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Introduction
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Objective

Some abstract domains use path-based graph algorithms (zones, octagons, etc.)

These algorithms are abstract interpretations of path finding algorithms (and so
share a common algebraic structure)

Was shown for the Bellman—Ford—Moore algorithm [Sergey, Midtgaard, and Clarke,
2012]

We illustrate for the Floyd-Roy-Warshall shortest distance algorithm in a weighted
graph

more complicated since a naive abstraction of a path by its length yields a n
instead of the n® Floyd-Roy-Warshall algorithm (1 is the number of vertices of the
finite graph)

4
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Paths of a graph
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[Weighted] graphs

= (directed) graph G = (V, E)

<
It

{x, y,2}
{(X, y): <x’ Z), ()’, x); G =
(> 2),(z, 2)}

1
|

= Weighted graph G = (V, E, w) with weights w € E — G in a group (G, 0, +)
(extended with o)

y w((x% y) =1 a((x, z)) =2 | x { ;

1 2 [ w((x, 2)) =2 w((y, x)) = -1 G=| * f? o 2
z 1 o((y, 2) =2 ez 2) =1 7

x z | oo oo 1

2
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(Finite non-empty) paths of a graph G = (V, E)
IG) £ {x,..x,eV"|n>0AViel[l,n].(x; x;,,) € E}

= Many possible recursive definitions:
» path = arc | path o arc
» path = arc | arc © path
» path = arc | path | path o path
» path = path | path ® path & path arc € path
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Fixpoint characterization of the paths of a graph

Theorem 1 The paths of a graph G = (V, E) are

nG) - lip" 7, F(X) 2 EUXO®E (1.a)
= Ifp*F, F(X) & EUE®X (1.b)
= Ifp°F, F(X) 2 EUXO®X (1.c)
= Ifp: %, F(X) £ XuXeX (1.d) o

© is the concatenation of sets of finite paths

POQ 2 {xj..x,0) . V|l %X ..., €PAY Yy .. ¥y € QA X, = ¥, }. (2)

] = = =

% “Abstract Interpretation of Graphs, AVERTIS, IMDEA, Madrid, 2019/11/29" -7/29 - © P. Cousot, NYU, CIMS, CS, Friday 29th November 2019



Path problems
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Path problem

= (Classical definition: path problems are solved by graph algorithms that have the
same algebraic structure

= Abstract interpretation: A path problem in a graph G = (V, E) consists in
specifying/computing an abstraction a(II(G)) of its paths I1(G) defined by a Galois
connection

(V) <, U) == (4, €, L).
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Fixpoint characterization of a path problem

= A path problem can be solved by a fixpoint definition/computation.

Theorem 2 Let G = (V, E) be a graph with paths I1(G) and (p(V")), <, U) ==
(A, C, U).
«(TI(G)) (Th.2.a)
(Th.2.b)
(Th.2.c)
= Ifps, F FI(X) 2 XUXOX (Th.2.d)
| where a(X) @ a(Y) = a(X @ Y). o

= The proof is by calculational design using the classical exact fixpoint abstraction
with commutation
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Path problem 1: paths between any two vertices
= Projection abstraction

a”(X) =

Ay, 2){x;..x, e X | y=x,Nx, =2z}
such that

V), €, U) = (V XV = p(V>1), &, U)
04

(3)
= Paths between any two vertices

p = a”(1(G))
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Fixpoint characterization of the paths of a graph between any two vertices

Theorem 3 Let G = (V, E) be a graph. The paths between any two vertices of G
are p = a” (II(G)) such that
p (Th.3.a)
(Th.3.b)
(Th.3.c)
= Ifp; &y, Frp) = pUpBp (Th.3.d)
where E 2 Ax,y+(EN{(x, y)}) and p, & p, 2 Ax, " U P1(x,2) © py(2, y). u|
L zeV

= The proof is by calculational design using the classical exact fixpoint abstraction
with commutation
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Path problem 2: Elementary paths and cycles

A cycle is elementary if and only if it contains no internal subcycle (i.e. subpath
which is a cycle).

= A path is elementary if and only if it contains no subpath which is an internal cycle
(so an elementary cycle is an elementary path).

= The only vertices that can occur twice in an elementary path are its extremities in
which case it is an elementary cycle.

= Notation: elem?(x; ... x,,)

= Abstraction

>

o®(P) {m € P|elem?(m)}.

C] ]

@Y, ©) S (), & VXV - (V) €) s (VX V - V), €)
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Fixpoint characterization of the elementary paths of a graph

Theorem 4 Let G = (V, E) be a graph. The elementary paths between any two
vertices of G are p® £ «” - a®(I1(G)) such that

p° (Th.4.a)
(Th.4.b)

(Th.4.0)

= Ifpf F2 Fip) = pUP®°p (Th.4.d)

where E= Ax, y = (En{(x, y)}) and p,®°p, = Ax, y * U{”1®7T2 | 7, € py(x,2) ATy €
zeV
p,(z, ¥) A elem-conc?(rr,, ,)}. m

= Proof by calculational design using the classical exact fixpoint abstraction
» (Th.4.d) is almost Floyd-Roy-Warshall but in n*! (7 number of vertices)
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lteration multiple abstraction
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Exact abstraction of iterates (intuition)
o & Lo

(/’ZL %0, v> o —0——0—F0—>0—@--------- »@-----
x0=0 x! x2 xi xitl xit2 % = \Vien\l i
%o %4 a, a %ig1 %ig2 %
fo fl fz fi+1
O 0 OO PO +@ - P@-=
x0=1 x1 x2 T X xi+1 xi+2 X9 = | oy &
If
= ay(L)=0

- ‘xi+1°fi:z‘°‘xi
o, (e Xi) = Vew &(x;) for all increasing chains (x; € C, i € N).

then o, (x*) = x.
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Exact abstraction of iterates (formally)

Theorem 5 Let (C, C, L, | |) be acpo, Vie N. f; € C — C be such that Vx,y € C.
XCy= fix)C f,,(y) with iterates (x', i € NU{w}) defined by x0 =1, x" = fi(x),
x“ = | ],y x'. Then these concrete iterates and f = [ |._,, f; are well-defined.

Let (4, %, 0, Y) be a cpo, Vi € N . fieﬂl—>ﬂ[besuchthatWy€ﬂl x <X

y = fi(%) < f +1(3) with iterates (x', i € NU{w}) defined by x° xitl f =),
= Yop X'. Then these abstract iterates and f = V., f: are well- deﬂned.

For all i € N U {w}, let a; € C — A be such that ap(L) = 0, a;,; ° f; = f; = ;, and

oy (Liew %) = Ven @i(x;) for all increasing chains (x; € C, i € N). It follows that

a,(x¥) =x“.

If, moreover, Vi € N. f; € C % C is upper-continuous then x“ = Ifp© f.

Similarly x© = Ifp* f when the 71 are upper-continuous.

If both the f; and f; are upper-continuous then o (Ifp° f) = o, (x¥) = x“ = Ifp* f. o
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Back to the elementary path problems
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Elementary paths of finite graphs G = (V, E) (IVI=n>0)

= Elementary paths in are of length at most n+ 1 so the fixpoint iterates in
Theorem 4 converge in at most n + 2 iterates.

s If V={z...2,} is finite, then the elementary paths of the k + 2" jterate can be
restricted to {z;, ..., 2.}

= Applying Theorem 5 with

ap) 2 p (9)
ay(p) 2 Ax,y-{mep(x,y) | V@) <z, ...,z  U{x, y}}, ke[ln]
062([)) = P> k>n
E) n+l
VXV = p(Vh), &) == (VxV - [ JVE &), (10)
Xk k=2

we get an iterative algorithm.
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Iterative characterization of the elementary paths of a finite graph

Theorem 6 Let G = (V, E) be a finite graph with V = {z,...,z,}, n > 0. Then

p° where F2(p) £ EUp®° E in (Th.4.a) (Th.6.a)

gak+2 2 E U gek+1 @

T Zk+1
(Th.6.b)
(Th.6.c)
= Ifpf F2 = F2*1 where F2(p) 2pUp @2 pin (Th.4.d) (Th.6.d)
990 2 E yekﬂ a o*ek gak ©Zk g;k' ke [0’ i’l],
FoR — Fk ken+2
PO, p, = Ax,y={m 0m, | €p(x,2) AT, € py(z, ¥) Az ¢ {x, y}}
L P, @l p, 2 Ax,y{m, 0m, | m €p(x,2) AT, € py(2, y) Aelem-conc?(r,,7,)}. 0
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lterative characterization of an over-approximation
of the elementary paths of a finite graph

Corollary 7 Let G = (V, E) be a finite graph with V ={z,...,2z,}, n> 0. Then
p° = ... (Cor.7.c)
= Ifpf F2 ¢ Fr! (Cor.7.d)
where FL2E FE2FEoFEo, FE O
L T

replacing ©_ by ©. (with no check that concatenated paths are elementary).
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Path problem 3: shortest distances between any two vertices of a weighted
graph G = (V, E, w) on a group (G, 0, +)
= The weight of a path is

n—1

1>

w(xl xn) Z CI)((x,', xi+1>)

i=1
= The minimal weight of a set of paths is

(6)

o(P) =

min{w(r) | 7 € P}.

(7)
= Galois connection {(@(lJ,.+ V"), <) ‘—_—w__,— (G U {~00, 00}, =) extended pointwise to

(VxV = (| V"), &) =S (VxV - GU{-co,00} 2).

neN*

(8)
= The distance d(x, y) between an origin x € V and an extremity y € V is the length
o(p(x, )) of the shortest path between these vertices
d £ q

w(p) =
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Iterative characterization of the shortest path length of a graph

Theorem 8 Let G = (V, E, w) be a finite graph with V = {z,,...,2z,}, n > 0
weighted on the totally ordered group (G, <, 0, +) with no strictly negative weight.

Then the distances between any two vertices are

d = a(p) = Ff where (Th.8)
§g(x,y) 2 ((x, y) € E? w(x, y) s 00),
EJ*'\‘ISC“(X, y) 2 (z€f{x,y} 7% ?}'\é‘(x, y) e min(?}'\g(x, V), ?}'\é‘(x, zy) + Ef\é‘(zk,y))]) ]

Proof by calculational design based on Theorem 5.
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Roy-Floyd-Warshall shortest distances of a graph

Algorithm 9 The Roy-Floyd-Warshall algorithm computes the shortest distances @(p) €
VxV — GU{-00,00} in a finite graph with no cycle with strictly negative weight:

for x,y € V do
d(x, y) :=if (x, y) € E then «w(x, y) else co

done;
for z € V do
for x,y € V do
d(x, y) := min(d(x, y),d(x, z) + d(z, y))
done
done.
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Conclusion
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Conclusion

= The Roy-Floyd-Warshall algorithm is an abstract interpretation of a concrete path
finding algorithm

= The abstraction is different at each fixpoint iteration (Theorem 5), which is unusual.
= Path problems have been observed to have a common algebraic structure

= This is because the primitive structure (p(V>1), E, U, ©) is preserved by the
abstractions
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The End, Thank you

Happy birthday Manual
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