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years back + some years ahead
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Abstract interpretation: 
origin (abridged)
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• Radhia Rezig: works on precedence parsing (R.W. 
Floyd, N. Wirth and H. Weber,  etc.) for Algol 68 

➡ Pre -p ro c e s s i ng (by s t a t i c ana ly s i s and 
transformation) of the grammar before building the 
bottom-up parser 

• Patrick Cousot: works on context-free grammar 
parsing (J. Earley and F. De Remer) 
➡ Pre -p ro c e s s i ng (by s t a t i c ana ly s i s and 

transformation) of the grammar before building the 
top-down parser
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Before starting (1972-73): formal syntax

• Radhia Rezig.  Application de la méthode de précédence totale à l’analyse d’Algol 68, Master thesis, Université 
Joseph Fourier, Grenoble, France, September 1972. 

• Patrick Cousot. Un analyseur syntaxique pour grammaires hors contexte ascendant sélectif et général. In Congrès 
AFCET 72, Brochure 1, pages 106-130, Grenoble, France, 6-9 November 1972.
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• Patrick Cousot: works on the operational semantics of 
programming languages and the derivation of 
implementations from the formal definition 

➡ Static analysis of the formal definition and 
transformation to get the implementation by “pre-
evaluation” (similar to the more recent “partial 
evaluation”)

4

Before starting (1972-73): formal semantics

• Patrick Cousot. Définition interprétative et implantation de languages de programmation. Thèse de Docteur 
Ingénieur en Informatique, Université Joseph Fourier, Grenoble, France, 14 Décembre 1974 (submitted in 1973 
but defended after finishing military service with J.D. Ichbiah at CII). 
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Vision (1973)

Intervals ➞

Static analysis ➞

Assertions ➞
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• I do my military service as a scientist 
with Jean Ichbiah 

• Work on the revision of LIS 
(ancestor of Green → ADA) 

• Will always be a very strong support 
on our work
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An important encounter
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•Radhia Rezig: attends Marktoberdorf summer 
school, July 25–Aug. 4, 1973 
➡ Dijkstra shows program proofs (inventing 

elegant backward invariants) 

➡ Radhia has the idea of automatically inferring 
the invariants by a backward calculus to 
determine intervals
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1973: Dijkstra’s handmade proofs
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• Radhia Rezig shows her interval analysis 
ideas to Patrick Cousot 
➡ Patrick very critical on going backwards 

from [-∞, +∞] and claims that going 
forward would be much better 

➡ Patrick also very skeptical on forward 
termination for loops 

• Radhia comes back with the idea of 
extrapolating bounds to ±∞ for the forward 
analysis 

• We discover widening = induction in the 
abstract and that the idea is very general

8

1974: origin
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(1) i.e. forward least fixed point 
(2) i.e. backward greatest fixed point

Notes of Radhia Rezig 
on forward iteration 
from ☐ = ⊥(1) versus 
backward iteration 
from [-∞, +∞] (2) 
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• “Not all functions are increasing, for example, sin” 

• “This is woolly” (fumeux) 

• “This will have applications in hundred years”
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First seminar in Grenoble: a warm welcome
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• The project evaluator (Bernard Lohro) points us to the 
literature on constant propagation in data flow analysis 
(Kildall thesis).   

• It appears that it is completely related to some of ours 
ideas, but a.o. 
- We are not syntactic (as in boolean DFA) 
- We have no need for some hypotheses (e.g. 

distributivity not even satisfied by constant 
propagation!) 

- We have no restriction to finite lattices (or ACC) 
- We have no need of an a-posteriori proof of correctness 

(e.g. with respect to the MOP as in DFA) 
- ...
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The IRIA-SESORI contract (1975–76)
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The IRIA-SESORI contract (1975-76)
• New general ideas 
- The formal notions of abstraction/approximation 
- The formal notion of abstract induction (widening) to 

handle infiniteness and/or complexity 
- The systematic correct design with respect to a formal 

semantics  
- ...
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• The first contract report:

13

The IRIA-SESORI contract (1975-76)
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The first reports (1975)

3H3U3HC3U30 ruoddvu

s/6T er$E^oN5Z 'trtl

JCISrp3 €TqPeU Pue JOSfp3 {f,rrlBd

s'fl{vluv c0 sgrrul@ud sdrt
3I}Ti\ilTIIO JO NOIJ\DICITEA f,IIVIS

The first abstract 
interpreter with 

widening  
(as of 23 Sep. 1975)

The first research 
report  

(Nov. 1975)
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• The first publication (ISOP II,  Apr. 76)
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The first publication (1976)

cited by 551
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• Narrowing, duality 
• Transition systems, traces 
• Fixpoints, chaotic/asynchronous iterations, approximation 
• Abstraction, formalized by Galois connections, closure 

operators, Moore families, ...;  
• Numeric and symbolic abstract domains, combinations of 

abstract domains 
• Recursive procedures, relational analyses, heap analysis 
• etc.

16

Maturation (1976 – 77): from an 
algorithmic  to an algebraic point of view
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• Hi, I am Steve Warshall 
• The theorem? 
• Yes 
• Steve Schuman told me you are doing interesting 

work 
• … 
• You should publish in Principles of Programming 

Languages.

17

A Visitor

• Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12 , January 1962.
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POPL’77   FDPC’77   POPL’79

Topology, higher-order 
fixpoints, operational/
summary/... analysis

Galois connections, 
closure operators, Moore 

families, ideals,...

Cited by 1638

On this page: dual, 
conjugate and 

inversion:lfp/gfp wp/sp 
(i.e. pre/post) wp/sp)˜˜
Cited by 6381 Cited by 225
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And a bit of mathematics…
PA.IFIC'?:lTii 

::',''ffi HEMATI.S

CONSTRUCTIVE VERSIONS OF TARSKI'S
FIXED POINT THEOREMS

P,q.rnrcN Cousor l.No RlpnlA Cousor

Let F be a monotone operator on the complete lattice
Z into itself. Tarski's lattice theoretical fixed point theorern
states that the set of fixed points of l' is a nonempty cornplete
lattice for the ordering of Z. We give a constructive proof
of this theorern showing that the set of fixed points of .F is
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for ,F. In the
same wey we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1 .  I n t roduc t i on .  Le tL (s : ,  L ,T ,U ,  | - l )  beanonempty  comp le te
Lutt'ice with parti,al ordering g, least upper bound, u , greatest
lower bound, ft. The i,nf,munL I of tr is f-l L, the supremum T of
L is UL. (Birkhoff 's standard referenee book I3l provides the
necessary background materiai.) Set inclusion, union and intersection
are respectively denoted by e , U and f-l .

Let tr be a monotone operator on L(e, L, T, U, f l) into itself
( i .e. ,  YX, Y e L, {X =Y) -  {F(X) e l r(y)}) .

The fundamental theorem of Tarski [19] states that the set fp(F)
o f  f , red"po i ,n ts  o f  f ' ( i .e . ,  fp (F) :  {Xe L :X:  f ' (X) } )  i s  a  nonempty
complete iattice with ordering e . The proof of this theorem is
based on the definition of the least fixed point tfp(F) of lI by Lfp(F) :
n{Xe L:F(X) g X}.  The least upper bouncl of  S c fe@) in fp(F)
is the least fixed point of the restriction of f'to the complete lattice
{X e L: ( u S1 q 11. An application of the duality principte completes
the proof.

This deflnition is not constructive and many appiications of
Tarski's theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann Iz])) use the alternative characterization
of lfp(F) as U {tr"( -r ): i e N}. This iteration scheme which originates
from Kleene [tO]'s first recursion theorem and which was used by
Tarski [fl] for complete morphisms, has the drawback to require
the additional assumption that F is semi-conti,nuous (F(US) : U,F'(S)
for every 'increas'ing nonempty ch,ai,tt, S, see e.g., Kolodner [ff]).

I

ASYNCHRONOUS ITERATIVE METHODS
FOR SOLVING A FIXED POINT SYSTEM OF MONOTONE

EQUATIONS IN A COMPLETI LATTICE

Patr i  ck Cousot

R .  R .  B 8 lanl- omlrno L Y I  I

l
l

RAFPORT DE REGT-!ERCHE

cited by 208 cited by 42cited by 31
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• For POPL’77, we submit (on Aug. 12, 1976) 
copies of a two-hands written manuscript of 100 
pages.  The paper is accepted !

20

On submitting to POPL
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On abstracting: transition system
Reachability semantics is an abstraction of the relational semantics  

(in PC’s thesis, 21 march 1978 also § 3 of POPL’79) 
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i.e. pre i.e. post transformer

fixpoint  
backward reachability 
forward reachability 

iterative fixpoint computation 

fixpoint reflexive transitive closure 

Fixpoint abstraction 
under commutativity 
with abstraction h 

concrete transformer

21

abstract transformer
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• During PC’s thesis defense, it was suggested that 
abstraction/approximation is useless since computers 
are finite and executions are timed-out (so, the second 
part of the thesis on fixpoint approximation/
widening/narrowing/... is superfluous!) 

• Fortunately we do not listen (otherwise we would 
have invented enumeration methods that fail to scale)

22

On convincing ...

(1) invited by Ed. Clarke.

• On the contrary, in 1978, during a seminar 
at Harvard (1), G. Birkhoff appears 
interested, according to his questions & 
feedback, in the effective computational 
aspects of lattice fixpoint theory
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• Define the semantics (operational, denotational, axiomatic, ...) 
of the programming language (as a ... / trace semantics / 
transition system / transformers / ...) 

• Define the strongest property of interest (also called the 
collecting semantics) 

• Express this collecting semantics in fixpoint (constraint, rule-
based,…) form 

• Define the abstraction/concretization compositionally (by 
composition of elementary abstractions and abstraction 
constructors/functors) 

• Design the abstract proof / analysis semantics by calculus using 
[structural] abstraction i.e. abstract domain + abstract fixpoint 

• Combine abstractions (e.g. reduced product) 

23

The principles (1977–79) are lasting
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Abstract interpretation: 
Research takes time
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• Type checking and inference is an abstract 
interpretation:

25

Typing
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Typing
Types as Abstract Interpretations

(invited paper)

Patrick Cousot
LIENS, École Normale Supérieure

45, rue d’Ulm
75230 Paris cedex 05 (France)

cousot@dmi.ens.fr, http://www.ens.fr/~cousot

Abstract

Starting from a denotational semantics of the eager untyped
lambda-calculus with explicit runtime errors, the standard
collecting semantics is defined as specifying the strongest
program properties. By a first abstraction, a new sound
type collecting semantics is derived in compositional fix-
point form. Then by successive (semi-dual) Galois con-
nection based abstractions, type systems and/or type in-
ference algorithms are designed as abstract semantics or
abstract interpreters approximating the type collecting se-
mantics. This leads to a hierarchy of type systems, which
is part of the lattice of abstract interpretations of the un-
typed lambda-calculus. This hierarchy includes two new
à la Church/Curry polytype systems. Abstractions of this
polytype semantics lead to classical Milner/Mycroft and
Damas/Milner polymorphic type schemes, Church/Curry
monotypes and Hindley principal typing algorithm. This
shows that types are abstract interpretations.

1 Introduction

The leading idea of abstract interpretation [6, 7, 9, 12] is
that program semantics, proof and static analysis methods
have common structures which can be exhibited by abstrac-
tion of the structure of run-time computations. This leads
to an organization of the more or less approximate or refined
semantics into a lattice of abstract interpretations. This uni-
fying point of view allows for a synthetic understanding of
a wide range of works from theoretical semantical specifica-
tions to practical static analysis algorithms.

It will be shown that this point of view can be applied to
type theory, in particular to type soundness and à la Curry
type inference which, following [17, 29], have been dominat-
ing research themes in programming languages during the
last two decades, at least for functional programming lan-
guages [1, 19, 31]. Traditionally the design of a type system
“involves defining the notion of type error for a given lan-
guage, formalizing the type system by a set of type rules,
and verifying that program execution of well-typed programs
cannot produce type errors. This process, if successful, guar-
antees the type-soundness of a language as a whole. Type-
checking algorithms can then be developed as a separate con-

Permission to make digital/hard copies of all or part of this material for
personnal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
POPL 97, Paris, France
c⃝ 1997 ACM 0-89791-853-3/96/01 ..$3.50

cern, and their correctness can be verified with respect to a
given type system; this process guarantees that type checkers
satisfy the language definition.” [2]. Abstract interpreta-
tion allows viewing all these different aspects in the more
unifying framework of semantic approximation. Formaliza-
tion of program analysis and type systems within the same
abstract interpretation framework should lead to a better
understanding of the relationship between these seemingly
different approaches to program correctness and optimiza-
tion.

2 Syntax

The syntax of the untyped eager lambda calculus is:

x, f, . . . ∈ : program variables

e ∈ : program expressions

e ::= x | x · e | e1(e2) | f · x · e |
1 | e1 − e2 | (e1 ? e2 : e3)

x · e is the lambda abstraction and e1(e2) the application.
In f · x · e, the function f with formal parameter x is de-
fined recursively. (e1 ? e2 : e3) is the test for zero.

3 Denotational Semantics

The semantic domain is defined by the following equations
[20]:

△
= {ω} wrong

z ∈ integers

u, f, ϕ ∈ ∼= ⊥ ⊕ ⊥⊕ [ %→ ]⊥ values

R ∈ △
= %→ environments

φ ∈ △
= %→ semantic domain

where ω is the wrong value, ⊥ denotes non-termination, D⊥
is the lift of domain D (with up injection ↑( •) ∈ D %→ D⊥
and partial down injection ↓( •) ∈ D⊥ %−̸→ D), D1 ⊕ D2 is
the coalesced sum of domains D1 and D2 (with left and
right injections • :: D1 ∈ D1 %→ D1 ⊕ D2 and • :: D2 ∈
D2 %→ D1 ⊕ D2), Ω

△
= ↑(ω) :: ⊥ and [D1 %→ D2] is the

domain of continuous, ⊥-strict, Ω-strict functions from D1

into D2. ⊑ is the computational ordering on and ) is the
least upper bound (lub) of increasing chains.

In the metalanguage for defining the denotational seman-
tics below, Λx. . . . or Λx∈S. . . . is the lambda abstraction.
(. . . ? . . . | . . . ? . . . | . . .) is the conditional expression.

316

• POPL 1997:
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Probabilistic static analysis
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• ESOP 2012:
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Probabilistic static analysis

Probabilistic Abstract Interpretation

Patrick Cousot and Michael Monerau

Courant Institute, NYU and École Normale Supérieure, France

Abstract. Abstract interpretation has been widely used for verifying properties of computer
systems. Here, we present a way to extend this framework to the case of probabilistic systems.

The probabilistic abstraction framework that we propose allows us to systematically lift
any classical analysis or verification method to the probabilistic setting by separating in the
program semantics the probabilistic behavior from the (non-)deterministic behavior. This sep-
aration provides new insights for designing novel probabilistic static analyses and verification
methods.

We define the concrete probabilistic semantics and propose di↵erent ways to abstract them.
We provide examples illustrating the expressiveness and e↵ectiveness of our approach.

1 Introduction

As programs get larger and larger, it has become untractable to verify their properties and/or
correctness by hand or testing. Formal methods have thus been developed in order to be
able to verify program properties automatically, at least in part. One of them is abstract
interpretation which has proved successful both in solving hard problems and scaling up
nicely.

When probabilities come into play, the verification of program properties is even more
di�cult. Our work precisely tackles this issue, that is verifying properties of probabilistic

programs. We propose a formal, general and modular framework, extending the classical
abstract interpretation framework to take probabilities into account, allowing for crafting of
new analyses, as well as lifting of existing non-probabilistic analyses to the probabilistic
setting.

Probabilities come into play because of program randomness (such as calls to a random
number generator rand()) and input randomness (for which a distribution may be known).
Usually, all this randomness is forgotten for non-determinism. It is sound but loses a lot of
information. So our goal here is to use hypotheses on randomness to be able to infer more
precise probabilistic program properties.

The goals of having probabilistic static analyses are various, let alone the fact that we
can actually verify some probabilistic properties on the program. A couple of more original
examples of interesting applications are to enable compilers to gain access to more useful in-
formation to decide register allocations or cache/scratchpad allocations, or to provide useful
information about branching for Just In Time compilers without having to do any profiling
or execution, among many other applications.

There is a lot of work on probabilistic program construction and verification meth-
ods [13,15,19,23], probabilistic model-checking [11], probabilistic abstract model-checking
[2,27,29], probabilistic abstract interpretation [21,25,28], with, in the case of model-checking
and abstract interpretation, existing applications to biological pathways [1,3,18]. One of our
objectives is to unify and generalize these frameworks.

2 The abstract interpretation framework

Abstract interpretation is a theory of approximation. Applied to semantics of computer pro-
grams, it allows oneself for generic design of static analyses [5].
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Termination
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• POPL 2012:
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Termination

An Abstract Interpretation Framework for Termination
Patrick Cousot

CNRS, École Normale Supérieure, and INRIA, France
Courant Institute ⇤, NYU, USA

en yo c o m .ips @cu .t n ufeu os t s@o s, du.c

Radhia Cousot
CNRS, École Normale Supérieure, and INRIA, France

u ot rc fsen .s @or

Abstract Proof, verification and analysis methods for termination
all rely on two induction principles: (1) a variant function or induction on
data ensuring progress towards the end and (2) some form of induction
on the program structure.

The abstract interpretation design principle is first illustrated for the
design of new forward and backward proof, verification and analysis
methods for safety. The safety collecting semantics defining the strongest
safety property of programs is first expressed in a constructive fixpoint
form. Safety proof and checking/verification methods then immediately
follow by fixpoint induction. Static analysis of abstract safety properties
such as invariance are constructively designed by fixpoint abstraction
(or approximation) to (automatically) infer safety properties. So far, no
such clear design principle did exist for termination so that the existing
approaches are scattered and largely not comparable with each other.

For (1), we show that this design principle applies equally well to po-
tential and definite termination. The trace-based termination collecting
semantics is given a fixpoint definition. Its abstraction yields a fixpoint
definition of the best variant function. By further abstraction of this best
variant function, we derive the Floyd/Turing termination proof method
as well as new static analysis methods to e↵ectively compute approxima-
tions of this best variant function.

For (2), we introduce a generalization of the syntactic notion of struc-
tural induction (as found in Hoare logic) into a semantic structural induc-
tion based on the new semantic concept of inductive trace cover covering
execution traces by segments, a new basis for formulating program prop-
erties. Its abstractions allow for generalized recursive proof, verification
and static analysis methods by induction on both program structure, con-
trol, and data. Examples of particular instances include Floyd’s handling
of loop cut-points as well as nested loops, Burstall’s intermittent asser-
tion total correctness proof method, and Podelski-Rybalchenko transition
invariants.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.1 [Formal Definitions and Theory]; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs].
General Terms Languages, Reliability, Security, Theory, Verifi-
cation.
Keywords Abstract Interpretation, Induction, Proof, Safety, Static
analysis, Variant function, Verification, Termination.

1. Introduction
Floyd/Turing program proof methods for invariance and termina-
tion [24, 40, 59] have inspired most sound static analysis methods.

For static invariance analysis by abstract interpretation [19, 21],
a key step is to express the strongest invariant as a fixpoint and
next to approximate this strongest invariant to automatically infer
an abstract inductive invariant using the constructive fixpoint ap-
proximation methods.

For static termination analysis, the discovery of variant func-
tions is either decidable in limited cases [54] or else is based on
the Floyd/Turing idea of variant functions into well-founded sets
obtained by observing quantities that strictly decrease within loops

⇤Work supported in part by the CMACS NSF Expeditions in Computing award
0926166 and the European ARTEMIS Project MBAT.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c� 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

while remaining lower-bounded, or dually. So most termination
analysis methods indirectly reduce to a relational invariance anal-
ysis hence can reuse classical static analysis methods.

The abstract interpretation design principle is instantiated with
suitable abstractions for safety and termination analysis, proof,
and checking/verification (either potential termination or definite
termination for nondeterministic systems).

The first main idea for termination is that there exists a most
precise variant function that can be expressed in fixpoint form by
abstract interpretation of a termination collecting semantics itself
abstracting the program operational trace semantics. This yields
new static analysis methods automatically inferring abstractions
of that variant function by the constructive fixpoint approximation
methods of abstract interpretation.

The second main idea introduced in this paper both for safety
and termination is that of semantic structural induction, including
termination proofs, over trace segment covers and their abstrac-
tions. Trace segments are more powerful than binary relations be-
tween states which have been used traditionally in program termi-
nation proofs (for example, the transition invariants used in [53]
are binary relation abstractions of the set of trace segments). Exam-
ples include structural induction on the program syntax (including
loop invariants à la Floyd [40]), induction on data, à la Burstall
[3], the covering of the transition relation closure by well-founded
relations, à la Podelski-Rybalchenko [53], their combinations and
generalizations.

2. Fixpoints, fixpoint induction, abstraction, and
approximation

We express semantics as fixpoints of maps f 2 A 7! A i.e. elements
x 2 A such that x = f (x). We let lfpva f be the least fixpoint of
f 2 A 7! A on the poset hA, vi greater than or equal to a 2 A,
if any. The dual notion is that of greatest fixpoint gfpva f . We write
lfpv f if a is the infimum of A, and lfp f if the partial order v is clear
from the context. By Tarski/Pataria’s fixpoint theorem [50, 58],
lfpva f =

d{P 2 A | a v P ^ f (P) v P} exists for f increasing1

on a complete lattice hA, v, a, >, t, ui 2 or on a cpo hA, v, a,
ti 3. The fixpoint iterates are f 0 , a, 8n 2 N : f n+1 = f ( f n),
f ! , Fn2N f n which is lfpva f when a v f (a) is a pre-fixpoint and
f is continuous4 ,5 ,6. If f is increasing but not continuous, transfinite
iterations may have to be used [22].

1 f 2 A 7! A is increasing (also monotone, isotone, ...) on a poset hA, vi if
and only if 8x, y 2 A : (x v y) =) ( f (x) v f (y)) [36].
2 A complete lattice hA, v, ?, >, t, ui is a poset s. t. any subset has a
least upper bound (lub) t, hence a greatest lower bound (glb) u, ? = t;,
> = u;.
3 A complete partial order (cpo) hA, v, ?, ti is a poset hA, vi such that
any increasing chain C ✓ A such that 8x, y 2 C : x v y _ y v x has a least
upper bound (lub) tC, hence has an infimum ? = t; for the empty chain.
4 f 2 A 7! A is continuous on a poset hA, v, ti if and only if for all
increasing chains C 2 }(A) such that its lub tC does exist then the lub
t f [C ] exists and is such that t f [C ] = f (tC).
5 }(X) or 2X is the powerset of X i.e. the set of all subsets of a set X.
6 The post-image (or image) of X 2 }(A) by a map f 2 A 7! B is
f [X] , { f (x) | x 2 X} 2 }(B).
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Abstract Proof, verification and analysis methods for termination
all rely on two induction principles: (1) a variant function or induction on
data ensuring progress towards the end and (2) some form of induction
on the program structure.

The abstract interpretation design principle is first illustrated for the
design of new forward and backward proof, verification and analysis
methods for safety. The safety collecting semantics defining the strongest
safety property of programs is first expressed in a constructive fixpoint
form. Safety proof and checking/verification methods then immediately
follow by fixpoint induction. Static analysis of abstract safety properties
such as invariance are constructively designed by fixpoint abstraction
(or approximation) to (automatically) infer safety properties. So far, no
such clear design principle did exist for termination so that the existing
approaches are scattered and largely not comparable with each other.

For (1), we show that this design principle applies equally well to po-
tential and definite termination. The trace-based termination collecting
semantics is given a fixpoint definition. Its abstraction yields a fixpoint
definition of the best variant function. By further abstraction of this best
variant function, we derive the Floyd/Turing termination proof method
as well as new static analysis methods to e↵ectively compute approxima-
tions of this best variant function.

For (2), we introduce a generalization of the syntactic notion of struc-
tural induction (as found in Hoare logic) into a semantic structural induc-
tion based on the new semantic concept of inductive trace cover covering
execution traces by segments, a new basis for formulating program prop-
erties. Its abstractions allow for generalized recursive proof, verification
and static analysis methods by induction on both program structure, con-
trol, and data. Examples of particular instances include Floyd’s handling
of loop cut-points as well as nested loops, Burstall’s intermittent asser-
tion total correctness proof method, and Podelski-Rybalchenko transition
invariants.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.1 [Formal Definitions and Theory]; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs].
General Terms Languages, Reliability, Security, Theory, Verifi-
cation.
Keywords Abstract Interpretation, Induction, Proof, Safety, Static
analysis, Variant function, Verification, Termination.

1. Introduction
Floyd/Turing program proof methods for invariance and termina-
tion [24, 40, 59] have inspired most sound static analysis methods.

For static invariance analysis by abstract interpretation [19, 21],
a key step is to express the strongest invariant as a fixpoint and
next to approximate this strongest invariant to automatically infer
an abstract inductive invariant using the constructive fixpoint ap-
proximation methods.

For static termination analysis, the discovery of variant func-
tions is either decidable in limited cases [54] or else is based on
the Floyd/Turing idea of variant functions into well-founded sets
obtained by observing quantities that strictly decrease within loops

⇤Work supported in part by the CMACS NSF Expeditions in Computing award
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classroom use is granted without fee provided that copies are not made or distributed
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while remaining lower-bounded, or dually. So most termination
analysis methods indirectly reduce to a relational invariance anal-
ysis hence can reuse classical static analysis methods.

The abstract interpretation design principle is instantiated with
suitable abstractions for safety and termination analysis, proof,
and checking/verification (either potential termination or definite
termination for nondeterministic systems).

The first main idea for termination is that there exists a most
precise variant function that can be expressed in fixpoint form by
abstract interpretation of a termination collecting semantics itself
abstracting the program operational trace semantics. This yields
new static analysis methods automatically inferring abstractions
of that variant function by the constructive fixpoint approximation
methods of abstract interpretation.

The second main idea introduced in this paper both for safety
and termination is that of semantic structural induction, including
termination proofs, over trace segment covers and their abstrac-
tions. Trace segments are more powerful than binary relations be-
tween states which have been used traditionally in program termi-
nation proofs (for example, the transition invariants used in [53]
are binary relation abstractions of the set of trace segments). Exam-
ples include structural induction on the program syntax (including
loop invariants à la Floyd [40]), induction on data, à la Burstall
[3], the covering of the transition relation closure by well-founded
relations, à la Podelski-Rybalchenko [53], their combinations and
generalizations.

2. Fixpoints, fixpoint induction, abstraction, and
approximation

We express semantics as fixpoints of maps f 2 A 7! A i.e. elements
x 2 A such that x = f (x). We let lfpva f be the least fixpoint of
f 2 A 7! A on the poset hA, vi greater than or equal to a 2 A,
if any. The dual notion is that of greatest fixpoint gfpva f . We write
lfpv f if a is the infimum of A, and lfp f if the partial order v is clear
from the context. By Tarski/Pataria’s fixpoint theorem [50, 58],
lfpva f =

d{P 2 A | a v P ^ f (P) v P} exists for f increasing1

on a complete lattice hA, v, a, >, t, ui 2 or on a cpo hA, v, a,
ti 3. The fixpoint iterates are f 0 , a, 8n 2 N : f n+1 = f ( f n),
f ! , Fn2N f n which is lfpva f when a v f (a) is a pre-fixpoint and
f is continuous4 ,5 ,6. If f is increasing but not continuous, transfinite
iterations may have to be used [22].

1 f 2 A 7! A is increasing (also monotone, isotone, ...) on a poset hA, vi if
and only if 8x, y 2 A : (x v y) =) ( f (x) v f (y)) [36].
2 A complete lattice hA, v, ?, >, t, ui is a poset s. t. any subset has a
least upper bound (lub) t, hence a greatest lower bound (glb) u, ? = t;,
> = u;.
3 A complete partial order (cpo) hA, v, ?, ti is a poset hA, vi such that
any increasing chain C ✓ A such that 8x, y 2 C : x v y _ y v x has a least
upper bound (lub) tC, hence has an infimum ? = t; for the empty chain.
4 f 2 A 7! A is continuous on a poset hA, v, ti if and only if for all
increasing chains C 2 }(A) such that its lub tC does exist then the lub
t f [C ] exists and is such that t f [C ] = f (tC).
5 }(X) or 2X is the powerset of X i.e. the set of all subsets of a set X.
6 The post-image (or image) of X 2 }(A) by a map f 2 A 7! B is
f [X] , { f (x) | x 2 X} 2 }(B).
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Abstract Proof, verification and analysis methods for termination
all rely on two induction principles: (1) a variant function or induction on
data ensuring progress towards the end and (2) some form of induction
on the program structure.

The abstract interpretation design principle is first illustrated for the
design of new forward and backward proof, verification and analysis
methods for safety. The safety collecting semantics defining the strongest
safety property of programs is first expressed in a constructive fixpoint
form. Safety proof and checking/verification methods then immediately
follow by fixpoint induction. Static analysis of abstract safety properties
such as invariance are constructively designed by fixpoint abstraction
(or approximation) to (automatically) infer safety properties. So far, no
such clear design principle did exist for termination so that the existing
approaches are scattered and largely not comparable with each other.

For (1), we show that this design principle applies equally well to po-
tential and definite termination. The trace-based termination collecting
semantics is given a fixpoint definition. Its abstraction yields a fixpoint
definition of the best variant function. By further abstraction of this best
variant function, we derive the Floyd/Turing termination proof method
as well as new static analysis methods to e↵ectively compute approxima-
tions of this best variant function.

For (2), we introduce a generalization of the syntactic notion of struc-
tural induction (as found in Hoare logic) into a semantic structural induc-
tion based on the new semantic concept of inductive trace cover covering
execution traces by segments, a new basis for formulating program prop-
erties. Its abstractions allow for generalized recursive proof, verification
and static analysis methods by induction on both program structure, con-
trol, and data. Examples of particular instances include Floyd’s handling
of loop cut-points as well as nested loops, Burstall’s intermittent asser-
tion total correctness proof method, and Podelski-Rybalchenko transition
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1. Introduction
Floyd/Turing program proof methods for invariance and termina-
tion [24, 40, 59] have inspired most sound static analysis methods.

For static invariance analysis by abstract interpretation [19, 21],
a key step is to express the strongest invariant as a fixpoint and
next to approximate this strongest invariant to automatically infer
an abstract inductive invariant using the constructive fixpoint ap-
proximation methods.

For static termination analysis, the discovery of variant func-
tions is either decidable in limited cases [54] or else is based on
the Floyd/Turing idea of variant functions into well-founded sets
obtained by observing quantities that strictly decrease within loops
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while remaining lower-bounded, or dually. So most termination
analysis methods indirectly reduce to a relational invariance anal-
ysis hence can reuse classical static analysis methods.

The abstract interpretation design principle is instantiated with
suitable abstractions for safety and termination analysis, proof,
and checking/verification (either potential termination or definite
termination for nondeterministic systems).

The first main idea for termination is that there exists a most
precise variant function that can be expressed in fixpoint form by
abstract interpretation of a termination collecting semantics itself
abstracting the program operational trace semantics. This yields
new static analysis methods automatically inferring abstractions
of that variant function by the constructive fixpoint approximation
methods of abstract interpretation.

The second main idea introduced in this paper both for safety
and termination is that of semantic structural induction, including
termination proofs, over trace segment covers and their abstrac-
tions. Trace segments are more powerful than binary relations be-
tween states which have been used traditionally in program termi-
nation proofs (for example, the transition invariants used in [53]
are binary relation abstractions of the set of trace segments). Exam-
ples include structural induction on the program syntax (including
loop invariants à la Floyd [40]), induction on data, à la Burstall
[3], the covering of the transition relation closure by well-founded
relations, à la Podelski-Rybalchenko [53], their combinations and
generalizations.

2. Fixpoints, fixpoint induction, abstraction, and
approximation

We express semantics as fixpoints of maps f 2 A 7! A i.e. elements
x 2 A such that x = f (x). We let lfpva f be the least fixpoint of
f 2 A 7! A on the poset hA, vi greater than or equal to a 2 A,
if any. The dual notion is that of greatest fixpoint gfpva f . We write
lfpv f if a is the infimum of A, and lfp f if the partial order v is clear
from the context. By Tarski/Pataria’s fixpoint theorem [50, 58],
lfpva f =

d{P 2 A | a v P ^ f (P) v P} exists for f increasing1

on a complete lattice hA, v, a, >, t, ui 2 or on a cpo hA, v, a,
ti 3. The fixpoint iterates are f 0 , a, 8n 2 N : f n+1 = f ( f n),
f ! , Fn2N f n which is lfpva f when a v f (a) is a pre-fixpoint and
f is continuous4 ,5 ,6. If f is increasing but not continuous, transfinite
iterations may have to be used [22].

1 f 2 A 7! A is increasing (also monotone, isotone, ...) on a poset hA, vi if
and only if 8x, y 2 A : (x v y) =) ( f (x) v f (y)) [36].
2 A complete lattice hA, v, ?, >, t, ui is a poset s. t. any subset has a
least upper bound (lub) t, hence a greatest lower bound (glb) u, ? = t;,
> = u;.
3 A complete partial order (cpo) hA, v, ?, ti is a poset hA, vi such that
any increasing chain C ✓ A such that 8x, y 2 C : x v y _ y v x has a least
upper bound (lub) tC, hence has an infimum ? = t; for the empty chain.
4 f 2 A 7! A is continuous on a poset hA, v, ti if and only if for all
increasing chains C 2 }(A) such that its lub tC does exist then the lub
t f [C ] exists and is such that t f [C ] = f (tC).
5 }(X) or 2X is the powerset of X i.e. the set of all subsets of a set X.
6 The post-image (or image) of X 2 }(A) by a map f 2 A 7! B is
f [X] , { f (x) | x 2 X} 2 }(B).
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Hierarchy of semantics 1

Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation

Patrick Cousota

aDépartement d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris
cedex 05, France, Patrick.Cousot@ens.fr, http://www.di.ens.fr/~cousot

We construct a hierarchy of semantics by successive abstract interpretations. Starting
from the maximal trace semantics of a transition system, we derive the big-step seman-
tics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac
and Hoare’s angelic relational semantics and equivalent nondeterministic denotational se-
mantics (with alternative powerdomains to the Egli-Milner and Smyth constructions),
D. Scott’s deterministic denotational semantics, the generalized and Dijkstra’s conser-
vative/liberal predicate transformer semantics, the generalized/total and Hoare’s partial
correctness axiomatic semantics and the corresponding proof methods. All the semantics
are presented in a uniform fixpoint form and the correspondences between these seman-
tics are established through composable Galois connections, each semantics being formally
calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski
fixpoint approximation transfer theorems.
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Abstract

We propose a simple order-theoretic generalization, possibly non monotone, of set-
theoretic inductive definitions. This generalization covers inductive, co-inductive
and bi-inductive definitions and is preserved by abstraction. This allows structural
operational semantics to describe simultaneously the finite/terminating and infi-
nite/diverging behaviors of programs. This is illustrated on grammars and the
structural bifinitary small/big-step trace/relational/operational semantics of the
call-by-value ⁄-calculus (for which co-induction is shown to be inadequate).

Key words: fixpoint definition, inductive definition, co-inductive definition,
bi-inductive definition, non-monotone definition, grammar, structural operational
semantics, SOS, trace semantics, relational semantics, small-step semantics, big-step
semantics, divergence semantics.

1 Introduction

The connection between the use of fixpoints in denotational semantics [24]
and the use of rule-based inductive definitions in axiomatic semantics [15] and
ı This work was done in the INRIA project team Abstraction common to the
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Abstract
We design an invariance proof method for concurrent programs
parameterised by a weak consistency model. The calculational
design of the invariance proof method is by abstract interpretation
of a truly parallel analytic semantics. This generalises the methods
by Lamport and Owicki-Gries for sequential consistency. We use
cat as an example of language to write consistency speci cations
of both concurrent programs and machine architectures.

Categories and Subject Descriptors D.1.3 (Concurrent Program-
ming); D.2.4 (Veri cation); F.3.1 (Invariants); F.3.2 (Semantics).

Keywords concurrency, distributed and parallel programming, in-
variance, veri cation, weak consistency models.

1. Introduction
When an ogre (Owicki-GRies Extended) meets a pythia (variable)
classic tales get retold: in this paper we investigate an invariance
proof method for concurrent (parallel or distributed) algorithms
parameterised by weak consistency models.

Different program semantics styles can be used to describe con-
current program executions, for example operational, denotational
or axiomatic semantics. We introduce here a new style, that we call
analytic; it is more abstract than operational models (Boudol et al.
2012) or pomsets (Brookes 2016; Grief 1975)). In this context, we
separate the individual traces of the different processes that consti-
tute the program from the communications between processes.

Weak Consistency Models (WCMs) are seen as placing more or
less restrictions on communications. WCMs are now a xture of
computing systems: for example Intel x86 or ARM processors,
Nvidia graphics cards, programming languages such as C++ or
OpenCL, or distributed systems such as Amazon Web Services or
Microsoft’s Azure. In this context, the execution of a concurrent
program can be seen as an interleaving of the individual traces of
the different processes that constitute the program, but the commu-
nication between processes are unlike what is prescribed by Lam-
port’s Sequential Consistency (SC) (Lamport 1979). Indeed the
read of a shared variable may read another value than the one writ-

[Copyright notice will appear here once ’preprint’ option is removed.]

ten by the last previous write (for example due to hardware features
such as store buffers and caches).

Different consistency semantics styles can be used to describe
WCMs. Operational models de ne abstract machines in which
executions of programs are sequences of transitions made to or
from formal entities modelling e.g. hardware features such as store
buffers and caches. Axiomatic models abstract away from such
concrete features and describe executions as relations over events
modelling e.g. read or write memory accesses, and synchronisation.

We abstract our invariance proof method from the analytic
semantics. Thus our method is parameterised by a WCM.

2. Overview of the Analytic Semantics
Our analytic semantics describes program executions as their an-
archic semantics (process computations without any restriction on
communications), and their communication semantics (restrictions
on communication between processes). To illustrate our analytic
semantics, we will use the load buffering example lb in Fig. 1.

0:{ x = 0; y = 0; }
P0 P1 ;
1:r[] r1 x 11:r[] r2 y;
2:w[] y 1 12:w[] x 1 ;
3: 13: ;

Figure 1: lb algorithm in LISA

In lb, processes P0 and P1 communicate via shared variables x
and y (initialised to 0 at line 0). Each process reads a variable (x
at line 1 for P0, and y at line 11 for P1), then writes to the other
variable (y at line 2 for P0 and x at line 12 for P1).

2.1 Anarchic Semantics
Fig. 2 gives one of the four anarchic executions of lb. The compu-
tations of P0 and P1 are formalised by traces, viz., nite or in nite
sequences of states separated by unique events.

States and events appear along a trace in the process execution
order. Events give a semantics to instructions, for example accesses
to registers or memory locations. States record a process program
point, the value of local variables (registers r1 for P0 and r2 for
P1) and the value of pythia variables.

A pythia variable is the unique name given to the value of a read
event, e.g. x1 for the read r1x = 1:r[] r1 x. Our pythia variables
are different from ghost variables; ghost variables compensate for
objects that do not exist in the chosen program semantics.

The read-from relation rf describes communications between
processes. In Fig. 2, the read r1x takes its value from the write w12

x

(so the value 1 is assigned to the pythia variable x1).
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Industrialization
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• Very first industrial implementation: 

The interval analysis was implemented in the 
AdaWorld compiler for IBM PC 80286 by J.D. 
Ichbiah and his Alsys SA corporation team in 
1980–87.
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Industrialization
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• Real-time software development companies: we 
have to pay for this new option of the ADA 
compiler, but: 

• The machine code size is significantly reduced 
→ we cannot sell as much memory as we did 
before; 

• Many bugs are found at compile time  
→ we make less money with our debugging 
services.

39

Warm welcome 
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• Astrée sold by AbsInt:
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AbsInt Angewandte Informatik GmbH
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• Ait www.absint.com/ait/, StackAnalyzer www.absint.com/
stackanalyzer from AbSint 

• Polyspace static analysis www.mathworks.com/products/
polyspace.html 

• Julia (Java) www.juliasoft.com 

• Ikos, NASA ti.arc.nasa.gov/opensource/ikos/ 

• Clousot for code contract, Microsoft, github.com/Microsoft/
CodeContracts 

• Infer (Facebook) http://fbinfer.com 

• Zoncolan (Facebook) 

• Google 

• …
41

Abstract interpretation based static analyzers
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Prospective
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• From my thesis in 1978:
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The future is hard to predict

computer, economical and biological systems

sequential and parallel programs
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• From “30 years of Abstract Interpretation”:
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The future is hard to predict

Programming

– The evolution of programming languages and program-
ming assistance systems has greatly helped to consid-
erably speed up the development and scale up the size
of conceivable programs

– Software quality remains much far beyond, essentially
because it is anti-economical

– . . . until the next catastrophy, evolution of the stan-
dards, revolution of the customers, or new laws holding
computer scientists accountable for bugs

San Francisco, Jan. 9, 2008 — 73 — © P. Cousot

Formal methods

– Formal methods might then become profitable at every
stage of program design

– The winners, if any, will definitely have to scale up, at
a reasonable cost

– Up to now, research has mainly concentrated on easy
avenues with short-term rewards

– Small groups cannot make it, large groups fail to share
common interests

– There is still a long long way to go

San Francisco, Jan. 9, 2008 — 74 — © P. Cousot

Abstract interpretation

– Beyond programming, abstraction is the only way to
apprehend complex systems

– Therefore, the scope of application of abstract inter-
pretation ideas is large

– Over 30 years, abstract interpretation theory, prac-
tice and achievements have grown despite trends and
evanescent applications

– Hopefully, abstract interpretation will continue to be
useful in the future

San Francisco, Jan. 9, 2008 — 75 — © P. Cousot

THE END

Many thanks to all of you

who contributed to abstract interpretation!

San Francisco, Jan. 9, 2008 — 75 — © P. Cousot



N40AI, 2017/01/21, Paris, France                                                                                                                                                                                     © P. Cousot

• From the Dagstuhl Seminar “Formal Methods — 
Just a Euro-Science?” in December 2010:
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The future is hard to predict

• More properties:
• Security (not dynamically checkable)
• ...

• More systems and tools:
• Parallel and distributed systems,
• Cyber-physical (continuous+discrete)
• Biological, financial, ...

• Better practices:
• Verification from design to implementation
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• Complex data structures (libraries like for 
numerical domains) 

• Program security 

• Parallel & distributed systems, weak consistency 
models
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Hopes (10 years)
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1. The semantics is specified structurally and 
compositionally 

2. The abstraction is specified by composition of 
Galois connections 
POPL 2014: 
 

3. The calculational design of the abstract 
interpreter is supported by libraries and tools 

4. All modular and compositional
47

Dreams (40 years)

A Galois Connection Calculus for Abstract Interpretation⇤
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Abstract We introduce a Galois connection calculus for language independent
specification of abstract interpretations used in programming language semantics,
formal verification, and static analysis. This Galois connection calculus and its type
system are typed by abstract interpretation.

Categories and Subject Descriptors D.2.4 [Software/Program Verification]
General Terms Algorithms, Languages, Reliability, Security, Theory, Verification.
Keywords Abstract Interpretation, Galois connection, Static Analysis, Verification.

1. Galois connections in Abstract Interpretation In Abstract
interpretation [3, 4, 6, 7] concrete properties (for example (e.g.)
of computations) are related to abstract properties (e.g. types). The
abstract properties are always sound approximations of the con-
crete properties (abstract proofs/static analyzes are always correct
in the concrete) and are sometimes complete (proofs/analyzes of
abstract properties can all be done in the abstract only). E.g. types
are sound but incomplete [2] while abstract semantics are usually
complete [9]. The concrete domain hC, vi and abstract domain
hA, 4i of properties are posets (partial orders being interpreted as
implication). When concrete properties all have a 4-most precise
abstraction, the correspondence is a Galois connection (GC) hC,
vi ��! ��

↵

� hA, 4i with abstraction ↵ 2 C 7! A and concretiza-
tion � 2 A 7! C satisfying 8P 2 C : 8Q 2 A : ↵(x) 4 y ,
x v �(y) () expresses soundness and( best abstraction). Each
adjoint ↵/� uniquely determines the other �/↵. A Galois retrac-
tion (or insertion) has ↵ onto, so � is one-to-one, and ↵ � � is the
identity. E.g. the interval abstraction [3, 4] of the power set }(C)

of complete -totally ordered sets C [ {�1,1} is SJI[hC, 
i,�1,1]K , h}(C),✓i ���!�! ����

↵

I

�

I

hI(C[{�1,1},), Fiwith

↵I
(X) , [min X, max X], min ; ,1, max ; , �1, �I

([a, b])
, {x 2 C | a  x  b}, intervals SJI(C [ {�1,1},)K ,
{[a, b] | a 2 C [ {�1}^ b 2 C [ {1}^ a  b}[ {[1,�1]},
and inclusion [a, b] F [c, d] , c  a ^ b  d. A Galois isomor-
phism hC,✓i ��!�!  ���

↵

� hA, 4i has both ↵ and � bijective. E.g. global
and local invariants are isomorphic by the right image abstraction
SJy[L,M]K , h}(L⇥M),✓i ����!�!  �����

↵

y
�

y
hL 7! }(M), ˙✓iwith

↵y
(P ) , � ` . {m | h`, mi 2 P}, �y

(Q) , {h`, mi | m 2
Q(`)}, and ˙✓ is the pointwise extension of inclusion ✓.
2. Equivalent formalizations of GC-based Abstract Interpre-
tation GCs hC, vi ��! ��

↵

� hA, 4i are Galois retracts of/Galois iso-
morphic to numerous equivalent mathematical structures [6] such
as join-preserving maps (↵), meet-preserving maps (�), upper-
closures (� � ↵), Moore families ({�(Q) | Q 2 A}), Sierpiński
topologies [5] ({¬�(Q) | Q 2 A} where ¬ is unique complemen-
tation in the concrete domain C, if any), principal downset families
({#v�(Q) | Q 2 A} where #vx , {y 2 C | y v x}), maximal
convex congruences ({{P 2 C | ↵(P ) = ↵(�(Q))} | Q 2 A},
soundness relations (also called abstraction relation, logical rela-
tion, or tensor product, ↵ # 4 = {hP, Qi | ↵(P ) 4 Q} = {hP,
Qi | P v �(Q)} = v # ��1 where f ⌘ {hx, f(x)i | x 2
dom(f)}, r # r0 = {hx, zi | 9y : hx, yi 2 r ^ hy, zi 2 r0}),
and, for powersets C = }(C), A = }(A), polarities of rela-
tions (�(Q) = {x 2 C | 8y 2 Q : R(x, y)} where R = {hx,
yi | x 2 �({y})}).
⇤ See the auxiliary materials. ⇤⇤ Work supported in part by the CMACS NSF award 0926166.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact the owner/author(s).
POPL ’14, January 22–24, 2014, San Diego, CA, USA. Copyright is held by the owner/author(s).
ACM 978-1-4503-2544-8/14/01. http://dx.doi.org/10.1145/2535838.2537850

3. Basic GC semantics Basic GCs are primitive abstractions of
properties. Classical examples are the identity abstraction SJ1[hC,

vi]K , hC, vi ������!�!  �������
�P

.
P

�Q

.
Q hC, vi, the top abstraction SJ>[hC,

vi,>]K , hC, vi ������! ������
�P

.>
�Q

.> hC, vi, the join abstraction SJ[[C]K
, h}(}(C)),✓i ���! ���

↵

}

�

}

h}(C),✓iwith ↵}
(P ) , SP , �}

(Q) ,
}(Q), the complement abstraction SJ¬[C]K , h}(C), ✓i ��! ��¬

¬

h}(C), ◆i, the finite/infinite sequence abstraction SJ1[C]K ,
h}(C1

), ✓i ����! ����
↵

1

�

1

h}(C), ✓iwith ↵1(P ) , {�
i

| � 2 P ^i 2
dom(�)} and �1(Q) , {� 2 C1 | 8i 2 dom(�) : �

i

2 Q}, the
transformer abstraction SJ [C1, C2]K , h}(C1⇥C2),✓i����! ����

↵

 
�

 

h}(C1)
[�! }(C2), ˙✓i mapping relations to join-preserving

transformers with ↵ (R) , �X . {y | 9x 2 X : hx, yi 2 R},
� (g) , {hx, yi | y 2 g({x})}, the function abstraction
SJ7![C1, C2]K , h}(C1 7! C2), ✓i ����! ����

↵

7!

�

7!

h}(C1) 7! }(C2),

˙✓i with ↵ 7!(P ) , �X . {f(x) | f 2 P ^ x 2 X}, � 7!(g) ,
{f 2 C1 7! C2 | 8X 2 }(C1) : 8x 2 X : f(x) 2 g(X)},

the cartesian abstraction SJ⇥[I, C]K , h}(I 7! C), ✓i ���! ���
↵

⇥

�

⇥

hI 7! }(C), ˙✓i with ↵⇥(X) , � i 2 I . {x 2 C | 9f 2 I 7!
C : f [i  x] 2 X}, �⇥(Y ) , {f | 8i 2 I : f(i) 2 Y (i)}, and
the pointwise extension ˙✓ of ✓ to I , etc.

4. Galois connector semantics Galois connectors build a GC
from GCs provided as parameters. Unary Galois connectors in-
clude the reduction connector SJR[hC, vi ��! ��

↵

� hA, 4i]K ,
hC, vi ��!�! ���

↵

� h{↵(P ) | P 2 C}, 4i and the pointwise connec-

tor SJX _ hC, vi ��! ��
↵

� hA, 4iK , hX 7! C, ˙vi �������! �������
� ⇢

.
↵

�
⇢

� ⇢

.
�

�
⇢

hX 7! A, ˙4i for the pointwise orderings ˙v and ˙4. Binary Ga-
lois connectors include the composition connector SJhC,✓i ���! ���

↵1

�1

hA1, bi#hA2, vi ���! ���
↵2

�2 hA3, 4iK , (hA1, bi = hA2, vi ? hC,

✓i �����! �����
↵2�↵1

�1��2 hA3, 4i : ⌦) (where ⌦ is a static error), the prod-

uct connector SJhC1, ✓i ���! ���
↵1

�1 hA1, vi * hC2, bi ���! ���
↵2

�2 hA2,

4iK , hC1 ⇥ C2, ✓ ⇥ bi ������! ������
↵1⇥↵2

�1⇥�2 hA1 ⇥ A2, v ⇥ 4i (gen-
eralizing to tuples), the higher-order functional connector SJhC1,
✓i ���! ���

↵1

�1 hA1, vi Z=) hC2, 4i ���! ���
↵2

�2 hA2, 6iK , hC1
1�! C2,

˙4i ����������! ����������
� f

.
↵2�f��1

� g

.
�2�g�↵1 hA1

1�! A2, ˙6i for increasing maps and

pointwise orderings ˙v and ˙6.

5. Galois connection calculus The GC calculus G (to specify
verifiers/analyzers compositionally) is x, . . . 2 X for program
variables, `, . . . 2 L for labels, e 2 E for elements e ::= true |
1 | 1 | x | ` | �e | . . ., s 2 S for sets s ::= B | Z | X | L |
{e} | [e, e] | I(s, o) | s1 | s [ s | s 7! s | s ⇥ s | }(s) | . . .,
o 2 O for partial orders o ::= ) | , |  | ✓ | F | = |
o�1 | o1 ⇥ o2 | ȯ | ö | . . ., p 2 P for posets p ::= hs, oi, and
g 2 G for GCs g ::= 1[p] | >[p, e] | I[p, e, e] | y[s, s] | [[s] |
¬[s] | 1[s] |  [s, s] | 7![s, s] | ⇥[s, s] | . . . | R[g] | s _ g |

g # g | g * g | g Z=) g | . . .. The semantics of interval sets is
SJI(C, 4)K , (4 ✓ C ⇥C ? {[a, b]4 | a, b 2 C} : !) where !
is a dynamic error (maybe not detectable by typing).
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4. The design of static analyzers is computer-
assisted by automatic composition of certified 
public-domain modules for: 

• Abstract domains 

• Syntax and semantics to fixpoint equations 

• Parallel/distributed fixpoint solvers (direct or 
with convergence acceleration) 

• User-interface automatic design 

• Automatic fixing of errors
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Dreams (40 years)
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The End


