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Objective
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Example
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0:{ w F1 false; w F2 false; w T 0; }
1: w[] F1 true 21:w[] F2 true;
2: w[] T 2 22:w[] T 1;
3: do {i} 23:do {j}
4: fence[b] {1:} {5:} 24: fence[b] {21:} {25:};
5: r[] R1 F2 {❀ F2i4} 25: r[] R3 F1; {❀ F1j13}
6: r[] R2 T {❀ Ti5} 26: r[] R4 T; {❀ Tj14}
7: while R1 ∧ R2 ̸= 1 {iend} 27:while R3 ∧ R4 ̸= 2; {jend}
8: skip (* CS1 *) 28:skip (* CS2 *)
9: w[] F1 false 29:w[] F2 false;
10: 39:

Figure 1. Peterson algorithm for WCM with fences
0:{ w F1 false; w F2 false; w T 0; }
1: w[] F1 true 21:w[] F2 true;
2: w[] T 2 22:w[] T 1;
3: do {i} 23:do {j}
5: r[] R1 F2 {❀ F2i4} 25: r[] R3 F1; {❀ F1j13}
6: r[] R2 T {❀ Ti5} 26: r[] R4 T; {❀ Tj14}
7: while R1 ∧ R2 ̸= 1 {iend} 27:while R3 ∧ R4 ̸= 2; {jend}
8: ¬at 28 28:¬at 8
9: w[] F1 false 29:w[] F2 false;
10: 39:
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An invariance proof method for WCMs
• Extend Lamport’s invariance proof method for parallel programs from 

sequentially consistent to weak consistency models so that

• The weak consistency model is a parameter of the proof

• We don’t have to redo the whole proof when changing the consistency 
model  

Note: Owicki & Gries is Lamport with auxiliary variables instead of 
programs counters
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Separating invariance from WCM
• The invariance proof (that a specification Sinv is invariant for a program): 

• Done for a program consistency hypothesis Scom: 

• Sufficient for the program to be correct

• Or better, also necessary for correctness (weakest consistency 
model)

• This program consistency hypothesis Scom is expressed as an invariant 

• Sound and (relatively) complete
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Separating invariance from WCM
• Consistency proof:

a. The program consistency hypothesis Scom is strengthen into Hcom 
written in a consistency specification language (e.g. cat)

b. A cat architecture consistency model M is shown to imply the 

cat program consistency model Hcom

• only b. to be redone when changing the architecture

• sound but possibly incomplete
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Methodology
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The invariance proof 
method is designed by 

abstract interpretation of an 
analytic semantics
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Analytic semantics 
=

Anarchic semantics 

⌈ 
Weak consistency model
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The anarchic semantics

10



Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017,  18-20 January 2017                                                                                                                                                                                                          © J. Alglave & P. Cousot

The anarchic semantics
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The read-from relation rf
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Cuts
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Anarchic semantics of fences
• The anarchic semantics of (localized) fences is skip (the state is 

unmodified)

• Fences are static marker events used by the WCM in cat to restrict the 
read-from relation rf
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The weak consistency 
model
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Weak consistency models
• Put restrictions on the read-from relation rf

• e.g. sequential consistency: a read at a cut reads from that last write in a 
process before that cut

16
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Difficulties

17
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Naming entities
• Invariants are logical formulæ 

• can only describe entities that they name

• L/O-G use the name of shared variables to designate their current value 
in invariants

• Meaningless with WCMs since there is no notion of ``the current value 
of a shared variable’’

18

Difficulty
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Naming entities
• Invariants are logical formulæ 

• can only describe entities that they name

• L/O-G use the name of shared variables to designate their current value 
in invariants

• Meaningless with WCMs since there is no notion of ``the current value 
of a shared variable’’
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What is known on communications?
• Each process only knows the value of the shared variables from its last 

read

• Need to be named  ⟶ Pythia Variables

• Its dynamic, not static!

• A program read action can read from a different write each time it is 
executed ⟶ Stamps 
 
 

20
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What we know on communications?
• Each process only knows the value of the shared variables from its last 

read

• Need to be named  ⟶ Pythia Variables

• Its dynamic, not static!

• A program read action can read from a different write each time it is 
executed ⟶ Stamps (abstraction of local time)  
 
 

21

Difficulty
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Back to the anarchic 
semantics

22
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State
• Per process:

• A stamp (local time, no global time)

• A program counter

• The value of the local variables (registers) of the process

• The stamped pythia variables (uniquely identifying all reads along a 
trace)

• The value of the pythia variables (what was read)

• The read-from relation (rf)

23
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Example (Peterson)

24

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM
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In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
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• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
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given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
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2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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The invariance abstraction
• For each process

• For each program point of that process

• For each execution of the program

• For each cut of that execution going through the program point of 
that process 
 

collect:

• The states of all processes, and

• The read-from relation rf
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Example: Peterson
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0: { w F1 false; w F2 false; w T 0; }
{F1=false ∧ F2=false ∧ T=0} }
1: {R1=0 ∧ R2=0} 10: {R3=0 ∧ R4=0}

w[] F1 true w[] F2 true;

2: {R1=0 ∧ R2=0} 11: {R3=0 ∧ R4=0}
w[] T 2 w[] T 1;

3: {R1=0 ∧ R2=0} 12: {R3=0 ∧ R4=0}
do {i} do {j}

4: {(i=0 ∧ R1=0 ∧ R2=0) ∨
(i>0 ∧ R1=F2i−1

4 ∧ R2=Ti−1
5 )}

13: {(j=0 ∧ R3=0 ∧ R4=0) ∨
(j>0 ∧ R3=F1

j−1
13 ∧ R4=T

j−1
14 )}

r[] R1 F2 {❀ F2i4} r[] R3 F1 {❀ F1
j
13};

5: {R1=F2i4 ∧ (i=0 ∧ R2=0) ∨
(i>0 ∧ R2=Ti−1

5 )}
14: {R3=F1j13 ∧ (j=0 ∧ R4=0) ∨

(j>0 ∧ R4=T
j−1
14 )}

r[] R2 T {❀ Ti5} r[] R4 T; {❀ T
j
14}

6: {R1=F2i4 ∧ R2=Ti5} 15: {R3=F1j13 ∧ R4=T
j
14)}

while R1 ∧ R2 ̸=1 {iend} while R3 ∧ R4 ̸=2 {jend} ;

7: {¬F2
iend
4 ∨ T

iend
5 =1} 16: {¬F1

jend
13 ∨ T

jend
14 =2}

skip (* CS1 *) skip (* CS2 *)

8: {¬F2
iend
4 ∨ T

iend
5 =1} 17: {¬F1

jend
13 ∨ T

jend
14 =2}

w[] F1 false w[] F2 false;

9: {¬F2
iend
4 ∨ T

iend
5 =1} 18: {¬F1

jend
13 ∨ T

jend
14 =2}

Figure 8: (Anarchic) invariants of Peterson algorithm

Following (Lamport 1977), we use program counters so we do
not need (Owicki and Gries 1976)’s shared auxiliary variables. The
equivalence proof of (Cousot and Cousot 1980) shows that the aux-
iliary variables in (Owicki and Gries 1976) can always be chosen
as local variables (i.e., registers in LISA) simulating program coun-
ters. This proof easily generalises to the WCM anarchic semantics.
So we avoid the problem that “OG’s auxiliary variables, in general,
are unsound under weak memory because they can be used to re-
cord the exact thread interleavings and establish completeness un-
der SC” (Lahav and Vafeiadis 2015). Our solution, using program
counters or auxiliary registers is both sound and (relatively) com-
plete, and simpler and more general that the ghost states of (Lahav
and Vafeiadis 2015; Jung et al. 2016).

• Sind is inductive under the hypothesis Scom is decomposed into
an initialisation proof that the entry invariant is true, a sequential
proof that the invariants hold when executing one process sequen-
tially, a non-interference proof when running processes concur-
rently, and finally a communication proof.

The novelty of our approach is in the communication proof.
We must prove that if an invariant is true at some process point
ℓ of a process p and a read for xθ is performed then the value
received into xθ is that of a matching write. Of course only the
communications allowed by the communication invariant Scom and
all of them have to be taken into account.

For Peterson, the invariants do not say anything on the value
assigned to the pythia variables so that the invariants are true for
any value carried by the pythia variables. More precisely, the read
at line 4 can read from the writes at line 0, 10 or 17. The invariant
at line 4 does not make any distinction on these cases and just states
that some value F2i4 has been read and assigned to R1. Similarly the
read of T at line 5 can read from the writes at line 0, 2, or 11 and
the invariant just states that some value Ti5 is read and assigned to
R2.

The invariant of Fig. 8 holds for the anarchic semantics since no
hypothesis is made on communications rf and therefore no possible
communication has been forgotten.

• Sind is stronger than Sinv under the hypothesis Scom ; On the
Peterson example, the invariance proof does not make any use
of the communication hypothesis Scom . It is however used in the
mutual exclusion proof, that Sind is stronger than Sinv . We prove
that (Scom ∧ Sind ) ⇒ Sinv or equivalently (Sind ∧ ¬Sinv ) ⇒ ¬Scom ,
as follows:

at 7 ∧ at 16 ∧ Sind

⇒ (¬F2iend
4 ∨ T

iend
5 = 1) ∧ (¬F1jend

13 ∨ T
jend
14 = 2)}

!i.e., the invariant Sind holds at lines 7 and 16"
⇒ ¬Scom !since by taking i = iend and j = jend, we have

(F2i4 = false ∨ Ti5 = 1) ∧ (F1j13 = false ∨ Tj14 = 2)"
Note that this calculation of Scom from the specification Sinv and

the anarchic inductive invariant Sind provides a formal method to
discover Scom by calculational design. Scom is sufficient but also ne-
cessary, hence the weakest communication hypothesis, since for
each possible case of communication excluded by Scom , it is pos-
sible to find a counter-example execution of Peterson violating mu-
tual exclusion (see Fig. 7 and 10).
2.3.2 WCM specification Hcom

We have proved Scom ⇒ Sinv . To ensure that Sinv holds in the
context of the consistency model M , we must prove M ⇒ Scom

i.e., that all the behaviours allowed by M are allowed by Scom . In
general we have to consider several WCMs M = Mi, i ∈ [0, n].
To factorize the proofs ∀i ∈ [1, n] . Mi ⇒ Scom , we look for a
(preferably weakest else minimal) consistency specification Hcom

that encompasses our specification Scom . We prove Hcom ⇒ Scom

and then ∀i ∈ [1, n] . Mi ⇒ Hcom which are the only bits of proof
that must be adapted when considering different models.
2.3.3 Inclusion proof Hcom ⇒ Scom

As illustrated in Fig. 9, the WCMs Hcom and Mi, i ∈ [1, n] belong
to the domain of consistency specifications (e.g. candidate execu-
tions for cat) while Scom belongs to the different domain of invari-
ants. The proof Hcom ⇒ Scom must therefore be done in the most
⟨℘(D ! "),⊆⟩ −−−→−→←−−−−

α

γ
⟨D ! "), ⊆̈⟩ ⊆̈ ⊆̇

⊆ ✷

i

i

! " α ( ! ") ✷

∅̇ =
n∏

i=1

∏

∈ i

∅

Domain of sets of candidate executions

Domain of sets of histories 

Domain of sets of execution histories 

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

π ⟨τ0
∏n

i=1 τi⟩

π0 τi i ∈ [0, n]

πn τi
i ∈ [0, n] πn+1 πn πn =

∏n
i=1 ei

πn+1 =
∏n

i=1 e
′
i j ∈ [1, n] ∀i ∈ [1, n] . e′i =

ei e′j ej τj

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

w1( ) w2( ) r( ) πi πi+1

⟨w2( ), r( )⟩ ∈
✷

⟨τ0
∏n

i=1 τi, , , π⟩
⟨τ0

∏n
i=1 τi, , ⟩ π ⟨τ0

∏n
i=1 τi⟩

γ (⟨τ0
n∏

i=1

τi, , ⟩) ! {⟨τ0
n∏

i=1

τi, , , π⟩ | π ⟨τ0
n∏

i=1

τi⟩}

γ (H) !
⋃

{γ (η) | η ∈ H}

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

α (⟨τ0
n∏

i=1

τi, , , π⟩) !
n∏

i=1

∏

∈ i

{⟨ (s1), (e1), (s1), (s1), . . . , (si), (si), (si), . . .

(sn), (en), (sn), (sn), ⟩ |
n∏

j=1

⟨sj, ej⟩ ∈ π ∧ (si) = }

H H

α (H) !
n⋃̇

i=1

⋃̇

∈ i

{α (⟨τ0
n∏

i=1

τi, , , π⟩) | ⟨τ0
n∏

i=1

τi, , , π⟩ ∈ H}

i

i

! " ! α ( ! ")

Domain of sets of candidate executions

Domain of sets of histories 

Domain of sets of execution histories 

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

π ⟨τ0
∏n

i=1 τi⟩

π0 τi i ∈ [0, n]

πn τi
i ∈ [0, n] πn+1 πn πn =

∏n
i=1 ei

πn+1 =
∏n

i=1 e
′
i j ∈ [1, n] ∀i ∈ [1, n] . e′i =

ei e′j ej τj

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

w1( ) w2( ) r( ) πi πi+1

⟨w2( ), r( )⟩ ∈
✷

⟨τ0
∏n

i=1 τi, , , π⟩
⟨τ0

∏n
i=1 τi, , ⟩ π ⟨τ0

∏n
i=1 τi⟩

γ (⟨τ0
n∏

i=1

τi, , ⟩) ! {⟨τ0
n∏

i=1

τi, , , π⟩ | π ⟨τ0
n∏

i=1

τi⟩}

γ (H) !
⋃

{γ (η) | η ∈ H}

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

α (⟨τ0
n∏

i=1

τi, , , π⟩) !
n∏

i=1

∏

∈ i

{⟨ (s1), (e1), (s1), (s1), . . . , (si), (si), (si), . . .

(sn), (en), (sn), (sn), ⟩ |
n∏

j=1

⟨sj, ej⟩ ∈ π ∧ (si) = }

H H

α (H) !
n⋃̇

i=1

⋃̇

∈ i

{α (⟨τ0
n∏

i=1

τi, , , π⟩) | ⟨τ0
n∏

i=1

τi, , , π⟩ ∈ H}

i

i

! " ! α ( ! ")

Domain of sets of candidate executions

Domain of sets of histories 

Domain of sets of execution histories 

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

π ⟨τ0
∏n

i=1 τi⟩

π0 τi i ∈ [0, n]

πn τi
i ∈ [0, n] πn+1 πn πn =

∏n
i=1 ei

πn+1 =
∏n

i=1 e
′
i j ∈ [1, n] ∀i ∈ [1, n] . e′i =

ei e′j ej τj

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

w1( ) w2( ) r( ) πi πi+1

⟨w2( ), r( )⟩ ∈
✷

⟨τ0
∏n

i=1 τi, , , π⟩
⟨τ0

∏n
i=1 τi, , ⟩ π ⟨τ0

∏n
i=1 τi⟩

γ (⟨τ0
n∏

i=1

τi, , ⟩) ! {⟨τ0
n∏

i=1

τi, , , π⟩ | π ⟨τ0
n∏

i=1

τi⟩}

γ (H) !
⋃

{γ (η) | η ∈ H}

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨℘(D ! "),⊆⟩ −−−→−→←−−−−
α

γ
⟨D ! "), ⊆̈⟩ ⊆̈ ⊆̇

⊆ ✷

i

i

! " α ( ! ") ✷

∅̇ =
n∏

i=1

∏

∈ i

∅

Domain of sets of candidate executions

Domain of sets of histories 

Domain of sets of execution histories 

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

π ⟨τ0
∏n

i=1 τi⟩

π0 τi i ∈ [0, n]

πn τi
i ∈ [0, n] πn+1 πn πn =

∏n
i=1 ei

πn+1 =
∏n

i=1 e
′
i j ∈ [1, n] ∀i ∈ [1, n] . e′i =

ei e′j ej τj

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

w1( ) w2( ) r( ) πi πi+1

⟨w2( ), r( )⟩ ∈
✷

⟨τ0
∏n

i=1 τi, , , π⟩
⟨τ0

∏n
i=1 τi, , ⟩ π ⟨τ0

∏n
i=1 τi⟩

γ (⟨τ0
n∏

i=1

τi, , ⟩) ! {⟨τ0
n∏

i=1

τi, , , π⟩ | π ⟨τ0
n∏

i=1

τi⟩}

γ (H) !
⋃

{γ (η) | η ∈ H}

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

α (⟨τ0
n∏

i=1

τi, , , π⟩) !
n∏

i=1

∏

∈ i

{⟨ (s1), (e1), (s1), (s1), . . . , (si), (si), (si), . . .

(sn), (en), (sn), (sn), ⟩ |
n∏

j=1

⟨sj, ej⟩ ∈ π ∧ (si) = }

H H

α (H) !
n⋃̇

i=1

⋃̇

∈ i

{α (⟨τ0
n∏

i=1

τi, , , π⟩) | ⟨τ0
n∏

i=1

τi, , , π⟩ ∈ H}

i

i

! " ! α ( ! ")

Domain of sets of candidate executions

Domain of sets of histories 

Domain of sets of execution histories 

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

π ⟨τ0
∏n

i=1 τi⟩

π0 τi i ∈ [0, n]

πn τi
i ∈ [0, n] πn+1 πn πn =

∏n
i=1 ei

πn+1 =
∏n

i=1 e
′
i j ∈ [1, n] ∀i ∈ [1, n] . e′i =

ei e′j ej τj

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

w1( ) w2( ) r( ) πi πi+1

⟨w2( ), r( )⟩ ∈
✷

⟨τ0
∏n

i=1 τi, , , π⟩
⟨τ0

∏n
i=1 τi, , ⟩ π ⟨τ0

∏n
i=1 τi⟩

γ (⟨τ0
n∏

i=1

τi, , ⟩) ! {⟨τ0
n∏

i=1

τi, , , π⟩ | π ⟨τ0
n∏

i=1

τi⟩}

γ (H) !
⋃

{γ (η) | η ∈ H}

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

α (⟨τ0
n∏

i=1

τi, , , π⟩) !
n∏

i=1

∏

∈ i

{⟨ (s1), (e1), (s1), (s1), . . . , (si), (si), (si), . . .

(sn), (en), (sn), (sn), ⟩ |
n∏

j=1

⟨sj, ej⟩ ∈ π ∧ (si) = }

H H

α (H) !
n⋃̇

i=1

⋃̇

∈ i

{α (⟨τ0
n∏

i=1

τi, , , π⟩) | ⟨τ0
n∏

i=1

τi, , , π⟩ ∈ H}

i

i

! " ! α ( ! ")

Domain of sets of candidate executions

Domain of sets of histories 

Domain of sets of execution histories 

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α # α
! " α ( ! ") ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

! " ⟨π, ⟩
⟨τ0

∏n
i=1 τi, ⟩

α ( ! ") ! " α

α α α #α
! " α ( ! ") ! " ! "

α ( ! ")

π ⟨τ0
∏n

i=1 τi⟩

π0 τi i ∈ [0, n]

πn τi
i ∈ [0, n] πn+1 πn πn =

∏n
i=1 ei

πn+1 =
∏n

i=1 e
′
i j ∈ [1, n] ∀i ∈ [1, n] . e′i =

ei e′j ej τj

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

π

w1( ) w2( ) r( ) πi πi+1

⟨w2( ), r( )⟩ ∈
✷

⟨τ0
∏n

i=1 τi, , , π⟩
⟨τ0

∏n
i=1 τi, , ⟩ π ⟨τ0

∏n
i=1 τi⟩

γ (⟨τ0
n∏

i=1

τi, , ⟩) ! {⟨τ0
n∏

i=1

τi, , , π⟩ | π ⟨τ0
n∏

i=1

τi⟩}

γ (H) !
⋃

{γ (η) | η ∈ H}

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

⟨E, , , ⟩

⊆

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

αΞ( ! ")

rf
rf

−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

IW

po po

IW

rf

rf
−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

po po

rf
rf

−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

IW

po po rf

−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

IW

po po

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

⟨℘( ! "), ⊆⟩ −−−→−→←−−−−
αΞ

γΞ ⟨℘( Ξ! "), ⊆⟩ ✷

Ξ! " αΞ( ! ") ✷

rf
rf

−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

IW

po po

IW

rf

rf
−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

po po

rf
rf

−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

IW

po po rf

−−−−−−−−−−−−→ ⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→

⟨{ ← 0, ← 0}, { ← 0}, { ← 0}⟩ −−−−−−−−→ ⟨{ ← 0, ← 1},

{ ← 0}, { ← 0}⟩ −−−−−−−−−→ ⟨{ ← 0, ← 1}, { ← 0},
{ ← 1}⟩ −−−−−−−−→ ⟨{ ← 1, ← 1}, { ← 0}, { ← 1}⟩

τ ⟨τi, i ∈ (τ)⟩
(τ) = [0, n[ n > 0

(τ) = N

⟨w, r⟩ ∈ (r) = (w)

η ⟨τ0
∏n

i=1 τi, ⟩ τ0
0 0 1 n

i i ∈ [1, n]

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

e
(e) (e)

(e) e

w (w) (w) r
(r) (r)

IW

po po

αΞ(η) η ⟨τ0
n∏

i=1

τi, , ⟩

⟨E, , , ⟩

E {e ∈ τi | i ∈ [0, n]}
τi i ∈ [0, n]

{⟨τ ji , τ ki ⟩ | i ∈ [1, n] ∧ j, k ∈ (τi) ∧ j <
k} τi
i ∈ [1, n]

{w ∈ | w ∈ τ0} τ0

H
αΞ(H) ! {αΞ(η) | η ∈ H}

Ξ! " αΞ( ! ")
! "

⟨℘( ! "), ⊆⟩ −−−→−→←−−−−
αΞ

γΞ ⟨℘( Ξ! "), ⊆⟩ ✷

Ξ! " αΞ( ! ") ✷

Set of candidate executions domain

Set of executions domain

Invariant domain

Figure 9: Hierarchy of abstractions

abstract domain more concrete than both of these domains, which
is the semantic domain of sets of executions. The same way that we
derived Scom from the program specification ¬Sinv , we derive Hcom

from the communication specification ¬Scom . This is an abstrac-
tion since e.g. in cat shared variable names and their values are
abstracted away. So, in general, Hcom will allow less behaviors that
Scom and the Mi less that Hcom . The proof Hcom ⇒ Scom proceeds as
follows:
• we build the communication scenarios corresponding to the py-

thia triples given in the communication specification ¬Scom from
an anarchic invariant Sa

inv ;
• we write a consistency specification Hcom (e.g. in cat) which will

forbid each of these communication scenarios.
We illustrate the proof method with Peterson’s algorithm of Fig. 5
using Scom in (1) of Sect. 2.2.2, Sa

inv in Fig. 8, and the consistency
specification language cat which requires reasoning on candidate
executions (see Sect. 11).
• Building the communication scenarios corresponding to the
pythia triples for cat requires us building several candidate execu-
tions involving relations between accesses (i.e., read/write events)
as follows (we illustrate on case 1 of Fig. 10).
• read-from rf: for each pythia triple, we depict the read-from

relation rf in red; for example for rf⟨F2i4, 0, false⟩, we create
a read-from relation between the initial write of false to the
variable F2 at line 0 and the read of F2 from line 4, at the ith

iteration.
• program order po: we also depict the program order edges

between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence). In
case 1 of Fig. 10, the po edges in purple are between the lines 1
and 4 on process P0, and lines 10 and 13 on process P0. po is
irreflexive and transitive (not represented on Fig. 10).
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0: { w F1 false; w F2 false; w T 0; }
{F1=false ∧ F2=false ∧ T=0} }
1: {R1=0 ∧ R2=0} 10: {R3=0 ∧ R4=0}

w[] F1 true w[] F2 true;

2: {R1=0 ∧ R2=0} 11: {R3=0 ∧ R4=0}
w[] T 2 w[] T 1;

3: {R1=0 ∧ R2=0} 12: {R3=0 ∧ R4=0}
do {i} do {j}

4: {(i=0 ∧ R1=0 ∧ R2=0) ∨
(i>0 ∧ R1=F2i−1

4 ∧ R2=Ti−1
5 )}

13: {(j=0 ∧ R3=0 ∧ R4=0) ∨
(j>0 ∧ R3=F1

j−1
13 ∧ R4=T

j−1
14 )}

r[] R1 F2 {❀ F2i4} r[] R3 F1 {❀ F1
j
13};

5: {R1=F2i4 ∧ (i=0 ∧ R2=0) ∨
(i>0 ∧ R2=Ti−1

5 )}
14: {R3=F1j13 ∧ (j=0 ∧ R4=0) ∨

(j>0 ∧ R4=T
j−1
14 )}

r[] R2 T {❀ Ti5} r[] R4 T; {❀ T
j
14}

6: {R1=F2i4 ∧ R2=Ti5} 15: {R3=F1j13 ∧ R4=T
j
14)}

while R1 ∧ R2 ̸=1 {iend} while R3 ∧ R4 ̸=2 {jend} ;

7: {¬F2
iend
4 ∨ T

iend
5 =1} 16: {¬F1

jend
13 ∨ T

jend
14 =2}

skip (* CS1 *) skip (* CS2 *)

8: {¬F2
iend
4 ∨ T

iend
5 =1} 17: {¬F1

jend
13 ∨ T

jend
14 =2}

w[] F1 false w[] F2 false;

9: {¬F2
iend
4 ∨ T

iend
5 =1} 18: {¬F1

jend
13 ∨ T

jend
14 =2}

Figure 8: (Anarchic) invariants of Peterson algorithm

Following (Lamport 1977), we use program counters so we do
not need (Owicki and Gries 1976)’s shared auxiliary variables. The
equivalence proof of (Cousot and Cousot 1980) shows that the aux-
iliary variables in (Owicki and Gries 1976) can always be chosen
as local variables (i.e., registers in LISA) simulating program coun-
ters. This proof easily generalises to the WCM anarchic semantics.
So we avoid the problem that “OG’s auxiliary variables, in general,
are unsound under weak memory because they can be used to re-
cord the exact thread interleavings and establish completeness un-
der SC” (Lahav and Vafeiadis 2015). Our solution, using program
counters or auxiliary registers is both sound and (relatively) com-
plete, and simpler and more general that the ghost states of (Lahav
and Vafeiadis 2015; Jung et al. 2016).

• Sind is inductive under the hypothesis Scom is decomposed into
an initialisation proof that the entry invariant is true, a sequential
proof that the invariants hold when executing one process sequen-
tially, a non-interference proof when running processes concur-
rently, and finally a communication proof.

The novelty of our approach is in the communication proof.
We must prove that if an invariant is true at some process point
ℓ of a process p and a read for xθ is performed then the value
received into xθ is that of a matching write. Of course only the
communications allowed by the communication invariant Scom and
all of them have to be taken into account.

For Peterson, the invariants do not say anything on the value
assigned to the pythia variables so that the invariants are true for
any value carried by the pythia variables. More precisely, the read
at line 4 can read from the writes at line 0, 10 or 17. The invariant
at line 4 does not make any distinction on these cases and just states
that some value F2i4 has been read and assigned to R1. Similarly the
read of T at line 5 can read from the writes at line 0, 2, or 11 and
the invariant just states that some value Ti5 is read and assigned to
R2.

The invariant of Fig. 8 holds for the anarchic semantics since no
hypothesis is made on communications rf and therefore no possible
communication has been forgotten.

• Sind is stronger than Sinv under the hypothesis Scom ; On the
Peterson example, the invariance proof does not make any use
of the communication hypothesis Scom . It is however used in the
mutual exclusion proof, that Sind is stronger than Sinv . We prove
that (Scom ∧ Sind ) ⇒ Sinv or equivalently (Sind ∧ ¬Sinv ) ⇒ ¬Scom ,
as follows:

at 7 ∧ at 16 ∧ Sind

⇒ (¬F2iend
4 ∨ T

iend
5 = 1) ∧ (¬F1jend

13 ∨ T
jend
14 = 2)}

!i.e., the invariant Sind holds at lines 7 and 16"
⇒ ¬Scom !since by taking i = iend and j = jend, we have

(F2i4 = false ∨ Ti5 = 1) ∧ (F1j13 = false ∨ Tj14 = 2)"
Note that this calculation of Scom from the specification Sinv and

the anarchic inductive invariant Sind provides a formal method to
discover Scom by calculational design. Scom is sufficient but also ne-
cessary, hence the weakest communication hypothesis, since for
each possible case of communication excluded by Scom , it is pos-
sible to find a counter-example execution of Peterson violating mu-
tual exclusion (see Fig. 7 and 10).
2.3.2 WCM specification Hcom

We have proved Scom ⇒ Sinv . To ensure that Sinv holds in the
context of the consistency model M , we must prove M ⇒ Scom

i.e., that all the behaviours allowed by M are allowed by Scom . In
general we have to consider several WCMs M = Mi, i ∈ [0, n].
To factorize the proofs ∀i ∈ [1, n] . Mi ⇒ Scom , we look for a
(preferably weakest else minimal) consistency specification Hcom

that encompasses our specification Scom . We prove Hcom ⇒ Scom

and then ∀i ∈ [1, n] . Mi ⇒ Hcom which are the only bits of proof
that must be adapted when considering different models.
2.3.3 Inclusion proof Hcom ⇒ Scom

As illustrated in Fig. 9, the WCMs Hcom and Mi, i ∈ [1, n] belong
to the domain of consistency specifications (e.g. candidate execu-
tions for cat) while Scom belongs to the different domain of invari-
ants. The proof Hcom ⇒ Scom must therefore be done in the most
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Figure 9: Hierarchy of abstractions

abstract domain more concrete than both of these domains, which
is the semantic domain of sets of executions. The same way that we
derived Scom from the program specification ¬Sinv , we derive Hcom

from the communication specification ¬Scom . This is an abstrac-
tion since e.g. in cat shared variable names and their values are
abstracted away. So, in general, Hcom will allow less behaviors that
Scom and the Mi less that Hcom . The proof Hcom ⇒ Scom proceeds as
follows:
• we build the communication scenarios corresponding to the py-

thia triples given in the communication specification ¬Scom from
an anarchic invariant Sa

inv ;
• we write a consistency specification Hcom (e.g. in cat) which will

forbid each of these communication scenarios.
We illustrate the proof method with Peterson’s algorithm of Fig. 5
using Scom in (1) of Sect. 2.2.2, Sa

inv in Fig. 8, and the consistency
specification language cat which requires reasoning on candidate
executions (see Sect. 11).
• Building the communication scenarios corresponding to the
pythia triples for cat requires us building several candidate execu-
tions involving relations between accesses (i.e., read/write events)
as follows (we illustrate on case 1 of Fig. 10).
• read-from rf: for each pythia triple, we depict the read-from

relation rf in red; for example for rf⟨F2i4, 0, false⟩, we create
a read-from relation between the initial write of false to the
variable F2 at line 0 and the read of F2 from line 4, at the ith

iteration.
• program order po: we also depict the program order edges

between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence). In
case 1 of Fig. 10, the po edges in purple are between the lines 1
and 4 on process P0, and lines 10 and 13 on process P0. po is
irreflexive and transitive (not represented on Fig. 10).
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0: { w F1 false; w F2 false; w T 0; }
{F1=false ∧ F2=false ∧ T=0} }
1: {R1=0 ∧ R2=0} 10: {R3=0 ∧ R4=0}

w[] F1 true w[] F2 true;

2: {R1=0 ∧ R2=0} 11: {R3=0 ∧ R4=0}
w[] T 2 w[] T 1;

3: {R1=0 ∧ R2=0} 12: {R3=0 ∧ R4=0}
do {i} do {j}

4: {(i=0 ∧ R1=0 ∧ R2=0) ∨
(i>0 ∧ R1=F2i−1

4 ∧ R2=Ti−1
5 )}

13: {(j=0 ∧ R3=0 ∧ R4=0) ∨
(j>0 ∧ R3=F1

j−1
13 ∧ R4=T

j−1
14 )}

r[] R1 F2 {❀ F2i4} r[] R3 F1 {❀ F1
j
13};

5: {R1=F2i4 ∧ (i=0 ∧ R2=0) ∨
(i>0 ∧ R2=Ti−1

5 )}
14: {R3=F1j13 ∧ (j=0 ∧ R4=0) ∨

(j>0 ∧ R4=T
j−1
14 )}

r[] R2 T {❀ Ti5} r[] R4 T; {❀ T
j
14}

6: {R1=F2i4 ∧ R2=Ti5} 15: {R3=F1j13 ∧ R4=T
j
14)}

while R1 ∧ R2 ̸=1 {iend} while R3 ∧ R4 ̸=2 {jend} ;

7: {¬F2
iend
4 ∨ T

iend
5 =1} 16: {¬F1

jend
13 ∨ T

jend
14 =2}

skip (* CS1 *) skip (* CS2 *)

8: {¬F2
iend
4 ∨ T

iend
5 =1} 17: {¬F1

jend
13 ∨ T

jend
14 =2}

w[] F1 false w[] F2 false;

9: {¬F2
iend
4 ∨ T

iend
5 =1} 18: {¬F1

jend
13 ∨ T

jend
14 =2}

Figure 8: (Anarchic) invariants of Peterson algorithm

Following (Lamport 1977), we use program counters so we do
not need (Owicki and Gries 1976)’s shared auxiliary variables. The
equivalence proof of (Cousot and Cousot 1980) shows that the aux-
iliary variables in (Owicki and Gries 1976) can always be chosen
as local variables (i.e., registers in LISA) simulating program coun-
ters. This proof easily generalises to the WCM anarchic semantics.
So we avoid the problem that “OG’s auxiliary variables, in general,
are unsound under weak memory because they can be used to re-
cord the exact thread interleavings and establish completeness un-
der SC” (Lahav and Vafeiadis 2015). Our solution, using program
counters or auxiliary registers is both sound and (relatively) com-
plete, and simpler and more general that the ghost states of (Lahav
and Vafeiadis 2015; Jung et al. 2016).

• Sind is inductive under the hypothesis Scom is decomposed into
an initialisation proof that the entry invariant is true, a sequential
proof that the invariants hold when executing one process sequen-
tially, a non-interference proof when running processes concur-
rently, and finally a communication proof.

The novelty of our approach is in the communication proof.
We must prove that if an invariant is true at some process point
ℓ of a process p and a read for xθ is performed then the value
received into xθ is that of a matching write. Of course only the
communications allowed by the communication invariant Scom and
all of them have to be taken into account.

For Peterson, the invariants do not say anything on the value
assigned to the pythia variables so that the invariants are true for
any value carried by the pythia variables. More precisely, the read
at line 4 can read from the writes at line 0, 10 or 17. The invariant
at line 4 does not make any distinction on these cases and just states
that some value F2i4 has been read and assigned to R1. Similarly the
read of T at line 5 can read from the writes at line 0, 2, or 11 and
the invariant just states that some value Ti5 is read and assigned to
R2.

The invariant of Fig. 8 holds for the anarchic semantics since no
hypothesis is made on communications rf and therefore no possible
communication has been forgotten.

• Sind is stronger than Sinv under the hypothesis Scom ; On the
Peterson example, the invariance proof does not make any use
of the communication hypothesis Scom . It is however used in the
mutual exclusion proof, that Sind is stronger than Sinv . We prove
that (Scom ∧ Sind ) ⇒ Sinv or equivalently (Sind ∧ ¬Sinv ) ⇒ ¬Scom ,
as follows:

at 7 ∧ at 16 ∧ Sind

⇒ (¬F2iend
4 ∨ T

iend
5 = 1) ∧ (¬F1jend

13 ∨ T
jend
14 = 2)}

!i.e., the invariant Sind holds at lines 7 and 16"
⇒ ¬Scom !since by taking i = iend and j = jend, we have

(F2i4 = false ∨ Ti5 = 1) ∧ (F1j13 = false ∨ Tj14 = 2)"
Note that this calculation of Scom from the specification Sinv and

the anarchic inductive invariant Sind provides a formal method to
discover Scom by calculational design. Scom is sufficient but also ne-
cessary, hence the weakest communication hypothesis, since for
each possible case of communication excluded by Scom , it is pos-
sible to find a counter-example execution of Peterson violating mu-
tual exclusion (see Fig. 7 and 10).
2.3.2 WCM specification Hcom

We have proved Scom ⇒ Sinv . To ensure that Sinv holds in the
context of the consistency model M , we must prove M ⇒ Scom

i.e., that all the behaviours allowed by M are allowed by Scom . In
general we have to consider several WCMs M = Mi, i ∈ [0, n].
To factorize the proofs ∀i ∈ [1, n] . Mi ⇒ Scom , we look for a
(preferably weakest else minimal) consistency specification Hcom

that encompasses our specification Scom . We prove Hcom ⇒ Scom

and then ∀i ∈ [1, n] . Mi ⇒ Hcom which are the only bits of proof
that must be adapted when considering different models.
2.3.3 Inclusion proof Hcom ⇒ Scom

As illustrated in Fig. 9, the WCMs Hcom and Mi, i ∈ [1, n] belong
to the domain of consistency specifications (e.g. candidate execu-
tions for cat) while Scom belongs to the different domain of invari-
ants. The proof Hcom ⇒ Scom must therefore be done in the most
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Set of candidate executions domain

Set of executions domain

Invariant domain

Figure 9: Hierarchy of abstractions

abstract domain more concrete than both of these domains, which
is the semantic domain of sets of executions. The same way that we
derived Scom from the program specification ¬Sinv , we derive Hcom

from the communication specification ¬Scom . This is an abstrac-
tion since e.g. in cat shared variable names and their values are
abstracted away. So, in general, Hcom will allow less behaviors that
Scom and the Mi less that Hcom . The proof Hcom ⇒ Scom proceeds as
follows:
• we build the communication scenarios corresponding to the py-

thia triples given in the communication specification ¬Scom from
an anarchic invariant Sa

inv ;
• we write a consistency specification Hcom (e.g. in cat) which will

forbid each of these communication scenarios.
We illustrate the proof method with Peterson’s algorithm of Fig. 5
using Scom in (1) of Sect. 2.2.2, Sa

inv in Fig. 8, and the consistency
specification language cat which requires reasoning on candidate
executions (see Sect. 11).
• Building the communication scenarios corresponding to the
pythia triples for cat requires us building several candidate execu-
tions involving relations between accesses (i.e., read/write events)
as follows (we illustrate on case 1 of Fig. 10).
• read-from rf: for each pythia triple, we depict the read-from

relation rf in red; for example for rf⟨F2i4, 0, false⟩, we create
a read-from relation between the initial write of false to the
variable F2 at line 0 and the read of F2 from line 4, at the ith

iteration.
• program order po: we also depict the program order edges

between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence). In
case 1 of Fig. 10, the po edges in purple are between the lines 1
and 4 on process P0, and lines 10 and 13 on process P0. po is
irreflexive and transitive (not represented on Fig. 10).
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The induction principle

• Given an invariance specification Sinv find a stronger inductive invariant 

Sind 

• Prove that Sind satisfy verification conditions

• Holds after initialization

• Remains true after a computation step

• Remains true after a communication

• Assuming Scom / Hcom
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Calculational design of the 
verification conditions

39

τpk = w(⟨p, ℓ, w[ts] x r-value, θ⟩, v) Wf 15(ξ)
(v = E!r-value"(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = ℓ : r[ts] R1 x; ℓ′ : . . .):
τpk = r(⟨p, ℓ, r[ts] R1 x, θ⟩, xθ) Wf 16(ξ)
(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[ .
∃ℓ′′, θ′′, v . (τqj = w(⟨q, ℓ′′, w[ts] x r-value, θ′′⟩, v) ∧

rf [τqj , τpk] ∈ rf ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x ): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(⟨p, ℓ, instr, θ⟩) Wf 17(ξ)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = ℓ : b[ts] operation lt; ℓ′ : . . .):
on the true branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18t(ξ)
(sat(E!operation"(ρ, ν) ̸= 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

4.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

4.2.4 Consistency specification of a semantics
The semantics S !Hcom" ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom"(S) ! {ξ ∈ S | S !Hcom"ξ = allowed},
we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−

αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom"(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς×π×rf ∈ Ξ into a candid-
ate execution αΞ(ξ) = ⟨e, po, rf , iw⟩where e is the set of events in
ς (partitionned into fence, read, write, . . . events), po is the program
order (transitively relating successive events on a trace of each pro-
cess), rf = rf is the set of communications, and iw is the set of ini-
tial write events. Then we define αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S}
and α !Hcom"(C) ! {ξ | ∃Γ . ⟨ξ, Ξ⟩ ∈ C ∧ ⟨allowed,
Γ ⟩ ∈ !Hcom"(Ξ)} where the consistence !Hcom"(Ξ) of a can-
didate execution Ξ for a cat consistency model Hcom is defined
in (Alglave et al. 2016) and returns communication relations Γ
specifying communication constraints on communication events
(e.g. containing co of with co from AllCo in Hcom ). The con-
sistency abstraction for a cat specification Hcom is then αana!Hcom"
! α !Hcom" ◦ αΞ . ✷

5. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property (called collecting semantics) and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩
−−−−→←−−−−

α∪

γ∪ ⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P

has execution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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, . . . , νip−1,kp−1
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i
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i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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, . . . ,κi
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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, θiq,kq
, ρiq,kq
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, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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i
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, . . . ,κi
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,
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kq < |τ iq| ∧ τ iq
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kp+1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq
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q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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, . . . , νip−1,kp−1
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i
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i
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, . . . ,κi
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,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq
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q,kq
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⟩ ∧ kp+1 < |τ ip|∧ τ ip
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i
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νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)
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, . . . ,κi
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. τ ip

kp

= s⟨κ′, θip,kp
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, νip,kp
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kp+1
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i
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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, ρi0,k0
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, . . . ,
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
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condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
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since labels are unique per process so ℓ uniquely determines the process p to which
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the value v = E!operation"ρ is recovered from the instruction and the environment ρ
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successors in αa(S!P") but they must come from different traces of S!P" which can
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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, . . . , νip−1,kp−1
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, . . . ,κi
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
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p,kp+1, ν

i
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i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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∏
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i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0
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i
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, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0
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, . . . ,κi
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,
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq
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⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
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. τ ip
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= s⟨κ′, θip,kp
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, νip,kp
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i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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, . . . , νip−1,kp−1
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, . . . ,
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, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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τ ip × τ ifinish
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−
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⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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is the state immediately preceding τ ip
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in the trace τ ip"
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tified variables to avoid variable capture.
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For all p ∈ Pi and entry label at(Pp) of process Pp,
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∏
r∈Pi\{p}[κr ← at(Pr)]
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r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
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in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))
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r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0
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, . . . , νip−1,kp−1
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i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,
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i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1
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, . . . ,
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kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
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, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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For all p ∈ Pi and entry label at(Pp) of process Pp,
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r∈Pi\{p}[κr ← at(Pr)]
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i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Figure 17: Invariance abstraction of an execution

γ∪(P ) equivalently α∪({S !P"}) ⊆ P i.e., S !P" ⊆ P . The
strongest execution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) on Fig. 17
collects states on all cuts of all traces at each control point of each
process. αinv(P ) !

∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

An invariance property I ∈ I, in particular the strongest invari-
ant αinv(S !P") ∈ I, attaches a local invariance property Ip(ℓ) at
each program point ℓ of each process p, which is a relation between
the process state and the state of all other processes (including their
control state) on all cuts of all executions going through point ℓ
of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has in-
variance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.,
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice local invariance properties are often expressed as
logical formulæ Sindp(ℓ) attached to program points ℓ ∈ L(p)
of each process p ∈ Pi which logical interpretation is a set-
theoretic property in I. Formally, a logical assertion Sind is a logical
formula Sindp(ℓ) with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp,
ρp, νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, and rf attached to
each program point ℓ of each process p of the program (excluding
κp = ℓ).

The assertions on control are often written atp{ℓ} (or at{ℓ}
if the label ℓ is unique to process p) to mean that κp = ℓ. We
write atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions
on environments and valuations are expressed using assertions on
registers and pythia variables. For example, ρ ∈ R is expressed
by the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any

equivalent logical formula. The initial values of shared variables is
determined by the prelude (0 by default) so Sindp,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.
6. Design of the sound and complete invariance

proof method by calculus
Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom"(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus starts
as follows (⇐ is soundness and⇒ is completeness):
αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv #def. αana!Hcom "$
⇔ αinv(S

a!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv #def. ∩$
⇔ αinv(S

a!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(S

a!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv #def. αana!Hcom "$
⇔ ∃Scom . αinv(S

a!P")∩̇Scom ⊆̇ Sinv ∧αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom

#(⇐) For soundness, we have αinv(Sa!P") ∩̇αinv(αana!Hcom "(Sa!P"))
⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
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(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr )] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr ], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is
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Calculational design of the 
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40

τpk = w(⟨p, ℓ, w[ts] x r-value, θ⟩, v) Wf 15(ξ)
(v = E!r-value"(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = ℓ : r[ts] R1 x; ℓ′ : . . .):
τpk = r(⟨p, ℓ, r[ts] R1 x, θ⟩, xθ) Wf 16(ξ)
(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[ .
∃ℓ′′, θ′′, v . (τqj = w(⟨q, ℓ′′, w[ts] x r-value, θ′′⟩, v) ∧

rf [τqj , τpk] ∈ rf ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x ): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(⟨p, ℓ, instr, θ⟩) Wf 17(ξ)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = ℓ : b[ts] operation lt; ℓ′ : . . .):
on the true branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18t(ξ)
(sat(E!operation"(ρ, ν) ̸= 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

4.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

4.2.4 Consistency specification of a semantics
The semantics S !Hcom" ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom"(S) ! {ξ ∈ S | S !Hcom"ξ = allowed},
we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−

αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom"(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς×π×rf ∈ Ξ into a candid-
ate execution αΞ(ξ) = ⟨e, po, rf , iw⟩where e is the set of events in
ς (partitionned into fence, read, write, . . . events), po is the program
order (transitively relating successive events on a trace of each pro-
cess), rf = rf is the set of communications, and iw is the set of ini-
tial write events. Then we define αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S}
and α !Hcom"(C) ! {ξ | ∃Γ . ⟨ξ, Ξ⟩ ∈ C ∧ ⟨allowed,
Γ ⟩ ∈ !Hcom"(Ξ)} where the consistence !Hcom"(Ξ) of a can-
didate execution Ξ for a cat consistency model Hcom is defined
in (Alglave et al. 2016) and returns communication relations Γ
specifying communication constraints on communication events
(e.g. containing co of with co from AllCo in Hcom ). The con-
sistency abstraction for a cat specification Hcom is then αana!Hcom"
! α !Hcom" ◦ αΞ . ✷

5. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property (called collecting semantics) and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩
−−−−→←−−−−

α∪

γ∪ ⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P

has execution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ
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p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
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, νip,kp
. τ ip
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, νip,kp
⟩ ∧ τ ip
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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, θi0,k0
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[0, n[\{p} . kq < |τ iq|∧τ iq
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⟩∧kp < |τ ip|∧τ ip
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=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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tified variables to avoid variable capture.
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i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))
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r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
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. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
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p,kp+1, ν
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i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq
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, ρiq,kq
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kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.
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For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0
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, ρiq,kq

, νiq,kq
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, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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since labels are unique per process so ℓ uniquely determines the process p to which
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp
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,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
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, ρiq,kq

, νiq,kq
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=
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, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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, . . . ,κi
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩
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⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0
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p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
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,
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kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
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∏
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i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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, . . . , νip−1,kp−1
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i
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, . . . ,κi
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,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,
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,
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0
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, . . . , νip−1,kp−1
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, . . . ,κi
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,
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
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, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip
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= s⟨ℓ, θip,kp+1, ρ

i
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⇐⇒ {⟨κi
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, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .
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= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−
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⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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is the state immediately preceding τ ip
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in the trace τ ip"
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tified variables to avoid variable capture.
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For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]
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r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

… … …

Figure 17: Invariance abstraction of an execution

γ∪(P ) equivalently α∪({S !P"}) ⊆ P i.e., S !P" ⊆ P . The
strongest execution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) on Fig. 17
collects states on all cuts of all traces at each control point of each
process. αinv(P ) !

∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

An invariance property I ∈ I, in particular the strongest invari-
ant αinv(S !P") ∈ I, attaches a local invariance property Ip(ℓ) at
each program point ℓ of each process p, which is a relation between
the process state and the state of all other processes (including their
control state) on all cuts of all executions going through point ℓ
of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has in-
variance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.,
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice local invariance properties are often expressed as
logical formulæ Sindp(ℓ) attached to program points ℓ ∈ L(p)
of each process p ∈ Pi which logical interpretation is a set-
theoretic property in I. Formally, a logical assertion Sind is a logical
formula Sindp(ℓ) with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp,
ρp, νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, and rf attached to
each program point ℓ of each process p of the program (excluding
κp = ℓ).

The assertions on control are often written atp{ℓ} (or at{ℓ}
if the label ℓ is unique to process p) to mean that κp = ℓ. We
write atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions
on environments and valuations are expressed using assertions on
registers and pythia variables. For example, ρ ∈ R is expressed
by the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any

equivalent logical formula. The initial values of shared variables is
determined by the prelude (0 by default) so Sindp,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.
6. Design of the sound and complete invariance

proof method by calculus
Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom"(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus starts
as follows (⇐ is soundness and⇒ is completeness):
αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv #def. αana!Hcom "$
⇔ αinv(S

a!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv #def. ∩$
⇔ αinv(S

a!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(S

a!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv #def. αana!Hcom "$
⇔ ∃Scom . αinv(S

a!P")∩̇Scom ⊆̇ Sinv ∧αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom

#(⇐) For soundness, we have αinv(Sa!P") ∩̇αinv(αana!Hcom "(Sa!P"))
⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
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(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).#

⇔ ∃Scom . (Scom ⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

This calculation justifies the decomposition of the correctness
proof in Fig. 4 into an invariance proof and an inclusion proof using
an intermediate communication specification Scom .

7. Conditional invariance verification conditions
We now present our invariance verification conditions for proving
Scom ⇒ Sinv , i.e., the properties that the logical assertions at each
program point must satisfy to qualify as inductive invariants Sind .
7.1 Pre, post and communication conditions
For each of our verification conditions, we need to define general
shapes of assertions; more specifically we have:
• Precondition

PREℓ,κ
p,r ! Sindp(ℓ)[κr ← κ, θr, ρr, νr, rf] ∧

Sindr(κ)[κp ← ℓ, θr, ρr, νr, rf]

PREℓ
p ! PREℓ,ℓ

p,p = Sindp(ℓ)[θp, ρp, νp, rf]
(where A[x1, . . . , xm] stipulates that A has, among others, free
variables x1, . . . , xm, A[x← e] is the substitution of e for x with
renaming of quantified variables to avoid variable capture, and
PREℓ

p does not depend upon κp so the substitution [κp ← ℓ] has
no effect.)
• Postcondition
POSTℓ,κ′

p,r ! (Scomp ˙=⇒ Sindp)(ℓ)[κr ← κ′, θr ← succr(θr)]

POSTℓ′
p ! POSTℓ′,ℓ′

p,p = (Scomp ˙=⇒Sindp)(ℓ
′)[θp ← succp(θp)]

(where POSTℓ′
p does not depend upon κp so the substitution [κp ←

ℓ′] has no effect.)
• Communication condition

COMℓ
p[rf] ! Sind p(ℓ)[rf] ∧ Scomp(ℓ)[rf]

meaning that a read or write instruction at ℓ of process p may
execute (since the invariant Sind p(ℓ)[rf] holds) and communicate
according to rf (as specified by Scomp(ℓ)[rf]).
7.2 Initialisation verification condition
For each process p, the invariant at the entry point ℓ0p must be true
when the other processes are also at their entry, with all registers
initialised to 0 and no pythia variable:

• PRE
ℓ0p
p

∏
r∈Pi[κr ← ℓ0r, θr ← infr, ρr ← λ R . 0, νr ← ∅]

(where A
∏m

i=1[xi ← ei] is A[x1 ← e1] . . . [xm ← em].)
7.3 Sequential verification conditions
The verification conditions for the sequential proof require to prove
that if the precondition inductive invariant PREℓ

p holds at point ℓ
of process p and the instruction at label ℓ is executed and goes to
ℓ′ and the communication is allowed by specification Scomp then
the postcondition inductive invariant POSTℓ′

p holds at point ℓ′

with the updated stamp, environment and valuation. The sequential
verification conditions are the special case of the non-interference
ones given below for PREℓ

p = PREℓ,ℓ
p,p and POSTℓ′

p = POSTℓ′,ℓ′
p,p .

7.4 Non-interference verification conditions
The verification conditions for the non-interference proof require to
prove that if the precondition inductive invariant PREℓ,κ

p,r holds at
point ℓ of process p and any other process r executes an instruction
κ : instr κ′ at label κ, goes to κ′, and the communication is
allowed by specification Scomp , then the postcondition inductive
invariant POSTℓ,κ′

p,r at point ℓ still holds with the updated stamp,
environment and valuation.

• For local side-effect free marker instructions κ : instr κ′

where instr = f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, w[ts] x r-value,

beginrmw[ts] x, endrmw[ts] x: (marker)
PREℓ,κ

p,r ⇒ POSTℓ,κ′
p,r

• For the register assignment κ : mov R operation κ′; (assign)
PREℓ,κ

p,r[ρr, νr]

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := E!operation"(ρr, νr)]]

• For a read instruction κ : r[ts] R x κ′: (read)
PREℓ,κ

p,r[θr, ρr, νr, rf]∧ rf [w(⟨q, ℓ′, w[ts] x r-value, θ′⟩, v),
r(⟨r, ℓ, r[ts] R x, θr⟩, xθr )] ∈ rf

⇒ POSTℓ,κ′
p,r [ρr ← ρr[R := xθr ], νr ← νr[xθr := v]]

• For a test instruction κ : b[ts] operation lt κ′: (test)
PREℓ,κ

p,r[ρr, νr]∧sat(E!operation"(ρr, νr) ̸= 0)⇒ POSTℓ,lt
p,r

PREℓ,κ
p,r[ρr, νr]∧sat(E!operation"(ρr, νr) = 0)⇒ POSTℓ,κ′

p,r

where sat checks for satisfiability of symbolic boolean expressions
or for truth of ground values. These formal non-interference verific-
ation conditions can be rephrased as inference rules (in an informal
style “{Pi}Si{Qi}, i ∈ [1, n] are interference free” (Owicki and
Gries 1976)).

7.5 Communication verification conditions.
Assertions associated with read and write instructions must satisfy
certain sanity conditions that stem from the semantics:
• All process read instructions ℓ : r[ts] R x ℓ′ must read either from
an initial or a reachable program write, allowed by the communica-
tion hypothesis (∃∃∃P[X1, . . . , Xm] means that all free variables in
predicate P but X1, . . . , Xm are existentially quantified):
COMℓ

p[θp, rf] ∧ rf ̸=∅ ⇒ ∃ rf [w(⟨q, ℓq, w[ts] x r-value, θ′⟩, v),
r(⟨p, ℓ, r[ts] R x, θp⟩, xθp)] ∈ rf . (satisfaction)
((q ∈ Pi ∧ ∃∃∃PRE

ℓq
q [θq ← θ′, rf]) ∨ (q = start ∧ v = 0)) .

• A read event can read from only one write event.
COMℓ

p[rf] ∧ rf [r, w1] ∈ rf ∧ rf [r, w2] ∈ rf (singleness)
⇒ w1 = w2 .

• The values v allowed to be read by the communication hypo-
thesis must originate from reachable program write instructions
ℓ : w[ts] x r-value ℓ′:

∀rf . ∀ rf [w(⟨q, ℓq, w[ts] x r-value, θp⟩, v), r] ∈ rf .(match)
COMℓ

p[θq, ρq, νq, rf]⇒ v = E!r-value"(ρq, νq)
• The inception condition Wf 11(ξ) is not required since non-
existent communications can only lead to more imprecise invari-
ants, which is sound. However, it is always possible to take incep-
tion into account to get precise invariants for completeness.

The communications taken into account in rf must include all
those of the anarchic semantics as restricted by Scom (by Sect. 10
and Sect. 11) and the imprecision can only be on communicated
values (including in absence of inception).
Example (Thin air 1) In absence of loops, stamps are the unique
program labels. We write rf⟨xℓp , ℓq, v⟩ for rf [w(⟨q, ℓq, w[ts] x

r-value, ℓq⟩, v), r(⟨p, ℓp, r[ts] R1 x, ℓp⟩, xℓp)] and define Γt !
{rf⟨x1, 0, 0⟩, rf⟨x1, 7, 42⟩)}× {rf⟨y5, 0, 0⟩, rf⟨y5, 3, 42⟩)}.
{ 0: w[] x 0; w[] y 0; {x=0 ∧ y=0} }
1: {R1=0 ∧ rf ∈ Γt} 5: {R2=0 ∧ rf ∈ Γt}

r[] R1 x {❀ x1} r[] R2 y {❀ y5};
2: {R1=x1 ∧ x1 ∈ {0, 42} ∧ rf ∈ Γt} 6: {R2=y5∧y5 ∈ {0, 42}∧rf ∈ Γt}

b[] (R1 =/= 42) 4 b[] (R2 =/= 42) 8;
3: {R1=x1 ∧ x1=42 ∧ rf ∈ Γt} 7: {R2=y5 ∧ y5=42 ∧ rf ∈ Γt}

w[] y R1 w[] x R2;
4: {R1=x1 ∧ x1 ∈ {0, 42}} 8: {R2=y5 ∧ y5 ∈ {0, 42}}
By the communication proof for any rf ∈ Γt, communicated val-
ues cannot be different (match), rf can neither be chosen to be a
superset by (satisfaction) and (singleness) nor a subset (which is
the subject of Sect. 10 and 11). For example, at 2, x1 ∈ {0} is
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…
…
…

• RMW (instr = rmw[ts] r (reg-instrs) x ): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(⟨p, ℓ, instr, θ⟩) Wf ??(ξ)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = ℓ : b[ts] operation lt; ℓ′ : . . .):
on the true branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf ??t(ξ)
(sat(E!operation"(ρ, ν) ̸= 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf ??f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic Semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf ??(ξ) ∧ . . . ∧Wf ??(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency Specification of a Semantics
The semantics S !Hcom" ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom"(S) ! {ξ ∈ S | S !Hcom"ξ = allowed},
we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−

αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom"(Sa!P").

Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into ⟨e,
po, rf , iw⟩ where e is the set of events in ς (partitionned into
fence, read, write, . . . events), po is the program order (transit-
ively relating successive events on a trace of each process), rf
= rf is the set of communications, and iw is the set of initial
write events. Then we define αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S}
and α !Hcom"(C) ! {ξ | ∃Γ . ⟨ξ, Ξ⟩ ∈ C ∧ ⟨allowed,
Γ ⟩ ∈ !Hcom"(Ξ)} where the consistence !Hcom"(Ξ) of a can-
didate execution Ξ for a cat consistency model Hcom is defined in
(?) and returns communication relations Γ specifying communic-
ation constraints on communication events (e.g. containing co of
with co from AllCo in Hcom ). The consistency abstraction for a
cat specification Hcom is then αana!Hcom" ! α !Hcom" ◦ αΞ . ✷

6. Invariance Abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property (called collecting semantics) and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩
−−−−→←−−−−

α∪

γ∪ ⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P

has execution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆
γ∪(P ) equivalently α∪({S !P"}) ⊆ P i.e., S !P" ⊆ P . The
strongest execution property of P is S !P".

The invariance abstraction αinv(P ) in Fig. ?? collects states on
all cuts of all traces at each control point of each process.αinv(P ) !

∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
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i
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, . . . ,κi
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,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi
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, . . . ,
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n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
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[0, n[\{p} . kq < |τ iq|∧τ iq
kq
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, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip
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=
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, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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, . . . ,κi
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
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, θi0,k0
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, . . . , νip−1,kp−1

, θip,kp+1, ρ
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i
p,kp+1,κ

i
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, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
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, ρi0,k0
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,
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
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, νi0,k0
, . . . , νip−1,kp−1
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i
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, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
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,
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,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
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[0, n[\{p} . kq < |τ iq|∧τ iq
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
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τ ip × τ ifinish
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−
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⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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is the state immediately preceding τ ip
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in the trace τ ip"
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tified variables to avoid variable capture.
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For all p ∈ Pi and entry label at(Pp) of process Pp,
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∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ
into a candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e
is the set of events in ς (partitionned into fence, read, write, . . .
events), po is the program order (transitively relating successive
events on a trace of each process), rf = rf is the set of commu-
nications, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
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in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))
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r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1
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p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
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, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1
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, . . . ,
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s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,
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n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip
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=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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, . . . , νip−1,kp−1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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kq
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),
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on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
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in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values
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∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩∧kp < |τ ip|∧τ ip

kp

=

s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, k1, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1

⇐⇒ {⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} . kq <

|τ iq|∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1⟩ ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(ℓ)

⇐⇒ {⟨κi
0,k0

, θi0,k0
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, . . . ,κi
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,
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, νin−1,kn−1
,Γ i⟩ ∈ Scomp(ℓ) | i ∈ ∆ ∧ ∀q ∈ [0, n[ \ {p} .

kq < |τ iq| ∧ τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip
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= s⟨κ′, θip,kp
, ρip,kp

, νip,kp
⟩ ∧ τ ip

kp+1
= s⟨ℓ, θip,kp+1,

ρip,kp+1, ν
i
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩

⟨κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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(25)

and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider ⟨k0, . . . , kp + 1, . . . , kn−1⟩

(25) where kp is kp + 1
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip
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is the state immediately preceding τ ip
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in the trace τ ip"
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tified variables to avoid variable capture.
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i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for ⟨k0, . . . , kr, . . . , kn−1⟩
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and we must show that it holds for ⟨k0, . . . , kr +1, . . . , kn−1⟩. There are two cases.
The sequential proof case for r = p and the case r ̸= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof
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!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
ℓ∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

⟨κi
0, θ

i
0, ρ

i
0, ν

i
0⟩

⟨ℓ, θip, ρip, νip⟩
⟨κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1⟩

s⟨κ, θ, ρ, ν⟩ ∈ τ ! ∃τ1, ϵ, τ2 . τ = τ1
ϵ−−→ s⟨κ, θ, ρ, ν⟩ τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i⟩ |
∀q ∈ [0, n[ \ {p} . s⟨κi

q, θ
i
q, ρ

i
q, ν

i
q⟩ ∈ τ iq ∧ s⟨ℓ, θip, ρip, νip⟩ ∈ τ ip}

=
∏

p∈Pi

∏

ℓ∈L(p)

⋃

i∈∆

{⟨κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i⟩ |

∀q ∈ [0, n[ \ {p} . τ iq
kq

= s⟨κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
⟩ ∧

τ ip
kp

= s⟨ℓ, θip,kp
, ρip,kp

, νip,kp
⟩}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where
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Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection ⟨℘(Π), ⊆⟩ −−−−→←−−−−

αa

γa

⟨I, ⊆̇⟩, pointwise. By composition this is an abstraction of program properties ⟨℘(D),

⊆⟩ −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa ⟨I, ⊆̇⟩. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s⟨ℓ, θ, ρ, ν⟩ contains enough information to rebuilt the corresponding event
since labels are unique per process so ℓ uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker ⟨p, ℓ, instr, θ⟩ for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the ✁p-increasing order. A state may have different ✁p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv )) i.e. S!P" ⊆ γa(Sinv )
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀ℓ ∈ L(p) . αa(S)(p, ℓ) ⊆ Sinvp,ℓ where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 15: Invariance abstraction of an execution

on the false branch:
τpk = t(⟨p, ℓ, b[ts] operation lt, θ⟩) Wf 18f (ξ)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

5.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {ξ ∈ Ξ | Wf 2(ξ) ∧ . . . ∧Wf 18(ξ)} .

Theorem 1 In an execution ξ = ς × π × rf ∈ Ξ , the communic-
ation rf uniquely determines the computation ς .

5.2.4 Consistency specification of a semantics
The semantics S !Hcom " ∈ Ξ → {allowed, forbidden} of a
consistency specification Hcom checks whether an execution ξ ∈
Ξ is allowed or forbidden by Hcom . Defining the consistency

abstraction αana!Hcom "(S) ! {ξ ∈ S | S !Hcom "ξ = allowed},

we have the Galois connection ⟨℘(Ξ), ⊆⟩ −−−−−−−−−−−→←−−−−−−−−−−−
αana!Hcom "

γana!Hcom "
⟨℘(Ξ),

⊆⟩. The analytic semantics of a program P for the consistency
specification Hcom is then S !P" ! αana!Hcom "(Sa!P").
Example 1 (cat specification) The candidate execution abstrac-
tion αΞ(ξ) abstracts the execution ξ = ς × π × rf ∈ Ξ into a
candidate execution αΞ(ξ) = ⟨e, po, rf , iw⟩ where e is the set
of events in ς (partitionned into fence, read, write, . . . events),
po is the program order (transitively relating successive events
on a trace of each process), rf = rf is the set of communica-
tions, and iw is the set of initial write events. Then we define
αΞ(S ) ! {⟨ξ, αΞ(ξ)⟩ | ξ ∈ S} and α !Hcom "(C) ! {ξ,Γ | ⟨ξ,
Ξ⟩ ∈ C ∧⟨allowed, Γ ⟩ ∈ !Hcom "(Ξ)} where the consistence

!Hcom "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcom is defined in (Alglave et al. 2016) and returns com-
munication relations Γ specifying communication constraints on
communication events. The consistency abstraction for a cat spe-
cification Hcom is then αana!Hcom " ! α !Hcom " ◦ αΞ . ✷

6. Invariance abstraction
The semantics S !P" of a program P is a set of executions ξ ∈ Ξ
so belongs to ℘(Ξ). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Ξ)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that ⟨℘(℘(Ξ)), ⊆⟩−−−−→←−−−−
α∪

γ∪

⟨℘(Ξ), ⊆⟩ yields execution properties P ∈ ℘(Ξ). So P has exe-
cution property P means S !P" ∈ γ∪(P ) that is {S !P"} ⊆ γ∪(P )
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αinv(P ), P ∈ ℘(Ξ) collects states
along cuts of process traces at each control point of each process
(see Fig. 15).

αinv(P ) !
∏

p∈Pi

∏

ℓ∈L(p)

⋃

ξ∈P

αinv(ξ)p(ℓ) (19)

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

τ0 τ1 τp τn−1

At each program point ℓ of each process p, a local invariance
property Ip(ℓ), in particular the strongest invariant αinv(S !P")p(ℓ),
is a relation between the process state and the state of all other
processes (including their control state) on all cuts going through
point ℓ of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

In practice invariance properties are often expressed as logical for-
mulæ Sind p(ℓ) attached to program points ℓ ∈ L(p) of each process
p ∈ Pi which logical interpretation is a set-theoretic property in I.
Formally, a logical assertion Sind is a logical formula Sind p(ℓ) with
free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1,
θn−1, ρn−1, νn−1, and rf attached to each program point ℓ of each
process p of the program (excluding κp = ℓ).
The assertions on control are often written atp{ℓ} (or at{ℓ} if the
label ℓ is unique to process p) to mean that κp = ℓ. We write
atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions on en-
vironments and valuations are expressed using assertions on re-
gisters and pythia variables. For example, ρ ∈ R is expressed by
the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any equi-

valent logical formula. The initial values of shared variables is de-
termined by the prelude (0 by default) so Sind p,ℓ states assertional
properties. For relational invariance (Cousot and Cousot 1982) the
initial value of shared variables is set to an initial pythia variable.

7. Design of the sound and complete invariance
proof method by calculus

Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom "(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus
starts as follows (⇐ is soundness and⇒ is completeness):

αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv
⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ αinv(Sa!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#def. ∩$
⇔ αinv(Sa!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(Sa!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

#def. αana!Hcom "$
⇔ ∃Scom . αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ∧

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom
#(⇐) For soundness, we have αinv(Sa!P") ∩̇
αinv(αana!Hcom "(Sa!P")) ⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom %⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom #⇒ Sinv to be
αinv(S

a!P") ∩̇Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom
to be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .

J. Alglave and P. Cousot, Ogre and Pythia 12 2016/10/25

… … …

Figure 17: Invariance abstraction of an execution

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(ℓ) ! {⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 ,

. . . , νp−1,kp−1 , θp,kp , ρp,kp , νp,kp ,κp+1,kp+1 , . . . ,κn−1,kn−1 ,

θn−1,kn−1 , ρn−1,kn−1 , νn−1,kn−1 , rf⟩ | ∀q ∈ [0, n[ . ∀kq < |τq| .
τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = ℓ}.

An invariance property I ∈ I, in particular the strongest invari-
ant αinv(S !P") ∈ I, attaches a local invariance property Ip(ℓ) at
each program point ℓ of each process p, which is a relation between
the process state and the state of all other processes (including their
control state) on all cuts of all executions going through point ℓ
of process p. We have ⟨℘(Ξ), ⊆⟩ −−−−→←−−−−

αinv

γinv ⟨I, ⊆̇⟩ so P has in-
variance property Sinv ∈ I means S !P" ∈ γ∪(γinv(Sinv )) i.e.,
S !P" ⊆ γinv(Sinv ) that is αinv(S !P") ⊆̇ Sinv .

Local invariants are often expressed as logical formulæ Sindp(ℓ)
attached to program points ℓ ∈ L(p) of each process p ∈ Pi which
logical interpretation is a set-theoretic property in I. Formally, a lo-
gical assertion Sind is a logical formula Sindp(ℓ) with free variables
κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp, νp, κp+1 . . ., κn−1, θn−1, ρn−1,
νn−1, and rf attached to each program point ℓ of each process p of
the program (excluding κp = ℓ).

The assertions on control are often written atp{ℓ} (or at{ℓ}
if the label ℓ is unique to process p) to mean that κp = ℓ. We
write atp{ℓ1, . . . , ℓm} for

∨ℓm
ℓ=ℓ1

atp{ℓ}. Moreover the assertions
on environments and valuations are expressed using assertions on
registers and pythia variables. For example, ρ ∈ R is expressed
by the logical formula ∀ρ ∈ R .

∧
r∈dom(ρ) r = ρ(r), or any

equivalent logical formula. The initial values of shared variables is
determined by the prelude (0 by default) so Sindp,ℓ states assertional
properties. For relational invariance (?) the initial value of shared
variables is set to an initial pythia variable.

7. Sound and Complete Invariance Proof Method
Given a program P and an invariance specification Sinv , the invari-
ance proof method consists in proving that αinv(αana!Hcom"(Sa!P"))
⊆̇ Sinv . The design of the invariance proof method by calculus starts
as follows (⇐ is soundness and⇒ is completeness):
αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv

⇔ αinv({ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv #def. αana!Hcom "$
⇔ αinv(S

a!P" ∩ {ξ ∈ Sa!P" | S !Hcom "ξ = allowed}) ⊆̇ Sinv #def. ∩$
⇔ αinv(S

a!P") ∩ αinv({ξ ∈ Ξ | S !Hcom "ξ = allowed}) ⊆̇ Sinv

#since αinv preserves intersections$
⇔ αinv(S

a!P") ∩̇ αinv(αana!Hcom "(Sa!P")) ⊆̇ Sinv #def. αana!Hcom "$
⇔ ∃Scom . αinv(S

a!P")∩̇Scom ⊆̇ Sinv ∧αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom

#(⇐) For soundness, we have αinv(Sa!P") ∩̇αinv(αana!Hcom "(Sa!P"))
⊆̇ αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv ;
(⇒) For completeness, we choose to describe exactly the communica-
tions that is Scom = αinv(αana!Hcom "(Sa!P")).$

⇔ ∃Scom . (Scom ⇒ Sinv ) ∧ (Hcom ⇒ Scom )

by defining the conditional invariance proof Scom ⇒ Sinv to be
αinv(Sa!P") ∩̇ Scom ⊆̇ Sinv and the inclusion proof Hcom ⇒ Scom to
be αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom .
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Verification conditions
• Sequential proof

• Non-interference proof 
(like L/O-G but for different kind of invariants)

• Communication proof

• a read event reading from a write event must be in rf

• the value read for a variable is the one written

• reading is fair in rf (cannot be delayed indefinitely)

• … 
 
(useless in L/O-G since rf is fixed)
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The program consistency 
hypothesis Scom

42
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Communication hypothesis Scom

• A sufficient communication hypothesis can be discovered by 
calculational design:  
 
 
 

• i.e. (Sind ∧ ¬Sinv) ⟹ ¬Scom 

• Necessary: by counter examples 
43

Scom ⟹ (Sind ⟹ Sinv) 

Program invariance 
specification

Program inductive
anarchic invariant

Communication 
hypothesis 
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Proving Consistency
Hcom  ⟹ Scom 

44

cat invariant 
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Proof method
• Obtained by calculational design:

45

prevented by the read rule, all communicated values are readable.
Values must come from writes so x1 ∈ {0, 42, 43} at 2 is preven-
ted by (match). In case of an unconditional branch b true 8; at
6, any rf⟨x1, 7, —⟩ ∈ rf is prevented by (satisfaction) i.e., it is not
possible to read from a non-reachable write. ✷

8. Calculation of the invariance proof Scom ⇒ Sinv ,
soundness and completeness by design

The calculation for the invariance proof Scom ⇒ Sinv , formally
αinv(S

a!P") ∩̇ Scom ⊆̇ Sinv , goes on by induction on the length of
trace prefixes, which requires the use of the inductive invariant Sind .
The basis Wf 12(ξ) yields the initialisation condition. The sequen-
tial verification condition for Sindp(ℓ) is obtained when performing
a computation step Wf 13(ξ), . . . , Wf 18(ξ) in the current process
p while the non-interference is obtained when performing a step
in another process r ̸= p. The communication proof requirements
follow from Wf 8(ξ) to Wf 11(ξ).

This calculational design yields Th. 2 showing that the proposed
proof method is sound (i.e., if the verification conditions are all sat-
isfied then the invariance statement Sinv is true for the program an-
archic semantics Sa!P" with communications restricted by the spe-
cification Scom ). Reciprocally, the proof method is complete so that
if an invariance statement Sinv is true for the program anarchic se-
mantics Sa!P" with communications restricted by the specification
Scom then this can always be proved thanks to a stronger inductive
invariant Sind satisfying all verification conditions.

As usual the completeness proof provides no clue on how to
choose the inductive invariant Sind since it is based on the choice
Sind = αinv(S

a!P") ∩̇ Scom , i.e., the exact abstraction of the se-
mantics which in general is not computable.

The soundness and completeness proof is set-theoretical. In
practice, one uses a logic with an interpretation, and so the sound-
ness prove is identical using the interpretation of the logical
fomulæ. This is a problem however for the completeness proof
since, in general, Sind = αinv(S

a!P") ∩̇Scom cannot be expressed as
a formula of the chosen logic. One can consider higher-order logics
as in e.g. (Back and von Wright 1990) but they cannot be handled
e.g. by SMT solvers. The usual restriction is to relative complete-
ness under the assumption that αinv(S

a!P") ∩̇Scom is expressible in
the logic (Cook 1978, 1981).

Theorem 2 (Invariance proof Scom ⇒ Sinv ) Scom ⇒ Sinv , form-
ally αinv(S

a!P") ∩̇Scom ⊆̇ Sinv , if and only if there exists Sind ⊆̇ Sinv

which is inductive for P, i.e., satisfies the interpretation of the ini-
tialisation (7.2), sequential (7.3), non-interference (7.4), and com-
munication (7.5) verification conditions of Sect. 7.

The following Th. 3 supports our claim that our invariance proof
method for WCM is an extension of Lamport’s invariance proof
method for sequential consistency.

Theorem 3 (Generalisation of Lamport proof method) The veri-
fication conditions of Th. 2 for the inductive invariant Sind reduce
to (Lamport 1977) proof method for sequential consistency.

Our invariance proof method for WCM is also an extension of
(Owicki and Gries 1976) for sequential consistency since, by the
argument given in (Cousot and Cousot 1980), the auxiliary vari-
ables can always be chosen as local registers (simulating program
counters) so auxiliary variables need not to be shared.

9. Calculation of the inclusion proof Hcom ⇒ Scom ,
soundness and completeness by design

The calculation of the inclusion proof Hcom ⇒ Scom , formally
αinv(αana!Hcom"(Sa!P")) ⊆̇ Scom , yields the verification conditions
for the communication specification Scom in Th. 4 below. Define

Sana!Hcom"P = αana!Hcom"(Sa!P") = {ξ ∈ Sa!P" | S !Hcom"ξ =
allowed}. We have

αinv(αana!Hcom "(Sa!P")) ⊆̇ Scom

⇔ αinv(S
ana!Hcom "P) ⊆̇ Scom #def. Sana!Hcom "P$

⇔ ∀ξ ∈ Sana!Hcom "P . αinv({ξ}) ⊆̇ Scom #αinv preserves ∪$

⇔ ∀ξ ∈ Sana!Hcom "P .

n⋃̇

p=1

⋃̇

L∈Pp

{αinv(ξ
′)p(L) | ξ′ ∈ {ξ}} ⊆̇ Scom

#def. (19) of αinv$

⇔ ∀(τstart×
n−1∏

p=0

τp×π× rf) ∈ Sana!Hcom "P . ∀p ∈ [1, n] . ∀L ∈ Pp .

αinv(τstart ×
n−1∏

p=0

τp × π × rf)p(L) ⊆ Scomp(L)

#def. ∈,
⋃̇

, ⊆̇, and Sana!Hcom "P so that ξ has the form ξ =
τstart ×

∏n−1
p=0 τp × π × rf . By def. (19) of αinv and ⊆, we

get$

⇔ ∀(τstart ×
n−1∏

p=0

τp × π × rf) ∈ Sana!Hcom "P . ∀i ∈

[1, n] . ∀L ∈ Pp . ∀q ∈ [0, n[ . ∀kq < |τq | .
(τq

kq
= s⟨κq,kq , θq,kq , ρq,kq , νq,kq ⟩ ∧ κp,kp = L) ⇒

⟨κ0,k0 , θ0,k0 , ρ0,k0 , ν0,k0 , . . . , νp−1,kp−1
, θp,kp , ρp,kp , νp,kp ,

κp+1,kp+1
, . . . ,κn−1,kn−1

, θn−1,kn−1
, ρn−1,kn−1

, νn−1,kn−1
, rf⟩

∈ Scom i(L)

(20)

i.e., any cut of any anarchic execution history allowed by the consistency
specification Hcom must satisfy all local invariants Scom along the cut.

So we have proved
Theorem 4 (Inclusion proof) The verification conditions (20) are
sound and complete for proving the inclusion Hcom ⇒ Scom .
Observe that the completeness proof of Th. 4 assumes that Hcom ⇒
Scom . If the consistency specification language is not expressive
enough there might be no way to express a strong enough consist-
ency specification Hcom , a source of incompleteness. This is the case
e.g. of cat designed to describe architectures so that e.g. memory
values are abstracted away which may not be the case in Scom . This
means that the design of the program P must ensure that Scom is
weak enough to be implementable.

Observe also that Th. 4 requires analyzing all possible execu-
tions of the program, which is seldom feasible. Moreover, this is
in contradiction with the idea of invariance proof which purpose
is precisely to avoid to reason directly on program executions. We
explore an alternative inclusion proof method Hcom ⇒ Scom using
an anarchic invariant i.e., an invariant of the anarchic semantics.

10. Anarchic invariant
An anarchic invariant Sa

inv of the anarchic semantics Sa!P" is an in-
variant that takes into account all possible communications allowed
by the program semantics (programmers would say the program lo-
gic). A general invariant is not enough. The problem is that a gen-
eral invariant can be of the form “if the communications satisfy
given hypotheses then the computations satisfy an invariant prop-
erty”. Obviously this is an invariant of the anarchic semantics but
since not all possible communications allowed by the program se-
mantics are characterized by the invariant, this is not an anarchic
invariant.

The following Th. 5 shows how to find an anarchic invariant
of the anarchic semantics using our proof method with the guar-
antee that no hypothesis has been made on the communications
(but for those disallowed by the semantics as in e.g. [r[] R1 x;
R1=R1+1; w[] R1 x] with no feasible execution on Z).

The anarchic semantics Sa!P" considers all possible write
events W !P"(θq, x), q ∈ Pi ∪ {start}, θq ∈ T(q)

W !P"(θq, x) ! {w(⟨q, ℓq, w[ts] x r-value, θq⟩, vθq ) | ℓq ∈ L(q)
∧ instr!P"ℓqq = w[ts] x r-value ∧ vθq ∈ D}
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Proof method
• The anarchic invariants can be used to calculate all communication 

scenarios violating Scom 

• These scenarios must be forbidden by the cat specification Hcom  

 
(no need to reason at the level of traces of the anarchic semantics)

46
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Example (Peterson)
Communication 

scenarios violating 
Scom for Peterson

decorated with the pythia variable {❀ xnℓ }, where n is the
iteration counter (for nested loops we record all iteration counters
of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of Peterson stating that both
processes may not be simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A.
2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm does not satisfy the mutual exclusion specific-
ation Sinv of Fig. 6.

To see this, consider Fig. 7a. The plain red arrows rf are an
informal representation of a communication scenario where:
• on process P0, the read at line 4 reads the value that F2 was

initialised to, at line 0, so that R1 contains false. And, the read
at line 5 reads from any write of T, so that R2 contains one of the
values 0, 1, or 2, indifferently.

• on process P1, the read at line 13 reads from the initial value of
F1 so that R3 contains false. The read at line 14 reads from 0,
11, or 2 so that R4 contains 0, 1, or 2, indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
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0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
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while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
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4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
F2 and F1 is indifferent. But process P0 reads T in R1 from the write

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
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P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
F2 and F1 is indifferent. But process P0 reads T in R1 from the write
11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.
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In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
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Figure 2. Peterson algorithm in LISA
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and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(b) Incorrect turns

Figure 7: Incorrect executions of Peterson algorithm with WCM

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:

• The first process PO enters its critical section at the ith iteration
of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

We note that Scom belongs to the abstract domain of invariants.
Moreover Scom is independent from any consistency models: it
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(b) Incorrect turns

Figure 7: Incorrect executions of Peterson algorithm with WCM

11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:
• The first process PO enters its critical section at the ith iteration

of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
F2 and F1 is indifferent. But process P0 reads T in R1 from the write
11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
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rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(b) Incorrect turns

Figure 7: Incorrect executions of Peterson algorithm with WCM

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:

• The first process PO enters its critical section at the ith iteration
of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

We note that Scom belongs to the abstract domain of invariants.
Moreover Scom is independent from any consistency models: it
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Figure 7: Incorrect executions of Peterson algorithm with WCM

F2 and F1 is indifferent. But process P0 reads T in R1 from the write
11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:

• The first process PO enters its critical section at the ith iteration
of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
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(a) Incorrect flags
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0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 ̸= 1 15:while R3 ∧ R4 ̸= 2;
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;

Figure 5: Peterson algorithm in LISA

while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
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P0: P1:
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2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).
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Fig. 6 gives an invariant specification of our implementation of
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
F2 and F1 is indifferent. But process P0 reads T in R1 from the write

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
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P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
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P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
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as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
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rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
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In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
F2 and F1 is indifferent. But process P0 reads T in R1 from the write
11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
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0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
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4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
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• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
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Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
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In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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(b) Incorrect turns

Figure 7: Incorrect executions of Peterson algorithm with WCM

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:

• The first process PO enters its critical section at the ith iteration
of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

We note that Scom belongs to the abstract domain of invariants.
Moreover Scom is independent from any consistency models: it
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(b) Incorrect turns

Figure 7: Incorrect executions of Peterson algorithm with WCM

11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:
• The first process PO enters its critical section at the ith iteration

of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
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rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

2.1.2 Invariant specification Sinv

Fig. 6 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 6: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 6, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 7a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised to, at line 0:, so that R1
contains false. And, the read at line 5: reads from any write of
T, so that R2 contains one of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .
Another erroneous behaviour is illustrated in Fig. 7b. The value of
F2 and F1 is indifferent. But process P0 reads T in R1 from the write
11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 ̸=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:
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• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
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is decorated with an iteration counter, e.g. i for the first process
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and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;
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variable F1j13) takes its value, false, from the initialisation of
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variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.
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5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
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Annotations We have placed a few annotations in our LISA code,
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and jend) to represent the iteration counter when exiting the loop.
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record all iteration counters of all surrounding loops).
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variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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scenario in Fig. 4 is impossible, which in turn ensures that both
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fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
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Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}
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2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.
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... ...
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... ...
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Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:while R1 ∧ R2 ̸= 1 {iend} 15:while R3 ∧ R4 ̸= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 ̸= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:do translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:while B to ℓ′:b[] B ℓ, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {❀ F2i4} 13: r[] R3 F1; {❀ F1j13}
5: r[] R2 T {❀ Ti5} 14: r[] R4 T; {❀ Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(ℓ:repeat translates to ℓ:skip in LISA (e.g. ℓ:b[] false ℓ) and
ℓ′:untilB to ℓ′:b[](notB)ℓ, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read ℓ: r[] R x at line ℓ:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {❀ xnℓ }, where ℓ is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read ℓ′: r[] R x {❀ xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write ℓ: w[] x e, and the local invariant at ℓ implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf⟨F2i4, ⟨0:, false⟩⟩ ∧ rf⟨Ti5, ⟨11:, 1⟩⟩ ∧ (1)

rf⟨F1j13, ⟨0:, false⟩⟩ ∧ rf⟨Tj14, ⟨2:, 2⟩⟩]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
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(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.
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Figure 7: Incorrect executions of Peterson algorithm with WCM

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:

• The first process PO enters its critical section at the ith iteration
of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

We note that Scom belongs to the abstract domain of invariants.
Moreover Scom is independent from any consistency models: it
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F2 and F1 is indifferent. But process P0 reads T in R1 from the write
11: so R1=1 while P1 reads T in R4 from the write 2: so R4=2. In
this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ⟨ℓ:, v⟩⟩ to mean
that the read event r = ℓ′: r[] R x {❀ xθ}, or more precisely
its unique pythia variable xθ , takes its value v from evaluating the
expression e of the write event w = ℓ: w[] x e (so ⟨w, r⟩ ∈ rf at
ℓ and ℓ′), and the local invariant at ℓ implies that e = v (so xθ = v
at ℓ′).

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, ⟨0:, false⟩⟩ ∨ rf⟨F2i4, ⟨17:, false⟩⟩ (1)

∨ rf⟨Ti5, ⟨11:, 1⟩⟩] ∧ [rf⟨F1j13, ⟨0:, false⟩⟩
∨ rf⟨F1j13, ⟨8:, false⟩⟩ ∨ rf⟨Tj14, ⟨2:, 2⟩⟩]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 7 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:

• The first process PO enters its critical section at the ith iteration
of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
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F2 and F1 is indifferent. But process P0 reads T in R2 from the
write 11 so R2=1 while P1 reads T in R4 from the write 2 so R4=2.
In this situation (impossible under SC) the turns are wrong, so that
both processes can be simultaneously in their critical section, again
invalidating the specification Sinv .
2.2.2 Communication specification Scom

Let us express the communication scenarios depicted in Fig. 7 as
an invariant. We write the pythia triple rf⟨xθ, ℓ, v⟩ to mean that the
read event r = ℓ′: r[] R x {❀ xθ}, or more precisely its unique
pythia variable xθ , takes its value v from evaluating the expression
e of the write event w = ℓ: w[] x e to v (so ⟨w, r⟩ ∈ rf at ℓ and
ℓ′ and xθ = v at ℓ′). (The communication verification conditions
will check that ⟨w, r⟩ ∈ rf and the local invariant at ℓ implies
that e = v.) We define our communication specification Scom as
follows:
Scom ! ¬[∃i, j.[rf⟨F2i4, 0, false⟩ ∨ rf⟨F2i4, 17, false⟩ (1)

∨ rf⟨Ti5, 11, 1⟩] ∧ [rf⟨F1j13, 0, false⟩
∨ rf⟨F1j13, 8, false⟩ ∨ rf⟨Tj14, 2, 2⟩]]

Scom states the read-froms should yield values in the registers ensur-
ing that both processes may not simultaneously leave their waiting

loops. The scenarios in Fig. 7 are therefore impossible. This en-
sures that both processes cannot be simultaneously in their critical
section.

Therefore, there cannot be two iteration counters i and j such
that:
• The first process PO enters its critical section at the ith iteration

of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4 and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0) or from the write
to F2 at line 17;
or, the read at line 5 and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13 and j th iteration (corresponding to the
pythia variable F1j13) takes its value, false, from the initial-
isation of the variable F1 (in the prelude at line 0) or from the
write to F1 at line 8;
or, the read at line 14 and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

Scom expresses hypotheses on the communications made by the
threads of the program. Scom is independent from any consistency
models. Scom is the weakest communication invariant since weaken-
ing any of its hypotheses provides a counter-example. Scom belongs
to the abstract domain of invariants.

2.3 Our proof method
Recall Fig. 4; given an algorithm A, an invariant specification Sinv ,
a communication specification Scom , and a WCM M we have to
prove M ⇒ Sinv . Our method is articulated as follows:
1. Conditional invariance proof Scom ⇒ Sinv : we prove that if

the communications occur like prescribed by Scom , then the
processes satisfy the invariant Sinv ;

2. Inclusion proof M ⇒ Scom : we prove that the WCM M guaran-
tees the communication hypotheses made in Scom .

We now detail each proof in turn.
2.3.1 Conditional invariance proof Scom ⇒ Sinv

We have to prove that each process of the algorithm A satisfies the
invariant Sinv under the hypothesis Scom ; to do so we:
1. invent a stronger invariant Sind , which is inductive;
2. prove that Sind is indeed inductive, i.e., satisfies verification

conditions implying that if it is true, it stays true after one step of
computation or a communication that satisfies Scom ; effectively
we prove Scom ⇒ Sind .

3. prove that Sind is indeed stronger than Sinv (i.e., Sind ⇒ Sinv );
From Scom ⇒ Sind and Sind ⇒ Sinv we conclude that Scom ⇒ Sinv ,
which was our goal. We now illustrate the correctness proof method
on Peterson.

• An inductive invariant Sind , stronger than Sinv is given in Fig. 8
as local invariants (depicted in blue in curly brackets) for each pro-
gram point of each process. Each local invariant attached to a pro-
gram point can depend on the program state that is on registers
(both the ones local to the process under scrutiny, and from other
processes), pythia variables and, as in (Lamport 1977), on the pro-
gram counter of the other processes. In general the local invari-
ants may also depend on the possible communications rf i.e., which
reads may read their values from which writes (but this is not ne-
cessary in Fig. 8 since the program logic does not restricts in any
way the possible communications as, e.g., would be the case for
unreachable reads or writes).
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Incompleteness
• In general you have to add fences for Hcom (do not change the invariants,  

Sinv, Sind, and Scom remain valid)

• Scom can refer to communicated values not Hcom in cat 
(redesign your algorithm without assuming that the hardware does 
know about communicated values)

• cat may not be expressive enough:

48

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016                                                                                     © J. Alglave & P. Cousot

Conclusion on mutual exclusion
• PostgreSQL is correct on architectures satisfying the 

``no prophecy beyond cut during execution’’ property

• Intuition on necessity: when waiting for a spinlock, you 
should look at its current value, not at later ones!
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let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc
with Cut from AllCuts

foreach cut from Cut
irreflexive po ; cut ; po ; rf

Figure 11: SC in cat

For example, Figure 11 gives a definition of Sequential Consistency
(SC) in cat (an equivalence proof appears e.g. in (Alglave 2010))
TODO[PC]: J’ai rajoute le cut, enleve si ca te plait pas. On the
first line we define the relation fr, for from-read, as the sequence
of the inverse of rf (viz., rf^-1) and the coherence order co. We
then require the acyclicity of the union of the program order po, the
read-from rf, the coherence co and the from-read fr. TODO[JA]:
SC restricts read-froms in two ways. (no prophecy) A read before a
cut cannot read from a write after this cut and (always last) a read
reads from the last write in the cuts, see Figure ??

• Writing the corresponding cat specification Hcom (see Fig. 12
for the definition of Hcom in cat). For each case in Fig. 10, we for-
bid a reflexive sequence.

Overall this leads to the cat specification given in Fig. 12:
irreflexive fr; po; fr; po
irreflexive fr; po
irreflexive co; po; fr; po
irreflexive rf; po; rf; po
irreflexive rf; po; cut; po

Figure 12: A possible specification Hcom of Peterson algorithm

• Proving that all the behaviours allowed by Hcom are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcom . By ¬Scom in
(1), we get ∃i, j . [rf⟨F2i4, ⟨0:, false⟩⟩∨ rf⟨F2i4, ⟨17:, false⟩⟩∨ rf⟨Ti5,
⟨11:, 1⟩⟩]∧ [rf⟨F1j13, ⟨0:, false⟩⟩∨ rf⟨F1j13, ⟨8:, false⟩⟩∨ rf⟨Tj14, ⟨2:,
2⟩⟩]] which we put in disjunctive normal form and give the cases
illustrated in Fig. 10, thus proving ¬Hcom .

3.3.3 Consistency proof M ⇒ Hcom

Proving that all the behaviours allowed by M are allowed by Hcom
is done by reductio ad absurdum. Suppose an execution of Peterson
that is forbidden by Hcom yet allowed by M . By definition of Hcom
in Fig. 12, there are 4 cases. Each of these cases may be forbidden
by the WCM M (e.g. SC) or prevented by adding fences (e.g.
TSO).

• When M is SC. In cat speak, SC is modelled as given in
Fig. 11. The last line states that there cannot be a cycle in the union
(depicted by |) of the program order po, the read-from rf, the
coherence co and the from-read fr. Now, all 4 sequences required
to be irreflexive by Hcom are included in the transitive closure
of po | rf | co | fr, and rejected on SC, thus proving that
SC ⇒ Hcom . TODO: Quid de la 5eme condition? Expliquer cat
pas assez expressif, voir ja+ pc/ papers/ cut/ cut. tex , peut
etre introduire les cuts informellement

• When M is TSO. TODO[JA]: a bien verifier, voir ja+ pc/
papers/ invariance/ herd7/ peterson2/ README ou ca marche
pas bien In cat speak, TSO is modelled as given in Fig. 13. The
first line defines fr as in SC. Then we define a new relation
po-loc, as the restriction of the program order po to accesses
relative to the same variable (see the intersection with the relation
loc). Next up we require the acyclicity of the union of po-loc
with all the communication relations: read-from rf, coherence co
and from-read fr.

We then define the relation ppo (for preserved program order) as
the program order po relieved from (see the setminus operator \)

the write-read pairs (W*R). Then we define the relation rfe (for ex-
ternal read-from) as the restriction of the read-from rf to accesses
that belong to different threads (denoted by the relation ext). Fi-
nally we require the acyclicity of the union of the preserved pro-
gram order, the external read-from, the coherence and the from-
read relations.

let fr = (rf^-1;co)
let po-loc = po & loc
acyclic po-loc | rf | co | fr as scpv

let ppo = po \ (W*R)
let rfe = rf & ext
acyclic ppo | rfe | co | fr as tso

Figure 13: TSO in cat

Thus certain executions forbidden by our specification Hcom of
Peterson (see Fig. 12) will not be forbidden by the TSO model
given in Fig. 13. Indeed all the executions that contain a sequence
fr; po; fr; po forbidden by our specification of Peterson in-
volves a pair write-read in program order. Moreover, the write-read
pairs are explicitly removed from the tso acyclicity check given on
the last line of the TSO model of Fig. 13, thus will not contribute
to executions forbidden by the model.

• Adding fences permits a correct implementation. The idea is
that the cycles in Fig. 10 that are not naturally forbidden by TSO
must be forbidden with a fence. The only cycle that is not naturally
forbidden by TSO is the case 1 in Figure Fig. 10. To forbid it, one
needs to add a fence (e.g. mfence in x86) between write-read pairs
in program order.

In the invariance proof, fences are skip so the proof is unchanged.
The fence semantics must be defined by a cat specification (F is
the set of fence events) and Hcom strengthened as shown in Fig. 14.
let fencerel = (po & (_ * F)); po

irreflexive fr; fencerel; fr; fencerel

Figure 14: Semantics of fences in Peterson for TSO

4. Related works
Contrary to our approach, previous attempts to generalise the
(Owicki and Gries 1976) invariance proof method from SC to
WCM are not parameterised by a formal specification of the WCM.
Our formal specification of the WCM parameter takes the form of
program-specific programmer-specified communication assertion
Scom shown to be implied by a program-specific programmer-
specified cat specification Hcom itself implied by an architectural
cat specification M (Shasha and Snir 1988; Alglave 2010; Alglave
et al. 2016). These constraints Scom hence Hcom are on commu-
nications only, in contrast to constraints on the execution order and
the visibility of writes (Crary and Sullivan 2015) or the ordering
between commands of (Bornat et al. 2015).

Our invariance proof method deals with weak memory models
without getting back to the world of SC. This is in contrast to
previous methods exposing the store buffers as part of the program
state (e.g. (Dan et al. 2015)) or explicitly considering all possible
reshuffles e.g. by program transformation (e.g. (Atig et al. 2011;
Alglave et al. 2013; Miné 2012)).

In the classical (Turing 1949; Naur 1966; Floyd 1967; Hoare 1969)
invariance proof method, (shared) variable names are used in proofs
to denote the value of the program variables. This is a severe
restriction for previous invariance proof methods since in WCM
there is no notion of global time hence of “the” instantaneous value
of a shared variable. We solve the problem using pythia variables,
based on the idea that the value of a shared variable is locally
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Proving Architectural 
Consistency

M ⟹ Hcom 
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M ⟹ Hcom in  cat
• sound and complete proof method

• unpublished paper of JA and PC with Luc Maranget
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Beyond L/O-G: 
non-starvation
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Reasoning on one execution only
• A particular execution can be uniquely characterized by its read-from 

relation rf

• We can reason on one execution only (Scom for this execution + Sind)

• Not directly possible with L/O-G

• Can be used to prove non-starvation
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Non-starvation (e.g. PostgrSQL)
• Consider all traces that may starve (for an appropriate S’com for each 

trace)

• Prove each of them to be infeasible:

• the inductive invariant Sind under the program communication 

hypothesis Scom is unsatisfied

• or, by strengthening the program communications Scom (maybe 

implemented by adding fences in Hcom)

• or, by a fairness hypothesis.
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• All writes eventually hit the memory:

• If, at a cut of the execution, all the processes infinitely often write the 
same value υ to a shared variable x and only that value υ

• and from a later cut point of that execution, a process infinitely often 
repeats reads to that variable x

• then the reads will end up reading that value υ

Communication fairness hypothesis(*) 

(*) The SPARC Architecture Manual, Version 8, Section K2, p. 283: ``if one processor does an S , and another processor repeatedly does L ’s to the same location, then there is an L that will be after the S’’. 
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Conclusion
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Conclusion
• To design a correct parallel algorithm, specify:

• the algorithm

• the invariance specification Sinv  

• the program-specific consistency model Scom

• Find an anarchic inductive invariant Sind satisfying the verification 

conditions such that  (Scom ∧ Sind) ⟹ Sinv
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Conclusion
• To implement a parallel algorithm correctly:

• Implement the program consistency model on an architecture 
consistency model M (possibly adding fences)

• Prove M ⟹ Scom 

• Or better

• Find a minimal/weakest Hcom such that Hcom ⟹ Scom

• M ⟹ Hcom

57



Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017,  18-20 January 2017                                                                                                                                                                                                          © J. Alglave & P. Cousot

More work needed
• Specification of parallel/distributed program consistency models (more 

refined than architecture consistency models, e.g. cuts needed)

• Liveness (beyond non-starvation)

• Collection of certified algorithms for WCM (e.g. transactional memory, 
databases, etc)

• Static analysis (by abstract interpretation of the analytic semantics 
parameterized by a WCM)
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The End, Thank You
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