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The LOMAPS project studies the use of Logical and Operational Methods in the
Analysis of Programs and Systems and is sponsored by ESPRIT Basic Research?
It has been fostered by the realisation that each of the existing programming
paradigms (further discussed below) have their own strengths and weaknesses,
and that the reliable construction of computer systems may benefit from a com-
bination of paradigms, and hence the use of multiparadigmatic languages, in
order to obtain the modularity, reactivity, and concurrency required. Since each
programming paradigm typically has its own set of methods and techniques, this
calls for general methods and techniques available over a spectrum of program-
ming paradigms.

The main scientific aims of the project therefore are to conduct basic research
into methods and techniques for the analysis of performance and reliability of
high-level programs with emphasis on multiparadigmatic languages. This in-
volves hybrid systems that exhibit one or more of the following characteris-
tics: physical distribution, massive parallelism, combinations of computational
paradigms (like functional programming and concurrency), higher order commu-
nication, and multiple agents with dynamically evolving interconnection topol-

ogy.

The main technological objectives are the development of advanced analysis and
verification techniques for software development. Of particular interest are their
application in compilers and programming environments for multiparadigmatic
programming languages implemented in a distributed setting. This is important
because the market place is already beginning to see the arrival of “end-user”
applications that require a multiparadigmatic approach: to handle multiple co-
operating agents and to exploit the availability of massively parallel computing
systems; examples include multi-media/multi-user systems and real-time process
control systems. This development is likely to increase rapidly as access to the
internet becomes available to the ordinary consumer, perhaps through dedicated
web-browsing hardware to be placed side-by-side with the television and video
recorder.

! Project number 8130 running from December 1993 to May 1997; for further infor-
mation consult http://www.daimi.aau.dk/~bra8130/LOMAPS.html.



These proceedings take a “snapshot” of the state-of-the-art concerning Analysis
and Verification of Multiple-Agent Languages, and this introduction relates the
“snapshot” to five areas central to the LOMAPS project: Integration of Pro-
gramming Paradigms [61], Annotated Type and Effect Systems [66], Abstract
Interpretation [25], Modalities in Analysis and Verification [30], and Enhanced
Operational Semantics [35]. Each section below begins with a presentation of our
view of the state-of-the-art within the area, and ends with a brief explanation
of how the papers in these proceedings enhance our knowledge of the area.

Integration of Programming Paradigms

Programming notions can be expressed in many different paradigms—imperative,
object-oriented, concurrent, functional, logic-programming, constraint, etc. It is
widely agreed that each programming paradigm has its own merits and is partic-
ularly appropriate for expressing certain classes of computation, thus the choice
of paradigm can greatly affect the ease of programming.

Traditionally, when constructing large scale systems, in particular distributed
systems, it is often necessary to use multiple programming styles with disparate
programming models, and very often it is necessary to resolve conflicts by low
level methods reverting to the lowest common denominator. Choosing locally
optimal paradigms for each subsystem creates the problem of how to integrate
the resulting modules into a coherent whole. The mathematical idea that we
could choose a single globally optimal paradigm for expressing the whole system
fails to take account of issues like maintenance and the desire for software re-use.

Historically, application developers split their system so that application-specific
subsystems depend upon the operating system directly. However, this often
causes difficulties with applications not being portable because each operat-
ing system has its own distinct application programming interface, and hence
different versions of applications may wish to employ different subsystem archi-
tectures due to the fact that distinct operating systems provide services that
differ in kind and semantics.

Current technology is working to solve these historical problems by introducing a
concept called “middleware” Here, an application interfaces with the middleware
and normally does not access the underlying operating system directly. One
rapidly developing strand in this direction is the tendency of various GUI’s
(Graphical User Interfaces) such as X-Windows, Windows-95 and Windows-NT
to be seen as a low-level interface; instead of providing X over a network one
provides (for example) a Java API library. Thus one can see tools which started
life as mere web browsers becoming, in effect, a higher level user interface for
many systems.



Middleware suppliers strive to present the user with a collection of useful features
whose interfaces can be neatly expressed in the various programming languages
used for constructing large scale systems. However, little or no attention is paid
to integrating these constructs into the programming environment.

To repair this situation several research teams and even a few commercial sys-
tems have proposed the notion of coordination languages (e.g. Linda [14], Gamma,
[6] and LO [4, 5]). The languages are usually not full programming languages,
but rather limited to constructs for coordinating communication between com-
ponent subsystems. Clearly coordination languages solve many of the problems
found in the construction of large scale systems by unifying the level of coordi-
nation and communication. However, the application programmer is still faced
with different programming models for the various modules in the system.

More recently languages that strive to combine several programming paradigms
in a single system both for sequential and for distributed computing have been
put forward, such as Facile [39, 80], Oz [77], and PICT [69, 70]. A language
which supports multiple programming paradigms often enables a more direct
expression of the design, since many problems and solutions consist of various
components that are more natural and easier when viewed in different ways.
Allowing the implementation to exploit a more direct expression of the design
helps in avoiding unnecessary encodings that often are great sources of software
errors and maintenance complication.

With the emergence on the internet of mobile agents [87, 81] or [41] applets, i.e.
chunks of programs that can be sent around a network of computers and execute
in different locations, the need for multiple programming paradigms has been
further stressed.

It is important however, not to believe that multiparadigmatic programming
gives us something for free. There are foundational issues concerned with the abil-
ity to express adequately the interface for a subsystem written in one paradigm
to another subsystem written in another paradigm. One apposite example is to
observe that calls to side-effecting sub-systems cannot directly be expressed in
a lazy functional language without risk of losing the reasoning which the func-
tional programmer tacitly assumed. Much work has been done on using “mon-
ads” which allow locally side-effecting code to be encapsulated in a manner
which preserves functional properties like referential transparency. However, the
general question of how the coordination language represents views of interfaces
appropriate to each paradigm seems unresolved.

In this volume several papers address, at various levels, the issue of integration
of programming paradigms:

Analysis of FACILE programs: a case study (by P. Degano, C. Priami, L. Leth
and B. Thomsen) presents a method for analysing mobile agents built in the



Facile language which integrates several programming paradigms. Since mobile
agents may carry communication links with them as they move across the net-
work, they create very dynamic interconnection structures that can be extremely
complex to analyse. However, since the various paradigms have been integrated
carefully with the support of formal semantics, Facile programs may be sub-
jected to formal reasoning. This paper presents a non-interleaving semantics for
Facile by looking only at the labels of transitions and then uses the new Facile
semantics to debug an agent-based system.

Formalising and prototyping a concurrent object-based language (by L. Fred-
lund, J. Koistinen and F. Orava) presents a semantics for (a core of) a con-
current object-oriented language by encoding of the language into the polyadic
m-calculus. Experimental implementation has been done in Facile. The main
concern of the paper is adding constructs for concurrency and distribution to
an existing object-oriented language used by Ericsson. The language design and
prototype implementation is based on formal semantics to allow for easy exper-
imentation with how the object-oriented paradigm interacts with concurrency
and distribution.

Parallel implementation of functional languages (by R. Wilhelm) discusses using
a high level lazy functional language to program parallel distributed memory
machines. Such machines are difficult to program since they offer a bad ratio
of computation speed versus communication speed. Disappointing results on
implementing lazy functional languages by parallel graph reductions motivate
the design of parallel functional languages (i.e. integration of the concurrent and
functional programming paradigms) to facilitate the efficient programming of
such machines.

An overview of mobile agent programming (by F. Knabe) presents an overview of
mobile agents and an extension of Facile which supports agent programming. The
extension takes a step towards making agent programming safer via strong static
typing, but many challenges remain. Languages with first-class functions provide
a good starting point for agent programming, as they make it easy to express
the construction, transmission, receipt, and subsequent execution of agents. How-
ever, for developing real agent-based systems, a language implementation must
handle architectural heterogeneity between communicating machines and pro-
vide sufficient performance for applications based on agents. In addition, agents
need to be able to access resources on remote execution sites yet remain in a
framework that provides sufficient security. An additional foundational problem
is that higher order mechanisms for process (and the paradigm-varying notion of
procedure) transmission provide very small-grain interplay between paradigms in
contrast to the presumed much larger grained interplay offered by a coordination
language.



Annotated Type and Effect Systems

Program analysis offers static techniques for predicting safe and computable ap-
proximations to the set of values or behaviours arising dynamically during com-
putation. Traditionally this has been used to enable the application of program
transformations and to allow compilers to generate more efficient code. This goes
beyond merely validating the correctness of the modification; the profitability of
performing the modification is also a key issue, and sometimes the modification
is profitable only because it opens up for a host of other modifications that more
directly improve performance. The presence of higher-order and distributed con-
structs gives this problem a completely new dimension. Examples include the
use of program analysis to assist in documenting the software to be placed in a
library of modules, thus helping the programmer in choosing the right module
for the task at hand. To fully achieve these goals calls for more research into the
theoretical foundations of program analysis as well as their algorithmic (or even
decidability) properties.

One of the approaches to program analysis is that of annotated type and effect
systems: it requires that a typed programming language be given [76, 45]. The
type system is then modified with additional annotations (called effects) that
expose further intensional or extensional properties of the semantics of the pro-
grams. The literature has seen a great variation in the annotations and effects
used. Example effects are: collecting the set of procedures or functions called,
collecting the set of storage cells written or read during execution [79], collecting
the regions in which evaluation takes place [82]. Other classes of annotations
are more ambitious in trying to identify the causality among various operations:
that input takes place before output, that communication satisfies protocols as
expressed by terms of a process algebra [65]. The interplay between types and
effects is brought out when formulating the introduction and elimination rules
for the various syntactic constructs (for example function abstraction and func-
tion application). Some aspects of a general methodology have emerged but a
full understanding of the interplay remains an important research challenge.

The methodology of annotated type and effect systems consists of: (i) expressing
a program analysis by means of an annotated type or effect system, (i) showing
the semantic correctness of the analysis, (%4) developing an inference algorithm
and proving it syntactically sound and complete. Each of these phases have their
own challenges and open problems.

(i) Much research concerns how to incorporate the flow based considerations
of context dependent analysis: polyvariance (as opposed to monovariance),
k-CFA, “polymorphic” splitting etc.; similarly for the model based consider-
ations of relational (as opposed to independent attribute) analyses and more
advanced notions of designing combined property spaces. Although the sim-
ple instances of monovariant §-CFA analyses in independent attribute form



can be expressed as annotated type and effect systems, it is still unclear how
to achieve the more advanced possibilities. Current research suggests that
the use of polymorphic recursion (for the annotations, not the types) may
be essential and still decidable [82], but the interplay between the use of
polymorphism and sub-typing and sub-effecting is still not fully understood
[79] and is an important area of further research.

(#) The techniques needed for establishing semantic soundness are mostly stan-
dard. For operational semantics the statement of correctness may be a sub-
ject reduction result and the method of proof may benefit from the use of
co-induction; when the use of denotational semantics is possible one may
benefit from the use of Kripke-logical relations[64].

(#1i) Algorithmic techniques often involve the generation of constraint systems
in a program independent representation. Sometimes efficient techniques de-
veloped for flow based analyses can be used to solve the constraint problems;
in other cases the problems take the form of semi-unification problems and
then even decidability becomes an issue [82]; furthermore, some applications
demand general techniques for algebraic unification. An important area of
further research is how to identify those features of the annotated type and
effect systems that lead to algorithmic intractability.

In summary, program analysis by means of annotated type and effect systems
seems a promising area. The main strength lies in the ability to interact with
the user: clarifying what the analysis is about (and when it may fail to be of
any help) and in propagating the results back to the user in an understable way
(which is not always possible for approaches working on intermediate represen-
tations). It will generally be the case that the actual techniques used to obtain
efficient implementations require a reformulation of the inference system in more
algorithmic terms; however, it is the inference system that focuses on the key
properties of the analysis, and hence the implementation must be able to pro-
vide feed-back in a form that the user can understand: expressed in terms of
the inference system. This is still an area for further research as is the study of
the expressiveness of the inference based specifications and the complexity and
decidability of the algorithmic realisations.

In these proceedings there are several papers that address goals central to an-
notated type and effect systems:

The trilogy of papers Polymorphic Subtyping for Effect Analysis: the Static Se-
mantics (by H. R. Nielson, F. Nielson, and T. Amtoft), Polymorphic Subtyping
for Effect Analysis: the Dynamic Semantics (by T. Amtoft, F. Nielson, H. R.
Nielson, and J. Ammann), and Polymorphic Subtyping for Effect Analysis: the
Algorithm (by F. Nielson, H. R. Nielson, and T. Amtoft) all deal with support-



ing subtyping in polymorphic type and effect systems. This has been the goal of
many researchers for quite some time now. Even though some success had been
previously reported, in particular via the notion of “subeffecting”, which however
limited the static order relationship to the effect domain, the full generality of
subtyping was still a challenge. This is what the trilogy of papers addresses and
solves. While the first paper presents a general overview of the integration pro-
cess, the two subsequent ones address more technical, though equally important,
questions.

The Static Semantics paper describes a new static semantics that approximates
some aspects of the behavior of Concurrent ML programs. In particular, for
any expression, this semantics specifies a polymorphic ML-like type and an ef-
fect that gives an upper-approximation on what kind of channels are allocated
during the expression evaluation. This annotated type system supports polymor-
phism, effects and subtyping and is the first to integrate these three aspects in
a rigorous and compatible way. Applications of the presented approach to other
effect systems, in particular memory effects, should pose no major problems. Ef-
fect systems could thus be used to cleanly specify the type generalization process
in ML-like languages without restricting it in odd ways imposed by the effect
system technology.

The Dynamic Semantics paper shows that the static semantics, which approx-
imates some aspects of the behavior of Concurrent ML programs (and which is
described in “the Static Semantics” paper), is sound with respect to an oper-
ational concurrent semantics. The main theorem is akin to a subject reduction
one and expresses that evaluation preserves, in a sense made precise in the paper,
types and behaviors, thus ensuring the semantic soundness of the static type and
effect system.

The Algorithm paper is the last in this trilogy, and describes a Milner’s W-
like reconstruction algorithm for the new static semantics introduced in the two
companion papers. This algorithm is inspired by previous techniques published
in the literature but introduces a couple of new ideas, in particular the notion
of closures over a set of constraints. It is proved sound (but not complete) with
respect to the static semantics described above.

Polyvariance, Polymorphism and Flow Analysis (by K.-F. Faxén) considers de-
termining an approximation of the set of possible values (mainly functions) ex-
pressions can have. This kind of analysis is of paramount importance in optimiz-
ing implementations of functional languages, since environment management for
closures requires rather heavy machinery. Using ideas taken from the theory of
type systems, control-flow analysis, set-based analysis, constraint systems, and
polyvariant analysis, the paper suggests a family of heuristics for performing
such flow analysis for untyped languages. Although the system is not yet imple-
mented, examples are provided to support the claim that such analyses could be
used for performing useful optimizations.



Type inference for a multiset rewriting language (by P. Fradet and D. Le Métayer)
considers the multiset rewriting language Gamma extended with a notion of
addresses and contents of addresses. This allows to code structured multisets
corresponding to algebraic data structures and enhances the ease with which
programming can be performed in Gamma. Context-free graph grammars are
then used to define the shape that the structured multisets are supposed to have.
The paper then develops a sound (but not complete) type checking algorithm
for ensuring that each rewrite (allowed by the Gamma program) does in fact
maintain the invariant expressed by the graph grammar.

Abstract Interpretation

Abstract interpretation aims at gathering information about programs by ap-
proximation of their runtime behavior. The point of view is that to automatically
answer questions about programs one cannot only consider a single semantics
but better a hierarchy of semantics each one adapted to a category of program
properties. Abstract interpretation is a formalization of the relationships between
these semantics and their combinations. In particular the abstraction, and its
inverse, the refinement of a semantics are essential concepts used to partially
order semantics in this hierarchy [24].

These ideas of discrete approximation are involved in formal semantics [18]. For
example an operational trace semantics can be approximated by a denotational
semantics by forgetting about intermediate states. A further approximation into
a big step operational semantics essentially consists in forgetting about nonter-
mination and in reformulating fixpoint definitions in equivalent rule-based form
[23].

These ideas of discrete approximation are involved in proof methods [17]. For
example the Floyd/Hoare/Owicki/Lamport proof method essentially consists in
approximating sets of execution traces by sets of states, such invariants being
adequate for safety but essentially incomplete for liveness properties.

These ideas of discrete approximation are central to program analysis methods
[19]. A considerable number of program analysis methods have been designed
(dataflow analysis, strictness analysis, termination analysis, closure analysis, pro-
jection analysis, binding-time analysis, set-based analysis, type inference, effect
systems, lazy types, etc., to cite a few finitary methods). The purpose of ab-
stract interpretation is to unify these superficially different methods in a sin-
gle mathematical framework by understanding all of them as approximations
of semantics using specific abstract domains to encode approximate program
properties. This point of view often leads to cross-fertilization. For example un-
derstanding set-based analysis as an abstract interpretation yields a powerful



generalization based upon context-sensitive tree grammars [22]. Formalization
by abstract interpretation often leads to simplifications. For example, several in-
dependent analyses can be combined within the same abstract framework such as
comportment analyses [21, 60, 84], the combination being more precise than the
individual analyses. An important recent contribution has been the understand-
ing of type inference as abstract interpretation [26, 56, 58, 57]. Another recurrent
theme in abstract interpretation is the design of general approximation methods
independently of a particular application. Essentially two classical methods are
used, static ones, often based on Galois connections, where the approximation
is fixed while defining the abstract properties for a programming language and
dynamic ones, often based on widening operators, where the ultimate approxima-
tion is performed during the analysis process [20]. The Galois connection based
abstract interpretation framework has been extended to higher-order functional
languages [13, 67], by a clear separation of the computational and approximation
ordering, both at the concrete and abstract level [21, 62, 59, 46]. The dynamic
approximation is essentially more powerful than the static one, since it allows
for infinite abstract domains, expressing non-uniform properties. The design of
such very expressive infinite abstract domains with their associated widening
operators is a continuous research topic in abstract interpretation, because they
leads to extremely powerful program analyses [55, 51, 85], hardly achievable
by the above mentioned finitary methods. Another application is the analysis
of parallel, centralized [27] or distributed programs [42] e.g. for model-checking
[27] or to automatically generate schedulers [42] by abstract interpretation of
a truly-concurrent semantics using Higher-Dimensional Automata, in which the
level of concurrency is specified by the dimension of the transitions that can be
fired. Applications range from verification of protocols for distributed systems
on a given architecture to the dual problem of parallelizing programs.

Proving Properties of Logic Programs by Abstract Diagnosis (by M. Comini, G.
Levi, M.-C. Meo, and G. Vitiello) explore the verification of logic programs by
comparison of an abstract semantics with an abstract specification, thus gen-
eralizing declarative diagnosis where the declarative semantics of a program is
compared to a specification of its intended behavior. In particular, when they
differ, the program components which are sources of errors must be determined.
The paper introduces several abstract semantics and identifies corresponding
conditions for the abstract diagnosis to be complete. In general however, the
specification is infinite and some approximation is necessary. In this case, par-
tial results are obtained. For example uncovered elements always correspond to
a program bug while incorrect clauses provide a hint to locate possible bugs.
Several useful abstractions are proposed.

Implementing a Static Analyzer of Concurrent Programs: Problems and Per-
spectives (by R. Cridlig) discusses the implementation of a prototype analyser
of asynchronous shared-memory Concurrent Pascal programs. The truly paral-
lel semantics using Higher Dimensional Automata is approximated into finite
abstract automata by foldings by means of data-dependent widenings. The ex-



periments show an important state space reduction of over 90%; only in one
case is model-checking not feasible due to loss of information (in which case the
concrete transition system explodes anyway).

Abstract Interpretation of Small-Step Semantics (by D.A. Schmidt) considers
the analysis of CCS (and extensions such as channel creation): model-checking
on a conservative approximation of the program semantics. Besides the use of
small-step environment semantics, a characteristic of the analysis is the regular-
expression-like abstract interpretation of the syntactic encoding of the program
configurations (including the control and communication components), which
is of general use for analysing programs with SOS semantics [71] (Structural
Operational Semantics).

Abstract Interpretation of the n-Calculus (by A. Venet) is concerned with the
analysis of the distribution of processes and the channel communication topology
for systems of mobile processes. The analysis is based on a refinement of the
classical operational semantics given by a structural congruence and a process
reduction relation. This refined semantics allows for a direct way to compute
the internal communication topology associated to a configuration, whereas, in
the standard semantics, it is indirectly encoded within a process algebra. The
abstraction uses an infinite abstract cofibrated domain with widening, originally
introduced by the author for alias analysis. This abstract domain allows for
tractable although undecidable analyses, with precise non-uniform distinction
between instances of recursively spawned and untyped processes.

Modalities in Analysis and Verification

Typically, modal and temporal operators are used in program logics and types
to express properties relating to dynamic behaviour, i.e. state change capabili-
ties. Modal operators are used for local properties, for instance the fact that a
transition leading to some desired state is enabled at the present state. Temporal
operators describe properties of complete computations, for instance the exis-
tence of future states with some desired properties (like being terminal). Models
are transition systems determined, for instance, by an SOS semantics. States
are transition system states with a control component (typically the abstract
program currently under evaluation) and maybe a store determining bindings of
values to identifiers. Transitions may carry information relevant for synchroni-
sation and parameter passing as in CCS, CSP or the w-calculus, and they may
carry finer information as they do in proved transition systems [33].

A direct strategy for verifying programs against their modal and temporal spec-
ifications is thus to explore the transition graph or computation tree that pro-
grams give rise to by means of their operational semantics when started in a



given initial state. If this graph is finite then most temporal queries can be
answered by traversing and marking the graph using model checking. Alterna-
tively, in an axiomatic setting, for each reachable control point of the program
under consideration a unique constant is introduced to axiomatise the one-step
computation relation. To a limited extent these approaches can be extended to
infinite state programs. For model checking this is possible when the property
under consideration depends only on a finite portion of an otherwise infinite state
graph (cf. [3]), or where infinite domains can be given finite representations as
in the m-calculus [29, 2]. Axiomatic approaches can permit infinite data domains
in more general terms, as long as the number of control points remain bounded

(c.t. [75)).

Even though these approaches work extremely well in many circumstances, a
basic problem is that state spaces only rarely stay small enough for exhaustive
traversal to be computationally feasible, or at all possible. One difficulty is the
well-known state explosion problem that n parallel processes each with 2 states
have 2™ global states. This problem has received much attention over the past
years, in the LOMAPS project and elsewhere (c.f [36, 83, 88]). Related problems
concern value-passing processes. Even for finite domains the state spaces can
quickly become too large to be manageable. Options for addressing this issue
is to use symbolic methods [29] or techniques based on abstract interpretation
[19].

Not only value passing and combinatorial state explosion are sources of prob-
lems, however. A great many control constructs give rise to unbounded growth
of state spaces. In a few cases (cf. [12, 86]) this growth can be checked by algo-
rithmic means. Even for very simple parallel programs, however, decidability is
lost [38]. This problem needs attention in particular for multiparadigmatic lan-
guages that combine concurrency and distribution with a “first-class” treatment
of abstraction and communication. At the heart of the problem is the ability
to dynamically create and communicate new processes. Furthermore, in many
modern modelling and programming languages the distinction between data and
control is becoming blurred: m-calculus is one example, and higher-order process
communication is another.

Many approaches are being explored to deal algorithmically with large and in-
finite state spaces, including techniques based on BDDs (Binary Decision Dia-
grams) and their successors [11], techniques that exploit process symmetries (cf.
[37]), and partial order techniques (cf. [88]). Further state space reduction may
be obtained by resorting to approximate techniques such as abstract interpreta-
tion. This is not only a formal activity: Preceding a formal analysis is often an
“abstraction” phase in which the problem at hand is modelled and simplified,
for instance to make automatic analysis feasible (by limiting attention to, say,
a finite value domain, or for protocol analysis to the case of a single sender and
a single receiver). Once a formal model is obtained, further abstractions may
be possible, for instance by collapsing “similar” states as in techniques based



on abstract interpretation in the papers by Cridlig, Schmidt, and Venet (in the
present volume), or, say, state space hashing as in Holzmann’s SPIN system [43].

While fully automated, state space exploration-based approaches have the very
important virtue that they require no user intervention (up to the modelling and
abstraction phase referred to above), they also face some serious problems:

— Limited scope: Fundamentally the scope of these techniques is limited. Lan-
guage constructs such as dynamic process creation and higher-order com-
munication can not in general be accomodated if exact analyses are called
for.

— Code verification: As a result of the previous point much emphasis needs
to be put on an initial, informal modelling and abstraction phase, to force
problems into a tractable framework. Thus code- (as opposed to model-)
verification will often be difficult to accomodate.

— Scalability /feasibility: Even with very smart state space compression tech-
niques the state space explosion problem quickly makes its presence felt as
parallel components are added, or as the size of value domains is increased.

— Modularity /reusability: Often actual systems are constructed from reusable
building blocks, or modules, and it is really properties of modules rather
than actual system configurations that are of interest. However, even though
actual configurations may well be finite-state, modules are not easily so rep-
resented: They are really open systems, designed to operate in environments
that are not yet fully instantiated.

— Approximate analysis: The use of approximate techniques comes with a cost,
namely that it may be difficult to interpret analysis results.

An alternative, then, is to accept undecidability and resort instead to some sort
of theorem proving. Many frameworks have been proposed for this: Tableaux
[53], Hoare-style proof systems based on the rely-guarantee paradigm (cf. [15]),
embeddings into a higher-order type theory as in the PVS system [68]. The scope
of deductive techniques is certainly in principle greater than that of algorithmic
ones. However it is also clear that, state explosion will remain a problem, and
certainly even in an interactive framework one will still need automated proce-
dures to deal with the large amounts of trivia that verification of “real” systems
gives rise to. Indeed the combination of deductive and automatic techniques is
currently receiving considerable attention in the literature (c.f. [68, 75]). To deal
with features like openness, dynamic process creation, and higher-order commu-
nication a compositional approach to verification seems indispensable. In [28§]
an approach was introduced with the scope, in principle, of addressing systems
with such features. In this work general proof principles were identified for a
proof-based compositional handling of temporal properties of dynamic process
networks. The approach is based on a kind of “internalised abstraction” originat-
ing with Stirling [78]: Instead of proving directly an assertion such as p || ¢ : ¢,



abstractions of p and ¢ are provided as properties ¥ and v, and proof obliga-
tions are created to show the abstractions correct (to show p: 4, ¢ : v, and that
z || y: ¢ whenever z : ¢ and y : 7). The difficulty is dealing in an adequate
way with temporal properties. The work has been extended to the w-calculus
(c.f. [2, 31]) and, at least partially, to higher-order processes [1]. However, much
work remains to be done before we can truly claim that verification of open,
dynamic, and higher-order process networks is feasible, theoretically as well as
practically. It is certainly clear that both automated and interactive techniques
must be brought to bear if this goal is to be realised.

Enhanced Operational Semantics

Since the very beginning of computer science, the behaviour of machines has been
given through an operational approach which describes the transitions between
states that a machine performs while computing. A graphical representation of
behaviours as oriented graphs, usually called transition systems, is quite easy:
nodes represent the set of states that the machine can pass through, and arcs,
possibly labelled, denote the transitions between states.

The term operational semantics appeared in the literature during the sixties
due to [52, 48]. A program is seen as a sequence of atomic instructions that
operate on the states of the machine. States consists of the program itself and
some auxiliary data which can represent the store or the data structure on which
the program works. Then, a function from states to states indicates the moves
from one given configuration to another. These transitions may be labelled by
additional information on the activity performed. Finally, a run of a program
(or computation) is represented through a sequence of states where each state is
connected to the next one through the transition function. The last state of the
sequence, if any, is the final configuration of the machine after the execution of
the program. But we need also in some situations to be able to describe infinite
computations. Operating systems, and some reactive systems should precisely
never terminate, and we should be able to describe their infinite computations
at least under some fairness conditions. Interesting infinite computations also
appear in (interleaving) concurrency when a non-bounded number of processes
can be put in parallel. Lazy functional languages also exhibit natural infinite
computations (to deal with lazy infinite lists for instance).

A renewed interest in operational semantics is due to Plotkin, and to his formal
method, called SOS for Structural Operational Semantics [71, 63]. The key idea
is to deduce transitions by inducing on the syntactic structure of the machine
itself. States are essentially programs expressed according to the abstract syntax
of the considered language defined through a BNF-like grammar. In this way, one
exploits the duality between languages and abstract machines. Transitions are



then defined by a set of rules that induce on the abstract syntax. The inference
rules have the following form

Premises —> Conclusion.

Its meaning is that when the premises are satisfied, the conclusion is satisfied
as well. Operationally, the above rule says that when the computational steps
corresponding to the premises occurred, the one corresponding to the conclusion
is enabled.

Operational semantics is mathematically simple and is close to intuition, thus
it gives guidelines to implementations. In fact, it describes the essential features
that any computing device has. So also untrained people can grasp the mean-
ing of a definition on the basis of their experience with their own machine. The
inductive definition of transitions naturally suggests to use induction for prov-
ing properties of programs. This approach is better suited than others to cope
with programming languages that include heterogeneous features. In fact, it has
been successfully used to describe imperative, functional, logic, object-oriented,
concurrent and distributed languages.

Within the LOMAPS project we study enhancements of structural operational
semantics along several lines. The first relies on the observation that the labels
of transitions can give an expressive and detailed description of the behaviour of
complex systems; so we proposed to decorate transitions with structured, rich
information. The second main line of research takes advantage of the structure of
states; then, the transitions themselves maintain this structure, or rather, only
the part of it relevant to the aspects of a system to be described. A third topic
concerns the specification of infinite computations; for that purpose, Go.SOS
combines the inductive definition of finite behaviors and the simultaneous co-
inductive definition of infinite behaviors within a unique bi-inductive interpre-
tation of inference rules [18], which is preserved by abstract interpretation [23].

We start illustrating our first line, mainly discussing its applications to con-
currency. Essentially, we propose a general, structural operational approach to
semantics that can be easily instantiated to cover the various aspects relevant to
build concurrent and distributed systems. More generally, we think that seman-
tics offers firm grounds to the many distinct activities for producing software.
The logical nature of structural operational semantics, and specifically the proofs
of transitions, gather (almost) all the information needed in the various phases
of system development, e.g. design, implementation, quality control, manage-
ment, etc. This information can be roughly grouped in two. The first concerns
the behavioural or qualitative aspects of systems, i.e. in what they do, regardless
of how. The other kind of information has to do with the quantitative aspects of
systems, i.e. how efficiently they perform.

Different views of the same system originated many different semantics that
must be related to one another via a strict correspondence among them all.



For example, concurrent and distributed processes have been given descriptions
that take care of aspects like causality and locality (so-called true concurrency),
as well as priorities, time, probabilities. These descriptions, together with the
classic interleaving ones, help improving the quality and robustness of code and
efficient runtime management of systems. We think that there is no need of
many semantic models defined ad hoc: a single parametric model can capture
all aspects of interest, both qualitative and quantitative. The main semantics
presented in the literature can be retrieved, by simply projecting the parametric
model on the properties under investigation. The connections among different
semantics are now easy to establish: comparison of projections suffice.

We implement the motto TRANSITIONS AS PROOFS through proved transition sys-
tems [32, 10]. Their transitions are labelled by encodings of their proofs. Then,
suitable relabellings yield the wanted models, that are related to each other by
comparing their relabelling functions [33, 34, 73, 9]. Also, proved transition sys-
tems can originate a hierarchy of semantic descriptions of the same process that
are closer and closer to actual implementations. The parallel structure of pro-
cesses, i.e. the network topology, made explicit by in the proofs of transitions,
is exploited in [8] for transforming global environments of mobile processes into
local ones.

Performance evaluation and other quantitative analysis should start already at
the design level. Besides robustness and reliability of the design, these early mea-
sures may save efforts. Indeed, if the design meets all behavioural requirements
but leads to inefficient implementations, the system must be re-designed. This
calls for the integration of qualitative and quantitative analysis of systems in
a single methodology. Proved transition systems are detailed enough to express
these quantitative aspects; see [72, 74] for descriptions that include probabilistic
aspects of concurrent systems, and these proceedings for a model that takes time
into account.

In most timed operational models, time is assumed to be discrete, i.e. to be a
multiple of some base time. This discrete approach cannot certainly account for
continuous phenomena arising in hybrid systems, and runs into a complexity
problem when put at work in a program analysis context when the base time
is chosen as the greatest common divisor of the execution times of all actions
considered in the semantics. When taking the refinement process up to its limit,
dense time abstracts all possible base times. We have introduced dense time in
the context of Higher-Dimensional Automata, a truly-concurrent model of com-
putations [40] in which transitions are made up of several concurrent activities.
Time is measured as the length of traces using some metric (defined locally by
the norm of tangent vectors). The timed semantics can be defined composition-
ally (using constructors much alike those of timed process algebras). A SOS-like
format has also been proposed and proved correct with respect to the underlying
timed Higher-Dimensional Automata.



Our “economic” long-run goal is the realization of (semi-) automatic verifica-
tion tools to be integrated in a programming environment for concurrency [16].
Again parametricity saves efforts. In fact, the implementation of verification
tools is complex and expensive. If the tool is highly specialized, its cost may
not be justified. Instead, parametric tools support many different semantics at
the cost of a single one. Its specializations simply require to implement rela-
belling functions [44]. Indeed, the kernel of a parametric tool coincides with the
construction of the proved transition system. It has the same shape and the
same space and time complexity of the interleaving case. Then, model checking
and (bisimulation-based) equivalence verifications are completely standard. We
implemented a prototype of an equivalence checker based on proved transition
systems [7]. It has also been used to support the debugging of Facile code [9]
(and below).

Semantics expressed by means of transition systems and sets of rules to construct
them have been proposed also for Statecharts, a formalism for the specification
of systems consisting of concurrent components which react to signals from an
environment and interact with each other by broadcast. Due to the complexity of
specifications compositionality of semantic descriptions, concepts of equivalence
of behaviours, composability of proof methods are mandatory ([49, 50, 47]).

In these proceedings there are several papers that address goals central to an-
notated type and effect systems:

A non-standard semantics for generating reduced transition systems (by N. De
Francesco, A. Santone and G. Vaglini) proposes a new non-standard operational
semantics for CCS that gives a transition system with much less transitions and
states than the original one. The authors apply abstract interpretation to obtain
their non-standard operational semantics, and prove that the new transition
system of a process is deadlock free if and only if the standard one is. The
key point is that the reachability relation of the standard transition system is
preserved by the abstract interpretation they define.

Mobile processes with local clocks (by P. Degano, J.-V. Loddo, and C. Priami)
defines a structural timed operational semantics for mobile processes. A distin-
guishing feature is that the time that actions consume depends on the basic
operations needed for firing them. In this way, both the run-time support and
the architecture of the system affect the estimate of time. Their proposal is truly
concurrent, because any sequential component of a system has its own clock. A
preorder is then defined that considers a process more efficient than another if
it performs better from a given point on.

Testing semantics of asynchronous distributed programs (by R. De Nicola and
R. Pugliese) carries over an existing language some important notions and con-
cepts developped mainly for theoretical process calculi. It defines a structural
operational semantics to IPAL, an imperative subset of the coordination lan-



guage Linda. Essentially, this subset is a CSP-like process calculus. The main
results of the paper are that assignment and Linda communication, based on
tuples, are given a transitional semantics. Also, testing equivalence is extended
to cover IPAL, a proof system is given, and a full abstraction theorem is proved.

The last two two papers address semantic and expressivity issues of Statecharts.

A process language for statecharts (by F. Levi) proposes a compositional labelled
transition system for Statecharts. This new semantics is obtained via a transla-
tion of Statecharts into a process algebra, which can be seen as the counterpart of
Statecharts. Notably, the process algebra used has an operator of process refine-
ment that represents the hierarchical structure Statecharts have. The semantics
proposed is shown correct with respect to Pnueli and Shalev’s.

Priorities in Statecharts (by A. Maggiolo-Schettini and M. Merro) deals with
the capability of the formalism to express notions of priority between transitions
that are enabled and are mutually exclusive. A version of Statecharts without
priority is introduced, and then is extended with various syntactic and semantic
notions of priority. These are examined and classified according to their expres-
sive power.
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