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We design various logics for proving hyper properties of iterative programs by application of abstract inter-
pretation principles.

In part I, we design a generic, structural, fixpoint abstract interpreter parameterized by an algebraic ab-
stract domain describing finite and infinite computations that can be instantiated for various operational,
denotational, or relational program semantics. Considering semantics as program properties, we define a
post algebraic transformer for execution properties (e.g. sets of traces) and a Post algebraic transformer for
semantic (hyper) properties (e.g. sets of sets of traces), we provide corresponding calculuses as instances of
the generic abstract interpreter, and we derive under and over approximation hyperlogics.

In part II, we define exact and approximate semantic abstractions, and show that they preserve the math-
ematical structure of the algebraic semantics, the collecting semantics post, the hyper collecting semantics
Post, and the hyperlogics.

Since proofs by sound and complete hyperlogics require an exact characterization of the program seman-
tics within the proof, we consider in part III abstractions of the (hyper) semantic properties that yield simpli-
fied proof rules.These abstractions include the join, the homomorphic, the elimination, the principal ideal, the
order ideal, the frontier order ideal, and the chain limit algebraic abstractions, as well as their combinations,
that lead to new algebraic generalizations of hyperlogics, including the ∀∃∗, ∀∀∗, and ∃∀∗ hyperlogics.
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1 Introduction
Program (hyper) logics provide methods for reasoning about (sets of) program executions as de-
fined by a semantics. For example, hyperproperties were defined by Michael Clarkson and Fred
Schneider on execution traces [14] but more recent proposals consider relational logics. We aim at
designing program (hyper) logics independently of a specific program semantics, and, more pre-
cisely, independently of the formal representation of program executions used by these semantics.

In part I, we recall elements of set and order theories (sect. 2) and then define a structural fix-
point algebraic program semantics (sect. 3.4) which is an abstract interpreter parameterized by an
algebraic abstract domain (sect. 3.3) defined axiomatically. The abstract domain includes terminat-
ing and nonterminating executions and can be instantiated to various data and execution models
such as the classic relational semantics (sect. 4) or the trace semantics corresponding to the original
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2 P. Cousot and J. Wang

definition of hyperproperties [14] (sect. B in the appendix) . Then in sect. 5, we define an execution
collecting semantics (e.g. sets of traces i.e. trace properties) and introduce a sound and complete
calculus post of execution properties. In sect. 6, we define a semantic collecting semantics (e.g. sets
of sets of traces i.e. hyperproperties) and introduce a structural, fixpoint, sound, and complete
calculus Post of semantics properties. In sect. 7, we define upper and lower semantic logics (e.g. a
logic for trace hyperproperties) and derive over and under sound and complete proof systems by
calculational design.

In part II, we define the abstraction of the structural algebraic program semantics (sect. 8) and
show that it induces an abstraction of the algebraic execution collecting semantics (sect. 9), the
algebraic semantic collecting semantics (sect. 10), and the algebraic upper and lower logics (sect.
11). Such abstractions preserve the mathematical structure of the algebraic semantic, collecting
semantics, and logics in the abstract. This shows that the algebraic semantics, collecting semantics,
and logics can be instantiated to any one in the hierarchies of semantics considered e.g. in [4, 18, 41].
Hyperlogics are under or over approximations of semantic properties that is sets of semantics. A

program semantics satisfies a hyperproperty if and only if it appears exactly in the hyperproperty.
It follows that proofs by semantic logics (for hyperproperties) require, for completeness, to describe
the program semantics exactly in the proof. By analogy with Hoare logic, this would require the
loop invariants to be the strongest, which is an extreme requirement.

This is why, in part III, we consider abstractions of semantic properties, which are less general,
but otherwise offer adequate representations of semantic properties and/or allow for much sim-
plified proof rules, closer to the tradition of classic program execution logics, and complete for
well identified classes of abstract semantic properties. The classic join abstraction (sect. 12), homo-
morphic abstraction (sect. 13), and intersection abstraction (sect. 14) yield simplified proof rules for
hyperlogics. The principal ideal (sect. 15), order ideal (sect. 16), frontiers (sect. 17), chain limit (sect.
18), chain limit order ideal (sect. 19) abstractions are more specific to hyperproperties. They are
compared in sect. 22. These abstraction generalize known hyperlogics for the algebraic semantics
and allow us to provide new sound and complete proof rules, including for ∀∃ (sect. 18.2), ∀∀ (sect.
19.2), and ∃∀ (sect. 21) (hyper)properties.. This last case is based on conjunctive abstractions (i.e.
conjunctions in logics or reduced products in static analysis) studied in sect. S.1 of the appendix).

We finally briefly refer to the related works (already cited extensively in the text) in sect. 23 and
summarize our contributions in the conclusion which also proposes future work (sect. 24). When
clickable, the symbol A◯ links to proofs and additional developments in the appendix. The paper
together with its appendix is available in the auxiliary material.

PaRt I: AlgebRaic Semantics, Execution PRopeRties, Semantic
(HypeR) PRopeRties, Calculi, and Logics

2 Elements of Set and Order Theories
2.1 Partially Ordered Sets

Definition 2.1 (Properties of posets). Let ⟨L, ⊑⟩ be a poset with partially defined least upper bound
(lub or join) ⊔, greatest lower bound (glb or meet) ⊓, infimum �, and supremum ⊺, if any. [31].

i. ⟨𝐿, ⊑, ⊔⟩ is a join semilattice when the least upper bound (lub, join) ⊔𝑆 exists for any non-
empty finite subset 𝑆 ∈ ℘(𝐿) ∖ {∅} of 𝐿. If it exists, the infimum is � = ⊔∅. The dual is a
meet semilattice with greatest lower bound (glb, meet) ⊓ and supremum ⊺ = ⊔𝐿, if it exists.
A lattice is both a join and meet semilattice. By limit we mean either the join or the meet.
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Calculational Design of Hyperlogics by Abstract Interpretation 3

ii. A poset is increasing chain complete if and only if every nonempty increasing chain of 𝐿 has
a lub. It is decreasing chain complete if and only if every nonempty decreasing chain of 𝐿 has
a glb1. It is chain complete if both increasing and decreasing chain complete.

iii. A poset is a complete lattice if and only if any subset, including the empty set, has a lub (hence
a glb and the infimum and supremum do exist).

Observe that (2.1.i) and (2.1.ii) are independent (i.e. none implies the other). We often use them
simultaneously. For example, in a increasing chain-complete join semilattice, lubs exist for non-
empty finite sets and non-empty increasing chains.

2.2 Ordinals
We let O = {0, 1, 2, . . . , 𝜔,𝜔+1, 𝜔+2, . . . , 𝜔×2, 𝜔×2+1, 𝜔×2+2, . . . , 𝜔×3, . . . , 𝜔×𝜔 = 𝜔2, . . . , 𝜔𝜔 , . . . ,

𝜔𝜔𝜔

, . . . , 𝜔 𝜔⋰
𝜔
}𝜔 times

, . . .} be the class of ordinals where 𝜔 is the first infinite limit ordinal [72].
⟨O, ⩽⟩ extends the order on the naturals ⟨N, ⩽⟩ into the infinite. Ordinals yield typical examples
of well-orderings (such that any two elements are comparable and any <-strictly decreasing chain
is finite). Any well-ordering is order-isomorphic to an ordinal (called its rank e.g. 𝜔 for N), [72, th.
13.10 & 13.11]. We use Von Neumann definition of ordinals [72, ch. 2] with 0 = ∅, the successor is
𝛿+1 = 𝛿∪{𝛿}, < is ∈, 𝜆 = ⋃𝛽<𝜆 𝛽 for infinite limit ordinals 𝜆 (which are not a successor ordinal such
as 𝜔 , 𝜔2, etc), and the corresponding transfinite induction [72, Sec. 10], 𝑃(0), ∀𝛿 ∈ O . 𝑃(𝛿) ⇒
𝑃(𝛿 + 1), and for all limit ordinals 𝜆 ∈ O, (∀𝛽 < 𝜆 . 𝑃(𝛽))⇒ 𝑃(𝜆) implies ∀𝛿 ∈ O . 𝑃(𝛿).

2.3 Functions on Partially Ordered Sets
Definition 2.2 (Properties of functions on posets). Let ⟨𝐿, ⊑⟩ be a poset and 𝑓 ∈ 𝐿 → 𝐿.
i. 𝑓 is increasing (sometimes referred to as monotone or isotone) means that ∀𝑥,𝑦 ∈ 𝐿 . (𝑥 ⊑

𝑦) ⇒ (𝑓 (𝑥) ⊑ 𝑓 (𝑦)). “Increasing” is order self-dual. Decreasing (or antitone) is ∀𝑥,𝑦 ∈ 𝐿 .
(𝑥 ⊑ 𝑦)⇒ (𝑓 (𝑦) ⊑ 𝑓 (𝑥));

For example, a sequence ⟨𝑋𝛿 ∈ 𝐿, 𝛿 < 𝜆⟩ for ordinals 𝛿, 𝜆 ∈ O is an increasing chain means
that ∀𝛿 ⩽ 𝛿 ′ < 𝜆 . 𝑋𝛿 ⊑ 𝑋𝛿 ′ . A decreasing chain has ∀𝛿 ⩽ 𝛿 ′ < 𝜆 . 𝑋𝛿 ′ ⊑ 𝑋𝛿 ;

ii. Function 𝑓 is existing finite join-preserving (also written existing finite ⊔-preserving) if and
only if for any non-empty finite set 𝑆 ∈ ℘𝑓 (𝐿) ∖ {∅} such that ⊔𝑆 exists in 𝐿 then ⊔𝑓 (𝑆)
exists in 𝐿 and 𝑓 (⊔𝑆) = ⊔𝑓 (𝑆) with 𝑓 (𝑆) = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑆}, and dually for meets. 𝑓 is
existing finite limit-preserving if and only if it is both existing finite join and meet preserving.
“Existing” can be omitted in a lattice;

iii. 𝑓 is upper-continuous (or existing increasing chain join-preserving) if and only if for any non-
empty increasing chain 𝑆 ∈ ℘𝑓 (𝐿) such that ⊔𝑆 exists in 𝐿, then ⊔𝑓 (𝑆) exists in 𝐿 such that
𝑓 (⊔𝑆) = ⊔𝑓 (𝑆). The dual is lower-continuous for existing decreasing chain meet-preserving,
and continuous means both lower and upper continuous. By Scott-Kleene theorem, continu-
ity ensures that functions reach fixpoints iteratively at 𝜔 [20, th. 15.36]. This condition for
convergence at 𝜔 is sufficient but not necessary e.g. [20, th. 15.21];

iv. 𝑓 is existing join-preserving (also written existing ⊔-preserving) if and only if for any non-
empty set 𝑆 ∈ ℘(𝐿) ∖ {∅} such that ⊔𝑆 exists in 𝐿, then ⊔𝑓 (𝑆) exists in 𝐿 such that 𝑓 (⊔𝑆) =
⊔𝑓 (𝑆), and dually for meets. 𝑓 is existing limit-preserving if and only if it is both existing join
and meet preserving. “Existing” can be omitted in a complete lattice;

v. The definitions 2.2.ii to 2.2.iv are extended to 𝑓 ∈ (𝐿×𝐿)→ 𝐿 by 𝑓 has left limit property if and
only if ∀𝑦 ∈ 𝐿 . 𝝀𝑥 . 𝑓 (𝑥,𝑦) has that limit property and 𝑓 has right limit property whenever

1We do not respectively use the classic CPO and dual CPO for which chains are usually restricted to be of length 𝜔 .
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4 P. Cousot and J. Wang

∀𝑥 ∈ 𝐿 . 𝝀𝑦 . 𝑓 (𝑥,𝑦) has that limit property. 𝑓 has that the limit property in both parameters
if and only if 𝑓 has both of the left and right limit properties;

vi. When extending the definitions 2.2.ii to 2.2.v to empty sets or chains, the function 𝑓 is then
said to be lower strict, dually upper strict, and strict for both cases.

Observe that 2.2.i⇐ 2.2.ii⇐ 2.2.iii⇐ 2.2.iv.

2.4 Fixpoints
Let 𝑓 ∈ L ↗Ð→ L be an increasing function on a poset ⟨L, ⊑⟩. There are essentially two classic
characterizations of the least fixpoint lfp⊑ 𝑓 of 𝑓 (we also use their order duals).

PRoposition 2.3 (Fixpoint). lfp⊑ 𝑓 = ⊓{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥} by [81] on complete lattices which also
holds on increasing chain complete posets [38].

PRoposition 2.4 (IteRation to fixpoint). If ⟨L, ⊑, �, ⊔⟩ is a poset with infimum � and
partially defined join ⊔ then the iterates ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of 𝑓 are partially defined as 𝑋𝛿+1 ≜ 𝑓 (𝑋𝛿), and
𝑋𝜆 ≜ ⊔𝛽<𝜆 𝑋

𝛽 for limit ordinals 𝜆 (hence𝑋 0 = ⊔∅ = � for limit ordinal 0).They are well defined when
𝑓 is increasing (hence when it is finite join preserving, upper-continuous or existing join-preserving)
and ⟨L, ⊑, �, ⊔⟩ is an increasing chain complete poset (hence when it is a complete lattice) in which
case they form an increasing chain (i.e. ∀𝛽 < 𝛿 ∈ O . 𝑋 𝛽 ⊑ 𝑋𝛿 ) ultimately stationary at the limit
∃𝜖 . ∀𝛽 ⩾ 𝜖 . 𝑋 𝛽 = lfp⊑ 𝑓 [23]. In case 𝑓 is upper-continuous (hence when preserving existing joins),
the iterates are stationary at 𝜖 = 𝜔 so that the iterates may be restricted to N and lfp⊑ 𝑓 = ⊔𝑛∈N𝑋

𝑛

[81, page 305].

2.5 Galois Connections, Retractions, and Isomorphisms
Galois connections are used throughout the paper either to formalize correspondances between
transformers or to formalize exact or approximate abstractions. Formally, a Galois connection ⟨𝐶,
⊑⟩ −−−→←−−−𝛼

𝛾
⟨𝐴, ⪯⟩ is a pair ⟨𝛼, 𝛾⟩ of functions between posets ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩ satisfying ∀𝑥 ∈ 𝐶 .

∀𝑦 ∈ 𝐴 . 𝛼(𝑥) ⪯ 𝑦⇔ 𝑥 ⊑ 𝛾(𝑦). We use a double headed arrow →Ð→ to indicate surjection in Galois
retractions and −−→Ð→←←Ð−− for bijections. We use classic properties of Galois connections which proofs
are found in [34].

2.6 Closures
We let 1 be the identity function. An upper closure operator 𝜌 on L is increasing, extensive and
idempotent so ⟨L, ⊑⟩ −−−→Ð→←−−−−−

𝜌

1 ⟨𝜌(L), ⊑⟩ where 𝜌(𝑋) ≜ {𝜌(𝑥) ∣ 𝑥 ∈ 𝑋} is the post image (dually, a
lower closure operator is reductive). It follows that 𝜌 preserves existing arbitrary joins so if ⟨L, ⊑,
�, ⊔⟩ is an increasing chain complete poset (respectively complete lattice ⟨L, ⊑, �, ⊺, ⊔, ⊓⟩) then
⟨𝜌(L), ⊑⟩ has the same structure with infimum 𝜌(�), join 𝝀𝑋 . 𝜌(⊔𝑋), meet ⊓ and top ⊺, if any. In
case of a complete lattice this is Morgan Ward’s [83, th. 4.1]. If 𝜌1 and 𝜌2 are upper closures on L
then 𝜌1 ○ 𝜌2 and 𝜌2 ○ 𝜌1 are upper closure operators on L if and only if 𝜌1 and 𝜌2 are commuting
(i.e. 𝜌1 ○ 𝜌2 = 𝜌2 ○ 𝜌1) in which case 𝜌1 ○ 𝜌2(L) = 𝜌2 ○ 𝜌1(L) = 𝜌1(L) ∩ 𝜌2(L) [76, p. 525].

3 Algebraic Semantics
We introduce the syntax and algebraic semantics of a simple iterative language based on an abstract
domain that generalizes [20, Ch. 21] to include infinite program behaviors.The algebraic semantics
is reminiscent of [12, 17, 37, 49, 50, 56, 57, 59, 60, 74] and others. Such algebraic semantics are a
basis for studying a hierarchy of program properties independently of the data manipulated by
programs.
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Calculational Design of Hyperlogics by Abstract Interpretation 5

3.1 Syntax
We consider an imperative language S with assignments, sequential composition, conditionals,
and conditional iteration with breaks. The syntax is S ∈ S ∶∶= x = A ∣ x = [𝑎,𝑏] ∣ skip ∣ S;S ∣
if (B) S else S ∣ while (B) S ∣ break. A is an arithmetic expression. The nondeterministic as-
signment x = [𝑎, 𝑏] with 𝑎 ∈ Z ∪ {−∞} and 𝑏 ∈ Z ∪ {∞}, −∞ − 1 = −∞, ∞ + 1 = ∞ (or any,
possibly unbounded, order isomorphic set). The Boolean expressions B include the negation ¬B. A
break exits the closest enclosing loop (which existence is to be checked syntactically).

3.2 Structural Definitions
Let ⊲ be the “immediate strict syntactic component” well-founded partial order on statements
S such that S1 ⊲ S1;S2, S2 ⊲ S1;S2, S1 ⊲ if (B) S1 else S2, S2 ⊲ if (B) S1 else S2, S ⊲
while (B) S, and is otherwise false.

Given a nonempty set V , the function 𝑓 ∈ S → V has a structural definition if and only if
𝑓 (S) ∈ V for basic commands (defined as minimal elements of ⊲) and, otherwise, is of the form
𝑓 (S) = 𝐹S({⟨S′, 𝑓 (S′)⟩ ∣ S′ ⊲ S}) where 𝐹S ∈ {⟨S′, 𝑣 ′⟩ ∣ S′ ⊲ S ∧ 𝑣 ′ ∈ V} → V is a total function.
Denotational semantics, Hoare logic, predicate transformers, and the abstract semantics of sect.
3.4 all have structural definitions (called “compositional” in denotational semantics).

3.3 Algebraic Computational Domain
We consider computational domains D♯+ and D♯∞ to be abstract domains respectively abstracting
the finite and infinite computations of statements and partially ordered by the respective compu-
tational orderings ⊑♯+ and ⊑♯∞, as follows (#♯ is polymorphic).
D♯+ ≜ ⟨L♯+, ⊑♯+, �♯+, ⊔♯+, init♯, assign♯Jx, AK, rassign♯Jx, 𝑎,𝑏K, test♯JBK, break♯, skip♯, #♯⟩ (1)
D♯∞ ≜ ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞, #♯⟩ (2)

Example 3.1. Bi-inductive definitions [24] are used in [18] to define a trace semantics on states Σ
which can be isomorphically decomposed into the domain of finite traces ⟨L♯+, ⊑♯+, �♯+,⊔♯+⟩ = ⟨℘(Σ∗),
⊆, ∅, ∪⟩ (where ∪ is the lub of increasing chains starting form∅ for least fixpoints) and the domain
of infinite traces ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞⟩ = ⟨℘(Σ𝜔), ⊆, Σ𝜔 , ∩⟩ (where ∩ is the glb of decreasing chains
starting form Σ𝜔 for greatest fixpoints), which abstractions yield a hierarchy of classic semantics,
including Hoare logic.

Our objective in part I is to study hyperlogics abstracting away from a particular semantics
thus allowing for multiple instantiations (such as traces in sect. B) and, in part II, for multiple
abstractions (which include Hoare logic).

A single domain D♯ ≜ D♯+ ∪D♯∞ is used in denotational semantics [78, 80] but this is not always
possible e.g. when D♯+∩D♯∞ ≠ ∅. Moreover the separation into two different domains for finite and
infinite executions allows e.g. for the use of input-output relations for finite behaviors and traces
for infinite behaviors. (see also the discussion in remark B.5 in the appendix.) ∎

Definition 3.2 (Abstract domain well-definedness). We say that D♯ ≜ ⟨D♯+, D♯∞⟩ is a well-defined
chain-complete lattice (respectively complete lattice) with increasing (respectively finite limit-
preserving, continuous, and existing limit-preserving) composition, if and only if
A. The finitary calculational domain ⟨L♯+, ⊑♯+, �♯+, ⊔♯+⟩ is an increasing chain-complete join semi-

lattice with infimum, (respectively ⟨L♯+, ⊑♯+, �♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩ is a complete lattice);
B. init♯, break♯, skip♯ ∈ L♯+, assign♯Jx, AK, rassign♯Jx, 𝑎,𝑏K, test♯JBK ∈ L♯+ are well-defined in L♯+;
C. The infinitary calculational domain ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a decreasing chain-complete

join lattice with supremum (respectively ⟨L♯∞, ⊑♯∞, �♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a complete lattice);
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6 P. Cousot and J. Wang

D. The sequential composition #♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯𝑥 , ⊑♯𝑥 , �♯𝑥 , ⊺♯𝑥 , ⊔♯𝑥 , ⊓♯𝑥 ⟩, 𝑥 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, �♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝑥 = + and ⟨L♯∞, ⊑♯∞, �♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝑥 =∞).
a. ∀𝑆 ∈ L♯+ . 𝑆 #♯ init♯ = init♯ #♯ 𝑆 = 𝑆 ;
b. ∀𝑆 ∈ L♯+ . 𝑆 #♯ �♯+ = �♯+ and ∀𝑆 ∈ L♯𝑥 . �♯+ #♯ 𝑆 = �♯+ (same for L♯∞ when �♯∞ exists);
c. ∀𝑆 ∈ L♯∞ . ∀𝑆 ′ ∈ L♯𝑥 . 𝑆 #♯ 𝑆 ′ = 𝑆 ;
d. In its left, right, or both parameters, the sequential composition #♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with 𝑋+ ≜ 𝑋 ∩L♯+, 𝑋∞ ≜ 𝑋 ∩L♯∞,
and 𝑋 ⊑♯ 𝑌 ≜ 𝑋+ ⊑♯+ 𝑌+ ∧ 𝑋∞ ⊑♯∞ 𝑌∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎
RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic

of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎

3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following JSK♯𝑒 and break JSK♯𝑏 finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating JSK♯� abstract semantics in L♯∞.
3.4.1 Basic Statements.Jx = AK♯𝑒 ≜ assign♯Jx, AK Jx = AK♯𝑏 ≜ �♯+ Jx = AK♯� ≜ �♯∞Jx = [𝑎, 𝑏]K♯𝑒 ≜ rassign♯Jx, 𝑎,𝑏K Jx = [𝑎, 𝑏]K♯𝑏 ≜ �♯+ Jx = [𝑎, 𝑏]K♯� ≜ �♯∞JbreakK♯𝑒 ≜ �♯+ JbreakK♯𝑏 ≜ break♯ JbreakK♯� ≜ �♯∞ (3)JskipK♯𝑒 ≜ skip♯ JskipK♯𝑏 ≜ �♯+ JskipK♯� ≜ �♯∞JBK♯𝑒 ≜ test♯JBK JBK♯𝑏 ≜ �♯+ JBK♯� ≜ �♯∞
For the assignment x = A, the abstract semantics assign♯Jx, AK is specified by the abstract domain,
and so, is well-defined by 3.2.B. Jx = AK♯𝑏 = �♯+ because the assignment cannot break. Jx = AK♯� =
�♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. JbreakK♯𝑒 = �♯+ since the break cannot continue in sequence.
The semantics JbreakK♯𝑏 of the break is given by the abstract domain primitive break♯which is finite
and well-defined. JbreakK♯� = �♯∞ since a break always terminates.

3.4.2 Structural Statements. For the sequential composition and the conditional where JB;SK♯𝑥 ≜
test♯JBK #♯ JSK♯𝑥 , 𝑥 ∈ {𝑒,𝑏,�}, we defineJS1;S2K♯𝑒 ≜ JS1K♯𝑒 #♯ JS2K♯𝑒 Jif (B) S1 else S2K♯𝑒 ≜ JB;S1K♯𝑒 ⊔♯+ J¬B;S2K♯𝑒JS1;S2K♯𝑏 ≜ JS1K♯𝑏 ⊔♯+ (JS1K♯𝑒 #♯ JS2K♯𝑏) Jif (B) S1 else S2K♯𝑏 ≜ JB;S1K♯𝑏 ⊔♯+ J¬B;S2K♯𝑏 (4)JS1;S2K♯� ≜ JS1K♯� ⊔♯∞ (JS1K♯𝑒 #♯ JS2K♯�) Jif (B) S1 else S2K♯� ≜ JB;S1K♯� ⊔♯∞ J¬B;S2K♯�
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The semantics of the composition and conditional are well-defined by 3.2.D for #♯ and 3.2.A and
3.2.C which ensure the existence of the finite and infinite joins.

S1;S2 terminates if S1 terminates and is followed by S2 that terminates. S1;S2 breaks (resp. non-
terminates) if either S1 breaks (resp. nonterminates) or S1 terminates and is followed by S2 that
breaks (resp. nonterminates).

For a given execution of the conditional if (B) S1 else S2 only one branch is taken, so the
semantics of the other one will be empty by definition (3) of JBK♯𝑒 that should return �♯+2 and
3.2.D.b.

Example 3.5. Assume that S1 never terminates in that JS1K♯� = ⊺♯∞ (sometimes named “chaos”
modelling all possible nonterminating behaviors).Then, by (4), JS1;S2K♯� ≜ JS1K♯� ⊔♯∞ (JS1K♯𝑒 #♯JS2K♯�)
= ⊺♯∞ ⊔♯∞ (JS1K♯𝑒 #♯ JS2K♯�) = ⊺♯∞ meaning that S1;S2 never terminates either in chaos.
For the conditional, assume B is always true and S1 never terminates in that JS1K♯� = ⊺♯∞. Then

the false branch is never taken so that J¬B;S2K♯� = �♯∞. It follows, by (4), that Jif (B) S1 else S2K♯�
≜ JB;S1K♯� ⊔♯∞ J¬B;S2K♯� = ⊺♯∞ ⊔♯∞ �♯∞ = ⊺♯∞ so that the conditional if (B) S1 else S2 never termi-
nates. ∎

3.4.3 Iteration. For iteration while (B) S, we define the transformers
backward ⃗𝐹 ♯𝑒 ≜ 𝝀𝑋 ∈ L♯+ . init♯ ⊔♯+ (JB;SK♯𝑒 #♯ 𝑋) (5)
forward 𝐹 ♯𝑒 ≜ 𝝀𝑋 ∈ L♯+ . init♯ ⊔♯+ (𝑋 #♯ JB;SK♯𝑒) (6)
infinite 𝐹 ♯� ≜ 𝝀𝑋 ∈ L♯∞ . JB;SK♯𝑒 #♯ 𝑋 (7)

Lemma 3.6 (Finite fixpoints well-definedness). A◯ If D♯+ is a well-defined increasing chain
complete join semilattice and #♯ left satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯+ then ⃗𝐹 ♯𝑒 satisfy the same property and its least fixpoint deso exist (and similarly for
𝐹 ♯𝑒 when #♯ right satisfies any one of the properties listed in 3.2.D.d).

Let us show that lfp⊑♯+ ⃗𝐹 ♯𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑒 inductively defines the set of finite executions reaching the

entry of the iteration while(B) S after zero or more terminating body iterations. To see that, we
define

the powers ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of𝑋 ∈ L♯+ are𝑋 0 ≜ init♯,𝑋𝛿+1 ≜𝑋 #♯𝑋𝛿 for successor ordinals,
and 𝑋𝜆 ≜ ⊔♯+𝛽<𝜆 𝑋 𝛽 for limit ordinals.

(8)

We now characterize the executions of iterations in terms of the fixpoints of the execution trans-
formers 5—6. We show that lfp⊑♯+ ⃗𝐹 ♯𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑒 inductively characterize 0 or more finite iterations

of the loop body for which the loop condition holds and the loop body terminates.

Lemma 3.7 (Commutativity). A◯ If D♯+ is a well-defined complete lattice (resp. increasing chain-
complete poset) with right existing ⊔♯+-preserving (resp. right upper continuous) composition #♯ and
𝑋 ∈ L♯+ then ∀𝛿 ∈ O . 𝑋 #♯ 𝑋𝛿 = 𝑋𝛿 #♯ 𝑋 (resp. if ⟨𝑋𝛿 , 𝛿 ∈ O⟩ is an increasing chain).

Lemma 3.8 (Finite body iteRations). A◯ If D♯+ is a well-defined increasing chain-complete
join semilattice with right upper continuous composition #♯ then lfp⊑

♯
+ ⃗𝐹 ♯𝑒 = ⊔♯+

𝛿∈O
(JB;SK♯𝑒)𝛿 .

Lemma 3.9 (FoRwaRd veRsus bacKwaRd). A◯ If D♯ is a well-defined increasing chain-complete
join semilattice with right upper continuous sequential composition #♯ then lfp⊑

♯
+ ⃗𝐹 ♯𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑒 .

Example 3.10. Assume that the test B of the iteration while (B) S is always false, that is test♯JBK =
�♯∞. Then, by (5), (6), (3.2.D.b), and def. lub, ⃗𝐹 ♯𝑒 = 𝐹 ♯𝑒 = 𝝀𝑋 ∈ L♯+ . init♯. It follows that lfp⊑♯+ ⃗𝐹 ♯𝑒 =
2unless the semantics of Boolean expressions is to be very exotic.
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lfp⊑
♯
+ 𝐹 ♯𝑒 = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more

iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). A◯ If D♯∞ is a well-defined decreasing
chain complete poset and #♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then 𝐹 ♯� satisfies the same property and gfp⊑

♯
∞ 𝐹 ♯� does exist.

We now show that gfp⊑♯∞ 𝐹 ♯� coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). A◯ If D♯ is a well-defined decreasing chain-complete
poset and #♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑

♯
∞ 𝐹 ♯� = ⊓♯∞𝛿∈O((JB;SK♯𝑒)𝛿 #♯ ⊺♯∞).

The abstract semantics of iteration is defined asJwhile (B) SK♯𝑒 ≜ (lfp⊑♯+ ⃗𝐹 ♯𝑒) #♯ (J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏) Jwhile (B) SK♯𝑏 ≜ �♯+ (9)Jwhile (B) SK♯𝑏𝑖 ≜ (lfp⊑♯+ ⃗𝐹 ♯𝑒) #♯ JB;SK♯� Jwhile (B) SK♯𝑙𝑖 ≜ gfp⊑
♯
∞ 𝐹 ♯� (10)Jwhile (B) SK♯� ≜ Jwhile (B) SK♯𝑏𝑖 ⊔♯∞ Jwhile (B) SK♯𝑙𝑖 (11)

The least fixpoint lfp⊑♯+ ⃗𝐹 ♯𝑒 defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐹 ♯�, and obtained as the limit of iterations
of 𝐹 ♯� from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. A◯ If D♯ is well-defined then for all S ∈ S, JSK♯𝑒 , JSK♯𝑏 , and JSK♯� are well-defined.
3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows

L♯ ≜ (𝑒 ∶ L♯+ × � ∶ L♯∞ ×𝑏𝑟 ∶ L♯+) (12)JSK♯ ≜ ⟨𝑒 ∶ JSK♯𝑒 , � ∶ JSK♯�, 𝑏𝑟 ∶ JSK♯𝑏⟩
If 𝑇 = ⟨𝑒 ∶ 𝐹, � ∶ 𝐼 , 𝑏𝑟 ∶ 𝐵⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑇 using the field selectors 𝑒 , 𝑏𝑟 , and �, as follows

𝑇+ = 𝐹 , 𝑇∞ = 𝐼 , and 𝑇𝑏𝑟 = 𝐵. (13)
By convention,

The shorthand 𝐹 denotes ⟨𝑒 ∶ 𝐹, � ∶ �♯∞, 𝑏𝑟 ∶ �♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics JSK♯ ∈ L♯ records three components JSK♯𝑒 , JSK♯�, and JSK♯𝑏 of the definition of
the algebraic semantics of statements S in sect. 3.4.

Lemma 3.14. A◯ If D♯ is a well-defined chain-complete join semilattice (respectively complete
lattice) with sequential composition #♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has
the same structure, componentwise.
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All semantic definitions are extended componentwise. For #♯ ∈ L♯ × L♯ → L♯, we define
⟨𝑜𝑘 ∶⟨𝑒 ∶𝐹1,�∶𝐼1⟩, 𝑏 ∶𝐵1⟩ #♯ ⟨𝑜𝑘 ∶⟨𝑒 ∶𝐹2,�∶𝐼2⟩, 𝑏 ∶𝐵2⟩ ≜ ⟨𝑜𝑘 ∶⟨𝑒 ∶𝐹1 #♯ 𝐹2,�∶𝐼1 ⊔♯∞ (𝐹1 #♯ 𝐼2)⟩, 𝑏 ∶𝐵1 ⊔♯+ (𝐹1 #♯ 𝐵2)⟩
so that, by (4), JS1;S2K♯ = JS1K♯ #♯ JS2K♯. (15)

RemaRK 3.15. The semantic domain of our algebraic semantics is much more refined than tra-
ditional ones such as [57] where, the computational and logical ordering are subset inclusion and,
following the denotational semantics [80] approach, “Nontermination has to be represented by a
fictitious “state at infinity” that can be “reached” only by a non-terminating program. Also, if the
fictitious state is in the image of a state, then that image is universal.” [56]. This can be achieved
by instantiation e.g. to a trace semantics followed by an abstraction (mapping infinite traces to the
“fictitious “state at infinity””).

Moreover, we do not specify the algebraic semantics by “laws” (or axioms) but in structural
fixpoint form, which is known to be equivalent, according to the generalization [25] of Peter Aczel
correspondance [2] between deductive/proof systems and fixpoint definitions.The “laws” for basic
statements are the definitions (3). The other “laws” for structured statements and iteration are
theorems following from the definition 3.2 of an abstract domain and fixpoint induction principles
[19] following from propositions 2.3 and 2.4. ∎

All semantics in [4, 18, 41] can be instantiated to the algebraic abstract semantics of sect. 3.5.
There are obviously others, such as symbolic execution [61] (extended to infinite behaviors). For
semantics defined by transformations such as compilation, the transformation is an instance of
the algebraic abstract semantics, but the semantics of the transformed program is not, because of
a different syntax, although it can certainly be also defined in an algebraic style.

The original definition of hyperproperties [14] was relative to a trace (or path) semantics JSK𝜋
which, as shown in the appendix A◯, is an instance of the algebraic abstract semantics JSK♯ where
the domain D♯+ is the complete lattice D𝜋

+ of sets of finite traces and the domain D♯∞ is the complete
latticeD𝜋

∞ of sets of infinite traceswhere traces account for the successive values taken by variables
during execution, as recorded in states. All operators preserve arbitrary joins. For lower continuity,
see counterexample B.1 for infinite traces and the following lower continuity proof for finite traces.
Notice that the algebraic semantics can be instantiated to semantics of probabilistic and quan-

tum programs. In this cases the hyperlogics developed in this paper, which differentiate between
computational and approximation orders, apply to probabilistic programs [33, 79] and to quantum
programs [39, 84, 85]

4 Structural Fixpoint Natural Relational Semantics
The structural fixpoint natural relational semantics of [21, sect. II.1] is an instance of the algebraic
semantics of sect. 3. Given states Σ, � /∈ Σ denoting nontermination, and Σ� ≜ Σ∪ {�}, the finitary
domain L𝜚+ ≜ ⟨℘(Σ×Σ), ⊆⟩ in 3.2.A and the infinitary domain L𝜚∞ ≜ ⟨℘(Σ×{�}), ⊆⟩ in 3.2.C are both
complete lattices for set inclusion ⊆ so �𝜚+ = ∅. We let 1 be the identity function. The primitives
3.2.B are well-defined.

assign𝜚 Jx, AK ≜ {⟨𝜎, 𝜎[x← AJAK𝜎]⟩ ∣ 𝜎 ∈ Σ} init𝜚 ≜ 1

rassign𝜚 Jx, 𝑎,𝑏K ≜ {⟨𝜎, 𝜎[x← 𝑖]⟩ ∣ 𝜎 ∈ Σ ∧ 𝑎 − 1 < 𝑖 < 𝑏 + 1} break𝜚 ≜ 1 (16)
test𝜚 JBK ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ BJBK} skip𝜚 ≜ 1

𝑟 #𝜚 𝑟 ′ ≜ {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ 𝑟} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ 𝑟 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑟 ′}#𝜚 left preserves arbitrary joins ∪ on ℘(Σ × Σ�). #𝜚 right preserves non empty joins ∪ on
℘(Σ× Σ�). #𝜚 is right increasing (but not necessarily lower continuous for the finitary and
infinitary domains) A◯.

(17)
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Example 4.1. Define S1 ≜ while (y!=0) y=y-1; with relational semanticsJS1K𝜚 = ⟨𝑒 ∶ {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) ⩾ 0}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎(y) < 0}, 𝑏𝑟 ∶ ∅⟩
meaning that S1 terminates with y = 0when y is initially positive and otherwise does not terminate.

Define S2 ≜ y=[-oo,oo]; S1 with relational semanticsJS2K𝜚 = ⟨𝑒 ∶ {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎 ∈ Σ}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ}, 𝑏𝑟 ∶ ∅⟩
meaning that either S2 terminates with y=0 or does not terminate A◯. ∎

Example 4.2. Define S3 ≜ while (x!=0) { S2 x=x-1; } with relational semanticsJS3K♯ = ⟨𝑒 ∶ {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎(x) > 0}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0}, 𝑏𝑟 ∶ ∅⟩
meaning that S3 terminates because either the loop is not entered or it is entered with x > 0 and
S2 terminates at each iteration setting y to 0. S3 does not terminate when the loop is entered and
either its body does not terminate or x < 0.
Define S4 ≜ x=[-oo,oo]; S3 with relational semanticsJS4K♯ = ⟨𝑒 ∶ {⟨𝜎, 𝜎[x← 0]⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎 ∈ Σ}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ}, 𝑏𝑟 ∶ ∅⟩

meaning either termination with x=0 (when x is randomly assigned 0) or with x=0 and y=0 (when
x is randomly assigned a positive number while x is randomly assigned a positive number or zero)
or nontermination (when x is randomly assigned a negative number or x is randomly assigned
a positive number and y are randomly assigned a negative number). A◯. In this example, the
fixpoint iterations are infinite but would be transfinite for a transition semantics (corresponding
to the lexicographic ordering for the nested loops) [18]. ∎

5 Algebraic Program Execution Properties
5.1 Algebraic Execution Properties
Traditionally, logics involve two formal languages, one to express programs and another one to
express properties of the program executions. The syntax and semantics of these programming
and logic languages are considered to be different. Therefore, in addition to the program syntax
and semantics, this traditional approach requires to define the syntax and semantics of the logic
expressing program properties.

A semantics JSK♯ ∈ L♯ in (12) is an abstraction of a property of the executions of the statement
S. Therefore L♯ will be the domain of execution properties whether used to describe the semantics
or logic properties of programs executions. This will avoid us the necessary traditional distinction
between programs semantics and program properties.

This idea follows [52–54]’s slogan that “Programs are predicates” and define properties of pro-
gram executions as programs (which semantics is already defined). It is also found in Dexter
Kozen’s Kleene algebra with tests [62, 63, 82]. Therefore, from an abstract point of view, program
execution specification and verification need nothing more than programs and an associated cal-
culus post♯ on programs.

5.2 The Algebraic Program Execution Property Transformer
Let us define the transformer post♯ ∈ L♯ ↗Ð→L♯ ↗Ð→L♯ such that

post♯(𝑆)𝑃 ≜ 𝑃 #♯ 𝑆 (18)
where 𝑆 is a semantics in L♯ as defined by (12) and #♯ is defined by (15). If 𝑃 is a precondition when
at S then post♯JSK♯𝑃 is the postcondition after S (including when breaking out of S).

For example, using the shorthand (14), post♯(𝑆)init♯ = 𝑆 by 3.2.D.a and post♯(𝑆)𝑃 = 𝑃 for all
𝑃 ∈ L♯∞ by 3.2.D.c.
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In definition (18) of “predicate transformers” the meaning of “predicates” about programs exe-
cutions is abstracted away as programs specifying executions. Further abstractions will yield the
classic understanding of “predicates”, “abstract property”, etc.The classic Galois connections post–
p̃re [20, (12.22)] and post–post−1 [20, (12.6)] are still valid with this different definition of post.

The following lemmas show that the post transformer inherits the properties of sequential com-
position. It applies e.g. to ⟨L♯+, ⊑♯+⟩ in 3.2.A, ⟨L♯∞, ⊑♯∞⟩ in 3.2.C, or ⟨L♯, ⊑♯⟩ in (12).

Lemma 5.1. A◯ Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let # be the sequential
composition on 𝐿. If # left-satisfies any one of the properties of definition 2.2 or their dual then for all
𝑆 ∈ L, post(𝑆) satisfies the same property.

The following Galois connection shows the equivalence of forward/deductive and backward/ab-
ductive reasonings on the program semantics.

Lemma 5.2. A◯ If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition # is existing ⊔ left preserving
then we have the Galois connection

∀𝑆 ∈ L . ⟨L, ⊑⟩ −−−−−−−−→←−−−−−−−−
post(𝑆)

p̃re(𝑆)
⟨L, ⊑⟩ where p̃re(𝑆)𝑄 ≜ ⊔{𝑃 ∈ L ∣ post(𝑆)𝑃 ⊑ 𝑄}). (19)

Lemma 5.3. A◯ Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let # be the sequential
composition on 𝐿. If # right-satisfies any one of the properties of definition 2.2 or their dual then post
satisfies the same property.

The following Galois connection formalizes Dijkstra’s program inversion [36].

Lemma 5.4. A◯ If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition # is existing ⊔ right
preserving then we have the following Galois connection (L ⊔Ð→ L is the set of existing join preserving
operators on L and ⊑ is the pointwise extension of ⊑)

⟨L, ⊑⟩ −−−−−−−→←−−−−−−−
post

post−1

⟨L ⊔Ð→ L, ⊑⟩ where post−1(𝑇 ) = ⊔{𝑆 ∈ L ∣ post(𝑆) ⊑ 𝑇}. (20)

5.3 A Calculus of Algebraic Program Execution Properties
We derive the sound and complete post♯ calculus by calculational design, as follows.

TheoRem 5.5 (PRogRam execution pRopeRty calculus). A◯ If D♯ is a well-defined increasing
and decreasing chain-complete join semilattice with right upper continuous sequential composition #♯
then
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12 P. Cousot and J. Wang

post♯Jx = AK♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (21)
post♯Jx = [𝑎, 𝑏]K♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ rassign♯Jx, 𝑎,𝑏K, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (22)

post♯JskipK♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ skip♯, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (23)
post♯JBK♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ test♯JBK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (24)

post♯JbreakK♯𝑃 = ⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ (25)
post♯JS1;S2K♯𝑃 = post♯JS2K♯(post♯JS1K♯𝑃) (26)

post♯Jif (B) S1 else S2K♯𝑃 = post♯JB;S1K♯𝑃 ⊔♯ post♯J¬B;S2K♯𝑃 (27)
𝐹 ♯𝑝𝑒 ≜ 𝝀𝑃 .𝝀𝑋 .post♯(init♯)𝑃 ⊔♯+ post♯(JB;SK♯𝑒)(𝑋) (28)

𝐹 ♯𝑝� ≜ 𝝀𝑋 .post♯(𝑋)(JB;SK♯𝑒) (29)

post♯Jwhile (B) SK♯𝑃 = ⟨𝑜𝑘 ∶ ⟨𝑒 ∶ post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))), (30)

� ∶ post♯(JB;SK♯�)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))) ⊔♯∞
post♯(gfp⊑♯∞ 𝐹 ♯𝑝�)𝑃 ⟩,

𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩
is sound and complete.

RemaRK 5.6. By defining the appropriate primitives, the post program execution calculus (21)
— (30) of theorem 5.5 is an instance of the generic abstract semantics (12). ∎

Example 5.7 (Finitary powerset deterministic calculational domain). In [5], the while language is
deterministic and has no breaks so the random assignment and breaks have to be eliminated in (3).
The denotational semantics is JSK ∈ (Σ×Σ)� → (Σ×Σ)� where (Σ×Σ)� is the domain of relations
between states extended by � to denote nontermination with Scott flat ordering ⊑.

Anticipating on the abstractions of part II, this is an abstraction [18, sect. 8.2] of the trace se-
mantics of sect. B. Then a semantic abstraction 8.1 gets rid of nontermination [18, sect. 8.1.6] and
another one [18, sect. 9.1] abstracts relations to transformers to yield the collecting semantics [5,
p. 876].

Skipping these abstractions of the trace semantics, we can directly instantiate the generic ab-
stract semantics of sect. 3 to a finitary relational semantics such as J𝑆K𝑒 in [21]. Then post♯ in (18)
becomes post♯(𝑆)𝑃 = {⟨𝜎, 𝜎 ′′⟩ ∣ ∃𝜎 ′ ∈ Σ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑃 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑆}, which is a specification
of the collecting semantics postulated in [5, p. 876]. post♯(𝑆) preserves arbitrary unions so, in ab-
sence of breaks and ignoring nontermination, together with JBK♯𝑒 ○ JBK♯𝑒 = JBK♯𝑒 , JBK♯𝑒 ○ J¬BK♯𝑒 = ∅,
andJskipK♯𝑒 = init♯ by 3.2.D.a, (30) in theorem 5.5 simplifies to

post♯Jwhile (B) SK♯𝑃 = post♯(J¬BK♯𝑒)(lfp⊆ 𝝀𝑋 .𝑃 ∪ post♯(Jif (B) S else skipK♯𝑒)(𝑋)
which is precisely the data-independent abstraction of the collecting semantics of [5, p. 876]. ∎

5.4 Algebraic Logics of Program Execution Properties

By defining {𝑃 } S{𝑄 } ≜ (⟨𝑃, 𝑄⟩ ∈ ▴𝛼(JSK♯)) with ▴𝛼(𝑆) ≜ {⟨𝑃, 𝑄⟩ ∣ post♯(𝑆)𝑃 ⊑♯ 𝑄} and dually
{𝑃 } S{𝑄 } ≜ (⟨𝑃, 𝑄⟩ ∈ ▾𝛼(JSK♯)) with ▾𝛼(𝑆) ≜ {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊑♯ post♯(𝑆)𝑃}, we respectively get the
abstract version [20, chapter 26] of Hoare logic [55] and that of reverse/incorrectness logic [32, 75]
(extended to loops breaks and nontermination [21, 65]). This is now classic and will be used but
not be further detailled.
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6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝑅𝑖 ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝑅𝑓 ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣
∀𝑆1, 𝑆2 ∈ P . ∀𝑃1, 𝑃2 ∈ L♯+ . ⟨𝑃1, 𝑃2⟩ ∈ 𝑅𝑖 Ô⇒ ⟨post♯(𝑆1)𝑃1, post♯(𝑆2)𝑃2⟩ ∈ 𝑅𝑓 }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀𝑆1, 𝑆2 ∈ P . ∀𝑃1, 𝑃2 ∈ L♯+ . 𝛼1(𝑃1) =
𝛼1(𝑃2) Ô⇒ 𝛼2(post♯(𝑆1)𝑃1) = 𝛼2(post♯(𝑆2)𝑃2)} for abstractions 𝛼1 ∈ L♯ → 𝐴1 and 𝛼2 ∈ L♯ → 𝐴2

with special case 𝛼1 = 𝛼2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀𝑆1, 𝑆2 ∈
P . ∃𝑆 ∈ P . ∀𝑃1, 𝑃2 ∈ L♯+ . ∀𝑃 ∈ 𝑆 . ⟨𝑃, 𝑃1⟩ ∈ 𝑅𝑖 Ô⇒ ⟨post♯(𝑆1)𝑃, post♯(𝑆2)𝑃2⟩ ∈ 𝑅𝑓 }. ∎

6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗Ð→℘(L♯)
Post♯(𝑆)P ≜ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯Jif (B) S1 else S2K♯P
= {post♯Jif (B) S1 else S2K♯𝑃 ∣ 𝑃 ∈ P} Hdef. (31) of Post♯(𝑆)I
= {post♯JB;S1K♯𝑃 ⊔♯ post♯J¬B;S2K♯𝑃 ∣ 𝑃 ∈ P} H(27)I (32)
⊆ {post♯JB;S1K♯𝑃1 ⊔♯ post♯J¬B;S2K♯𝑃2 ∣ 𝑃1 ∈ P ∧ 𝑃2 ∈ P} Hdef. ⊆I (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯JB;S1K♯𝑃1 ∣ 𝑃1 ∈P} ∧𝑄2 ∈{post♯J¬B;S2K♯𝑃2 ∣ 𝑃2 ∈P}} Hdef. ∈I
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯JB;S1K♯P ∧𝑄2 ∈Post♯J¬B;S2K♯P} Hdef. (31) of Post♯(𝑆)I
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(𝑆)𝑃} = Post♯(𝑆){𝑃} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯JB;S1K♯𝑃} ∧𝑄2 ∈ {post♯J¬B;S2K♯𝑃} ∧ 𝑃 ∈ P} Hdef. singleton and ∈I
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P} Hdef. (31) of Post♯(𝑆)I
so that Post♯Jif (B) S1 else S2K♯ is exactly defined structurally as a function of the components
Post♯JB;S1K♯ and Post♯J¬B;S2K♯.
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Of course, this element wise reasoning may be considered inelegant. Its necessity becomes more
clear when considering the trace semantics of sect. B. When reasoning on paths e.g. in an iteration
statement, the same paths must be considered consistently at each iteration.This requirement may
be lifted after abstraction, for example with invariants which forget about computation history. For
backward reasonings, we define Pre such that for all 𝑆 ∈ L♯, we have A◯

Pre(𝑆)Q ≜ {𝑃 ∣ post♯(𝑆)𝑃 ∈ Q} (35) ⟨℘(L♯), ⊆⟩ −−−−−−−−−→←−−−−−−−−−
Post♯(𝑆)

Pre(𝑆)
⟨℘(L♯), ⊆⟩ (36)

If D♯ is a well-defined chain-complete lattice with right finite 𝑥⊔ preservation composition #♯
then we have ( 𝑥⊔, 𝑥 ∈ {+,∞}, stands for ⊔♯+ in definition 3.2.A when 𝑥 = + and for ⊔♯∞ in definition
3.2.C when 𝑥 =∞) A◯

Post♯(𝑆1 𝑥⊔ 𝑆2)P = (Post♯(𝑆1) 𝑥⊔ Post♯(𝑆2))P (37)
where (𝑆1 𝑥⊔ 𝑆2)P ≜ {𝑄1 𝑥⊔𝑄2 ∣ 𝑄1 ∈ 𝑆1{𝑃} ∧𝑄2 ∈ 𝑆2{𝑃} ∧ 𝑃 ∈ P}

RemaRK 6.2. Contrary to join preservation lemma 5.1 for post, Post may not preserve existing
joins and meets so that, in general, ⊔

𝑖∈Δ
Post♯(𝑆𝑖) ≠ Post♯(⊔

𝑖∈Δ
𝑆𝑖) and dually. For example, let P be

a semantic property. By (31), ⊔♯+
𝑛∈N

Post♯((JB # SK♯)𝑛)P = ⊔♯+
𝑛∈N
{post♯((JB # SK♯)𝑛)𝑃 ∣ 𝑃 ∈ P} is the set

of finite executions, for every precondition 𝑃 ∈ P , reaching the entry of the iteration while(B) S

after exactly 𝑛 terminating body iterations, for all 𝑛 ∈ N. On the contrary Post♯(⊔♯+
𝑛∈N
(JB # SK♯)𝑛)P =

{post♯(⊔♯+
𝑛∈N
(JB # SK♯)𝑛)𝑃 ∣ 𝑃 ∈ P} = {⊔♯+

𝑛∈N
post♯((JB # SK♯)𝑛)𝑃 ∣ 𝑃 ∈ P} is the set of finite executions,

for every precondition 𝑃 ∈ P , reaching the entry of the iteration while(B) S after any number of
terminating body iterations. ∎

6.3 A Calculus of Algebraic Semantic (Hyper) Properties
In the calculational design of the Post♯, we will need the following trivial proposition.

PRoposition 6.3 (Singleton fixpoint). There is an obvious isomorphism between a poset ⟨𝐿, ⊑, �,
⊔⟩ and its singletons ⟨�̆�, ⊑̆, �̆, ⊔̆⟩with �̆� ≜ {{𝑥} ∣ 𝑥 ∈ 𝐿}, {𝑥}⊑̆{𝑦} ≜ 𝑥 ⊑ 𝑦, �̆ ≜ {�}, {𝑥}⊔̆{𝑦} ≜ {𝑥⊔𝑦},
so that, for a increasing chain complete poset we have {lfp⊑ 𝐹} = {⊔𝛿∈O 𝐹

𝛿} = ⊔̆𝛿∈O{𝐹𝛿} = lfp ⊑̆ 𝐹
where ⟨𝐹𝛿 , 𝛿 ∈ O⟩ are the transfinite iterates of 𝐹 from � and 𝐹({𝑥}) ≜ {𝐹(𝑥)}. Dually for greatest
fixpoints.

We derive the sound and complete Post♯ calculus by calculational design, as follows.

TheoRem 6.4 (PRogRam semantic (hypeR) pRopeRty calculus). A◯ If D♯ is a well-defined in-
creasing and decreasing chain-complete join semilattice with right upper continuous sequential com-
position #♯ then
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Calculational Design of Hyperlogics by Abstract Interpretation 15

Post♯Jx = AK♯P = {⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (38)

Post♯Jx = [𝑎, 𝑏]K♯P = {⟨𝑒 ∶ 𝑃+ #♯ rassign♯Jx, 𝑎,𝑏K, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (39)

Post♯JskipKP = {⟨𝑒 ∶ 𝑃+ #♯ skip♯, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (40)

Post♯JBK♯P = {⟨𝑒 ∶ 𝑃+ #♯ test♯JBK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (41)

Post♯JbreakK♯P = {⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ ∣ 𝑃 ∈ P} (42)

Post♯JS1;S2K♯P = Post♯JS2K♯(Post♯JS1K♯P) (43)

Post♯Jif(B) S1 else S2K♯P = (Post♯JB;S1K♯ ⊔♯ Post♯J¬B;S2K♯)P (44)
˘⃗𝐹 ♯𝑝𝑒 ≜ 𝝀𝑃 .𝝀𝑋 .Post♯(init♯){𝑃} ⊔̆♯+ Post♯(JB;SK♯𝑒)(𝑋) (45)
𝐹 ♯𝑝� ≜ 𝝀𝑋 .⋃{Post♯(𝑆)(JB;SK♯𝑒) ∣ 𝑆 ∈ 𝑋} (46)

Post♯Jwhile(B) SK♯P = {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ (47)

𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧

𝑄�ℓ ∈ Post♯(JB;SK♯�)(lfp ⊑̆♯+ ( ˘⃗𝐹 ♯𝑝𝑒(𝑃))) ∧
∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ gfp ⊑̆

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P}

(where 𝑆1 𝑥⊔ 𝑆2 is defined in (37)) is sound and complete.

Example 6.5 (Finitary powerset calculational domain). Continuing example 5.7 ignoring breaks
and nontermination, the hypercollecting semantics of [5, p. 877] is

Post♯(J¬BK♯𝑒)(lfp⊆ 𝝀𝑋 .P ∪ Post♯(Jif (B) S else skipK♯𝑒)(𝑋)) (48)
= {Post♯(J¬BK♯𝑒)(Post♯(Jif (B) S else skipK♯𝑒)𝑛P) ∣ 𝑛 ∈ N}
= {Post♯(J¬BK♯𝑒)(Post♯(Jif (B) S else skipK♯𝑒)𝑛{𝑃}) ∣ 𝑛 ∈ N ∧ 𝑃 ∈ P}

≠ ⋃{Post♯(J¬BK♯𝑒)(lfp⊆ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∣ 𝑃 ∈ P}

By remark 6.2, this is different from (47) (even when ignoring nontermination and breaks) so that
[5, p. 877] is incomplete and cannot be used as a hypercollecting semantics for general hyperprop-
erties, as further discussed in sect. 20. Moreover (48) is unsound, invalidating [5, th. 1]. This will
be fixed by the weak hypercollecting semantics defined in (91). ∎

7 Abstract Logic of Semantic (Hyper) Properties
7.1 Definition of the Upper and Lower Abstract Logics

The upper (respectively lower) logic L♯ (resp. L♯) maps the semantics 𝑆 of a statement into a pair
of a precondition and postcondition that is L♯,L♯ ∈ L♯ → (℘(L♯) × ℘(L♯)) ordered pointwise by ⊆
(the larger the precondition, the larger is the postcondition). We have

L♯(𝑆) ≜ {⟨P, Q⟩ ∣ Post♯(𝑆)P ⊆ Q} (49)

where ⟨P, Q⟩ ∈ L♯JSK♯ is traditionally written {∣P ∣} S{∣Q ∣}. The ⊆-dual holds for the lower abstract
logic. As was the case in sect. 5.4 for execution properties, this is an abstraction ▴𝛼(P) ≜ 𝝀𝑆 .{⟨P,
Q⟩ ∣ P(𝑆)P ⊆ Q}

⟨L♯ → ℘(L♯) ↗Ð→℘(L♯), ⊆⟩ −−−→Ð→←−−−−−
▴
𝛼

▴
𝛾

⟨L♯ → (℘(L♯) × ℘(L♯)), ⊆⟩ (50)
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where L♯(𝑆) = ▴𝛼(Post♯)𝑆 .
Defining the upper and lower logic triples

{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯JSK♯ = Post♯JSK♯P ⊆ Q = ∀𝑃 ∈ P . post♯JSK♯𝑃 ∈ Q (51)
{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯JSK♯ = Q ⊆ Post♯JSK♯P = ∀𝑄 ∈ Q . ∃𝑃 ∈ P . post♯JSK♯𝑃 = 𝑄
(where for symmetry, we can write {∣P ∣} S{∣Q ∣} ≜ ∀𝑃 ∈ P . ∃𝑄 ∈ Q . post♯(𝑆)𝑃 = 𝑄 .) We get
generalizations of Hoare logic [55] and incorrectness logic [32, 75] from execution to semantic
properties.

Example 7.1 (Finitary powerset nondeterministic calculational domain). In [29, 30], the relational
semantics is identical to that of [5] in example 5.7 but for a nondeterministic language. Nonter-
mination is abstracted away. The extended semantics [29, 30, Definition 4] is post♯(𝑆)𝑃 = {⟨𝜎,
𝜎 ′′⟩ ∣ ∃𝜎 ′ ∈ Σ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑃 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑆}, the same as in example 5.7. Hyper-triples {∣P ∣} S{∣Q ∣}
are defined in [29, 30, Definition 5] to be the powerset instance of (51), the same instance used in
example 5.7. ∎

The upper and lower abstract logics can always be expressed in terms of singleton (although the
equivalent formula is not part of the logic).

Lemma 7.2. A◯ {∣P ∣} S{∣Q ∣} ⇔ ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {∣ {𝑃} ∣} S{∣ {𝑄} ∣} (a)
{∣P ∣} S{∣Q ∣} ⇔ ∀𝑄 ∈ Q . ∃𝑃 ∈ P . {∣ {𝑃} ∣} S{∣ {𝑄} ∣} (b)

CoRollaRy 7.3. A◯ (∃𝑃 ∈ P . {∣ {𝑃} ∣} S{∣ {𝑄} ∣})⇔ {∣P ∣} S{∣ {𝑄} ∣}.

For singletons, the two logics are equivalent.

Lemma 7.4. A◯ For all 𝑃,𝑄 ∈ L♯, {∣ {𝑃} ∣} S{∣ {𝑄} ∣} = {∣ {𝑃} ∣} S{∣ {𝑄} ∣}.

7.2 The Proof Systems of the Upper and Lower Abstract Logics
Since the definition (38)—(47) of Post♯JSK♯ by a Hilbert proof system is structural, it is the same for
the logics. Following [21], this is obtained by Aczel correspondance between set-based fixpoints
and proof rules [2]. For iteration fixpoint, over-approximation is provided by [21, th. II.3.4] gen-
eralizing Park fixpoint induction [77], whereas under-approximation can be handled by [21, th.
II.3.6] generalizing Scott’s induction or [21, th. II.3.8] generalizing Turing/Floyd variant functions.
Therefore the sound and complete Hilbert deductive system can be designed calculationally to

be the following (where P,Q ∈ ℘(L♯), & and {∣P ∣} S{∣Q ∣} are respectively ⊆ and {∣P ∣} S{∣Q ∣} for
the Upper Abstract Logic and ⊇ and {∣P ∣} S{∣Q ∣} for the Lower Abstract Logic and the calculational
design proving theorem 7.5 follows in sect. 7.3).

TheoRem 7.5 (UppeR abstRact logic pRoof system). If D♯ is a well-defined increasing and
decreasing chain-complete join semilattice with right upper continuous sequential composition #♯ then
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{⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} x = A{∣Q ∣}

(52)

{⟨𝑒 ∶ 𝑃+ #♯ rassign♯Jx, 𝑎,𝑏K, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} x = [𝑎, 𝑏]{∣𝑄 ∣}

(53)

{⟨𝑒 ∶ 𝑃+ #♯ skip♯, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} skip{∣Q ∣}

(54)

{⟨𝑒 ∶ 𝑃+ #♯ test♯JBK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} B{∣Q ∣}

(55)

{⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} break{∣Q ∣}

(56)

{∣P ∣} S1 {∣Q ∣}, {∣Q ∣} S2 {∣R ∣}
{∣P ∣} S1;S2 {∣R ∣}

(57)

∀𝑃 ∈ P, ({∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q)
{∣P ∣} if (B) S1 else S2 {∣Q ∣}

(58)

(𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧ 𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P) ⇒

(⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∈ Q)
{∣I ∣} while (B) S{∣Q ∣}

(59)

is sound and complete.

Remarkably in (58) and (59), we have to consider all possible over approximations, and in (59)
𝑃𝑒 and𝑄�𝑏 must be exact fixpoints. This is because, for completeness and in full generality, hyper-
logics cannot make any approximation of the program semantics defined by post♯ in (31) hence
prohibiting approximations in (51).
Notice that no consequence rule is required for completeness, although they are sound A◯.

P ⊆ P ′, {∣P ′ ∣} S{∣Q′ ∣}, Q′ ⊆ Q
{∣P ∣} S{∣Q ∣}

P ′ ⊆ P, {∣P ′ ∣} S{∣Q′ ∣}, Q ⊆ Q′

{∣P ∣} S{∣Q ∣}
(60)

Example 7.6 (Choice). Let us define the choice S1 + S2 ≜ c = [0,1]; if (c) S1 else S2 where
auxiliary variable c does not appear in S1 nor in S2. The proof rule can be derived as follows
{∣P ∣} S1 + S2 {∣Q ∣}

⇔ {∣P ∣} c = [0,1]; if (c) S1 else S2 {∣Q ∣} Hdef. choice +I
⇔ ∃R . {∣P ∣} c = [0,1]{∣R ∣} ∧ {∣R ∣} if (c) S1 else S2 {∣Q ∣} Hsequential composition (57)I
⇔ ∃R . {𝑃 #♯ rassign♯Jc,0,1K ∣ 𝑃 ∈ P} ⊆R ∧ {∣R ∣} if (c) S1 else S2 {∣Q ∣} H(53)I
⇔ {∣ {𝑃 #♯ rassign♯Jc,0,1K ∣ 𝑃 ∈ P} ∣} if (c) S1 else S2 {∣Q ∣}HtakingR = {𝑃 #♯ rassign♯Jc,0,1K ∣ 𝑃 ∈ P}I
⇔ ∀𝑃 ∈ {𝑃 ′ #♯ rassign♯Jc,0,1K ∣ 𝑃 ′ ∈ P},𝑄1,𝑄2 . ({∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣}∧{∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣})⇒
(𝑄1 ⊔♯ 𝑄2 ∈ Q) H(58)I

⇔ ∀𝑃 ∈ P,𝑄1,𝑄2 . ({∣ {𝑃} ∣} S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣} S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q) (61)

, Vol. 1, No. 1, Article . Publication date: November 2024.



18 P. Cousot and J. Wang

Hassuming states where c is assigned 0 or 1, B is true for 0 and ¬B is true for 1 (or
conversely)I

so that we get the sound and complete rule
∀𝑃 ∈ P,𝑄1,𝑄2 . ({∣ {𝑃} ∣} S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣} S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q)

{∣P ∣} S1 + S2 {∣Q ∣}
(62)

Let us now consider the particular case post♯(𝑆)𝑃 = {⟨𝜎, 𝜎 ′′⟩ ∣ ∃𝜎 ′ ∈ Σ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑃 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑆}
as in example 5.7 (but this time with unbounded nondeterminism) so that ⊔♯ is ∪ in (62). Then (62)
is implied, but not conversely, by the proof rule

{∣P ∣} S1 {∣Q1 ∣}, {∣P ∣} S2 {∣Q2 ∣}
{∣P ∣} S1 + S2 {∣ {𝑄1 ∪𝑄2 ∣ 𝑄1 ∈ Q1 ∧𝑄2 ∈ Q2}∣}

(Choice)

of [29], which is sound but incomplete. For completeness, [29, p. 207:9] has to introduce an (Exist)
proof rule which amounts to the case by case analysis of rule (62). ∎

Example 7.7 (Finitary powerset nondeterministic calculational domain). Continuing example 7.1,
the iteration rule postulated in [29, 30, Fig. 2] is (59), ignoring nontermination and breaks, and
applying proposition 2.4 to reason on the fixpoint iterates. ∎

7.3 Calculational Design of the Proof System of the Upper Abstract Logic
PRoof of (52) — (59). The proof of soundness and completeness is by structural induction. We

show the calculational design for the iteration (59). The other cases are in the appendix A◯.

{∣P ∣} while (B) S{∣R ∣}
⇔ Post♯Jwhile (B) SK♯P ⊆R Hdef. (51) of the logic triplesI
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ 𝑄�ℓ ∈

Post♯(JB;SK♯�)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ ∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ gfp ⊑̆
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆RH(47)I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝐼𝑒 . 𝐼𝑒 ⊆ lfp ⊑̆
♯
+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏)𝐼𝑒∧𝑄�ℓ ∈

Post♯(JB;SK♯�)(𝐼𝑒) ∧ ∃𝐼� . 𝐼� ⊆ gfp ⊑̆♯∞ 𝐹 ♯𝑝� ∧𝑄�𝑏 ∈ 𝐼� ∧ 𝑃 ∈ P} ⊆RH(⇒) Take 𝐼𝑒 = lfp ⊑̆
♯
+ ˘⃗𝐹 ♯𝑝𝑒(𝑃), 𝐼� = gfp

⊑̆♯∞ 𝐹 ♯𝑝�, and ⊆ reflexive
(⇐) by (36), Post♯(𝑆) is ⊆-increasingI

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . {𝑃𝑒} = lfp
⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧ ∃𝑃� . {𝑃�} = gfp ⊑̆♯∞ 𝐹 ♯𝑝� ∧𝑄�𝑏 ∈ {𝑃�} ∧ 𝑃 ∈ P} ⊆RHIf 𝐼𝑒 is empty then Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)𝐼𝑒 is empty by (31), contrary to 𝑄𝑒 ∈
Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)𝐼𝑒 proving that 𝐼𝑒 cannot be empty. By (45), lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃) is a sin-
gleton, say {𝑃𝑒}. For 𝐼𝑒 to be non-empty and included in a singleton, it must be equal to
that singleton so 𝐼𝑒 = {𝑃𝑒}. The reasoning is the same for 𝐼� = {𝑃�}I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . {𝑃𝑒} = lfp
⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧ {𝑄�𝑏} = gfp ⊑̆♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆RH𝑄�𝑏 ∈ {𝑃�} if and only if 𝑄�𝑏 = 𝑃�𝑏I
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . {𝑃𝑒} = {lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃)} ∧ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒JB;SK♯𝑏){𝑃𝑒} ∧𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧ {𝑄�𝑏} = {gfp⊑♯∞ 𝐹 ♯𝑝�} ∧ 𝑃 ∈ P} ⊆R
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Hsince lfp ⊑̆
♯
+ ˘⃗𝐹 ♯𝑝𝑒(𝑃) = {lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)} by (45), proposition 6.3, and gfp ⊑̆

♯
∞ (𝐹 ♯𝑝�) =

{gfp⊑♯∞ 𝐹 ♯𝑝�} by (29) and proposition 6.3I
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R Hdef. set equalityI
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp

⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)∧{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧
{𝑄�ℓ} ⊆ Post♯(JB;SK♯�){𝑃𝑒} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R Hdef. ∈ and ⊆I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp
⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)∧{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆RHdef. (51) of {∣P ∣} S{∣Q ∣} ≜ (Q ⊆ Post♯JSK♯P)I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃) ∧ {𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒){𝑃𝑒} ⊔♯𝑒

Post♯(JB;SK♯𝑏){𝑃𝑒} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R H(37)I
⇔ {⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃) ∧ {𝑄 ′𝑒} ⊆ {𝑄𝑒 ⊔♯𝑒 𝑄𝑏 ∣ {𝑄𝑒} ⊆

Post♯(J¬BK♯𝑒){𝑃} ∧ {𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃} ∧ 𝑃 ∈ {𝑃𝑒}} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧ 𝑄�𝑏 =
gfp⊑

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R Hdef. (37) of ⊔♯𝑒 I

⇔ {⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ ∃𝑄𝑒 ,𝑄𝑏, 𝑃 . 𝑄 ′𝑒 = 𝑄𝑒 ⊔♯𝑒 𝑄𝑏 ∧

{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒){𝑃}∧{𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃}∧𝑃 ∈ {𝑃𝑒}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧𝑄�𝑏 =
gfp⊑

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆R Hdef. singleton and ⊆, renamingI

⇔ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ ∃𝑃 . {𝑄𝑒} ⊆

Post♯(J¬BK♯𝑒){𝑃} ∧ {𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃} ∧ 𝑃 ∈ {𝑃𝑒} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧ 𝑄�𝑏 =
gfp⊑

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆R Hreplacing 𝑄 ′𝑒 by its valueI

⇔ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒){𝑃𝑒}∧

{𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃𝑒} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆RHcorollary 7.3I
⇔ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣} ∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆RHdef. (51) of {∣P ∣} S{∣Q ∣} ≜ (Q ⊆ Post♯JSK♯P)I

⇔ (𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧𝑄�𝑏 =

gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P)⇒ ⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∈R Hdef. ⊆I

⇔ (𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧𝑄�𝑏 =

gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P)⇒ ⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∈R Hlemma 7.4I □

Propositions 2.3 and 2.4 can be used to characterize the fixpoints of increasing functions in (59).

7.4 Calculational Design of the Proof System of the Lower Abstract Logic
Apart from (52)—(57), the sound and complete induction rules for the lower abstract logic are
constructed by calculational design as follows.

TheoRem 7.8 (LoweR abstRact logic pRoof system). A◯ If D♯ is a well-defined increasing
and decreasing chain-complete join semilattice with right upper continuous sequential composition #♯
then
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∀𝑄 ∈ Q . ∃𝑃 ∈ P,𝑄1,𝑄2 . {∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣}∧{∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣}∧𝑄 = 𝑄1 ⊔♯ 𝑄2

{∣P ∣} if (B) S1 else S2 {∣Q ∣}
(63)

∀⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄 ′�, 𝑏𝑟 ∶ 𝑄 ′𝑏𝑟 ⟩ ∈ Q . ∃𝑄𝑒 ,𝑄𝑏,𝑄�ℓ ,𝑄�𝑏, 𝑃𝑒 . 𝑄
′
𝑒 = 𝑄𝑒 ⊔♯𝑒 𝑄𝑏 ∧𝑄 ′� =

𝑄�ℓ ⊔♯∞ 𝑄�𝑏 ∧𝑄 ′𝑏𝑟 = 𝑃
′
𝑏𝑟 ∧ 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣} ∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P

{∣P ∣} while (B) S{∣Q ∣}
(64)

PaRt II: AbstRaction of Semantics, Execution PRopeRties, Semantic
(HypeR) PRopeRties, Calculi, and Logics

Since hyperlogics deal with properties of semantics, there are four levels at which an abstraction
can be applied.

(1) The first level is that of the program semantics considered in appendix sect. 8 and illus-
trated by the relational semantics in example 8.4 abstracting the trace semantics of sect.
B. This abstraction is common in transformational logics [21] such as Hoare logic [55]
but also in hyperlogics [29, 30];

(2) The second level is that of program properties of sect. 5.1;
(3) The third level is that of program hyperproperties of sect. 6;
(4) The fourth level is that of the abstract logics of sect. 7.

(65)

Because logics are required to be sound and complete, abstractions should be exact so that any
proof of abstract properties in the concrete should be doable in the abstract. This relies on Ga-
lois retractions in sect. 2.5. The main result is that the abstraction of a logic of semantic (hyper)
properties of sect. 7 is a a logic of semantic (hyper) properties.

8 Abstraction of the Abstract Semantics
We show that the abstraction of an instance of the abstract semantics is itself an instance of the
abstract semantics.

Definition 8.1 (Semantic abstraction). We say that D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ is an exact (respectively ap-
proximate) abstraction of an abstract domain D♯ ≜ ⟨D♯+, D♯∞⟩ if and only if
A. There exists a Galois retraction ⟨L♯+, ⊑♯+⟩ −−−−→Ð→←−−−−−−

𝛼+

𝛾+
⟨L̄♯+, ⊑̄♯+⟩;

B. 𝛼+(init♯) = init
♯,𝛼+ ○ assign♯Jx, AK = assign♯Jx, AK ○ 𝛼+,𝛼+ ○ rassign♯Jx, 𝑎,𝑏K = rassign♯Jx, 𝑎,𝑏K

○ 𝛼+, 𝛼+ ○ test♯JBK = test♯JBK ○ 𝛼+, 𝛼+(break♯) = break♯, and 𝛼+(skip♯) = skip♯;
C. There exists a Galois retraction ⟨L♯∞, ⊒♯∞⟩ −−−−−→Ð→←−−−−−−

𝛼∞

𝛾∞
⟨L̄♯∞, ⊒̄♯∞⟩ (i.e. 𝛼∞ preserves existing ⊓♯∞);

D. For 𝑆 ∈ L♯+, 𝛼+(𝑆 #♯ 𝑆 ′) = 𝛼+(𝑆) #̄♯ 𝛼+(𝑆 ′) when 𝑆 ′ ∈ L♯+ and 𝛼∞(𝑆 #♯ 𝑆 ′) = 𝛼∞(𝑆) #̄♯ 𝛼∞(𝑆 ′)
when 𝑆 ′ ∈ L♯∞.

(respectively “⊑̄♯+” or “⊒̄♯∞” instead of “=” and −−→←−− instead of −−→Ð→←−−−− for approximate abstractions);

Following (12), the abstraction of the semantic domain and semantics are
L̄♯ ≜ (𝑒 ∶ L̄♯+ × � ∶ L̄♯∞ ×𝑏𝑟 ∶ L̄♯+) (66)

𝛼(⟨𝑒 ∶ 𝑆+, � ∶ 𝑆∞, 𝑏𝑟 ∶ 𝑆𝑏𝑟 ⟩) ≜ ⟨𝑒 ∶ 𝛼+(𝑆+), � ∶ 𝛼∞(𝑆∞), 𝑏𝑟 ∶ 𝛼+(𝑆𝑏𝑟 )⟩
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are well-defined such that
⟨L♯, ⊑♯⟩ −−−→Ð→←−−−−−

𝛼

𝛾
⟨L̄♯, ⊑̄♯⟩. (67)

Lemma 8.2. A◯ An exact abstraction D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ of a well-defined concrete domain D♯ ≜ ⟨D♯+,
D♯∞⟩ satisfying any one of the hypotheses 3.2.D.a to 3.2.D.d.i to 3.2.D.d.iv of definition 3.2 is a well-
defined abstract domain of the same nature.

TheoRem 8.3. A◯ If D̄♯ is an exact (respectively approximate) abstraction of D♯ then ∀S ∈ S .J̄SK̄♯ = 𝛼(JSK♯) (respectively “ ⊑̄♯” instead of “=” for approximate abstractions).

Example 8.4 (Relational semantics). The relational semantics JSK𝜚 of [21] is the following abstrac-
tion of the trace semantics JSK𝜋 .
𝛼+(𝑆) ≜ {⟨𝜎, 𝜎 ′⟩ ∣ ∃𝜋 . 𝜎𝜋𝜎 ′ ∈ 𝑆 ∩ Σ+} 𝛼∞(𝑆) ≜ {⟨𝜎, �⟩ ∣ ∃𝜋 . 𝜎𝜋 ∈ 𝑆 ∩ Σ∞}

It follows, by theorem 8.3, that ∀S ∈ S . JSK𝜚 = 𝛼(JSK𝜋) and by a classic calculational design, we
would get the relational semantics of [21, sect. I.1] (recalled in sect. 4 as a specific instance of the
algebraic semantics of sect. 3). ∎

9 Induced Abstraction of the Execution Transformer
We have defined properties of program executions as program semantics in L♯ (12).This formalizes
the observation that program semantics specify exactly the properties of all possible executions
of any program of the language. An abstraction (66) of the semantics in definition 8.1 induces an
execution transformer post♯ ∈ L̄♯ ↗Ð→ L̄♯ ↗Ð→ L̄♯ (18) for this abstract semantics A◯

𝛼(p) ≜ 𝝀𝑆 .𝝀𝑃 .𝛼(p(𝛾(𝑆))𝛾(𝑃))
post♯(𝑆)𝑃 ≜ 𝛼(post♯)(𝑆)𝑃 = 𝛼(post♯(𝛾(𝑆))𝛾(𝑃)) = 𝑃 #̄♯ 𝑆 (68)

Notice that defining 𝛾(p̄) ≜ 𝝀𝑆 .𝝀𝑃 .𝛾(p̄(𝛼(𝑆))𝛼(𝑃)), we have a Galois retraction A◯

⟨L♯ ↗Ð→L♯ ↗Ð→L♯, ⊑♯⟩ −−−→Ð→←−−−−−
𝛼

𝛾
⟨L̄♯ ↗Ð→ L̄♯ ↗Ð→ L̄♯, ⊑̄♯⟩ (69)

such that post♯ = 𝛼(post) in (68). Observe that if an abstraction D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ of an abstract
domain D♯ ≜ ⟨D♯+, D♯∞⟩ is commuting (71) then A◯

𝛼(post♯(𝛾(𝑆))𝑃) = post♯(𝑆)(𝛼(𝑃)) (70)

Lemma 9.1 (Commutation). A◯ If the abstraction D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ of an abstract domain D♯ ≜
⟨D♯+, D♯∞⟩ is exact then

𝛼(𝑃 #♯ 𝛾(𝑆)) = 𝛼(𝑃) #̄♯ 𝑆 and 𝛼(post(𝛾(𝑆))𝑃) = post(𝑆)(𝛼(𝑃)) (71)

Lemma 9.1 shows that doing the computation in the concrete and then abstracting is equiva-
lent to doing the computation in the abstract. Relative to the abstraction, no information is lost.
Moreover, instead of deriving the Galois connection (69) from that (67), we can start directly from
an abstraction of post given by (69). The abstract semantics is then 𝑆 = post♯(𝑆)skip proving the
equivalence of (65.1) and (65.2).

10 Induced Abstraction of the Semantic Transformer
The semantics transformer Post♯ ∈ L̄♯ → ℘(L̄♯)→ ℘(L̄♯) for this abstract semantics is A◯

¯̄𝛼(P) ≜ 𝝀𝑆 .𝝀P̄ .{𝛼(𝑅) ∣ 𝑅 ∈ P(𝛾(𝑆))({𝛾(𝑃) ∣ 𝑃 ∈ P̄})} (72)
Post

♯(𝑆)P̄ ≜ ¯̄𝛼(Post♯)(𝑆)P̄ = {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P̄} (73)
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Example 10.1 (Transformers for the relational semantics). For the relational semantics of example
8.4, the composition is 𝑆 #̄𝜚 𝑆 ′ = (𝑆 ∩ (Σ × {�})) ∪ (𝑆 ∩ (Σ × Σ) ○ 𝑆 ′) (intuitively S1;S2 does not
terminate if S1 does not terminate or S1 terminates but S2 doesn’t and terminates if both S1 and
S2 terminate with the composition of their effects). Then Post

𝜚 JSK𝜚P = {𝑃 #̄𝜚 JSK𝜚 ∣ 𝑃 ∈ P} so that
if P is a precondition relating the initial states of the command S to those of the program then
Post

𝜚 JSK𝜚 relates the final states of the command S or nontermination to the initial states of the
program. ∎

We have the Galois retraction A◯

⟨L♯ → ℘(L♯) ↗Ð→℘(L♯), ⊆⟩ −−−→Ð→←−−−−−
¯̄𝛼

¯̄𝛾
⟨L̄♯ → ℘(L̄♯) ↗Ð→℘(L̄♯), ⊆⟩ (74)

Observe that instead of deriving (74) from (69), it is equivalent to start from a Galois retraction
(74) since we can recover post from Post by (34).

11 Induced Abstraction of the Abstract Logics

Writing 𝑓 (𝑋) ≜ {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}, the abstract logic L♯ ∈ L̄♯ → (℘(L̄♯) × ℘(L̄♯)) is
¯̄̄𝛼(L) ≜ 𝝀𝑆 .{⟨P̄, Q̄⟩ ∣ 𝛼(⋂{Q ∣ ⟨𝛾(P̄), Q⟩ ∈ L(𝛾(𝑆))}) ⊆ Q̄} (75)

L
♯
(𝑆) ≜ ¯̄̄𝛼(L♯)(𝑆) L

♯(𝑆) ≜ ¯̄̄𝛼(L♯)(𝑆) (76)

TheoRem 11.1. A◯ If D̄♯ is an exact abstraction of D♯ then L
♯
(𝑆) = {⟨P̄, Q̄⟩ ∣ Post♯(𝑆)P̄ ⊆ Q̄}

(and L♯(𝑆) = {⟨P̄, Q̄⟩ ∣ Q̄ ⊆ Post♯(𝑆)P̄}).
It follows from theorem 11.1 that the logic proof system of theorem 7.5 is applicable to the upper

abstract logic L
♯
(𝑆) (and dually theorem 7.8 for the lower abstract logic).

In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics
have been shown to be equally expressible for exact abstractions, they do not really solve the
problem of the complexity of the resulting logic (although hyperproperties may be simpler). The
logics still have to handle exactly the (abstract) semantics occurring in the (hyper) properties.
So our proposed proof system has rules (52)—(59) plus simplified rules applicable to less general
classes of properties defined by the abstractions studied in the following part III.

PaRt III: AbstRactions foR Semantic (HypeR) Logics
The problem with (hyper) logics studied in part I (and their abstractions in part II) is that for a

program to satisfy a semantic (hyper) property, its semantics must exactly occur in this (hyper)
property and therefore the proof must exactly characterize the program semantics. So, contrary to
Hoare logic or its dual, (hyper) proof rules cannot make over or under approximations of the pro-
gram semantics in semantic properties. In this part III, we study abstractions of semantic properties
that yield simpler sound and complete proof rules for the less general semantic (hyper) properties
defined by the abstraction. Such abstractions can also provide representations of abstract semantic
(hyper) properties3.

12 Semantic to Execution Property Abstraction
12.1 Join Abstraction
The join abstraction 𝛼∪(P) ≜ ⋃P is classic to abstract set-based semantics (hyper) properties P
into execution properties 𝛼∪(P) [20, section 8.6]. It is relegated to the appendix A◯.
3Another example is the possible representation of semantic properties satisfying the decreasing chain condition by join
irreducibles [11, theorem 4.8].
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13 Homomorphic Semantic Abstraction
The homomorphic abstraction 𝛼(𝑆) ≜ {ℎ(𝑥) ∣ 𝑥 ∈ 𝑆} is also well known [21, exercise 11.6] and can
be used e.g. to define partial hypercorrectness, trace safety hyperproperties, etc. A◯.

14 Execution Property Elimination
Given a set I ∈ ℘(℘(L♯)) of semantic properties of interest, the Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−−−−−−→Ð→←−−−−−−−−−−−−
𝝀P .P ∩ I

𝝀Q .Q∪ I
⟨I, ⊆⟩

[20, exercise 11.5] eliminates the semantics of no interest. It can be used e.g. to handle 𝑘-semantic
properties A◯.

15 Principal Order Ideal Abstraction
15.1 Definition of the Principal Order Ideal Abstraction
Subject to the existence of the least upper bound, the principal ideal abstraction is

𝛼'(P) ≜ {𝑃 ∣ 𝑃 ⊑⊔P} (77)

Lemma 15.1. A◯ 𝛼' is an upper closure operator and ⟨𝛼'(℘(L)), ⊆, {�}, L, 𝝀𝑋 .𝛼'(∪𝑋), ∩⟩
is a complete lattice.

15.2 Proof Rule Simplification
If ⟨L, ⊑⟩ is a complete lattice and the composition preserves arbitrary existing limits in definition
3.2.D.d then proofs in the upper abstract semantic logic can be based on the classic upper abstract
execution property logic of section 5.4 for principal ideal closed properties and their dual A◯.

{⊔P} S{⊔Q}
{∣P ∣} S{∣Q ∣}

, 𝛼'(Q) = Q ∀𝑃 ∈ P . {𝑃} S{⊓Q}

{∣P ∣} S{∣Q ∣}
, 𝛼/(Q) = Q (78)

Example 15.2 (Proof reduction for principal ideal hyperproperties). Consider the instantiation for
the natural relational semantics in section 4 with no break. Define the assertional execution post-
condition 𝑄1 ≜ {𝜎 ∈ Σ ∣ 𝜎(𝑥) ≤ 10} with relational equivalent 𝑄2 ≜ Σ ×𝑄1 and hyperpropertyQ ≜
𝛼'(𝑄2) = 𝛼'(Σ×{𝜎 ∈ Σ ∣ 𝜎(𝑥) ≤ 10}) and similarlyP ≜ {(Σ×{𝜎 ∈ Σ ∣ 𝜎(𝑥) = 𝑛}) ∣ 𝑛 ∈ N∧𝑛 > 10}.
To prove the following hyperlogic triple {∣P ∣} while(x>10) x=x-1{∣Q ∣}, it is equivalent to prove
the following.
{∣P ∣} while(x>10) x=x-1{∣Q ∣}

⇔ {⋃P } while(x>10) x=x-1{⋃Q } HBy rule of (78)I
⇔ {Σ × {𝜎 ∈ Σ ∣ 𝜎(𝑥) > 10}} while(x>10) x=x-1{Σ × {𝜎 ∈ Σ ∣ 𝜎(𝑥) ≤ 10}}
Then one can use the over-approximation logic with termination proof in [22]. ∎

16 Order Ideal Abstraction
16.1 Definition of the Order Ideal Abstraction
The order ideal abstraction on ⟨℘(L), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ′ ∈ L ∣ ∃𝑃 ∈ P . 𝑃 ′ ⊑ 𝑃} ⟨℘(L), ⊆⟩ −−−−→Ð→←−−−−−−
𝛼⊑

1 ⟨𝛼⊑(℘(L)), ⊆⟩ (79)

𝛼⊑ is an upper closure operator and ⟨𝛼⊑(℘(L)), ⊆, ∅, L, 𝝀𝑋 .𝛼⊑(∪𝑋), ∩⟩ is a complete lattice [83,
theorem 4.1]. The order filter abstraction 𝛼⊒ is defined dually. Note that 𝛼'(P) = 𝛼⊑({⊔P}). As
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observed by [66, page 239] for subset-closed hyperproperties, all execution properties are order-
ideal closed for trace properties (where ⊑ is ⊆), but not conversely, citing observational determinism
[86] as a counterexample.

16.2 Proof Rule Simplification
The main interest of the order ideal/filter abstraction is the substantial simplification of the while
rules (59) and (64). To show this consider properties in 𝛼⊒

♯(℘(L♯) where ⊒♯ is defined component
wise on L♯ in (12) with ⊒♯+ on the exit and break components and ⊑♯∞ on the infinite component.
We abstract Post♯ in (31) to Post⊒

♯
∈ L♯ → 𝛼⊒

♯(℘(L♯)) ↗Ð→𝛼⊒
♯(℘(L♯)) by (P ∈ 𝛼⊒♯(℘(L♯)))

Post⊒
♯
(𝑆)P ≜ 𝛼⊒

♯
(Post♯(𝑆)P) = {𝑃 ′ ∈ L♯ ∣ ∃𝑃 ∈ Post♯(𝑆)P . 𝑃 ′ ⊒♯ 𝑃} Hdef. (79) of 𝛼⊒♯I

= {𝑃 ′ ∈ L♯ ∣ ∃𝑃 ∈ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} . 𝑃 ⊑♯ 𝑃 ′}Hdef. (31) of Post and inversion of ⊒♯I
= {𝑃 ′ ∈ L♯ ∣ ∃𝑃 ∈ P . post♯(𝑆)𝑃 ∈ P ⊑♯ 𝑃 ′} Hdef. ∈I

The consequence is that the while loop verification condition (59) simplifies to lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃 ′) ⊑♯+ 𝑃𝑒
and gfp⊑

♯
∞ 𝐹 ♯𝑝� ⊑♯∞ 𝑄�𝑏 which can respectively be handled by Park induction [21, theorem II.3.1]

and greatest fixpoint over apppoximation by transfinite iterates using the dual of [21, theorem
II.3.6] as is the case, for classic execution properties, in Hoare logic and termination proofs. The
reasoning is dual for (64).
Example 16.1 (Proof reduction for the order ideal abstraction: bounded nondeterminism). Let us

consider proofs of programs with bounded nondeterminism, assuming that the value of variables
could only be integers. Consider the instantiation of relational natural semantics in section 4 with
no break and no nontermination where V = Z. Let ∣𝑆 ∣ be the cardinality of a set 𝑆 and consider
the semantic (hyper) property F ≜ ℘fin(L) ≜ {𝑃 ∈ ℘(L) ∣ ∣𝑃 ∣ ∈ N} to be the set of finite execution
semantics i.e. programs satisfying F cannot have infinitely many different executions although L
has an infinite cardinality.

Now, suppose we want prove that {∣F ∣} S{∣F ∣}, where S ≜ x = [0, ∞]; while(x>0) x=x-1.
Since F is an order ideal abstraction (subset-closed), we need to find a function I ∈ F → F such
that for arbitrary 𝑃 ∈ P , we have postJSK ⊆ I(𝑃), and, at the same time, the image of I is a subset
of F . Let𝑚 and 𝑛 to be any integer such that𝑚 < 0 < 𝑛, we can set this I to be
I = 𝝀𝑃 .{⟨𝜎, 𝜎 ′⟩ ∈ Σ × Σ ∣𝑚 <𝜎 ′(𝑥)≤𝑛 ∧ ∃⟨𝜎1, 𝜎 ′1⟩ ∈ 𝑃 . (𝜎1 =𝜎 ∧ ∀𝑣 ∈ V . 𝑣 ≠ 𝑥 ⇒ 𝜎 ′1(𝑥)=𝜎 ′(𝑥))}
We notice that this program component eventually assigns the value 0 to 𝑥 while keeping the value
of the other variables unchanged. As a result, for arbitrary 𝑃 ∈ P

postJSK(𝑃) = {⟨𝜎, 𝜎 ′⟩ ∈ Σ × Σ ∣ 𝜎 ′(𝑥) = 0 ∧ ∃⟨𝜎1, 𝜎 ′1⟩ ∈ 𝑃 . (𝜎1 = 𝜎 ∧ ∀𝑣 ∈ V . 𝑣 ≠ 𝑥 ⇒
𝜎 ′1(𝑥) = 𝜎 ′(𝑥))} ⊆ I(𝑃)

For the cardinality of I(𝑃), we let the sequence ⟨𝑋 𝑖 , 𝑛 < 𝑖 ≤𝑚⟩ such that 𝑋 𝑖 = {⟨𝜎, 𝜎 ′⟩ ∈ Σ × Σ ∣
𝜎 ′(𝑥) = 𝑖 ∧ ∃⟨𝜎1, 𝜎 ′1⟩ ∈ 𝑃 . (𝜎1 = 𝜎 ∧∀𝑣 ∈ V . 𝑣 ≠ 𝑥 ⇒ 𝜎 ′1(𝑥) = 𝜎 ′(𝑥))}. The cardinality of 𝑋 𝑖 in this
case will be smaller than that of 𝑃 , meaning ∣𝑋 𝑖 ∣ ∈ N. Thus, the finite union of 𝑋 𝑖 , ⋃

𝑚<𝑖≤𝑛
𝑋 𝑖 also has

finite cardinality. ∎

17 Frontiers Abstractions
Another solution to represent order ideal abstractions as proposed by [66, proposition 1] is to con-
sider themaximal elements of the order ideal closed semantic (hyper) property only. Unfortunately,
this is not the same abstraction.
Counter example 17.1. Consider the hyperproperty F ≜ ℘fin(L) ≜ {𝑃 ∈ ℘(L) ∣ ∣𝑃 ∣ ∈ N} in

example 16.1 i.e. programs satisfyingF cannot have infinitely many different executions although
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L has an infinite cardinality. Then the order ideal abstraction is 𝛼⊑(F) = F which has no maximal
elements so the maximal elements abstraction of this order ideal abstraction 𝛼⊑(F) = F is the
empty set which is definitely different from this order ideal abstraction 𝛼⊑(F) = F . ∎

Let us study this abstraction in more detail.

17.1 Lower Frontier Abstraction
The lower frontier abstraction abstracts a subset of a poset to its mimimal elements

𝛼𝐹 (P) ≜ {𝑃 ∈ P ∣ ∀𝑃 ′ ∈ P . 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ = 𝑃} (80)
𝛼𝐹 is reductive and idempotent by not necessarily increasing (and so does not necessarily preserve
existing joins) hence may not be the lower adjoint of a Galois connection.

Counter example 17.2. Consider the complete lattice {�, 0, 1,⊺} with � ⊑ � ⊑ 0 ⊑ 0 ⊑
⊺ ⊑ ⊺ and � ⊑ 1 ⊑ 1 ⊑ ⊺. We have P1 = {⊺} ⊆ {0, 1,⊺} = P2 but 𝛼𝐹 (P1) = {⊺} ⊈
{0, 1} = 𝛼𝐹 (P2) proving that 𝛼𝐹 is not increasing hence does not preserve existing
joins hence is not the lower adjoint of a Galois connection. By duality, neither is 𝛼𝐹 .

0 1⊤

⊤

∎

17.2 Frontier Order Ideal Abstraction
The frontier order ideal abstraction

𝛼⊒𝐹 ≜ 𝛼⊒ ○ 𝛼𝐹 (81)
closes the frontier by its over approximations, as shown by the following

Lemma 17.3. A◯ 𝛼⊒𝐹 (P) = {𝑃 ∈ L ∣ ∃𝐹 ∈ 𝛼𝐹 (P) . 𝐹 ⊑ 𝑃} = {𝑃 ∈ L ∣ ∃𝐹 ∈ P . ∀𝑃 ′ ∈ P . 𝑃 ′ ⊑
𝐹 ⇒ 𝑃 ′ = 𝐹 ∧ 𝐹 ⊑ 𝑃}.

Observe that 𝛼⊒𝐹 is idempotent but not necessarily increasing or extensive.

Counter example 17.4. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,
𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} so that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 17.5. Consider the lattice on the right. Let P1 =
{𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontier F1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and
P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}.
There is no largest set smaller than P1 and P2 with an existing
frontier. ∎

Lemma 17.6. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

17.3 A Frontier Characterization of the Order Ideal Abstraction

Lemma 17.7. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→Ð→←←Ð−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and

⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define the principal ideal ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 17.8 is a characteriza-
tion of 𝛼⊑𝐹 (℘(L)) that corrects and generalizes [66, Proposition 1].

Lemma 17.8. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
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18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N

𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝛼↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝛼↓ (possibly transfinitely)

∗
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (83)

yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {𝑋 𝑖 𝑗 ∣ 𝑖, 𝑗 > 0}. We have 𝛼↓(P) = {𝑋 𝑖 𝑗 ∣ 𝑖, 𝑗 > 0}∪{𝑌 𝑖 ∣ 𝑖 > 0}.
We have ⊓{𝑌 𝑖 ∣ 𝑖 > 0} = � so 𝛼↓(𝛼↓(P)) = {𝑋 𝑖 𝑗 ∣ 𝑖, 𝑗 > 0} ∪ {𝑌 𝑖 ∣ 𝑖 >
0} ∪ {�} ≠ 𝛼↓(P).
Moreover ∗𝛼↓(Q𝑖) ∈ ∗𝛼↓(℘(L)), 𝑖 > 0 but ⋃𝑖>0

∗
𝛼↓(Q𝑖) /∈ ∗𝛼↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union
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Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.
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Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.
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Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.
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Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.
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Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.
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Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}
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program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→Ð→←−−−−−−
∗
𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩ is
a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).

Lemma 18.4. A◯ For all P ∈ ℘(L), 𝛼↓(P) = P implies ∗𝛼↓(P) = P .

𝛼↑ is defined ⊑ dually, and ∗𝛼↑(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↑(𝑋) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form

AEH ≜ {{𝑃 ∈ ℘(Π) ∣ ∀𝜋1 ∈ 𝑃 . ∃𝜋2 ∈ 𝑃 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} ∣ 𝐴 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝜋1, . . . , 𝜋𝑛 ∈ 𝑃 . ∃𝜋 ′1, . . . , 𝜋 ′𝑚 ∈ 𝑃 . ⟨𝜋1, . . . , 𝜋𝑛, 𝜋 ′1, . . . , 𝜋 ′𝑚⟩ ∈ 𝐴 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {𝑃 ∈ ℘(Σ+) ∣ ∀𝜎1𝜋1𝜎 ′1, 𝜎2𝜋2𝜎 ′2 ∈ 𝑃 . ∃𝜎3𝜋3𝜎 ′3 ∈ 𝑃 . (𝜎1(L) = 𝜎2(L))⇒ (85)
(𝜎3(L) = 𝜎1(L) ∧ 𝜎3(H) = 𝜎2(H) ∧ 𝜎 ′3(L) = 𝜎 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in
∗
𝛼↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯

AEH ⊆ ∗
𝛼↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝛼⊑↑ ≜ 𝛼⊑ ○ 𝛼↑ and ∗
𝛼⊑↑(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼⊑↑(𝑋) (87)

to get an upper closure operator (since 𝛼⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{𝑛} ∣ 𝑛 ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,
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N is both a lower and upper frontier so chains are reduced to one element. Therefore ∗𝛼↓(N ) =
∗
𝛼↑(N ) =N . By (87), it follows that 𝛼⊑↑(N ) = 𝛼⊑(N ) = ℘(N)∖{N}. Consider the increasing chain
C = ⟨{𝑖 ∣ 𝑖 < 𝑗}, 𝑗 ∈ N⟩ of elements of ∗𝛼↑(N ). Its limit is⋃𝑗∈N {𝑖 ∣ 𝑖 < 𝑗} = N /∈ 𝛼⊑↑(N ) = ℘(N)∖{N}
proving that 𝛼⊑↑ is not idempotent. ∎

Lemma 19.2. A◯ ⟨℘(L), ⊆⟩ −−−−−→Ð→←−−−−−−−
∗
𝛼⊑↑

1 ⟨∗𝛼⊑↑(℘(L)), ⊆⟩ and ⟨∗𝛼⊑↑(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼⊑↑(⋃𝑋),
⋂⟩ is a complete lattice.

19.2 Forall Hyperproperties
∀ hyperproperties are usually defined in the context of trace semantics of section B, for which, in
absence of breaks, ⟨L, ⊑⟩ = ⟨℘(Σ+∞), ⊆⟩) as in section B.3. In this case, by definition of ⊆, we get

AAH ≜ {{𝑃 ∈ ℘(Σ+∞) ∣ ∀𝜋1, 𝜋2 ∈ 𝑃 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} ∣ 𝐴 ∈ ℘(Σ+∞ × Σ+∞)} (88)

Example 19.3 (Non-interference). A typical forall hyperproperty is non interference NI ∈ AAH
for the trace semantics of section B [16, 47, 48]. Let L ∈ X be a low variable, we have

NI ≜ {𝑃 ∈ ℘(Σ+) ∣ ∀𝜎1𝜋1𝜎 ′1, 𝜎2𝜋2𝜎 ′2 ∈ 𝑃 . (𝜎1(L) = 𝜎2(L))⇒ (𝜎 ′1(L) = 𝜎 ′2(L))} (89)

We have NI ∈ AAH by defining 𝐴 ≜ {⟨𝜎1𝜋1𝜎 ′1, 𝜎2𝜋2𝜎 ′2⟩ ∣ (𝜎1(L) = 𝜎2(L))⇒ (𝜎 ′1(L) = 𝜎 ′2(L))}. ∎

20 Logic Rule for Chain Limit Order Ideal Abstract Semantic Properties
[30, sect. 5.3] have introduced a sound but incomplete logic for proving ∀∗∃∗ hyperproperties.
We generalize the rule in our algebraic lattice-theoretic framework for the chain limit abstract
semantic properties in ∗𝛼↑(℘(L)).

20.1 A Sound and Incomplete Rule
[30] does not consider breaks and nontermination so that the fields � and 𝑏 of ⟨𝑒 ∶ 𝐹, � ∶ 𝐼 , 𝑏 ∶ 𝐵⟩ in
(12) can be ignored and the tuple reduces to the value 𝐹 of the field 𝑒 . In this section, 3.2.A is a lattice
which is increasing chain complete, 3.2.C and 3.2.D.c are omitted, and limits of increasing chains
are assumed to be preserved in 3.2.D.d. We also assume that J¬BK♯𝑒 #♯ J¬BK♯𝑒 = J¬BK♯𝑒 , J¬BK♯𝑒 #♯ JBK♯𝑒 =JBK♯𝑒 #♯ J¬BK♯𝑒 = �♯+, and JskipK♯𝑒 ≜ skip♯ = init♯ in (3), which does not hold for traces but holds e.g.
for a relational semantics.

The rule of [30] generalizes to
P ⊆ I, {∣I ∣} if (B) else skip{∣I ∣}, {∣I ∣}¬B{∣Q ∣}

{∣P ∣} while (B) S{∣Q ∣}
, Q ∈ ∗𝛼↑(℘(L♯)) (90)

The key idea to prove that for any 𝑃 ∈ P ∈ ℘(L♯+), the exact postcondition𝑄 = post♯Jwhile (B) SK♯𝑒 𝑃
will be in Q is to exhibit an increasing chain in Q with least upper bound 𝑄 , also in Q by the hy-
pothesis that Q is a chain limit order ideal abstract semantic property. Soundness follows from
theorem R.4 in the appendix A◯. A counter-example proving incompleteness is also provided by
lemma R.5 in the appendix A◯.

20.2 Completeness Relative to an Abstract Hypercollecting Semantics
Proof rule (90) is incomplete relative to the hypercollecting semantics (47) of section 6. We show
that the rule is complete relative to the following abstraction of the hypercollecting semantics (47).

Definition 20.1 (Weak structural hypercollecting semantics for iteration).

Post
♯Jwhile(B) SK♯𝑒P ≜ Post♯J¬𝐵K♯𝑒(lfp⊆ 𝝀X .P ∪ Post

♯Jif(B) S else skipK♯𝑒(X )) (91)
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Post
♯Jwhile(B) SK♯𝑒 is an algebraic form of the hypercollecting semantics postulated by [5, p. 877].

We characterize by theorem R.6 in the appendix the executions satisfying (91) A◯.
Therefore Post♯Jwhile(B) SK♯𝑒P may contain chains post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃0) ⊑♯+ post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃1)

⊑♯+ . . . ⊑♯+ post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃𝑘) ⊑♯+ . . . which limit will be in 𝛼↑(Post♯Jwhile(B) SK♯𝑒P) but not nec-
essarily in Post♯Jwhile(B) SK♯𝑒P . It follows that Post♯Jwhile(B) SK♯𝑒 may miss limits but also may
introduce chains with irrelevant limits of infeasible executions (which invalidates [5, theorem 1]
soundness claim).

The following theorem shows the soundness and completeness of rule (90) for the abstract hyper-
collecting semantics Post♯Jwhile(B) SK♯𝑒 requires the consequentQ to contain the post condition
of any number of iterations for any element 𝑃 of the antecedent P .

TheoRem 20.2. A◯ The proof rule (90) is sound and complete relative to (91).

Theorem 20.2 illustrates the importance of the proper choice of the collecting semantics since
proof rule (90) is unsound if Q /∈ ∗𝛼↑(℘(L♯)) and is complete for collecting semantics (91) but not
with respect to collecting semantics (47) hence not for the algebraic semantics of section 3.

By deriving the collecting semantics post for execution properties and hypercollecting seman-
tics Post for semantic properties by systematic abstraction of the algebraic semantics of section 3,
we guarantee, by composition of successive abstractions satisfying definition 8.1, that the proof
rules for these abstractions are sound with respect to any instance of the algebraic semantics satis-
fying definition 3.2. Moreover, the proof rules are guaranteed to be complete with respect to these
abstract properties, by construction.

21 Sound and Complete Proof Rules for Generalized Exists Forall Hyperproperties
In section S.1 of the appendix A◯, we furthermore introduce conjunctive abstractions (i.e. conjunc-
tions in logics or reduced products in static analysis). Such conjunctive abstractions are used in
section S.2 of the appendix to provide the following sound and complete proof rule for generalized
∃∀-hyperproperties A◯. Define 𝜚⊑𝐹 (P) ≜ ⋃𝐹 ∈𝛼𝐹 (P)𝜑

⊑(𝐹)P and 𝜑⊑(𝐹) ≜ 𝝀X .{𝑃 ∈ X ∣ 𝐹 ⊑ 𝑃 ∧
∀𝑃 ′ ∈ L . 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 → 𝑃 ′ ∈ X}, 𝐹 ∈ L then, for Q ∈ 𝜚⊑𝐹 (℘(L♯)),

∃X ∈ 𝛼𝐹 (Q)→℘(L♯) .P ⊆ ⋃
𝐹∈𝛼𝐹 (Q)

X𝐹 , (∀𝐹 ∈ 𝛼𝐹 (Q) .∀𝑃 ∈ X𝐹 .∃𝑄 ∈ 𝜑⊑(𝐹)Q . {𝑃}𝑆{𝑄} ∧ {𝑃}𝑆{𝐹})

{∣P ∣} S{∣Q ∣}

An example A◯ is provided in the appendix.

22 Hierarchy of hyperproperties abstractions
To compare these abstractions, we first show that chain limit order ideal abstract properties have
an equivalent frontier order ideal representation A◯.

⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−−→Ð→←−−−−−−−
∗
𝛼⊑↑

1 ⟨∗𝛼⊑↑(℘(L)), ⊆⟩ (92)

Figure 1 shows a lattice of hyperproperties derived by our abstractions as well as the related
hyperproperties that they subsume.
23 Related Work
Algebraic semantics [45, 49, 58, 71] is rooted in the previous concept of program schemes [12, 37,
44, 46, 74]. The idea of handling logics algebraically using an abstract domain goes back to [28, sec-
tion 5]. It requires a distinction between computational and logical orderings which first appeared
in strictness analysis (using Scott partial order for computational ordering and inclusion for logical
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Fig. 1. The hierarchy of hyperproperties by abstraction. The arrow is interpreted as “more general than”
where the double arrow represents Galois surjection. Dotted line indicated the hyperproperties subsumed
by our abstract in the related works. A◯

ordering [73]). It is not uncommon in abstract interpretation since then. The calculational method-
ology that we have used is based on [21]. Following the introduction of trace hyperproperties [14],
most semantics [5, 66] and verification methods for semantic (hyper) properties have been on sub-
classes of hyperproperties [6–10, 13, 15, 29, 30, 67], further reviewed in extreme great detail in [30,
section 6].

24 Conclusion and Future Work
Transformational (hyper) logics have traditionally been based on transformers themselves equiv-
alent to an operational semantics. When considering nontermination, other semantics like deno-
tational semantics are relevant, but the corresponding logics are in a separate world [1, 51].

In an attempt to design (hyper) logics valid for various (abstract) semantics, we have defined an
algebraic semantics (which can be instantiated to operational, denotational, or relational semantics,
and is also useful for deductive methods and static analysis).

We have designed, by calculus, a structural fixpoint collecting semantics post for execution
properties (e.g. sets of execution traces), its hypercollecting semantics Post for semantic properties
(e.g sets of sets of traces), and the various over or under approximation logics corresponding to
these transformers for correctness and incorrectness (part III is for over approximation only, but
the main reason to use the under approximation logic is to disprove over approximations which
is expressible as ¬{∣P ∣} S{∣Q ∣}⇔ ∃∅ ⊊ P ′ ⊆ P . {∣P ′ ∣} S{∣¬Q ∣} A◯).

Since, and contrary to classic logics, proofs of general semantic (hyper) properties relative to a
program semantics requires the exact characterization of this semantics in the proof, an extreme
complication, we have considered abstractions of the semantic properties for which this constraint
can be relaxed. This has yielded to new sound and complete simplified proof rules, including for
algebraic generalizations of forall-forall, forall-exists, and exists-forall semantic (hyper) properties.

The verification of semantic (hyper) properties is still in its infancy and far from reaching the
simplicity observed in the verification of execution properties. Several compromises will be needed
maybe by relaxing implication (e.g. using Egli-Milner order instead of inclusion), considering ab-
stract properties (for classes of properties of practical interest), and possibly by preserving sound-
ness but renouncing to completeness. However, in full generality, the sound and complete proof
methods introduced in this paper, will ultimately be, up to equivalence, the only one applicable.
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Data Availability Statement
The full version of this article is available with its appendix as auxiliary material and in a single file
on Zenodowith clickable hyper references to the appendix https://doi.org/10.5281/zenodo.14173477.
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