s Peter Correct or Incorrect!

Patrick Cousot

Courant Institute, New York University

O'Hearn Fest, POPL 2024, London I © P. Cousot

Peter’s Incorrectness Logic

* In POPL 2020, Peter O’Hearn introduced the nonconformist idea of an
incorrectness logic

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare's
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness.

Peter’s Incorrectness Logic

* In POPL 2020, Peter O’Hearn introduced the nonconformist idea of an
incorrectness logic

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare's
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness.

* |s jt?

Peter’s Incorrectness Logic

* And he moderately enjoyed other approaches to incorrectness
* Such as necessary preconditions”

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for
a program is a predicate which, whenever falsified, leads to divergence or an error, but never to
successful termination.

Peter’s Incorrectness Logic

* And he moderately enjoyed other approaches to incorrectness
* Such as necessary preconditions”

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for
a program is a predicate which, whenever falsified, leads to divergence or an error, but never to
successful termination.

* But he doesn’t really like it!

... Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()),
but where perfectly fine presumptions exist for incorrectness logic.

Peter’s Incorrectness Logic

* And he moderately enjoyed other approaches to incorrectness
* Such as necessary preconditions”

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for
a program is a predicate which, whenever falsified, leads to divergence or an error, but never to
successful termination.

* But he doesn’t really like it!

... Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()),
but where perfectly fine presumptions exist for incorrectness logic.

* Should he?

Peter’s Incorrectness Logic

In summary, there is a rich variety of problems for both experimental and theoretical work to
bring the foundations of reasoning about program incorrectness onto a par with the extensively
developed foundations for correctness.

An A Parte on

Singularities of Logics

Emptiness versus Universality

* Emptiness: some programs satisfy no formula of the logic

* Ex. |I:a potentially nonterminating program satisfies no formula of
the Manna-Pnueli total correctness logic

* Ex. 2: Peter’s example for necessary preconditions”

Emptiness versus Universality

* Emptiness: some programs satisfy no formula of the logic

* Ex. |I:a potentially nonterminating program satisfies no formula of
the Manna-Pnueli total correctness logic

* Ex. 2: Peter’s example for necessary preconditions”
* Universality: some programs satisfy all formulas of the logic
* Ex. I: w=while (true) skip satisfies all Hoare triples {P} w {Q}

Emptiness versus Universality

* Emptiness: some programs satisfy no formula of the logic

* Ex. |:a potentially nonterminating satisfies no formula of the Manna-
Pnueli total correctness logic

* Ex. 2: Peter’s example for necessary preconditions”
* Universality: some programs satisfy all formulae of the logic

* Ex. I: w=while (true) skip satisfies all Hoare triples {P} w {Q}
* Same in logic: false is never satisfied and true is always satisfied

Foundations of Reasoning on Logics

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction a({[S] | }) of the collecting

semantics {[S] | } (strongest (hyper) property)

Theory of a logic = the subset of all true formulas
38

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction a({[S] | }) of the collecting

semantics {[S] | } (strongest (hyper) property)

3. Calculate the theory a({[S] | }) in structural fixpoint form by fixpoint abstraction

Theory of a logic = the subset of all true formulas
9

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction a({[S] | }) of the collecting

semantics {[S] | } (strongest (hyper) property)

3. Calculate the theory a({[S] | }) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas
9

The Design of

Hoare Incorrectness Logic (HL)

) Relational semantics

|. Angelic relational semantics [S]e

® Syntax™:

SeSu=x = Alskip|S;S|if (B) S else S|while (B) S

e States:), ends

S e/Ep(Z x)

® Angelic relational semantics:

12

|. Angelic relational semantics [S] (in deductive form)

e Notations using judgements:
e
e o+-S=o0 for (o, o) e|s]°

l
e 0+ while(B) S = ¢ for o leads to ¢’ after 0 or more iterations

13

|. Angelic relational semantics [S] (in deductive form)

e Notations using judgements:
e
e o+S=o0 for (o, o') e [s]°
i
e 0 while(B) S= o' for oleads to o’ after 0 or more iterations

® Semantics of the conditional iteration” y = yhile(B) s

e l
B[Blo, orS=d¢', o +HW="

@) o-W=o (b) i
o—W= o

oW o, B[-8] o’

()

(3)

¢ !/
oH—W=o0o

13

|. Angelic relational semantics [S] (in fixpoint form)

¢ Semantics of the conditional iteration™ W = while(B) S:

>

FEX) = idu([B]3[s]°5X), Xep(Exz) (49)
lwhile (B) S| = Ifp- F®¢s|-B| (51)

® Derived using Aczel correspondence between deductive systems and set-
theoretic fixpoints (forthcoming)

O'Hearn Fest, POPL 2024, London 14 © P Cousot

1) Abstraction of
the semantics to the theory

Exact abstractions

Abstraction

® Hyper properties to properties abstraction:

(P(p(Zx3)), ©) =5 (p(=x %), <) ac(P) = |JP

ocC

17

Abstraction

® Hyper properties to properties abstraction:

(P(p(Zx3)), ©) =5 (p(=x %), <) ac(P) = |JP

ocC

® Post-image isomorphism:

(p(ZxX), c) = 5 ((2) - p(2), €) post(R)2AP-{c' |dJoePA {0, ') €R}

post

17

Abstraction

® Hyper properties to properties abstraction:

(P(p(Zx3)), ©) =5 (p(=x %), <) ac(P) = |JP

oacC

® Post-image isomorphism:

(p(ZxX), c) = 5 (p(2) > (), €} post(R)2AP+{c' |Joc € PA {0, o) €R}

post

® Graph isomorphism (a function is isomorphic to its graph, which is a
functional relation):.../...

(0(2) = p(2), =) —— {prun(p(2) xp(2)), =) fepE) - p(X)
aG(f) = (P, f(P)) | Pep(2);

18

Abstraction

® Negation abstraction:

Xep(X),a”(X) 2 -X (where -X = X \ X)

04

(P (X), €) =5 (p(X), 2) and

04

19

Consequence approximation

Approximation abstraction

® [he component wise approximation:

(x, y) 5,<{x",y') = xcx Ay=<y

21

Approximation abstraction

® [he component wise approximation:

(x, y) 5,<{x",y') = xcx Ay=<y

e Over-approximation:

post(S,2) = AR-{(P, Q)| P, QYeR.PcP AQ cQ}

21

Approximation abstraction

® [he component wise approximation:

(x, y) 5,<{x",y') = xcx Ay=<y

e Over-approximation:

post(S,2) = AR-{(P, Q)| P, QYeR.PcP AQ cQ}

® Under-approximation:

post(2,2) = AR-{(P, Q)| 3P, Q"YeR.P'cPAQcQ"}

21

Comparing logics
through their theories

Comparing logics through their theories

e Strongest postcondition logic (SL): 7 (S)

23

aG © post o ac({[Ss]})
UP, post[S|P) | P € p(X);}

Comparing logics through their theories

e Strongest postcondition logic (SL): 7 (S)

® Hoare logic (HL):

THL(S)

23

aG © post o ac({[Ss]})
UP, post[S|P) | P € p(X);}

post(2.C) o T(S)

Comparing logics through their theories

e Strongest postcondition logic (SL): 7 (S)

® Hoare logic (HL):

® |[ncorrectness logic (IL):

THL(S)

Ti(S)

23

aG © post o ac({[Ss]})
UP, post[S|P) | P € p(X);}

post(2.C) o T(S)

post(C.2) o T(S)

Comparing logics through their theories
e Strongest postcondition logic (SL): 7(S) % ag o poste ac({[S]})
= (P, post[S|P) [P ep(X)}

® Hoare logic (HL): TaL(S) = post(2.€) o T(S)
® Incorrectness logic (IL): Ti(S) = post(S.2)oT(S)

e Hoare incorrectness logic (HL): T(S) = post(2.€) ca™ o THL(S)

37

Comparing logics through their theories

post(2,S) o ag

[Ascari et al. 2023, (NC)]

!
q)

post(2,S) o ag

[Morris Jr. and Wegbreit 1977]
[Cousot and Cousot 1982, (i)]
[Cousot et al. 2013]

Hoare incorrectness logic

pre[S] a
Post(C 2) o ag o

[Hoare 1969]
[Cousot and Cousot 1982, (i)] /

® ®

post(2,S) o ag

post|[S]

post(S,2) o ag

« NV

04

\

pre[S]

[Zilberstein et al. 2023]
[Dijkstra 1982]

[Cousot and Cousot 1982, (1
[Ascari et al. 2023, (SIL)]

ay
©

post(2,S) o ag

-
”
-

[de Vries and Koutavas 2011]

@C

[O’Hearn 2020] x @.
. 1 .
pot(2.9) cac g @ | otz o) s b post[s].
—— oy —_—
pl‘e[[Sﬂ l‘o'. .’0 pgst(g, 3) ° G O()[: pOSt(g’ 2) °caG
o . [
® R [Apt and Plotkin 1986] o '
. @ @
0‘(_1 post(2,C) o ag

pre[[S] 1

post(S,2) o ag

—
———
—
—
[

-
—
—
—
—
—
—
—
- -
-—

Possible accessibility or
nontermination logic
(application 2)

: Galois connection (different logics to prove the same property)

Fig. 3. Hierarchical taxonomy of transformational assertional logics

24

Fixpoint abstraction

2. Abstraction

® The abstraction of a fixpoint is a fixpoint (POPL 79)

Tueorem I1.2.1 (FIXPOINT ABSTRACTION). If (C, C) % (A, <) is a Galois connection between
complete lattices (C, €) and (A, <), f € C —> C and f € A —> A are increasing and commuting,

that is, @ © f = f o a, then a(lfp= f) = fp= f (while semi-commutation a o f < f o « implies

a(Ifp™ f) < Ifp= f).

20

2. Abstraction

® The abstraction of a fixpoint is a fixpoint (POPL 79)

Tueorem I1.2.1 (FIXPOINT ABSTRACTION) If (C,) ; (A, <) is a Galois connection between
complete lattices (C, £) and (A, <), f € C — C and f € A ' A are increasing and commuting,

that is, @ © f = f o a, then a(lfp= f) = fp= f (while semi-commutation a o f < f o « implies
a(Ifp™ f) < Ifp™ f).

® We get a fixpoint definition of the theory of strongest postconditions
logic (SL)

® For the iteration W=while (B) S :

T(W) = (P, post[-B](Ifp~ AX - PUpost([B] 5 [S]")X)) | P ep(2)}

20

1

PROPERTIES OF STRONGEST POSTCONDITIONS
LEMMA 1.1 (COMPOSITION). post(X 3Y) = post(Y) o post(X).

Proor or LEm. 1.1.

post(X $Y)
AP-{c"|3oceP.{0,0")eX3Y} (def. post§
AP+{c" |3oeP .30’ . (0,0) e XA (c', o")eY} (def. 5§

AP-{c" |30’ .c'e{c"|FoeP.{(0,0"YeX} n{c', o) eY} (def. 3 and €§

AP« {c" | 30’ € post(X)P . (c', 6") e Y} (def. post§
AP« post(Y)(post(X)P) (def. post§
post(Y) o post(X) (def. function composition o § O
LEMMA 1.2 (TEST). post[B]P = P n B[8].

Proor oF LEM. 1.2.

post[B]P

{6’ | 3o €eP . {0, o) e [B]} (def. post§
{oc|ocePAnoeB[B]} (def. [B] = {{o, o) | o € B[B]}§
PnB[8] (def. intersection U § O

LEMMA 1.3 (STRONGEST POSTCONDITION). 7 (S) = ag ° post[[S] = {(P, post[S|P) | P € p(Z)}.

Proor or LEMm. 1.3.

T(s)

ag o post o ay o ac({[S].}) (def. T'§
ag o post o ay ([S] L) (def. ac
ag o post([S]. N (T x X)) (def. a;§
ag o post[[S] (def. (1) of the angelic semantics [S] §
{(P, post[S]P) |Pep(Z)} {def. aG O

LEMMA 1.4 (STRONGEST POSTCONDITION OVER APPROXIMATION).

Tar(s) 2 post(2.€)oT(s) = {(P, Q)|post[S[PcQ} = post(=,S)oT(S)
Proor oF LEm. 1.4.
post(2.c) o T(S)
post(2.€)(7(s)) { def. function composition o
post(2.€) ({(P, post[S]P) | P ep(Z)}) (Lem. 1.3§
(P, Q') | 3(P, Q) € {(P, post[s]P) | P e o(5)} . ((P, Q), {P', Q')) 2.5} {def. (10) of posts$

{(P', Q'Y | 3P . {{P, post[S]P), (P', Q")) e 2.c} {def. €§
{(P, Q') | 3P . (P, post[s]P) 2.c (P, Q')} (def. €§
{{(P", Q") | 3P. P2 P Apost[s]Pc Q'} (def. 2.c§
{{(P", Q'Y | 3P . P' c P A post[s]P c Q'} (def. 2§

{{P’, Q) | post[s]P" c O}
{(S) by Galois connection (12), post is increasing so that P’ € P A post[S]|P € Q" implies
post[S]P’ € post[S]P A post[S]P c Q" hence post[S]|P’ c Q' by transitivity;
(2) take P = P'§

{(P", Q") | 3P . P" =P A post[s]P c Q'} (def. =§
{(P", Q") | 3P . (P, post[s]P) =, (P', Q')} (def. =, c§
{(P", Q") | 3P . ((P, post[s]P), (P, Q")) € =,c} (def. €§
{{P", Q") [AP, Q) € {(P, post[s]P) | P ep(2)} . ((P, Q), (P, Q)) e =, ¢} (def. €]
{{P", Q") [3(P, Q) € T(s) . {{P, Q). (P", Q) e =, ¢} (Lem. 1.3}
post(=,2)(7(S)) (def. (10) of post§
post(=,) o T(S) (def. function composition o § O

For simplicity, we consider conditional iteration W = while (B) S with no break.

LEMMA 1.5 (COMMUTATION). post o F'¢ = F€ o post where F¢(X) = id U (post([B] ¢ [S]¢) o X)

and F'* 2 AX «id U (X 5 [B] s [S]¢), X € (2 x 2) by (70).

PRroOOF OF LEM. 1.5.
post(F*(X))

post(id U (X 5 [8] 5 [s]°))
post(id) U post(X 3 [] 5 [$]°)

id U (post([8] 3 [s]°) ° post(X))
F¢(post(X))

{(where X € p(2)§
(def. F¢§
(join preservation in Galois connection (12)}§

(def. post and composition Lem. 1.1§
(def. F¢§ m

LEMMA 1.6 (POINTWISE COMMUTATION). VX € p(3) = p(2) . VP e p(2) . F¢(X)P = F5(X(P))

where F5(X) = P u post([B] 5 [s]¢)X.

ProOF OF LEM. 1.6.

Fé(X)P

(id U (post([8] 3 [S]°) » X))P
id(P) U (post([8] 3 [S]°) * X)(P)
P U post([8] 3 [s]°) (X(P))
Fe(X(P))

(def. F¢§

(pointwise def. U and function composition o§
(def. identity id and function application §
(def. F§(X) = P U post([B] 5 [s]°)X§ m

THEOREM 1.7 (ITERATION STRONGEST POSTCONDITION). post[W|P = post[-B](Ifp< F&) where

Fe(X) = P upost([8] 5 [S])X.

Proor or TH. 1.7.
post[W]

post(Ifp= F¢ § [-8])
post[-B] o post(lfp= F®)
post[-B] o post(Ifp= F')
post[-B] (Ifp= F®)

(def. (49) of [W] in absence of break§

{ composition Lem. 1.1§

{since Ifp= F¢ = Ifp= F'® in (70)§

{ commutation Lem. 1.5 and fixpoint abstraction Th. I1.2.2§

27

post[-B] o AP« Ifp*© 1::1?

(pointwise commutation Lem. 1.6 and pointwise abstraction Cor. I1.2.2 §

Proor or Cor. 1.8.

T(wW)

ag o post([W])

ag o post[-B] o AP« IfpS F§

(P, postT-8](1fp" $)) | P < p(5))}

O

COROLLARY 1.8 (CONDITIONAL ITERATION STRONGEST POSTCONDITION GRAPH). T (W) = {(P,
post[-B](Ifp Fp)) | P € p(2)} where F5(X) = P u post([[B] ¢ [S]¢)X.

(Lem. 1.3§
(Th. 1.7§

(def. (7) of oG §

O

V) Design of the proof system

Aczel correspondence

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € goﬁn(Z/{) premiss, ¢ € {/ conclusion, Q9 axiom)
C C

30

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € g, (U) premiss, ¢ € U conclusion, £ axiom)
C C

® Deductive system: R = {% [€ A}, Rep(prin(U) xU)

30

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € goﬁn(Z/{) premiss, ¢ € {/ conclusion, Q9 axiom)
C C

® Deductive system: R = {% [€ A}, Rep(prin(U) xU)

e Subset of the universe { defined by R .
p proof theoretic |

{theU | Ity,.. ,tho1 €U . Vke|l,n].I3—€eR.PC{ty,...,tx_1} ANt =}
C
Ifp= F(R)

< model theoretic (gfp for coinduction)

A P
F(R)X = {c J— eR.PC X} — consequence operator
c

30

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € goﬁn(Z/{) premiss, ¢ € {/ conclusion, Q9 axiom)
C C

® Deductive system: R = {% [€ A}, Rep(prin(U) xU)

e Subset of the universe { defined by R

proof theoretic |

P
{theU | Ity,.. ,tho1 €U . Vke|l,n].I3—€eR.PC{ty,...,tx_1} ANt =}
= C
Ifp= F(R) < model theoretic (gfp for coinduction)
P
F(R)X = {c 1—eR.PC X} — consequence operator
C

® Deductive system defining Ifp=F : Rp = {g PEZ/{/\ceF(P)}

30

Why not using Aczel method to get the proof system at this point!

® We get a sound and complete proof system

31

Why not using Aczel method to get the proof system at this point!

® We get a sound and complete proof system
e BUT impractical:
® you first prove the strongest postcondition, and then

® use the consequence rule to approximate!

31

Fixpoint induction

32 © P. Cousot

Fixpoint induction

TaeoreM H.3 (NON EMPTY INTERSECTION WITH ABSTRACTION OF LEAST FIXPOINT). Assume that (1) (L, E,

1, T, M, W) is an atomic complete lattice; (2) f € L — L preserves nonempty joins U; (3) (L, £) *)0/[5 (L, <, A);
(4) O € L~ {0} where 0 = a(L); (5) There exists an inductive invariant1 € L of f (i.e. f(I) E1); (6) (W, <) is
a well-founded set and v € atoms(I) — W is a (variant) function; (7) There exists a sequence {(a; € atoms(I),

€ [1,00]) that (7.a) a1 € f(L), (7.b) Vi € [1,00] . aj+1 € atoms(f(a;)), (7.c) Vi € [1,00] . (a; * aj+1) =
(v(a;) > v(ajy1), (7.d) Vi € [1,00] . (v(a;) # v(ajy1) = a(a;) A QO # 0; Then, hypotheses (1) to (7) imply
a(Ifp= f) A Q # 0. Conversely (1) to (4) and Ifp= f ny(Q) = L imply (5) to (7).

33

Calculational design
of the proof system

HL does not need a consequence rule

THEOREM 4.1 (EQUIVALENT DEFINITIONS OF HL THEORIES).

Tz (S)

Observe that Th. 4.1 shows that post(c, 2

D)oa o Tyr(S) a” o Tur(S)

) can be dispensed with. This implies that the consequence

post(C,

rule is useless for Hoare incorrectness logic.

ProoF oF TH. 4.1.

Tz (s)
post((S,

oost(

((S)

= post(S,2)eca o TaL(S) (def. T)
2)(—={(P, Q) | post[S]|P c Q}) (Lem. 1.4 and def. (30) of ™ §
2)({(P, Q) | ~(post[s|P c Q)}) (def. -
2)({(P, Q) | post[S|Pn-Q + @&}) (def. € and -
3P, Q) € {(P, Q) | post[s]Pn-Q = @} . (P, Q) &, 2 (P', Q') } (def. post]
(P, Q) . post[S][Pn -0 + @A (P, Q) c,2(P', Q')} (def. €
P, Q) . post[S[PN-Q+FAPSP ' AQ2Q'} (component wise def. of ¢, 2
30 . post[S|[P'n-0+ A Q 20"}

if P ¢ P’ then post[S|P <€ post[S]|P’ by (12) so that post[S]P N -Q # & implies

post[S]|P' n -Q * &;

(2)

P =

conversely, if 3Q . post[S]P’, then 3P . post[S|P N -Q # @ A P € P’ by choosing
P

= {(P’, Q') | post[s]P' n-Q" # &7}
((S) if Q2 Q' then =Q' 2 =Q so post[[S|P’ n -Q # & implies post[s|P' n -Q’ * &;
(2) conversely post[[S|P'n-Q’ # @ implies 3Q . post[S|P'n-0 + ZAQ 2 Q' by choosing
Q=0"3
= {(P, Q) | =(post[S|P c Q)} (def. € and)
= a o TaL(S) 35 (def. @™ and Ty, for Hoare logic O

THEOREM 4.2 (THEORY OF HL).

Theory of HL
TaW) = {(P.Q)|3In>21.3(oiel, i€[ln]).o1€PA

Vie[t,n[. (B8] n{oi}, {0is1}) € Te(S) A 0n ¢ B[B] Ao ¢ O}

Proor oF TH. 4.2. W =while (B) S

Tar(W)
= ost[- “F&) N - em. 1.3, where F§(X) £ P U pos s [s]¢ = {(P,O)|[In2>21.Hoi el ie[Ln]). o1 e PAVie[ln]. {011} S post([B]3[S]|°){oi} Aon ¢
_ izi g; : ::r: ct;gei](lfp[[1;]])(Q)Q;@@}} L 13, where Fp(X) £ Pu post{ 8] H;?S;E)g BB Ao, ¢ Q} (I is not used and can Fleways be chosen to be X
= ’ p Tptipre el | ' = {(P,Q)|In>1.Fo;el,ic[L,n]).oe PAVie[1,n[.post([B]s[S]*){oi}n{0it1} + TA0, ¢
= {:G(’)Q> | 31 E[@(zﬁ . Fp(I) 9:1(/{\ 3;‘)’\/ <) € ?Bf -]HV(E I — W)- 3<U(i e(I,)z € [(100])> . 01 € B[B] Ao, ¢ O} (since x € X < X n{x} + &
Fp(3) AVie[1,00]. 041 € Fp({0i}) AVie[1,00]. (07 # 0i21) = (v(0i) > v(0ir1) A Vi € ~ " sel iclinl) o e e Tl pos o TST€V o) A (=L o
[1,00] . (v(07) # v(0ir1) = {o:} npre[-B](-Q) # 0} (induction principle Th. H.3 - {®<f\),o§>¢|l§[[8]]>/\lc;'jé Ql} Licltn]). ovePavicllnl.post([s]5[s]){ lz}dgf. EX{: l;\}i(qg
= {(P, Q) | AT ep(X) . PcInpost([Bls[S[)CIAIFW,)eWWf.TIvel >W. Io; €l _ n>1. 3o eliclLn]). o€ i€ [Ln[. =(pos o [5]€) {0} <
ie[l,00]).01 € PAVie]l, oo] (o341 € PV {oir1} S post([B] s [S]|°){oi}) AVie[1,00]. (0; # Ei?aff}g)i Gz ¢1B[[BE]|]</\ o, ¢IQ} 1)) Py R [zﬂ()gpg ;)([[ﬂ ()[£S£ Zé ¢}@S
Ui-l-l) = (V(O-i) >V(O-i+1)/\VZ € [12,00] y (AV(O.i)}V(Gi-I-l) = 0j € pre[[_'B]](_‘Q)} | . | _ {(P, Q) | In>1. E|<O'i c L i e [1,’1]) .oy € PAVYie [1,1’[[‘ —l(pOSt([[S]]e)(B[[B]] N {O-i}) -
(def. F5(X) = P upost([B] ¢ [S]®)X, S, and post, which is @-strict § (=101 1)) Ao ¢ B[B] A o ¢ Q) (def. post, [B], and 3
= {(P,O) | AT cp(Z).PcInpost([B]s[s|) CIAIW, <) eWf.Fvel >W. o€l - {(P,Q)|In>1.NoseLie[L,n]). o e PaVie[Ln[. (B[E]n{c:}, ~{ois1}) € {{P,
z(e([l,)oo])(o1)e PV/\ Vi[e [1,]00(] ({U)z;l}(g PO;’[([[B]] 9 [[S]]ef[{dﬁlz /\QV)i}E [1,00] . (07 # 0j41) = 0) [~(post([S]¢)P € O)} A o, ¢ BJB] A 0y £ O) \def. €§
v(ioj) > v(oip1) AVie|l,00]. (V(0j V(0i+1) = 0; € pre|-B| (- _ . el e " S e " 53 Ao c T— o
(since if 0,11 € P, we can equivalently consider the sequence (c; €, je[i+1,00])§ - Z{S’([[}I;,]]g\)clfe 5}1 Hovelie[tn]). orePavieltn] (Bp]nioi}, ~{ l{éiz TQ(LS()SS) " né

= {(P,Q)| M ep(X).PcInpost([B]s[S])IcIAnTn>1.3(o;el, ic|[l,n]).o€PAVYic
[L.n[. {gi+1} € post([B] 5 [s]°){oi} A 0w € pre[-B](-Q)}
(S By (W, <) e Wf,vel > W,Vie[loo]. (07 # 0i41) = (v(0;) > v(0is1), the
sequence is ultimately stationary at some rank n. For then on, 0;41 = 0, i 2 n and so
v(0;) = v(0i+1). Therefore Vi € [1,00] . (v(03) # v(0ir1) = o0; ¢ Q implies that o, €
pre[-B](-Q);
(2) Conversely, from (o; € I, i € [1,n]) we can define W = {0; | i € [1,n]} U {-o00} with
—00 < 07 < 0j41 and v(x) = (x € {o; | i € [1,n] @ x ¢ —oc0|) and the sequence (o; € I,
j €[1,00]) repeats o, ad infimum for j > n.§
= {(P, Q)| T ep(X).PcInpost([B]s[S])IcInan>1.F(o;el,ic|[l,n]).o1€PAVic
[1.n . {git1} € post([B] § [S]"){oi} A on ¢ B[B] A 0n ¢ Q} (def. pre}

36

Proof system of HL

THEOREM 4.3 (HL RULES FOR CONDITIONAL ITERATION).
Hojel,ie|l,n]).ocrePAVie|l,n|.(B|B]|n{oi})S(-{cis1})Aon ¢ B[B| Aoy, ¢O
(P)while (B) S(Q)

(3)

PrOOF OF (3). We write (P)S(Q) = (P, Q) € HL(S);
By structural induction (S being a strict component of while (B) S), the rule for (P) S (Q) have

already been defined;
By Aczel method, the (constant) fixpoint Ifp= AX « S is defined by {£ | c € S};

So for while (B) S we have an axiom (] 2

P)while (B) S(Q)
‘1,n|) .01 e PAVie|[L,n| . (B[B|n{oi})S(—{oit1}) Aon ¢ B|B] A o, ¢ O where (B[B]| n

{0i}) S(—{0ir1}]) is well-defined by structural induction;

with side condition 3(o; € I, i €

Traditionally, the side condition is written as a premiss, to get (3).

37

About incorrectness

® |L is not Hoare incorrectness logic (sufficient, not necessary)

Z [p)s[-Q]
< dRep(X).|P|S[RIARN-Q+ Y
< doeX.[P|s|{o}|Acé¢Q

~(1P}$10Q})

O'Hearn Fest, POPL 2024, London 38 © P. Cousot

Conclusion

® \Was Peter correct or incorrect!

O'Hearn Fest, POPL 2024, London 39 © P. Cousot

Conclusion

® \Was Peter correct or incorrect!
® |n a certain sense, he was correct

e BUT he took the hardest path

39

Conclusion

® \Was Peter correct or incorrect!
® |n a certain sense, he was correct
e BUT he took the hardest path

® Hoare incorrectness logic is the easiest and most popular way

39

Conclusion

® Was Peter correct or incorrect!?

® |[n a certain sense, he was correct

e BUT he took the hardest path

® Hoare incorrectness logic is the easiest and most popular way

® |t has proof verifiers and theorem provers

39

Conclusion

® Was Peter correct or incorrect!?

® |[n a certain sense, he was correct

e BUT he took the hardest path

® Hoare incorrectness logic is the easiest and most popular way

® |t has proof verifiers and theorem provers

® They are called debuggers

39

Conclusion

® Was Peter correct or incorrect?

® |nh a certain sense, he was correct

e BUT he took the hardest path

® Hoare incorrectness logic is the easiest and most popular way

® |t has proof verifiers and theorem provers

® They are called debuggers

® Which are therefore formal tools based on a formal logic!

39

Conclusion

® Was Peter correct or incorrect?

® |nh a certain sense, he was correct

e BUT he took the hardest path

® Hoare incorrectness logic is the easiest and most popular way

® |t has proof verifiers and theorem provers

® They are called debuggers

® Which are therefore formal tools based on a formal logic! &

39

The End, Thank You

The End, Thank You
Happy Sixties to Peter

