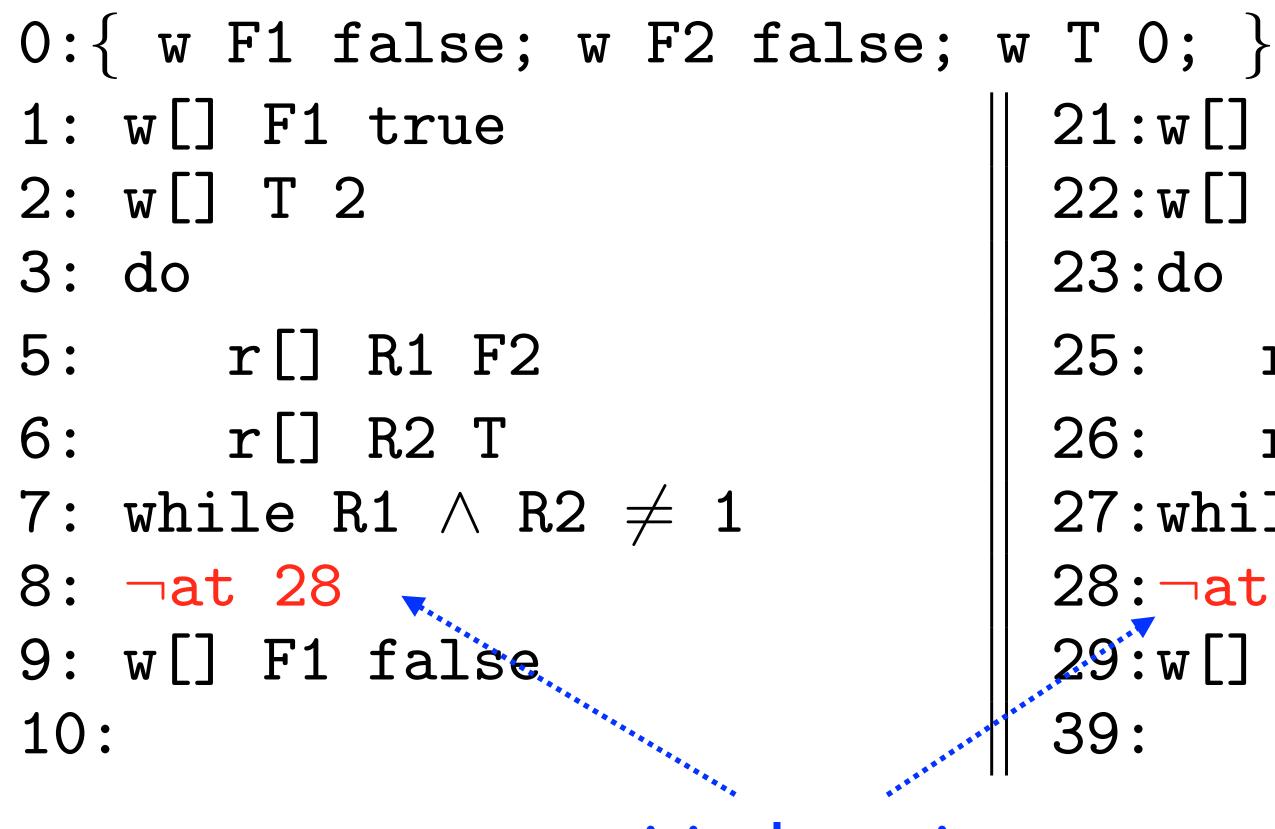
POPL 2017 18 January 2017

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

Ogre et Pythia: An invariance proof method for weak consistency models

ade Alglave (MSR-Cambridge, UCL, UK) Patrick Cousot (NYU, Emer. ENS, PSL)

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017



critical section

Example

21:w[] F2 true; 22:w[] T 1; 23:do 25: r[] R3 F1; 26: r[] R4 T; 27:while R3 \land R4 \neq 2; 28: ¬at 8 29:w[] F2 false; 39:

An invariance proof method for WCMs

- Extend Lamport's invariance proof method for parallel programs from sequentially consistent to weak consistency models so that
 - The weak consistency model is a *parameter* of the proof
 - We don't have to redo the whole proof when changing the consistency model

programs counters

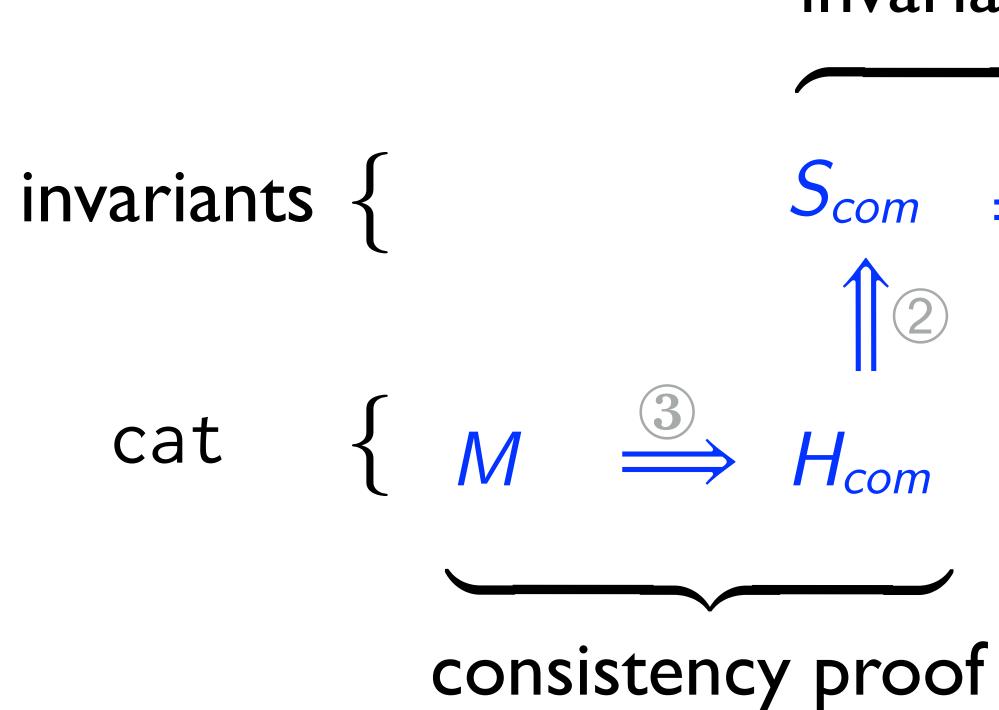
Note: Owicki & Gries is Lamport with auxiliary variables instead of

Separating invariance from WCM

- The invariance proof (that a specification S_{inv} is invariant for a program):
 - Done for a program consistency hypothesis S_{com} :
 - Sufficient for the program to be correct
 - Or better, also necessary for correctness (weakest consistency model)
 - This program consistency hypothesis S_{com} is expressed as an invariant • Sound and (relatively) complete

Separating invariance from WCM

- Consistency proof:
 - a. The program consistency hypothesis S_{com} is strengthen into H_{com} written in a consistency specification language (e.g. cat)
 - b. A cat architecture consistency model M is shown to imply the cat program consistency model H_{com}
- only b. to be redone when changing the architecture
- sound but possibly incomplete



Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

invariance proof $\begin{array}{ccc} S_{com} & \stackrel{(1)}{\Longrightarrow} & S_{inv} \end{array}$ 12

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

The invariance proof method is designed by abstract interpretation of an analytic semantics

Analytic semantics

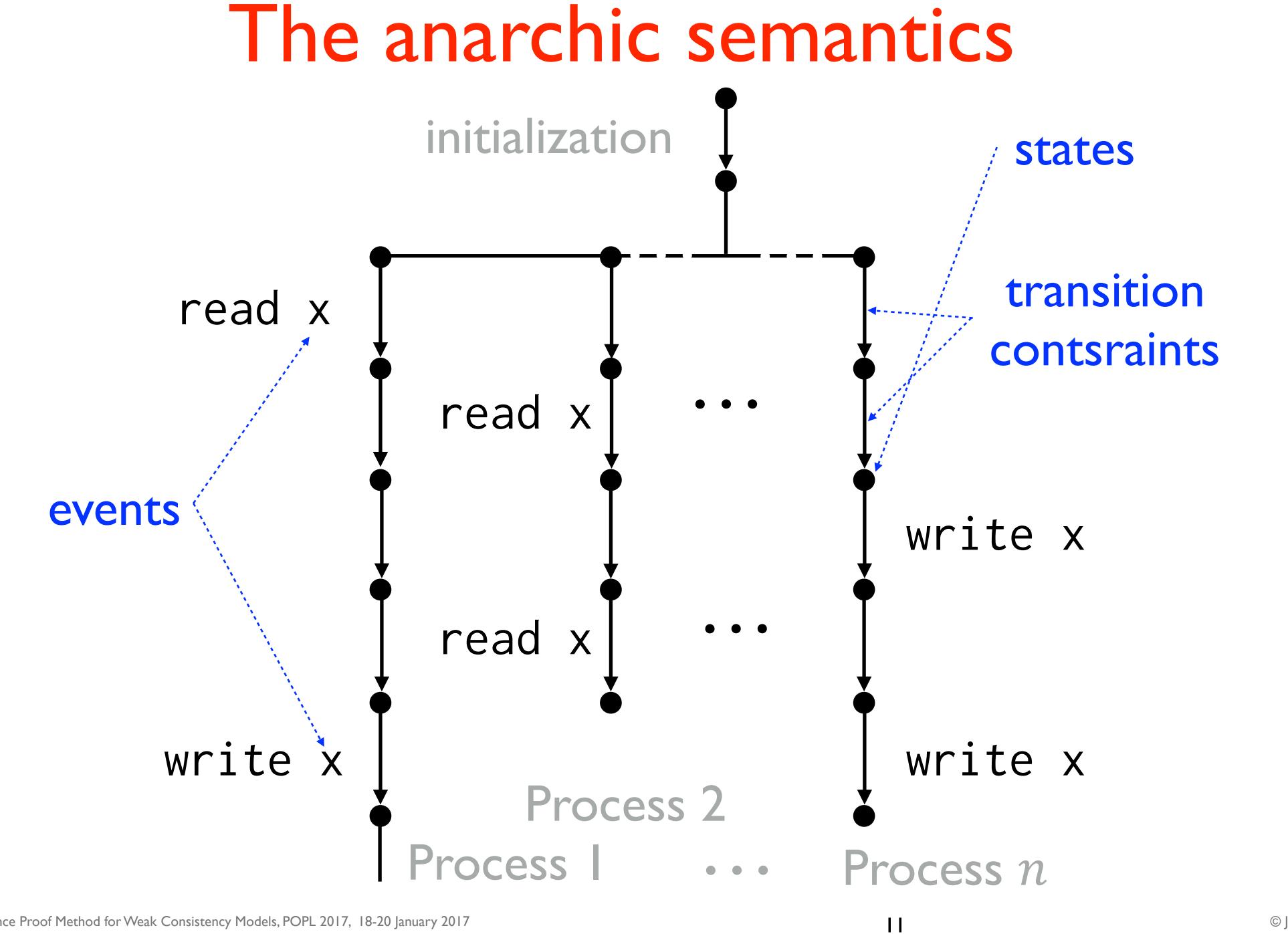
Anarchic semantics

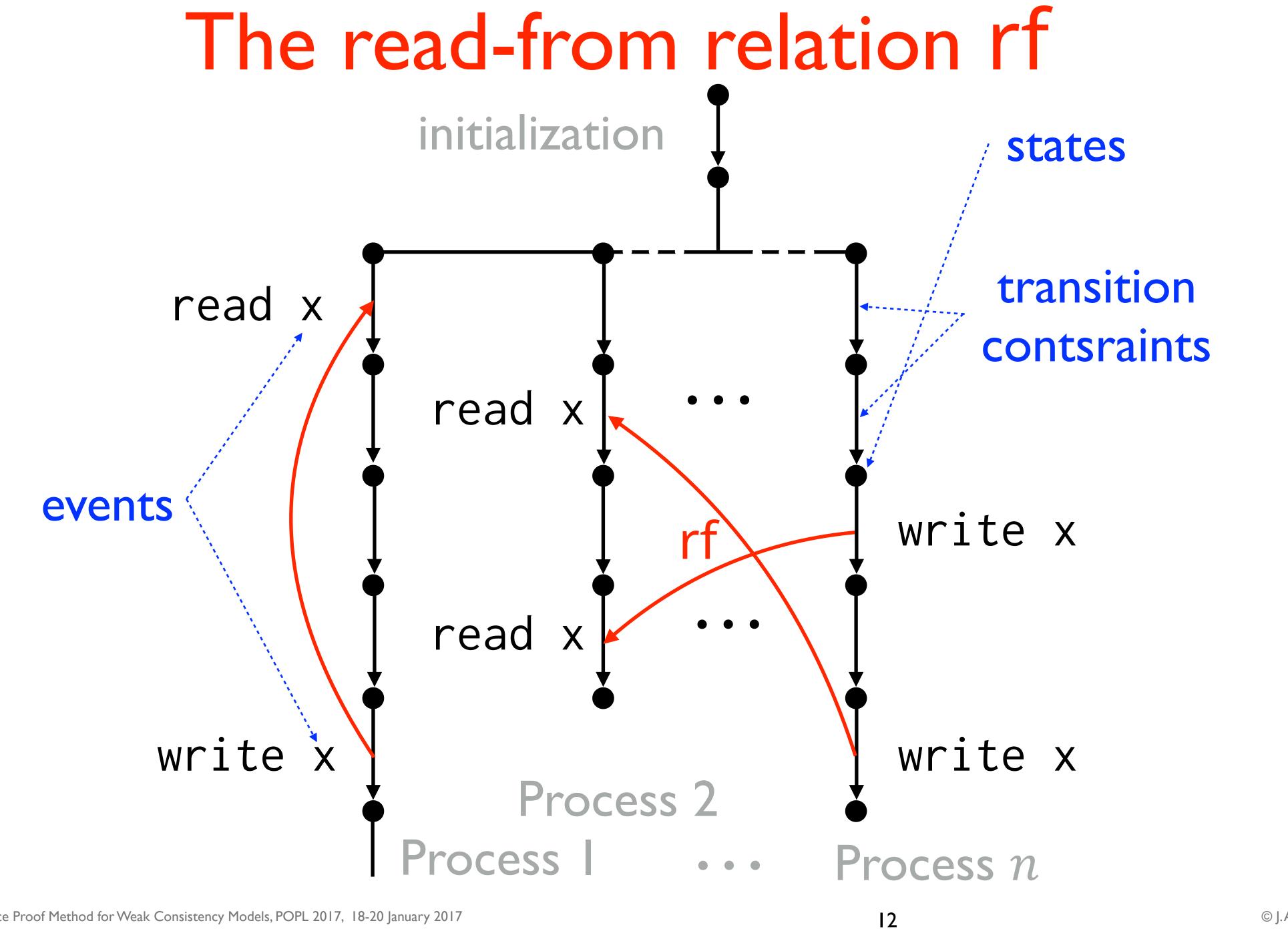
Weak consistency model

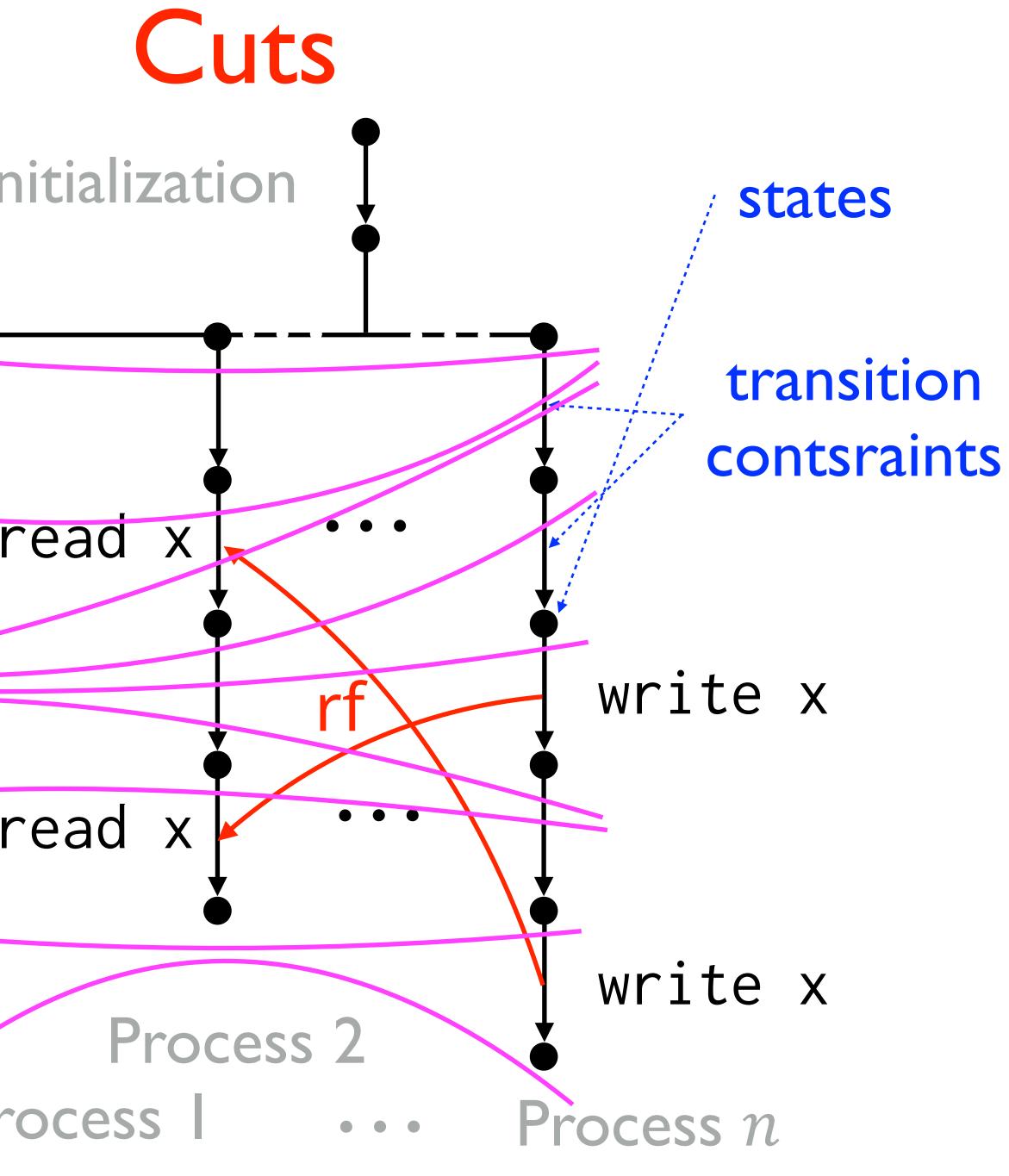
Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

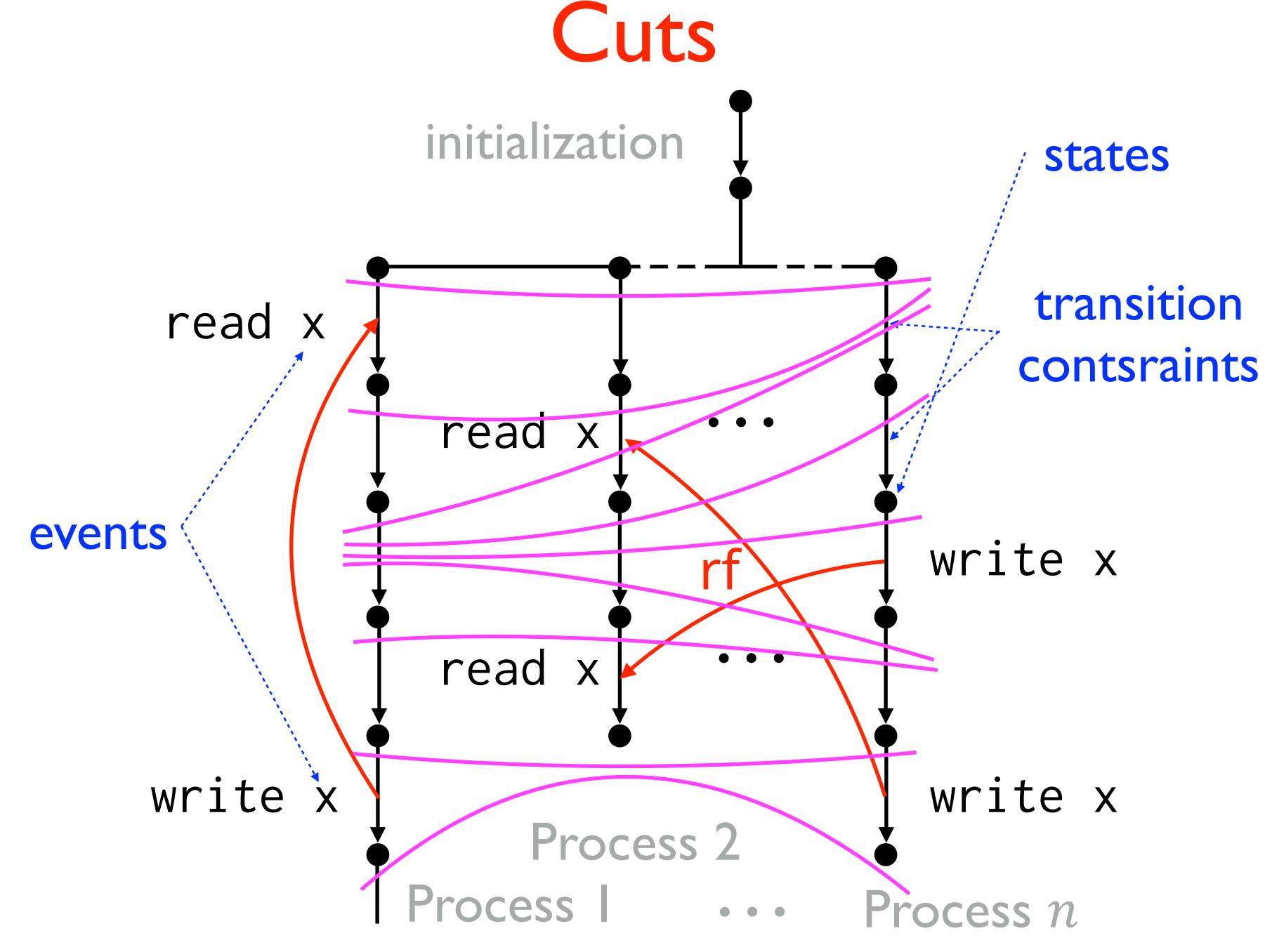
Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

The anarchic semantics









Anarchic semantics of fences

- The anarchic semantics of (localized) fences is skip (the state is unmodified)
- read-from relation rf

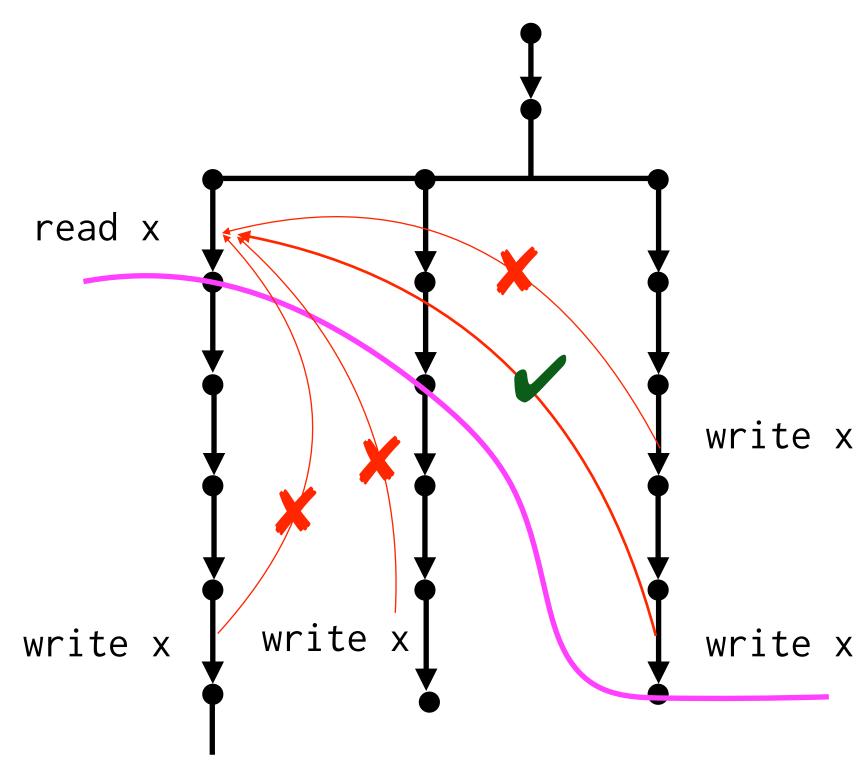
• Fences are static marker events used by the WCM in cat to restrict the

The weak consistency model

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

Weak consistency models

- Put restrictions on the read-from relation rf
- e.g. sequential consistency: a read at a cut reads from that last write in a process before that cut



Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

Difficulties

Naming entities

- Invariants are logical formulæ
- can only describe entities that they name
- in invariants

• L/O-G use the name of shared variables to designate their current value

Naming entities

- Invariants are logical formulæ
- can only describe entities that they name
- in invariants

of a shared variable"

• L/O-G use the name of shared variables to designate their current value

Difficulty

Meaningless with WCMs since there is no notion of ``the current value

What is known on communications?

- read
- Need to be named \rightarrow Pythia Variables

• Each process only knows the value of the shared variables from its last

What we know on communications?

- read
- Need to be named \rightarrow Pythia Variables

Difficulty

- Its dynamic, not static!
- executed \rightarrow Stamps (abstraction of local time)

• Each process only knows the value of the shared variables from its last

• A program read action can read from a different write each time it is

Back to the anarchic semantics

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

• Per process:

- A stamp (local time, no global time)
- A program counter
- The value of the local variables (registers) of the process
- The stamped pythia variables (uniquely identifying <u>all</u> reads along a trace)
- The value of the pythia variables (what was read)
- The read-from relation (rf)

Example (Peterson)

 $0:\{ w F1 false; w F2 false; w T 0; \}$ P0: 1:w[] F1 true 2:w[] T 2 3:do $\{i\}$ 7:skip (* CS1 *) 8:w[] F1 false

Stamps (loop counters)

P1: ||10:w[] F2 true; 11:w[] T 1; 12:do $\{j\}$ 16:skip (* CS2 *) |17:w[] F2 false; Stamps (on loop exit)

Example (Peterson)

 $0:\{ w F1 false; w F2 false; w T 0; \}$ P0: 1:w[] F1 true 2:w[] T 2 3:do $\{i\}$ 7:skip (* CS1 *) 8:w[] F1 false

Stamps (loop counters)

P1: 10:w[] F2 true; |11:w[] T 1; 12:do $\{j\}$ 4: r[] R1 F2 { \rightarrow F2ⁱ₄} || 13: r[] R3 F1; { \rightarrow F1^j₁₃} 5: r[] R2 T { \rightarrow Tⁱ₅} || 14: r[] R4 T; { \rightarrow T^j₁₄} 6:while R1 \land R2 \neq 1 $\{i_{end}\}$ | 15:while R3 \land R4 \neq 2; $\{j_{end}\}$ 16:skip (* CS2 *) 17:w[] F2 false; Pythia variables Stamps (on loop exit)

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

The abstraction

• For each process

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

• For each process

• For each program point of that process

• For each process

- For each program point of that process
 - For each execution of the program

- For each process
 - For each program point of that process
 - For each execution of the program
 - For each cut of that execution going through the program point of that process

- For each process
 - For each program point of that process
 - For each execution of the program
 - For each cut of that execution going through the program point of that process

collect:

- For each process
 - For each program point of that process
 - For each execution of the program
 - For each cut of that execution going through the program point of that process
 - collect:
 - The states of all processes, and

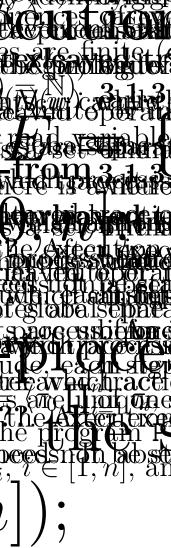
© J. Alglave & P. Cousot

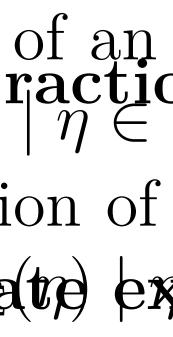
- For each process
 - For each program point of that process
 - For each execution of the program
 - For each cut of that execution going through the program point of that process
 - collect:
 - The states of all processes, and
 - The read-from relation rf

© J. Alglave & P. Cousot

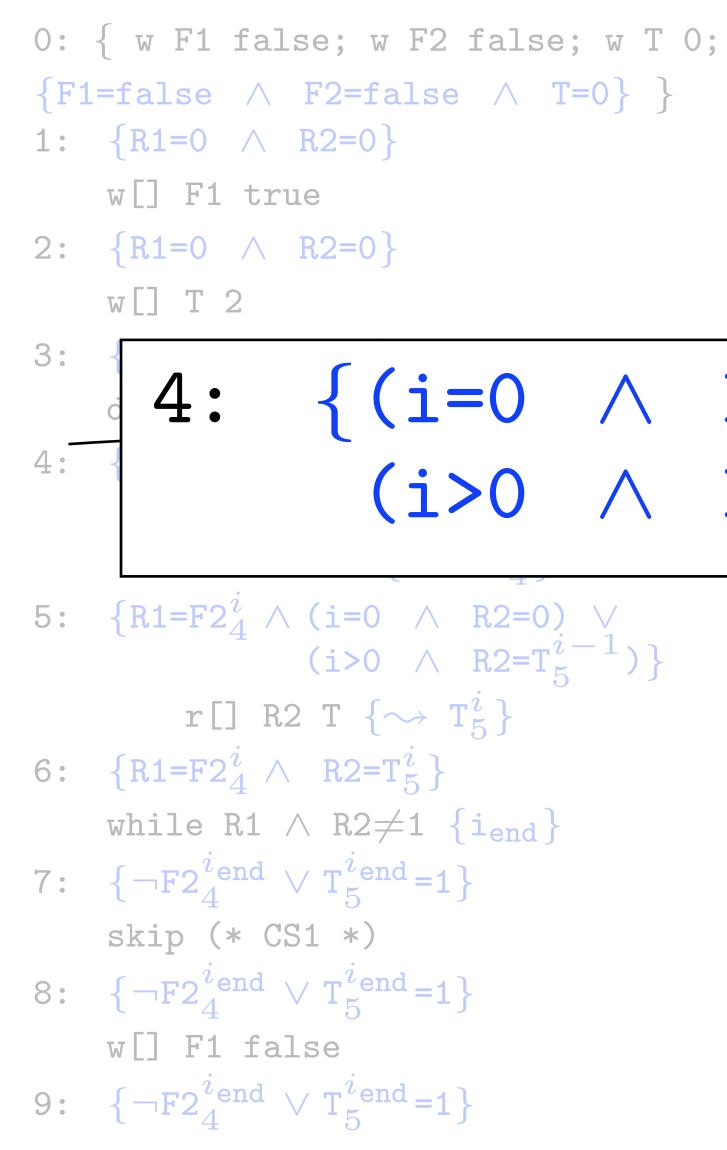
$$\begin{array}{c} \text{ are interfaced by the result of the control of the contr$$

The candidate & P. Cousot



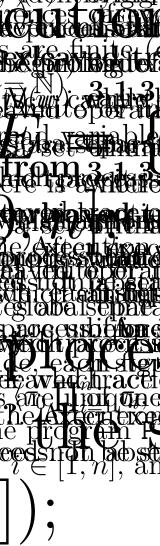


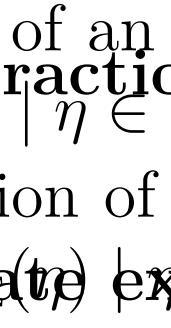
Example



	an interleaved trace is a origin of the even befors/show is a secure in interleaved trace is a where selfers the secure an interleaved before before/stors/bitchedeave in figure figure	A A A A A A A A A A A A A A A A A A A	A SEC DITERRATE AND IN A CONTRACTOR OF THE INFORMATION OF THE INFORMAT
10: {R3=0 ^ w[] F2 tr 11: {R3=0 ^ w[] T 1;	in figure figure field of one process. In the interleaved of one process. In the interleaved of one process. In the interleaved track where states are shown interleaved track before/after which the states are shown in figure ??. After of one process. In	absence of loops events	a set of the split is in the split is a whether is a whether is a split in the split is in the split is of the split is in th
R1=0 \wedge R1=F2 $_4^{i-1}$		15	
r[] R 15: $\{R3=F1_{13}^{j}\}$			$\begin{array}{c} \mathbf{bstract}\\ \mathbf{caction}\\ \mathbf{caction}\\ \mathbf{Abstr}\\ \{\alpha_{\Xi}(\eta) \end{array}$
16: $\{\neg F1_{13}^{jend}$ skip (* C 17: $\{\neg F1_{13}^{jend}$ w[] F2 fa	$\vee T_{14}^{j_{end}}=2\}$ (S2 *) $\vee T_{14}^{j_{end}}=2\}$ (lse;	$3.4a_{\rm E}(K)$	
$\ 18: \{\neg F1_{13}^{j \text{end}} \}$	$\vee T_{14}^{j \text{end}} = 2$	The cand 3.4.7 candidate	idate ex Cand abstrac

35





The calculational design of the verification conditions by abstract interpretation

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

The induction principle

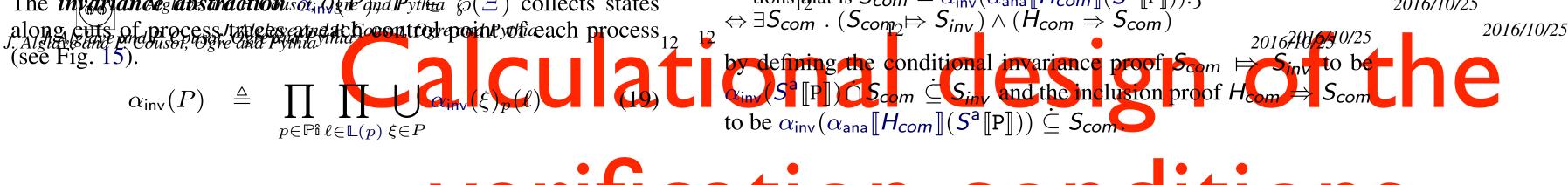
- Given an invariance specification S_{inv} find a stronger inductive invariant Sind
- Prove that S_{ind} satisfy verification conditions
 - Holds after initialization
 - Remains true after a computation step
 - Remains true after a communication
- Assuming S_{com} / H_{com}

The induction principle

- Sind
- Prove that S_{ind} satisfy verification conditions
 - Holds after initialization
 - Remains true after a computation step
 - Remains true after a communication
- Assuming S_{com} / H_{com}

• Given an invariance specification S_{inv} find a stronger inductive invariant

Verification conditions = abstraction of the concrete transformer for one computation step



J. Alglave and P. Cousot, Ogre and Pythia

verification conditions

- $\alpha_{\mathsf{inv}}(\alpha_{\mathsf{ana}}\llbracket H_{\mathsf{com}} \rrbracket (S^{\mathsf{a}}\llbracket \mathsf{P} \rrbracket)) \subseteq$ $\Leftrightarrow \alpha_{\mathsf{inv}}(\{\xi \in S^{\mathsf{a}}\llbracket \mathsf{P}\rrbracket \mid S\llbracket H_{com}\rrbracket)$ $\Leftrightarrow \alpha_{\mathsf{inv}}(S^{\mathsf{a}}\llbracket \mathbb{P}\rrbracket \cap \{\xi \in S^{\mathsf{a}}\llbracket \mathbb{P}\rrbracket \mid$ $\Leftrightarrow \alpha_{inv}(S^{a}[P]) \cap \alpha_{inv}(\{\xi \in \Xi\})$
- $\Leftrightarrow \alpha_{\rm inv}(S^{\rm a}[\![\mathbf{P}]\!]) \cap \alpha_{\rm inv}(\alpha_{\rm ana}[\![\mathbf{H}_{\alpha}]\!])$ $\Leftrightarrow \exists S_{com} \, . \, \alpha_{inv}(S^{a}[\![P]\!]) \dot{\cap} S_{com}$ $\mathcal{I}(\Leftarrow)$ For soundness, we have $\dot{\subseteq} \alpha_{\mathsf{inv}}(S^{\mathsf{a}}[\![\mathsf{P}]\!]) \dot{\cap} S_{\mathit{com}} \dot{\subseteq} S_{\mathit{inv}}$
- tions that is $S_{com} = \alpha_{inv}(\alpha_{ana} \llbracket H_{com} \rrbracket (S^a \llbracket P \rrbracket))$. $\Leftrightarrow \exists S_{com} \ . \ (S_{com} \Rightarrow S_{inv}) \land (H_{com} \Rightarrow S_{com})$

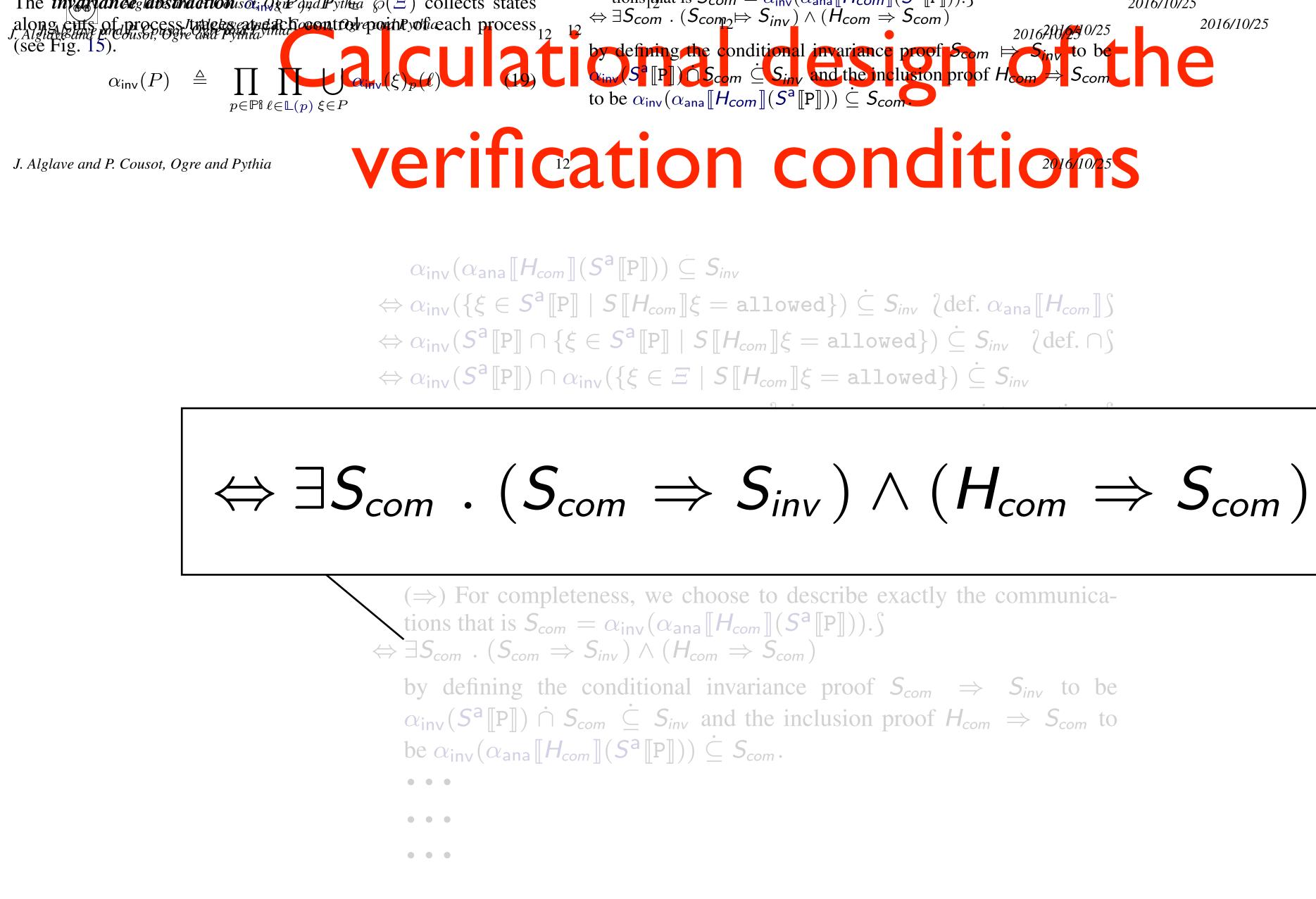
be $\alpha_{inv}(\alpha_{ana} \llbracket H_{com} \rrbracket (S^a \llbracket P \rrbracket)) \subseteq S_{com}$.

- • •
- • •
- • •

$$\begin{cases} S_{inv} \\ \xi = \text{allowed} \}) \subseteq S_{inv} \ (\text{def. } \alpha_{\text{ana}} \llbracket H_{com} \rrbracket) \\ S \llbracket H_{com} \rrbracket \xi = \text{allowed} \}) \subseteq S_{inv} \ (\text{def. } \cap) \\ | S \llbracket H_{com} \rrbracket \xi = \text{allowed} \}) \subseteq S_{inv} \\ (\text{since } \alpha_{\text{inv}} \text{ preserves intersections}) \\ com \rrbracket (S^{a} \llbracket P \rrbracket)) \subseteq S_{inv} \ (\text{def. } \alpha_{\text{ana}} \llbracket H_{com} \rrbracket) \\ \subseteq S_{inv} \land \alpha_{\text{inv}} (\alpha_{\text{ana}} \llbracket H_{com} \rrbracket (S^{a} \llbracket P \rrbracket)) \subseteq S_{com} \\ e \alpha_{\text{inv}} (S^{a} \llbracket P \rrbracket) \cap \alpha_{\text{inv}} (\alpha_{\text{ana}} \llbracket H_{com} \rrbracket (S^{a} \llbracket P \rrbracket)) \\ m; \end{cases}$$

 (\Rightarrow) For completeness, we choose to describe exactly the communica-

by defining the conditional invariance proof $S_{com} \Rightarrow S_{inv}$ to be $\alpha_{inv}(S^{a}[P]) \cap S_{com} \subseteq S_{inv}$ and the inclusion proof $H_{com} \Rightarrow S_{com}$ to



Verification conditions

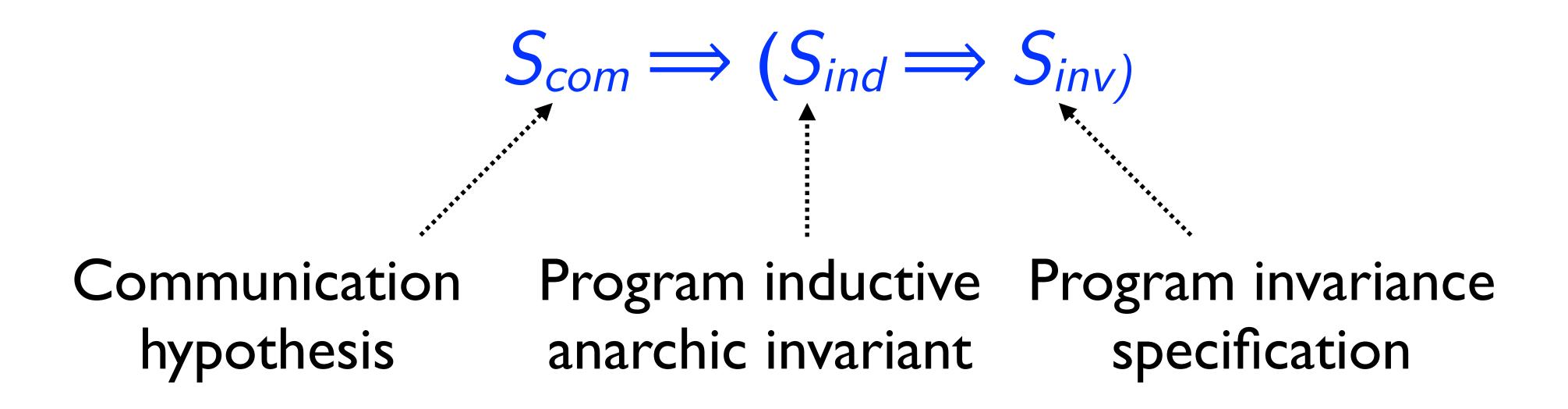
- Sequential proof
- Non-interference proof (like L/O-G but for different kind of invariants)
- Communication proof
 - a read event reading from a write event must be in rf
 - the value read for a variable is the one written
 - reading is fair in rf (cannot be delayed indefinitely)

(useless in L/O-G since rf is fixed)

The program consistency hypothesis S_{com}

Communication hypothesis S_{com}

calculational design:



• i.e. (Sind $\land \neg$ Sinv) $\Longrightarrow \neg$ Scom • Necessary: by counter examples

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

• A sufficient communication hypothesis can be discovered by

Proving Consistency $H_{com} \implies S_{com}$ \downarrow cat invariant

Proof method

• Obtained by calculational design:

$$\begin{split} &\alpha_{\mathrm{inv}}(\alpha_{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \subseteq S_{\mathrm{com}} \\ \Leftrightarrow &\alpha_{\mathrm{inv}}(S^{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \subseteq S_{\mathrm{com}} \qquad (\mathrm{def.} S^{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \\ \Leftrightarrow &\forall \xi \in S^{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \land \alpha_{\mathrm{inv}}(\{\xi\}) \subseteq S_{\mathrm{com}} \qquad (\alpha_{\mathrm{inv}} \mathrm{ preserves} \cup) \\ \Leftrightarrow &\forall \xi \in S^{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \land \bigcup_{p=1}^{n} \bigcup_{u \in \mathbb{P}_{p}}^{n} \{\alpha_{\mathrm{inv}}(\xi')_{p}(\mathbf{L}) \mid \xi' \in \{\xi\}\} \subseteq S_{\mathrm{com}} \\ &\Leftrightarrow \forall (\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf}) \in S^{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \lor \forall p \in [1, n] . \forall \mathbf{L} \in \mathbf{P}_{p} . \\ &\alpha_{\mathrm{inv}}(\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf})_{p}(\mathbf{L}) \subseteq S_{\mathrm{com}_{p}}(\mathbf{L}) \\ &\& (\mathrm{def.} \in, \bigcup, \subseteq, \mathrm{and} S^{\mathrm{ana}}\llbracket H_{\mathrm{com}} \rrbracket) \lor \mathrm{so} \ \mathrm{that} \ \xi \ \mathrm{has} \ \mathrm{the} \ \mathrm{form} \ \xi = \\ &\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf} \right)_{p}(\mathbf{L}) \subseteq S_{\mathrm{com}_{p}}(\mathbf{L}) \\ &\& (\mathrm{def.} \in, \bigcup, \subseteq, \mathrm{and} \ S^{\mathrm{ana}} \llbracket H_{\mathrm{com}} \rrbracket) \lor \mathrm{so} \ \mathrm{that} \ \xi \ \mathrm{has} \ \mathrm{the} \ \mathrm{form} \ \xi = \\ &\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf} \right)_{p}(\mathbf{L}) \subseteq S_{\mathrm{com}_{p}}(\mathbf{L}) \\ &\& (\mathrm{def.} \in, \bigcup, \subseteq, \mathrm{and} \ S^{\mathrm{ana}} \llbracket H_{\mathrm{com}} \rrbracket) \lor \mathrm{so} \ \mathrm{that} \ \xi \ \mathrm{has} \ \mathrm{the} \ \mathrm{form} \ \xi = \\ &\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf} \right)_{p}(\mathbf{L}) \subseteq S_{\mathrm{com}_{p}}(\mathbf{L}) \\ &\& (\mathrm{f}(\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf}) \in S^{\mathrm{ana}} \llbracket H_{\mathrm{com}} \rrbracket \lor \ \mathrm{so} \ \mathrm{that} \ \xi \ \mathrm{has} \ \mathrm{the} \ \mathrm{form} \ \xi = \\ &\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf} \right)_{p}(\mathbf{L}) \subseteq S_{\mathrm{com}_{p}}(\mathbf{L}) \\ &(\mathrm{f}(\tau_{\mathrm{start}} \times \prod_{p=0}^{n-1} \tau_{p} \times \pi \times \mathrm{rf}) \in S^{\mathrm{ana}} \llbracket H_{\mathrm{com}} \rrbracket \lor \ \mathrm{so} \ \mathrm{so}$$

Proof method

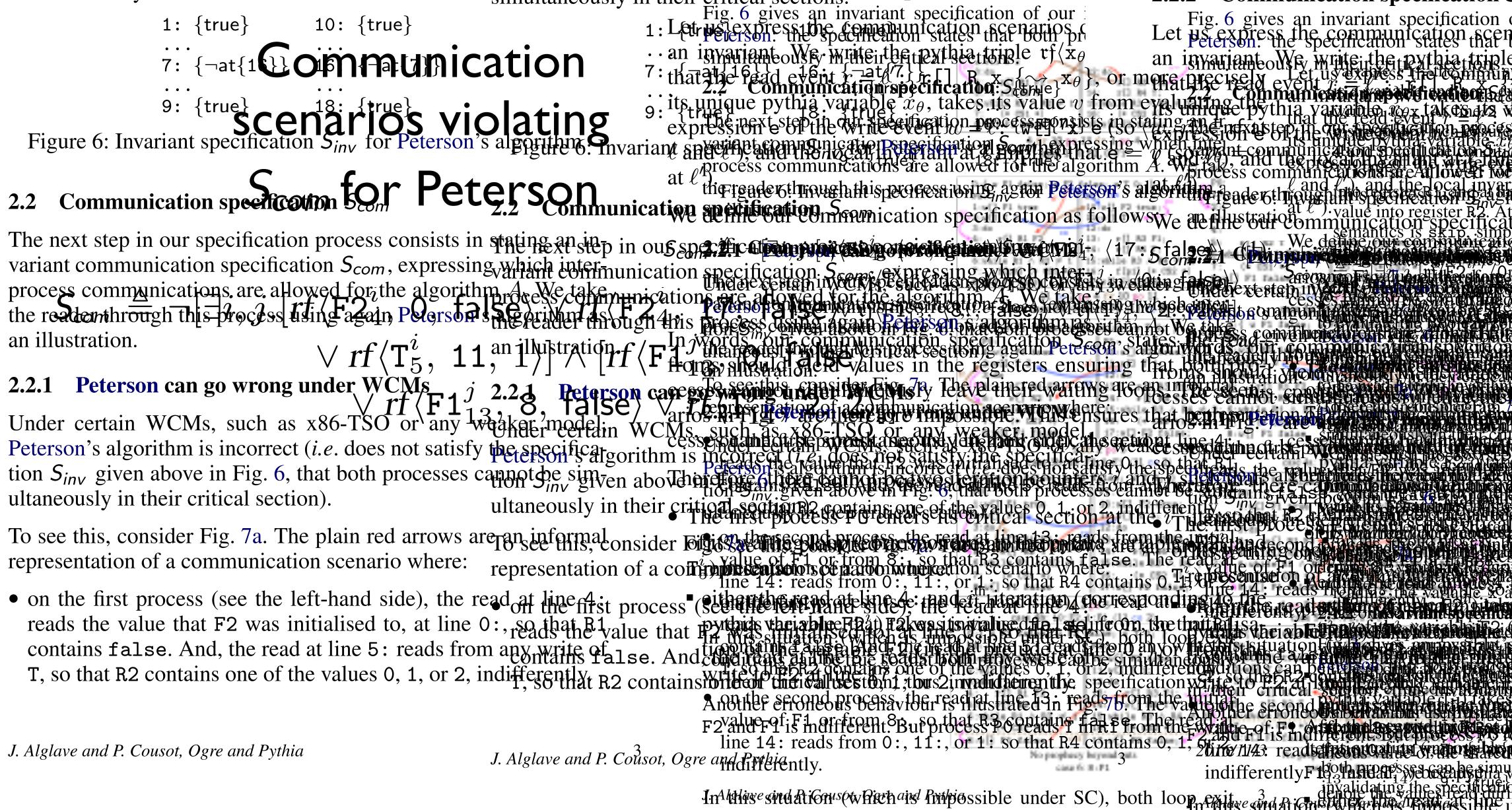
- The anarchic invariants can be used to calculate all communication scenarios violating S_{com}
- These scenarios must be forbidden by the cat specification H_{com}

(no need to reason at the level of traces of the anarchic semantics)

2.1.2 Invariant specification S_{inv}

2.1.2 Invariant specification S_{inv}

Fig. 6 gives an invariant specification of our implementation an invariant specification of our implementation of Peterson: the specification states that both processes cannot be simultaneously in their critical sections. Simultaneously in their critical sections. Simultaneously in their critical sections.



Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

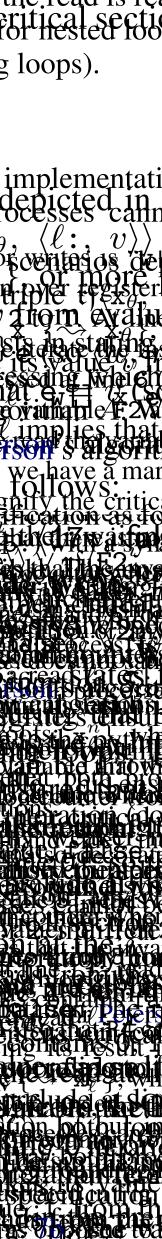
 $\cdot \cdot$ an invariant of x_{θ} write in the text beautriple $rf(x_{\theta})$

both processes can be simultaneously in their critical section invalidating the space of eating soft all surrounding loops).

2.2.2.1.2 Invariant specification $S_{invitron}$

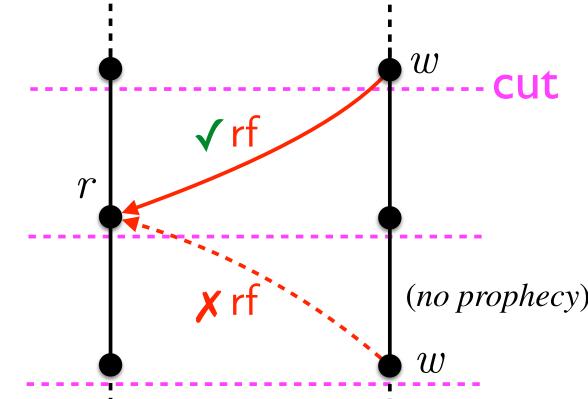
Fig. 6 gives an invariant specification of our 1: Letrus expression communication scenarios (Fig. 6 gives an invariant specification of our implementation Let us express the communication scenarios depicted in processes can an invariant W_{e} write the pythia triple $vf(x_{\theta}, \langle \ell:, v \rangle)$ 7: that the fead event $\{-at_{\ell}/2, \}$ is stating the event $\{-at_{\ell}/2, \}$ or make the event $\{-at_{\ell}/2, \}$ its unique pythia variable x_{θ} , takes its value v from evaluating the type to the transfer of the event $\{-at_{\ell}/2, \}$ its unique pythia variable x_{θ} , takes its value v from evaluating the type to the type to the type of the event $\{-at_{\ell}/2, \}$ is the event $\{-at_{\ell}$ 9: {true} Scenarios violating Figure 6: Invariant specification S_{inv} for Peterson's algorithm 6. Invariant appendentions are allowed for the algorithm A. Wirbers communications are allowed for the algorithm A. the reader the local invariant at limplies that the reader the local invariant at limplies that and li The next step in our specification process consists in stating an inp in our specification specifica variant communication specification S_{com} , expressing which inter-index established for the algorithm A. We take the second size of the state of the stat process communications are allowed for the algorithm A_{c} we take in the reader through this process communication are allowed for the algorithm A_{c} we take in the reader through this process listing again Poerson showing the process listing again proces 2.2.1 Peterson can go wrong under WCMs j 2.2.8 Peterson cacego wr ultaneously in their critical section). To see this, consider Fig. 7a. The plain red arrows are ransing formal consider Fig. 3a. The plain red arrows are ransing formal consider Fig. 3b. The plain red arrows are ransing formal consider formal consingline formal consider formal consider formal consistence reads the value that F2 was initialised to, at line 0:, so that B1 value that F2 was site to be both loop with the both loop with loop w Another encoded strong, tous 2,11 y and a spectrum of the second of the 2616/11/43. reads # Bong Contract of the second of the sec indifferentlyF189tharears sector apprenting variables with the give u

In Addise site attion of the specification Scomputation: In the specification of the specific



Incompleteness

- Sinv, Sind, and Scom remain valid)
- S_{com} can refer to communicated values not H_{com} in cat know about communicated values)
- cat may not be expressive enough:

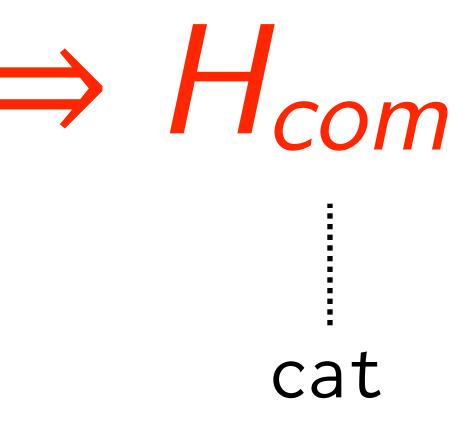


• In general you have to add fences for H_{com} (do not change the invariants,

(redesign your algorithm without assuming that the hardware does

No read beyond cut

Proving Architectural Consistency $M \Longrightarrow H_{com}$ cat cat



$M \Longrightarrow H_{com}$ in cat

sound and complete proof method

unpublished paper of JA and PC with Luc Maranget

Beyond L/O-G: non-starvation

Reasoning on one execution only

- relation rf
- Not directly possible with L/O-G
- Can be used to prove non-starvation

• A particular execution can be uniquely characterized by its read-from

• We can reason on one execution only $(S_{com}$ for this execution + $S_{ind})$

Non-starvation (e.g. PostgrSQL)

- Consider all traces that may star trace)
- Prove each of them to be infeasible:
 - the inductive invariant S_{ind} under the program communication hypothesis S_{com} is unsatisfied
 - or, by strengthening the program communications S_{com} (maybe implemented by adding fences in H_{com})

• or, by a fairness hypothesis.

• Consider all traces that may starve (for an appropriate S'_{com} for each

Communication fairness hypothesis®

- All writes eventually hit the memory:
 - If, at a cut of the execution, all the processes infinitely often write the same value υ to a shared variable x and only that value υ
 - and from a later cut point of that execution, a process infinitely often repeats reads to that variable x
 - then the reads will end up reading that value υ

(*) The SPARC Architecture Manual, Version 8, Section K2, p. 283: ``if one processor does an S, and another processor repeatedly does L 's to the same location, then there is an L that will be after the S".

Ogre and Pythia: an Invariance Proof Method for Weak Consistency Models, POPL 2017, 18-20 January 2017

Conclusion

Conclusion

- To design a correct parallel algorithm, specify:
 - the algorithm
 - the invariance specification S_{inv}
 - the program-specific consistency model S_{com}
- Find an anarchic inductive invariant S_{ind} satisfying the verification conditions such that $(S_{com} \land S_{ind}) \Longrightarrow S_{inv}$

Conclusion

- To implement a parallel algorithm correctly:
 - Implement the program consistency model on an architecture consistency model M (possibly adding fences)
 - Prove $M \Longrightarrow S_{com}$
- Or better
 - Find a minimal/weakest H_{com} such that $H_{com} \Longrightarrow S_{com}$
 - $M \Longrightarrow H_{com}$

- Specification of parallel/distributed program consistency models (more refined than <u>architecture</u> consistency models, e.g. cuts needed)
- Liveness (beyond non-starvation)
- Collection of certified algorithms for WCM (e.g. transactional memory, databases, etc)
- Static analysis (by abstract interpretation of the analytic semantics parameterized by a WCM)

More work needed

The End, Thank You