laurer

ram Analysis Frameworks. POPL 1979: 269-282
'he Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472

urgh 12th, 2012. 84

Undecidability and
complexity

85

What to do about false
alarms?
abstraction refinement

87

Fighting undecidability and complexity
in automatic program verification

® Any automatic semantic program verification method
will definitely fail on infinitely many programs (Gédel)

® Solutions:

® Ask for human help (theorem-prover/proof
assistant based deductive methods) — high labor
cost

e Consider finite/decidable systems (model-checking)
—> combinatorial explosion

® Do sound approximations or complete abstractions
(abstract interpretation) — false alarms
CS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 86

What to do about false alarms?
(I) Automatic refinement

® |nefficient and may not terminate (Godel)

® Refinement needs intelligence

88

Set of functions

How to approximate { fi, fo, f3,fa } ?

89

Concrete questions on the f;

f) 1 -

| Fire[h]:h@)>M?

Ji,te [l h]:fi(t) <m?

Min/max questions on the f;
CS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 9l

f(t)

Set of functions abstraction

90

Concrete questions on the fi answered in the abstract

f(e) -

M

Ji,te[Lh]:f() <m? No

Min/max questions on the f;
CS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 92

A more precise/refined abstraction

f(t)

93

th e f|
iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 201.

Intelligent passing to the limit

f(t)

>t
Sound and complete abstraction for min/max questions on

95

An even more precise/refined abstraction

f(t)

— t

Note: this is already much more elaborate than CEGAR that goes

counter-example by counter-example!
iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 94

th e f|
iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 201.

A non-comparable abstraction

f(t)

t
Sound and incomplete abstraction for min/max questions on

96 I

The hierarchy of abstractions

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

97

What to do about false alarms?
(I) Domain specific refinement

® Adapt the abstraction to the programming
paradigms typically used in given domain-specific
applications

® e.g. Astrée for synchronous control/command
programs: no recursion, no dynamic memory
allocation, maximum execution time, filters,
integrators, quaternions, etc.

99

(I) Automatic refinement: Astrée example

® Filter invariant abstraction:

2nd order filter: Execution trace:

Unstable polyhedral Stable ellipsoidal

. - o M .
abstraction: - abstraction:))
! I,.’ f
F{x} 3 &
x i i)
X U F{X] = KUFX)
Julien Bertrane, Patrick Cousot, Radhia Cousot, Jéréme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract ion. In
AIAA Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.
oS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.

98

So, what is Abstract
Interpretation

100

A narrow view ...

Define the syntax of the system descriptions

Define the semantics of the system descriptions

Define the collecting semantics (strongest property of
interest)

Preferably express the collecting semantics in fixpoint
form

Define abstractions of properties
Infer abstractions of transformers
Infer abstractions of fixpoints to get abstract semantics

Iterate to compute fixpoints with convergence
acceleration (widening/narrowing)

Combine abstractions (e.g. reduced product) to refine

101

Abstraction in a more general setting...

Reasoning on complex [computer] system behaviors is
too complex (for humans)

Analyzing/verifying [computer] system behaviors is
undecidable or subject to combinatorial explosion (for
machines)

Abstraction is necessary to apprehend complexity

Abstract interpretation is a formal framework for
reasoning/computing on formal models of [computer]
objects, systems and computations and their relations

Applications include the systematic construction of
methods and effective algorithms to solve/approximate
undecidable or very complex problems in various areas of

computer science (and more recently system biology)
Lectu U, Pitt 2th, 2012 103

Example XIV: grammar abstraction

® Meta-syntax of grammars

® Semantics of grammars (by induction on the meta-syntax):
the language generated by the grammar

® Fixpoint semantics: Chomsky-Schiitzenberger th.
S[X ::= Xa | b] =1lfp=AXX-{a} U (b}
Example of abstraction: FIRST
A
Urrsr(X) = {a | do: ao € X}

® Fixpoint abstraction: FIRST classical algorithm (expressed as
a fixpoint)

FlX ::=

a’FIRST(S[[X 1:= Xa | b]])
fpSAX+XU{a|eeX)U b}

erpretation. Theor. Comput. Sci. 412(44): 6135-6192 (2011)
gram Analysis and Compilation, LNCS 4444, 2006: 175-200
- Comput. Sci. 290(1): 531-544 (2003)

Patrick Cousot, Radhia Cousot: Grai
dhia

Recent advances

® The same principles apply to termination verification

Patrick Cousot, Radhia Cousot: An abstract interpretation
framework for termination. POPL 2012: 245-258

® and to probabilistic verification

Patrick Cousot and Micha&l Monerau. Probabilistic Abstract Interpretation. In H.
Seidel (Ed), 22nd European Symposium on Programming (ESOP 2012), Tallinn,
Estonia, 24 March—1 April 2012. Lecture Notes in Computer Science, vol.
7211, pp. 166—190, © Springer, 2012.

104

Applications of abstract
Interpretation

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 105

Software

Ait: static analysis of the worst-case execution time of control/command
software (www.absint.com/ait/)

Astrée: proof of absence of runtime errors in embedded synchronous
real time control/command software (www.absint.com/astree/),
AstréeA for asynchronous programs (www.astreea.ens.fr/)

C Global Surveyor, NASA, static analyzer for flight software of NASA
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

Checkmate: static analyzer of multi-threaded Java programs
(www.pietro.ferrara.name/checkmate/)

CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

Fluctuat: static analysis of the precision of numerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

Series, CMU, Pittsburgh, Apri 121, 2012 107

Static analysis
and verification

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 106

Software

Infer: Static analyzer for C/C** (monoidics.com/)

Julia: static analyzer for Java and Android programs
(www.juliasoft.com/juliasoft-android-java-verification.aspx?
1d=201177234649)

Predator: static analyzer of C dynamic data structures using separation
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/

Invader/Invader/Invader Home.html)

etc.

Apron numerical domains library (apron.cri.ensmp.fr/library/)

Parma Polyhedral Library (bugseng.com/products/ppl/)

etc.

Series, CMU, Pittsburgh, Apri 121, 2012 108

Hardware

® (Generalized) symbolic trajectory evaluation (Intel)

, . Example of ternary simulation
Intel’s Successes with Formal Methods If some inputs are undefined, the output often is too, but not
always:
John Harrison X -
{(7
Intel Corporation] Z-input
{7 AND gate [—— X
15 March 2012 5%
X 0 = (0}
1= {1}
x| X = {01}
§
I 7-input
6(7 AND gate —— 0
X
Tsinghua software day, March 15, 2012, Tsinghua University, Beijing, China X

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume
2517/2002, 70-87.
Jin Yang; Seger, C.-1.H.; Introduction to generalized symbolic trajectory evaluation, EEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345-353.

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012, 109

ASTREE

=[O o IO L :
g a = - i
I
Bruno BLaNcHET®® Patrick Cousor Radhia Cousor J r me FERET
o
i 2 £

Laurent MAUBORGNE " Antoine MIN David Monn1aux % Xavier RivaL
68 Nov.2001 Nov. 2003,
69 Nov.2001 Aug. 2007.
70 Nov. 2001 — Aug. 2010. o

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? Formal Methods in System Design 35(3): 229-264 (2009)
Patrick Cousot, Radhia Cousot, Jérome Feret, Antoine Miné, Laurent Mauborgne, David Monniaux, Xavier Rival: Varieties of Static Analyzers: A Comparison with ASTREE. TASE 2007: 3-20

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Combination of Abstractions in the ASTREE Static Analyzer. ASIAN 2006:
272-300

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: The ASTREE Analyzer. ESOP 2005: 21-30

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static analyzer for large safety-critical software. PLDI
2003: 196-207

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Design and Implementation of a Special-Purpose Static
Program Analyzer for Safety-Critical Real-Time Embedded Software. The Essence of Computation 2002: 85-108

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012, 11

Biology

o Kappa — A language for modeling protein interaction networks by a set
of rules and analyse that set directly deploying techniques from

abstract interpretation (www.kappalanquaqe.orq/ and

fontana.med.harvard.edu/www/Documents/Lab/research.signaling.htm)

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012, 110

Target language and applications
® C programming language

® Without recursion, 1longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

® With all its horrors (union, pointer
arithmetics, etc)

® Reasonably extending the standard (e.g. size &
endianess of integers, IEEE 754-1985 floats, etc)

® Originally for synchronous control/command

® c.g. generated from Scade

iCS Distinguished Lecture Series, CMU, Pittsburgh, 12th, 2012, 112

The semantics of C implementations Example of domain-specific abstraction: ellipses

is very hard to define typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] =X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] *x 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = s[0]; sS[0o] = P;

What is the effect of out-of-bounds array indexing?

% cat unpredictable.c

#include <stdio.h>

int main () { int n, T[1];

n = 2147483647 ;

printf("n = %i, Tln] = %i\n", n, T[n]);

} /* S[0], S[1] in [-1327.02698354, 1327.02698354] */
}
Yields different results on different machines: void main O { X = 0.2 * X + 5: INIT = TRUE;
n = 2147483647, T[n] = 2147483647 Macintosh PPC while (1) {
n = 2147483647, Tln] = -1208492044 Macintosh Intel X =009 % X + 35
n = 2147483647, T[n] = -135204988 PC Intel 32 bits filter (): INIT - FALSE:)
Bus error PC Intel 64 bits } *
Implicit specification An erroneous common belief on static analyzers
® Absence of runtime errors: overfl'ows, C!IV|Slon by “The properties that can be proved by static analyzers are often
zero, buffer overflow, null & dangling pointers, simple” [2]
alignment errors, ... Like in mathematics:
® Semantics of runtime errors: — May be simple to state (no overflow)

o) . . — But harder to discover (so], s[1] in [-1327.02698354, 1327.02698354]
® Terminating execution: stop (e.g. floating-point

exceptions when traps are activated) — And difficult to prove (since it requires finding a non trivial

non-linear invariant for second order filters with complex

® Predictable outcome: go on with worst case roots [Fer04], which can hardly be found by exhaustive enu-
(e.g. signed integer overflows result in some meration)
integer, some options: e.g. modulo arithmetics) __ Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

® Unpredictable outcome: StOP (eg memory [Fer04] Jérome Feret: Static Analysis of Digital Filters. ESOP 2004: 33-48
corruption)

114 P Cous iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 116

Industrial applications

Daniel Kistner, Christian Ferdinand, Stephan Wilhelm, Stefana Nevona, Olha Honcharova, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival, and
Elodie-Jane Sims. Astrée: Nachweis der it von L i In Workshop ™. Gissig S) " Germany, June 18, 2009.

Olivier Bouissou, Eric Conquet, Patrick Cousot, Radhia Cousot, Jérome Feret, Khalil Ghorbal, Eric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival, &
Michel Turin. Space Software Validation using Abstract Interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7
pages. ESA.

Jean Souyris, David Delmas: Experimental Assessment of Astrée on Safety-Critical Avionics Software. SAFECOMP 2007: 479-490

David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451

Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Reinhold Heckmann, imbi , Marc La ibach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software. DSN 2003: 625-632

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 117 © P Cousc

Industrialization
® 8 years of research/development (CNRS/ENS/INRIA):

www.astree.ens.fr

® [ndustrialization by AbsInt (since Jan. 2010):

www.absint.com/astree/ ==

Absint
® Can be used for formal software certification in
avionics (DO-178C & DO-333)
iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 119 ©P Cousc

Examples of applications

® Verification of the absence of runtime-errors in

® Fly-by-wire flight control systems®

® Flight warning system
(on-going work)

(*) No false alarm at all!

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 118 ©P Cousc

Conclusion

iCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 120 ©P Cousc

On research

If you reason/compute on computer/biological/...
systems behaviors, you probably do abstract
interpretation

121

The End, Thank You

123

On applications

If the simulation/analysis/checking of your
computer/biological/... systems model does not
scale up, consider using (sound (and complete))
abstract interpretations

122

