Report from Dagstuhl Seminar 16471
Concurrency with Weak Memory Models: Semantics,
Languages, Compilation, Verification, Static Analysis, and
Synthesis

Edited by
Jade Alglave!, Patrick Cousot?, and Caterina Urban?

1 University College London, GB, j.alglave@ucl.ac.uk
2 New York University, US, pcousot@cims.nyu.edu
3 ETH Ziirich, CH, caterina.urban@inf.ethz.ch

—— Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16471 “Concurrency
with Weak Memory Models: Semantics, Languages, Compilation, Verification, Static Analysis,
and Synthesis”. The aim of the seminar was to bring together people from various horizons,

including theoreticians and verification practitioners as well as hardware vendors, in order to
set up a long-term research program to design formal methods and develop tools ensuring the
correctness of concurrent programs on modern multi-processor architectures.

Seminar November 20-25, 2016 — http://www.dagstuhl.de/16471

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.3.4 Processors, F.3.2
Semantics of Programming Languages

Keywords and phrases Compilation, Computer Memory, Concurrency, Memory Barrier, Memory
Ordering, Micro-Architecture, Multiprocessor, Out-of-Order Execution, Parallelism, Program
Synthesis, Programming Language, Semantics, Static Analysis, Verification, Weak Memory
Model

Digital Object Identifier 10.4230/DagRep.6.11.108

1 Executive Summary

Jade Alglave
Patrick Cousot

License) Creative Commons BY 3.0 Unported license
© Jade Alglave and Patrick Cousot

In the last decade, research on weak memory has focussed on modeling accurately and precisely
existing systems such as hardware chips. These laudable efforts have led to definitions of
models such as IBM Power, Intel x86, Nvidia GPUs and others.

Now that we have faithful models, and know how to write others if need be, we can
focus on how to use these models for verification, for example to assess the correctness of
concurrent programs.

The goal of our seminar was to discuss how to get there. To do so, we gathered people
from various horizons: hardware vendors, theoreticians, verification practitioners and hackers.
We asked them what issues they are facing, and what tools they would need to help them
tackle said issues.

The first day was dedicated to theory. We had overviews of classic semanticists tools
such as event structures, message sequence charts, and pomsets. The remaining days were
Except where .otherwise noted, content of this report is licensed

BY under a Creative Commons BY 3.0 Unported license
Concurrency with Weak Memory Models: Semantics, Languages, Compilation, Verification, Static Analysis, and

Synthesis, Dagstuhl Reports, Vol. 6, Issue 11, pp. 108-128
Editors: Jade Alglave, Patrick Cousot, and Caterina Urban

\\v pacsTupL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16471
http://dx.doi.org/10.4230/DagRep.6.11.108
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Jade Alglave, Patrick Cousot, and Caterina Urban

mostly dedicated to models and verification practices, whether from a user point of view, or
a designer point of view. We chose to close the days early, so that our guests would have
ample time to come back to an interesting point they had heard during one of the talks, or
engage in deep discussions. The feedback we got was quite positive, in that the seminar help
spark discussions with, for example, a PhD student in concurrency theory, and a verification
practitioner from ARM.

109

16471

16471 — Concurrency with Weak Memory Models

2 Table of Contents

Executive Summary
Jade Alglave and Patrick Cousot

Overview of Talks

Robustness against Consistency Models with Atomic Visibility
Giovanni Tito Bernardi o e

Transactions on Mergeable Objects in Shared-Memory
Annette BIeniusa oo o e e e e

New Lace is a Program Logic for Weak Memory (Probably)
Richard Bornat e

A Denotational Framework for Weak Memory Conucrrency
Stephen Brookes e e e

Weak Memory using Event Structures
Simon Castellan e

Analysing Snapshot Isolation
Andrea Cerone L

Game Semantics based on Event Structures
Pierre Clairambault e

Proof of Mutual-Exclusion and Non-Starvation of a Program: PostgreSQL
Patrick Cousot and Jade Alglave

Modeling and Analysis of Remote Memory Access Programming
Andrei Marian Dan

Formalising the ARM Memory Model ... Again
Will Deacon e

A Plea for Industrial-Strength Formal Methods for Concurrent Software
David Delmas o e

Embedding Transactions in Weak Memory Models
Stephan Diestelhorst

A Discrete Model of Concurrent Program Execution
Charles Anthony Richard Hoare

(A New Methodology for) Inductive Verification of Message-Passing Programs
Bernhard Kragl e

A Promising Semantics for Relaxed-Memory Concurrency
Ori Lahav e e e e e

Automatic Synthesis of Comprehensive Litmus Test Suites
Daniel Lustiq e e e e e e e

C11 Compiler Mappings: Exploration, Verification, and Counterexamples
Yatin Manerkar e e

Taming CAT
Luc Maranget e

Jade Alglave, Patrick Cousot, and Caterina Urban

Linux-Kernel Memory Ordering: Help Arrives At Last!
Paul McKenney o o o i o i e e e e e

Portability Analysis for Axiomatic Memory Models
Roland Meyer e

Hazard Pointers: C4++ Memory Ordering Issues
Maged M. Michael e

Static Analysis by Abstract Interpretation of Numeric Properties of Programs under
Weak Memory Models
Antoine Miné

Musketeer in Dagstuhl: Automated Fencing in Software?
Vincent Nimal e

Verifying a Concurrent Garbage Collector
Gustavo Petri and Delphine Demange

Mixed-Size Concurrency: ARM, POWER, C/C++11, and SC
Susmit Sarkar e e e e

Reachability for Dynamic Parametric Processes
Helmut Seidl e e e

Data Consistency Check of Very Large Execution Traces
Suzanne Shoaraeeo e

From Architecture to Implementation
Daryl Stewarto

TriCheck: Memory Model Verification at the Trisection of Software, Hardware, and
ISA
Caroline J. Trippel e

Explaining Relaxed Memory Models with Program Transformations
Viktor Vafeiadis

Event Structures and Stable Families
Glynn Winskel e

Weak Memory Models: Balancing Definitional Simplicity and Implementation
Flexibility
Sizhuo Zhango e e

Participants

111

16471

112

16471 — Concurrency with Weak Memory Models

3 Overview of Talks

3.1 Robustness against Consistency Models with Atomic Visibility
Giovanni Tito Bernardi (University Paris-Diderot, FR)

License) Creative Commons BY 3.0 Unported license
© Giovanni Tito Bernardi
Joint work of Giovanni Bernardi, Alexey Gotsman
Main reference G. Bernardi, A. Gotsman, “Robustness against Consistency Models with Atomic Visibility”, in
Proc. of the 27th Int’l Conf. on Concurrency Theory (CONCUR 2016), LIPIcs, Vol. 59,
pp. 7:1-7:15, Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2016.
URL http://dx.doi.org/10.4230/LIPIcs. CONCUR.2016.7

To achieve scalability, modern Internet services often rely on distributed databases with
consistency models for transactions weaker than serializability. At present, application
programmers often lack techniques to ensure that the weakness of these consistency models
does not violate application correctness. In this talk I will present criteria to check whether
applications that rely on a database providing only weak consistency are robust, i.e., behave
as if they used a database providing serializability, and I will focus on a consistency model
called Parallel Snapshot Isolation. The results I will outline handle systematically and
uniformly several recently proposed weak consistency models, as well as a mechanism for
strengthening consistency in parts of an application.

3.2 Transactions on Mergeable Objects in Shared-Memory
Annette Bieniusa (TU Kaiserslautern, DE)

License) Creative Commons BY 3.0 Unported license
© Annette Bieniusa
Joint work of Deepthi Devaki Akkoorath, Annette Bieniusa
Main reference D.D. Akkoorath, A. Bieniusa, “Transactions on Mergeable Objects”, in Proc. of the 13th Asian
Symp. on Programming Languages and Systems (APLAS 2015), LNCS, Vol. 9458, pp. 427444,
Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-319-26529-2_ 23

Under high contention, serializability for transactions results in frequent aborts. This limits
possible parallelism and results in performance degradation. In this talk, we introduce a new
transactional semantics, Mergeable Transactions, which allows concurrent transactions on
the same objects to execute in parallel. Instead of aborting and re-executing, the conflicting
updates on shared objects are merged using type specific semantics. We show that mergeable
transactions outperform serializable transactions under high contention workloads.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-26529-2_23
http://dx.doi.org/10.1007/978-3-319-26529-2_23
http://dx.doi.org/10.1007/978-3-319-26529-2_23
http://dx.doi.org/10.1007/978-3-319-26529-2_23

Jade Alglave, Patrick Cousot, and Caterina Urban 113

3.3 New Lace is a Program Logic for Weak Memory (Probably)
Richard Bornat (Middlesex University — London, GB)

License) Creative Commons BY 3.0 Unported license
© Richard Bornat
Joint work of Richard Bornat, Jade Alglave, Matthew J. Parkinson
Main reference R. Bornat, J. Alglave, M. J. Parkinson, “New Lace and Arsenic: Adventures in Weak Memory with
a Program Logic”, arXiv:1512.01416v2 [cs.LO], 2015.
URL http://arxiv.org/abs/1512.01416v2

It is possible to reason about weak-memory executions of litmus tests (but not yet about
synchronized assignment) using a version of rely/guarantee. Constraints between commands
and/or control expressions control order of elaboration (local execution) and propagation of
writes. The logic is driven by the temporal modality ’since’ and some specialized modalities
based on it.

The logic has only a weak grasp of causality (treated by auxiliary variables, as usual in
Owicki-Gries logics). It has some surprising rules dealing with stability: five or six different
kinds of stability. It has a proof-checker (Arsenic, available on GitHub); the proof-checker is
needed for even smallish proofs, which shows that proofs in the logic are far too complicated.

3.4 A Denotational Framework for Weak Memory Conucrrency
Stephen Brookes (Carnegie Mellon University — Pittsburgh, US)

License) Creative Commons BY 3.0 Unported license
© Stephen Brookes

We present a denotational semantic framework for compositional reasoning about shared-
memory parallel programs, assuming a form of weak memory. Traditional denotational models
of shared-memory programs are trace-based, assume sequential consistency, and use global
states and interleaving, rendering them poorly suited for expressing weak memory behavior.
Instead we abandon sequential consistency and embrace “true” concurrency: a program
denotes a set of pomsets (partially ordered multi-sets) of actions. Rather than global states
we use footprints, built from “local” states. This framework is intended to offer an alternative
to execution graphs, widely used in operational/axiomatic formalizations of weak memory.
An execution graph represents the behavior of a complete program, all threads known in
advance, running without external interference. The axiomatic method requires construction
of various auxiliary relational edges (happens-before, reads-from, etc) constrained to satisfy
a battery of axioms. These graph-based methods are inherently non-compositional, relying
on knowledge of the entire program structure and assuming that execution takes place with
no interference. A denotational semantics is by its very nature compositional, allowing us to
take account of interference in a natural manner; and we can derive analogues of the relevant
auxiliary relations automatically from the structure of pomset executions.

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1512.01416v2
http://arxiv.org/abs/1512.01416v2
http://arxiv.org/abs/1512.01416v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

114

16471 — Concurrency with Weak Memory Models

3.5 Weak Memory using Event Structures
Simon Castellan (ENS - Lyon, FR)

License) Creative Commons BY 3.0 Unported license
© Simon Castellan

In this talk, I will introduce a methodology to model weak memory using event structures.
The model is compositional and neatly separate thread & storage semantics. Moreover
it comes from recent game semantics advances using causal models. The game semantics
aspects allows to define the model by simply defining a few key strategies with higher-order
type. In this talk, we show how to interpret the TSO model using event structures in a
compositional way.

3.6 Analysing Snapshot Isolation
Andrea Cerone (Imperial College London, GB)

License) Creative Commons BY 3.0 Unported license
© Andrea Cerone
Joint work of Andrea Cerone, Alexey Gotsman
Main reference A. Cerone, A. Gotsman, “Analysing Snapshot Isolation”, in Proc. of the 2016 ACM Symp. on
Principles of Distributed Computing (PODC’16), pp. 55-64, ACM, 2016.
URL http://dx.doi.org/10.1145/2933057.2933096

Snapshot isolation (SI) is a widely used consistency model for transaction processing, imple-
mented by most major databases and some of transactional memory systems. Unfortunately,
its classical definition is given in a low-level operational way, by an idealized concurrency-
control algorithm, and this complicates reasoning about the behavior of applications running
under SI. We give an alternative specification to SI that characterizes it in terms of transac-
tional dependency graphs of Adya et al., generalizing serialization graphs. Unlike previous
work, our characterization does not require adding additional information to dependency
graphs about start and commit points of transactions.

3.7 Game Semantics based on Event Structures

Pierre Clairambault (ENS — Lyon, FR)

License @ Creative Commons BY 3.0 Unported license
© Pierre Clairambault
Joint work of Simon Castellan, Pierre Clairambault, Silvain Rideau, Glynn Winskel
Main reference S. Castellan, P. Clairambault, S. Rideau, G. Winskel, “Games and Strategies as Event structures”,
arXiv:1604.04390v3 [math.LO], 2016.
URL https://arxiv.org/abs/1604.04390v3

Games are common objects in theoretical computer science, used in particular to model
open systems: indeed, the dynamics of an open system can be regarded as a game between
two players, one playing for the system and the other for the environment. In program
semantics, the same idea yields a general methodology (“Game Semantics”) for giving
syntax-free representations of the execution in a compositional manner, for various high-
level programming languages with complex control structure. In this talk, I will give an
introduction to recent work on game semantics based on event structures, with a focus on
the semantics of shared state concurrency. This served as the basis and inspiration for Simon
Castellan’s event structure semantics for weak memory, presented in a separate talk.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2933057.2933096
http://dx.doi.org/10.1145/2933057.2933096
http://dx.doi.org/10.1145/2933057.2933096
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1604.04390v3
https://arxiv.org/abs/1604.04390v3
https://arxiv.org/abs/1604.04390v3

Jade Alglave, Patrick Cousot, and Caterina Urban

3.8 Proof of Mutual-Exclusion and Non-Starvation of a Program:
PostgreSQL

Patrick Cousot (New York University, US) and Jade Alglave (University College London,
GB)
License) Creative Commons BY 3.0 Unported license
© Patrick Cousot and Jade Alglave
Joint work of Jade Alglave, Patrick Cousot
Main reference J. Alglave, P. Cousot, “Ogre and Pythia: an Invariance Proof Method for Weak Consistency
Models”, in Proc. of the 44th ACM SIGPLAN Symp. on Principles of Programming Languages

(POPL’17), pp. 3-18, ACM, 2017.
URL http://dx.doi.org/10.1145/3009837.3009883

Proof of mutual-exclusion and non-starvation of a program: PostgreSQL, Jade Alglave and
Patrick Cousot.

Using the parallel program invariance proof method of Alglave and Cousot (POPL 2017),
we prove the mutual exclusion property of the PostgreSQL program. The weakest memory
model necessary and sufficient for this mutual exclusion property to hold is extracted from
the proof by calculational design.

The invariance proof method allows us to reason on any set of executions as defined by a
set of read-from relations (each read-from relation uniquely determining a single execution
trace, if any). Thanks to this property, we can use the inductive invariant to prove non-
starvation. We prove that any execution that starves is impossible, either because this proof
method cannot satisfy the verification conditions and so (by soundness of the proof method)
is not a possible execution of the program, or by disallowing this execution thanks to labeled
fences (which does not change the invariance proof and which effect is defined in cat), or
thanks to properties of hardware architectures (such as no read of a future write beyond a
cut) not expressible in the current version of cat.

3.9 Modeling and Analysis of Remote Memory Access Programming
Andrei Marian Dan (ETH Zirich, CH)

License) Creative Commons BY 3.0 Unported license
© Andrei Marian Dan
Joint work of Andrei Marian Dan, Patrick Lam, Torsten Hoefler, Martin Vechev
Main reference A.M. Dan, P. Lam, T. Hoefler, M. Vechev, “Modeling and Aanalysis of Remote Memory Access
Programming”, in Proc. of the 2016 ACM SIGPLAN Int’l Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’16), pp. 129-144, ACM, 2016.
URL http://dx.doi.org/10.1145/2983990.2984033

Recent advances in networking hardware have led to a new generation of Remote Memory
Access (RMA) networks in which processors from different machines can communicate
directly, bypassing the operating system and allowing higher performance. Researchers
and practitioners have proposed libraries and programming models for RMA to enable the
development of applications running on these networks, However, the memory models implied
by these RMA libraries and languages are often loosely specified, poorly understood, and
differ depending on the underlying network architecture and other factors. Hence, it is
difficult to precisely reason about the semantics of RMA programs or how changes in the
network architecture affect them. We address this problem with the following contributions:
(i) a coreRMA language which serves as a common foundation, formalizing the essential
characteristics of RMA programming; (ii) complete axiomatic semantics for that language;
(iii) integration of our semantics with an existing constraint solver, enabling us to exhaustively

115

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3009837.3009883
http://dx.doi.org/10.1145/3009837.3009883
http://dx.doi.org/10.1145/3009837.3009883
http://dx.doi.org/10.1145/3009837.3009883
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2983990.2984033
http://dx.doi.org/10.1145/2983990.2984033
http://dx.doi.org/10.1145/2983990.2984033
http://dx.doi.org/10.1145/2983990.2984033

116

16471 — Concurrency with Weak Memory Models

generate core- RMA programs (litmus tests) up to a specified bound and check whether the
tests satisfy their specification; and (iv) extensive validation of our semantics on real-world
RMA systems. We generated and ran 7,441 litmus tests using each of the low-level RMA
network APIs: DMAPP, VPI Verbs, and Portals 4. Our results confirmed that our model
success- fully captures behaviors exhibited by these networks. More- over, we found RMA
programs that behave inconsistently with existing documentation, confirmed by network
experts. Our work provides an important step towards understand- ing existing RMA
networks, thus influencing the design of future RMA interfaces and hardware.

3.10 Formalising the ARM Memory Model ... Again
Will Deacon (ARM Ltd. — Cambridge, GB)

License) Creative Commons BY 3.0 Unported license
© Will Deacon

Recent work within the ARM architecture group has led to the development of a formalization
of the ARMv8 weakly consistent memory model using herd and ‘cat’. Whilst this model
can act as an invaluable tool when considering concurrent applications in userspace, its
interactions with the system architecture are unclear and appear to be inexpressible with
the current litmus test methodology. This talk will introduce the new model and highlight
some of the challenges faced when integrating it with the broader architecture.

3.11 A Plea for Industrial-Strength Formal Methods for Concurrent
Software

David Delmas (Airbus S.A.S. — Toulouse, FR)

License) Creative Commons BY 3.0 Unported license
© David Delmas
Joint work of V. Brégeon, E. Cavailles, D. Delmas, V. Jégu, A. Miné, S. Sauvant, B. Triquet

Verification activities are liable for more than half of the overall effort in the development of
critical avionics software. Therefore, (semi-) automatic formal verification techniques are
increasingly used to improve industrial efficiency, while preserving safety. As required by the
DO0-333 formal method technical supplement to the DO-178C standard for avionics software
development, such techniques must be sound, and associate tools have to undergo stringent
qualification processes.

However, while most existing techniques and tools focus on sequential or synchronous
software, an increasing share of embedded systems is being developed in asynchronous
software, to save on cost, weight, and resources. AstréeA, an extension of the Astrée run-time
error analyzer, is one of the very few sound static analyzers which may be used for such
asynchronous software.

So far, asynchronous avionics software was mostly running on single-core platforms with
real-time scheduling. Nonetheless, multi-core avionics architectures are currently being
considered. There is interest for wait-free/lock-free message passing algorithms, to support
ARINC 653 sampling and queuing schemes. At implementation level, there is a need for a
sustainable way to ensure correctness via a minimal set of fences, without impairing hard
real-time performance targets. At verification level, there is a need for sound techniques

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jade Alglave, Patrick Cousot, and Caterina Urban 117

guaranteeing functional correctness of source and compiled programs. An issue is that the
CompCert compiler is only certified for sequential executions. Finally, there is a need for a
sound approach to timing analysis with complex multi-core processors.

3.12 Embedding Transactions in Weak Memory Models
Stephan Diestelhorst (ARM Ltd. — Cambridge, GB)

License) Creative Commons BY 3.0 Unported license
© Stephan Diestelhorst
Joint work of Stephan Diestelhorst, Matt Horsnell, Grigorios Magklis

Hardware Transactional Memory has been proposed as a higher-level memory primitive
that can improve performance of and simplify parallel programming. The baseline premise
of HTM is simple: transactions behave as if they are executing in isolation, despite them
executing concurrently.

Recent implementations and architectures, however, need to embed this core principle
into a memory model for non-transactional accesses.

Especially with a weak non-tx memory model such as ARM, embedding the strong TM
semantics leaves ample room for “impedance matching” of the different strengths. Together
with the combinatorial explosion of options to add transactions to well-known litmus tests, a
mechanized model for experimenting with semantics is prudent.

In my talk, I will show our work in progress of using the CAT language for formalizing
HTM, and also informally present some of the challenges associated with the interplay of
transactional and non-transactional accesses.

3.13 A Discrete Model of Concurrent Program Execution
Charles Anthony Richard Hoare (Microsoft Research UK — Cambridge, GB)

License) Creative Commons BY 3.0 Unported license
© Charles Anthony Richard Hoare
Joint work of Jade Alglave, Charles Anthony Richard Hoare, Peter O’Hearn, Stephan van Staden, Viktor
Vafeiadis, ITan Wehrman, John Wickerson

A two-dimensional discrete (non-metric) geometry is proposed for recording the trace of
execution of a concurrent program that has been expressed in an object-oriented high-level
programming language. From this is derived an algebraic semantics for the programming
language, and a logic for reasoning about correctness of its semantics, and an operational
semantics for implementing it.

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

118

16471 — Concurrency with Weak Memory Models

3.14 (A New Methodology for) Inductive Verification of
Message-Passing Programs

Bernhard Kragl (IST Austria — Klosterneuburg, AT)

License @@ Creative Commons BY 3.0 Unported license
© Bernhard Kragl
Joint work of Bernhard Kragl, Shaz Qadeer

Designing and implementing distributed systems is a hard and challenging problem. A major
obstacle is to manage the complexity of the sheer number of behaviors of a system due to,
e.g., nondeterministic scheduling and unreliable message delivery. This complexity transfers
to the amount of annotations required in correctness proofs and significantly hinders the
adoption of verification technology.

In this talk we present a methodology developed atop the CIVL verification system
[CAV’15] (originally designed for shared-memory programs) to simplify the construction of
correctness proofs for message-passing programs. The central theme is to establish conditions
that allow message handlers to be inlined at message sends and thus enable sequential
reasoning, which further eliminates complicated case distinctions in the necessary invariants.
For example, in our proof of a two-phase commit protocol we do not need to state complex
conditions on the history of the system or the current network state (i.e., messages in
delivery).

3.15 A Promising Semantics for Relaxed-Memory Concurrency
Ori Lahav (MPI-SWS - Kaiserslautern, DE)

License) Creative Commons BY 3.0 Unported license
© Ori Lahav
Joint work of Derek Dreyer, Chung-Kil Hur, Jeehoon Kang, Ori Lahav, Viktor Vafeiadis
Main reference J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, D. Dreyer, “A Promising Semantics for
Relaxed-Memory Concurrency”, in Proc. of the 44th ACM SIGPLAN Symp. on Principles of
Programming Languages (POPL’17), pp. 175-189, ACM, 2017.
URL http://dx.doi.org/10.1145/3009837.3009850

Despite many years of research, it has proven very difficult to develop a memory model for
concurrent programming languages that adequately balances the conflicting desiderata of
programmers, compilers, and hardware. In this talk, we present the first relaxed memory
model that (1) accounts for a broad spectrum of features from the C++11 concurrency
model, (2) is implementable, in the sense that it provably validates many standard compiler
optimizations and reorderings, as well as standard compilation schemes to x86-TSO and
Power, (3) justifies simple invariant-based reasoning, thus demonstrating the absence of bad
“out-of-thin-air” behaviors, (4) supports “DRF” guarantees, ensuring that programmers who
use sufficient synchronization need not understand the full complexities of relaxed-memory
semantics, and (5) defines the semantics of racy programs without relying on undefined
behaviors, which is a prerequisite for applicability to type-safe languages like Java.

The key novel idea behind our model is the notion of promises: a thread may promise
to execute a write in the future, thus enabling other threads to read from that write out of
order. Crucially, to prevent out-of-thin-air behaviors, a promise step requires a thread-local
certification that it will be possible to execute the promised write even in the absence of the
promise. To establish confidence in our model, we have formalized most of our key results in
Coq.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1145/3009837.3009850
http://dx.doi.org/10.1145/3009837.3009850

Jade Alglave, Patrick Cousot, and Caterina Urban 119

3.16 Automatic Synthesis of Comprehensive Litmus Test Suites
Daniel Lustig (NVIDIA Corp. — Santa Clara, US)

License) Creative Commons BY 3.0 Unported license
© Daniel Lustig
Joint work of Olivier Giroux, Daniel Lustig, Alexandros Papakonstantinou, Andrew Wright
Main reference D. Lustig, A. Wright, A. Papakonstantinou, O. Giroux, “Automatic Synthesis of Comprehensive
Memory Model Litmus Test Suites”, Architectural Support for Programming Languages and
Operating Systems (ASPLOS’17), 2017.

Litmus tests are the basic units of testing weak memory models. Most memory model
analysis infrastructures and testing suites make heavy use of litmus tests as the basic units of
testing and understanding. The success of such techniques requires that the suites of litmus
tests be comprehensive: that they cover every obvious and obscure corner of the memory
model and/or of its implementation. However, most litmus test suites today are generated
through some combination of manual effort and randomization, and this leaves them prone
to human error and incompleteness.

We present a methodology for synthesizing comprehensive litmus test suites directly from
the memory model specification. By construction, these suites contain all tests satisfying a
minimality criterion: that no synchronization mechanism in the test can be weakened without
causing new behaviors to become observable. We formalize this notion using the Alloy
modeling language, and we apply it to a number of existing and newly-proposed memory
models. Our results show not only that this synthesis technique can automatically reproduce
all manually-generated tests from existing suites, but also that it discovers new tests that
are not as well studied.

3.17 C11 Compiler Mappings: Exploration, Verification, and
Counterexamples

Yatin Manerkar (Princeton University, US)

License () Creative Commons BY 3.0 Unported license
© Yatin Manerkar
Joint work of Daniel Lustig. Yatin Manerkar, Margaret Martonosi, Michael Pellauer, Caroline Trippel
Main reference Y. A. Manerkar, C. Trippel, D. Lustig, M. Pellauer, M. Martonosi, “Counterexamples and Proof
Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings”,
arXiv:1611.01507v2 [cs.PL], 2016
URL https://arxiv.org/abs/1611.01507v2

C and C++ atomic operations get mapped down to individual instructions or combinations
of instructions by compilers, depending on the ordering guarantees and synchronization
instructions provided by the underlying architecture. These compiler mappings must uphold
the ordering guarantees provided by C/C++ atomics or the compiled program will not
behave according to the C/C++ memory model. In this talk I discuss a counterexample we
discovered to the well-known trailing-sync compiler mappings for the Power and ARMv7
architectures that were previously thought to be proven correct. I also discuss the loophole
in the proof of the mappings that allowed the incorrect mappings to be proven correct, as
well as a few optimization-related bugs that I discovered in the IBM XL C++ compiler’s
implementation of C++ atomics.

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
D. Lustig, A. Wright, A. Papakonstantinou, O. Giroux, ``Automatic Synthesis of Comprehensive Memory Model Litmus Test Suites'', Architectural Support for Programming Languages and Operating Systems (ASPLOS'17), 2017.
D. Lustig, A. Wright, A. Papakonstantinou, O. Giroux, ``Automatic Synthesis of Comprehensive Memory Model Litmus Test Suites'', Architectural Support for Programming Languages and Operating Systems (ASPLOS'17), 2017.
D. Lustig, A. Wright, A. Papakonstantinou, O. Giroux, ``Automatic Synthesis of Comprehensive Memory Model Litmus Test Suites'', Architectural Support for Programming Languages and Operating Systems (ASPLOS'17), 2017.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1611.01507v2
https://arxiv.org/abs/1611.01507v2
https://arxiv.org/abs/1611.01507v2
https://arxiv.org/abs/1611.01507v2

120

16471 — Concurrency with Weak Memory Models

3.18 Taming CAT
Luc Maranget (INRIA - Paris, FR)

License) Creative Commons BY 3.0 Unported license
© Luc Maranget
Joint work of Jade Alglave, Luc Maranget
URL http://diy.inria.fr

In this demo-talk, a Lamport style model of Sequential Consistency is created live in CAT.
CAT is the Domain Specific Language used by the memory model simulator herd7 to describe
and execute shared memory models.

See http://diy.inria.fr for software and documentation.

3.19 Linux-Kernel Memory Ordering: Help Arrives At Last!
Paul McKenney (IBM — Beaverton, US)

License @ Creative Commons BY 3.0 Unported license
© Paul McKenney
Joint work of Jade Alglave, Luc Maraget, Paul McKenney, Andrea Parri, Alan Stern

It has been said that Documentation/memory-barriers.txt can be used to frighten small
children [1], and perhaps this is true. However, it is woefully inefficient. After all, there are
a very large number of children in this world, and it would take a huge amount of time and
effort to read it to all of them.

This situation clearly calls out for automation, which has been developed over the past
two years. An automated tool takes short fragments of C code as input, along with an
assertion, and carries out the axiomatic equivalent of a full state-space search to determine
whether the assertion always, sometimes, or never triggers. This talk will describe this tool
and give a short demonstration of its capabilities.

To the best of our knowledge, this is the first realistic Linux-kernel memory model, and
the first memory model of any kind incorporating a realistic model of RCU.

References
1 Mel Gorman. [PATCH 11/18] mm: fix TLB flush race between migration, and
change protection_range. Linux Kernel Mailing List, Hillsboro, OR, USA, 2013

3.20 Portability Analysis for Axiomatic Memory Models
Roland Meyer (TU Braunschweig, DE)

License @@ Creative Commons BY 3.0 Unported license
© Roland Meyer
Joint work of Florian Furbach, Keijo Heljanko, Roland Meyer, Hernan Ponce de Leén

We present PORTHOS, the first tool that discovers porting bugs in performance-critical
code. PORTHOS takes as input a program, the memory model of the source architecture for
which the program has been developed, and the memory model of the targeted architecture.
If the code is not portable, PORTHOS finds a porting bug in the form of an unexpected
execution — an execution that is consistent with the target but inconsistent with the source
memory model. Technically, PORTHOS implements a bounded model checking method that

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://diy.inria.fr
http://diy.inria.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jade Alglave, Patrick Cousot, and Caterina Urban

reduces portability analysis to the satisfiability modulo theories (SMT) problem with integer
difference logic. There are two problems in the reduction that are unique to portability
and that we present novel and efficient solutions for. First, the formulation of portability
contains a quantifier alternation (consistent + inconsistent). We encode inconsistency as
an existential query. Second, the memory models may contain recursive definitions. We
compute the corresponding least fixed points efficiently in SMT. Interestingly, we are able to
prove that our execution-based notion of portability is the most liberal one that admits an
efficient algorithmic analysis: for state-based portability, a polynomial SAT encoding cannot
exist. Experimentally, we applied PORTHOS to a number of case studies. It is able to check
portability of non-trivial programs between interesting architectures. Notably, we present
the first algorithmic analysis of portability from TSO to Power.

3.21 Hazard Pointers: C4++ Memory Ordering Issues
Maged M. Michael (Facebook — New York, US)

License) Creative Commons BY 3.0 Unported license
© Maged M. Michael

In this talk I review the hazard pointers method with focus on memory ordering issues for
the main access patterns under the C++ memory consistency model. This is in the context
of an ongoing effort at the C++ standard committee to add hazard pointers to the standard
library.

One of the challenges in determining correct memory ordering for a hazard pointers
library implementation is that main access patterns include user code that may use weak
memory order specifiers. This makes using default sequentially consistent memory accesses
insufficient.

I use the herd memory model simulator to find sufficient memory ordering options for
preventing incorrect execution patterns. The conclusions from the experience are that
support is needed for read-modify-write C+4 atomic operations such as compare__exchange,
fetch_add, and exchange; and that it would be very useful for complex access patterns if
memory model simulation tools can generate a list of memory ordering options for a litmus
test without requiring the user to specify memory ordering in the litmus test.

3.22 Static Analysis by Abstract Interpretation of Numeric Properties
of Programs under Weak Memory Models

Antoine Miné (CNRS and University Pierre & Marie Curie — Paris, FR)

License @@ Creative Commons BY 3.0 Unported license
© Antoine Miné
Joint work of Antoine Miné, Thibault Suzanne
Main reference T. Suzanne, A. Miné, “From Array Domains to Abstract Interpretation Under Store-Buffer-Based
Memory Models”, in Proc. of the 23rd Int’l Static Analysis Symp. (SAS’16), LNCS, Vol. 9837,
pp. 469-488, Springer, 2016.
URL http://dx.doi.org/10.1007/978-3-662-53413-7_ 23

In this talk, we discuss the verification of concurrent programs running under weak memory
models by sound and automatic static analysis based on abstract interpretation. We first
recall the principles of abstract interpretation and the well-known result that abstracting

121

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-53413-7_23
http://dx.doi.org/10.1007/978-3-662-53413-7_23
http://dx.doi.org/10.1007/978-3-662-53413-7_23
http://dx.doi.org/10.1007/978-3-662-53413-7_23

122 16471 — Concurrency with Weak Memory Models

thread interference in a flow-insensitive way makes the analysis robust against reordering of
independent reads and writes. Then, we focus on the TSO and PSO memory models, and
propose more precise abstractions tailored for these models. Starting from an operational
semantics, we leverage existing numeric abstract domains as well as array abstractions to
model the store buffers in a sound way. Finally, we present an application to fence removal
on small code examples.

3.23 Musketeer in Dagstuhl: Automated Fencing in Software?
Vincent Nimal (Microsoft Research UK — Cambridge, GB)

License) Creative Commons BY 3.0 Unported license
© Vincent Nimal
Joint work of Jade Alglave, Daniel Kroening, Vincent Nimal, Daniel Poetzl
Main reference J. Alglave, D. Kroening, V. Nimal, D. Poetzl, “Don’t Sit on the Fence”, in Proc. of the 26th Int’l
Conf. on Computer Aided Verification (CAV’14), LNCS, Vol. 8559, pp. 508-524, Springer, 2014.
URL http://dx.doi.org/10.1007/978-3-319-08867-9_ 33

/\ +
/ o+ ____ /\
/1N AN I
l_____ [____\\ /__\
L ___ I [N I
/N \/ (RN (V2 B N I AN
_____ \======| === | V2 D B
ANAN [N S I RRVAN /N
FETE D+ e 1+ 1t e /=N 0
| [___11 O I I I I O R I N
(e O N O N A B B B [I
_______ P o === ___11_I
‘Power, ARM!‘ ‘scC! ¢
\ /
7/ ¢
A, _____ _/
(N \
/1 /\
/| (A

Modern architectures rely on memory fences to prevent undesired weakenings of memory
consistency. As the fences’ semantics may be subtle, the automation of their placement is
highly desirable, e.g., in the context of legacy code. But precise methods restoring consistency
do not scale to deployed systems code. We choose to trade some precision for scalability:
we present a technique suitable for larger code bases. This method is implemented in the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-08867-9_33
http://dx.doi.org/10.1007/978-3-319-08867-9_33
http://dx.doi.org/10.1007/978-3-319-08867-9_33

Jade Alglave, Patrick Cousot, and Caterina Urban

tool musketeer, that we experimented on more than 350 executables of packages found in a
Debian Linux distribution, e.g. memcached (about 10000 LoC).

This talk recalls some results of our CAV 2014 paper, with updated results and insights
from our TOPLAS paper. It then discusses some difficulties inherent to the fence insertion
problem preventing good compositionality, which also apply to other approaches.

3.24 \Verifying a Concurrent Garbage Collector
Gustavo Petri (University Paris-Diderot, FR) and Delphine Demange (IRISA — Rennes, FR)

License) Creative Commons BY 3.0 Unported license
© Gustavo Petri and Delphine Demange
Joint work of Delphine Demange, Suresh Jagannathan, Gustavo Petri, David Pichardie, Jan Vitek, Yannick
Zakowski

We consider the problem of mechanically verifying a state-of-the-art, on-the-fly concurrent
garbage collector. To facilitate this task, we present a compiler intermediate representation
(IR) that subsumes a concurrent programming language and a proof methodology. Our IR
provides strong type guarantees, abstract concurrent data structures, and intrinsic support
for threads, roots management and object inspection via high-level iterators. Our IR is
also accompanied with a rely-guarantee program logic which we use to prove the functional

correctness of programs. In the implementation of our collector, data races are omnipresent.

To argue about the correctness of our garbage collector under the TSO memory model, we
plan to exploit the fact that the “safe publication idiom” under TSO provides a semantics
equivalent to that under the SC memory model.

3.25 Mixed-Size Concurrency: ARM, POWER, C/C++11, and SC
Susmit Sarkar (University of St. Andrews, GB)

License) Creative Commons BY 3.0 Unported license

© Susmit Sarkar

Joint work of Mark Batty, Shaked Flur, Kathryn E. Gray, Luc Maranget, Kyndylan Nienhuis, Christopher Pulte,
Susmit Sarkar, Peter Sewell, Ali Sezgin

Main reference S. Flur, S. Sarkar, C. Pulte, K. Nienhuis, L. Maranget, K. E. Gray, A. Sezgin, M. Batty, P. Sewell,
“Mixed-Size Concurrency: ARM, POWER, C/C++11, and SC”, in Proc. of the 44th ACM
SIGPLAN Symp. on Principles of Programming Languages (POPL’17), pp. 429-442, ACM, 2017.
URL http://dx.doi.org/10.1145/3009837.3009839

Previous work on the semantics of relaxed shared-memory concurrency has only considered
the case in which each load reads the data of exactly one store. In practice, however,
multiprocessors support mixed-size accesses, and these are used by programs in C/C++, and
particularly systems software.

I will describe recent work on modeling mixed-size behavior of POWER and ARM
architectures and implementations, showing new aspects of memory consistency models that
arise in this setting. In particular, the abstract notion of coherence becomes more subtle,
and adding a barrier between each instruction does not restore Sequential Consistency.

This work was published at POPL’17.

123

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3009837.3009839
http://dx.doi.org/10.1145/3009837.3009839
http://dx.doi.org/10.1145/3009837.3009839
http://dx.doi.org/10.1145/3009837.3009839

124

16471 — Concurrency with Weak Memory Models

3.26 Reachability for Dynamic Parametric Processes

Helmut Seidl (TU Miinchen, DE)

License) Creative Commons BY 3.0 Unported license
© Helmut Seidl
Joint work of Anca Muscholl, Helmut Seidl, Igor Walukiewicz
Main reference A. Muscholl, H. Seidl, I. Walukiewicz, “Reachability for Dynamic Parametric Processes”, in Proc.
of the 18th Int’l Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI’17),
LNCS, Vol. 10145, pp. 424-441, Springer, 2017.
URL http://dx.doi.org/10.1007/978-3-319-52234-0_ 23

In a dynamic parametric process every subprocess may spawn arbitrarily many, identical
child processes, that may communicate either over global variables, or over local variables
that are shared with their parent.

We show that reachability for dynamic parametric processes is decidable under mild
assumptions. These assumptions are, e.g., met if individual processes are realized by pushdown
systems, or even higher-order pushdown systems. We also discuss in how far these methods
can also deal with weak memory models.

3.27 Data Consistency Check of Very Large Execution Traces
Suzanne Shoaraee (ARM France SAS — Sophia-Antipolis, FR)

License) Creative Commons BY 3.0 Unported license
© Suzanne Shoaraee

Verifying ARM CPU implementations could be challenging especially when it deals with the
memory system. In this talk, I present one of our current challenges: be able to check the
data consistency of very large execution traces containing millions of memory accesses.

I introduce ARM specific requirements (use of temporal information, barriers parameters

..) and the difficulty to adapt existing formalizations of the memory model. A limited

but scalable checker has been developed and is presented as it is already of interest to our
verification teams.

At last the remaining challenges to be solved such as the handling of single, multiple-copy
atomicity, atomic instructions or barriers are discussed.

3.28 From Architecture to Implementation
Daryl Stewart (ARM Ltd. — Cambridge, GB)

License @@ Creative Commons BY 3.0 Unported license
© Daryl Stewart

An architecture specification represents a contract between hardware and software which
defines the permitted behaviors of a system. For reasoning about software this contract
should be weak so that programmers code defensively against undesirable outcomes. For
hardware it should be strong, so that implementations exhibit no more behaviors than
permitted (or expected.) We propose that a no-man’s land between the two communities is
safer than attempting perfection.

When verifying hardware during bottom-up development we seek a framework for ensuring
that the local behavior of subunits is correct with respect to the specified global behaviors. 1

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-52234-0_23
http://dx.doi.org/10.1007/978-3-319-52234-0_23
http://dx.doi.org/10.1007/978-3-319-52234-0_23
http://dx.doi.org/10.1007/978-3-319-52234-0_23
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jade Alglave, Patrick Cousot, and Caterina Urban 125

will show some of the local behaviors of hardware which give rise to the surprising behaviors
of weak memory systems, along with some verification properties which can be applied to
them in order to highlight the semantic gap between architecture and implementation.

3.29 TriCheck: Memory Model Verification at the Trisection of
Software, Hardware, and ISA

Caroline J. Trippel (Princeton University, US)

License @@ Creative Commons BY 3.0 Unported license
© Caroline J. Trippel
Joint work of Daniel Lustig, Yatin A. Manerkar, Margaret Martonosi, Michael Pellauer, Caroline J. Trippel
Main reference C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, M. Martonosi, “TriCheck: Memory Model
Verification at the Trisection of Software, Hardware, and ISA”, to appear in Proc. of the 22nd Int’l
Conf. Architectural Support for Programming Languages and Operating Systems (ASPLOS’17),
2017; pre-print available from author’s webpage.
URL http://mrmgroup.cs.princeton.edu/papers/ctrippel ASPLOS17.pdf

The ISA is a multi-part specification of hardware behavior as seen by software. One significant,
yet often under-appreciated aspect of this specification is the memory consistency model
which governs inter-module interactions in a shared memory system. We make a case
for full-stack memory model design and verification and provide a toolflow — TriCheck —
to support it. We apply TriCheck to the open source RISC-V ISA, focusing on the goal
of accurate, efficient, and legal compilations from C11/C++11. In doing so, we uncover
under-specifications and potential inefficiencies in the current RISC-V ISA documentation
and identify possible solutions for each. We also identify two counter-examples to previously
“proven-correct” compiler mappings from C11/C++11 to POWER and ARMvT.

3.30 Explaining Relaxed Memory Models with Program
Transformations

Viktor Vafeiadis (MPI-SWS — Kaiserslautern, DE)

License) Creative Commons BY 3.0 Unported license
© Viktor Vafeiadis
Joint work of Ori Lahav, Viktor Vafeiadis
Main reference O. Lahav, V. Vafeiadis, “Explaining Relaxed Memory Models with Program Transformations”, in
Proc. of the 21st Int’] Symp. on Formal Methods (FM’16), LNCS, Vol. 9995, pp. 479-495,
Springer, 2016.
URL http://dx.doi.org/10.1007/978-3-319-48989-6_ 29

Weak memory models determine the behavior of concurrent programs. While they are often
understood in terms of reorderings that the hardware or the compiler may perform, their
formal definitions are typically given in a very different style — either axiomatic or operational.
In the talk, we investigate to what extent weak behaviors of existing memory models can be
fully explained in terms of reorderings and other program transformations. We prove that
TSO is equivalent to a set of two local transformations over sequential consistency, but that
non-multi-copy-atomic models (such as C11, Power and ARM) cannot be explained in terms
of local transformations over sequential consistency. We then show that transformations over
a basic non-multi-copy-atomic model account for the relaxed behaviors of (a large fragment
of) Power, but that ARM’s relaxed behaviors cannot be explained in a similar way. Our

16471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://mrmgroup.cs.princeton.edu/papers/ctrippel_ASPLOS17.pdf
http://mrmgroup.cs.princeton.edu/papers/ctrippel_ASPLOS17.pdf
http://mrmgroup.cs.princeton.edu/papers/ctrippel_ASPLOS17.pdf
http://mrmgroup.cs.princeton.edu/papers/ctrippel_ASPLOS17.pdf
http://mrmgroup.cs.princeton.edu/papers/ctrippel_ASPLOS17.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29

126

16471 — Concurrency with Weak Memory Models

positive results may be used to simplify correctness of compilation proofs from the promising
semantics of Kang et al. [1] to TSO or Power. More details can be found in [2].

References

1 J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, D. Dreyer. A promising semantics for relaxed-
memory concurrency. POPL 2017, pp. 175-189, ACM, 2017.

2 0. Lahav, V. Vafeiadis. Explaining relaxed memory models with program transformations.
FM 2016, LNCS, Vol. 9995, pp. 479-495, Springer, 2016.

3.31 Event Structures and Stable Families
Glynn Winskel (University of Cambridge, GB)

License) Creative Commons BY 3.0 Unported license
© Glynn Winskel
Main reference G. Winskel, “Event Structure Semantics of CCS and Related Languages”, in Proc. of the 9th
Colloquium on Automata, Languages and Programming (ICALP’82), LNCs, Vol. 140, pp. 561-576,
Springer, 1982; pre-print available from author’s webpage.
URL http://dx.doi.org/10.1007/BFb0012800
URL https://www.cl.cam.ac.uk/~gw104/eventStructures82.pdf

This talk revisits old work on Event Structures (1978) and Stable Families (1981) which are
relevant or potentially relevant in the modeling of weak memory in hardware design. Some
recent work, e.g. that of Alan Jeffrey or separately Simon Castellan, uses event structures
in modeling weak memory. In particular, Castellan uses a product of event structures; his
work also fits within concurrent games where the composition of strategies uses the pullback
of event structures. Both product and pullback of event structures are difficult to define
directly on event structures. Here stable families come to the rescue: a coreflection from
a category of event structures to a category of stable families allows us to transport the
constructions from the simpler construction of product and pullback in stable families.

3.32 Weak Memory Models: Balancing Definitional Simplicity and
Implementation Flexibility

Sizhuo Zhang (MIT — Cambridge, US)

License () Creative Commons BY 3.0 Unported license
© Sizhuo Zhang
Joint work of Arvind, Muralidaran Vijayaraghavan, Sizhuo Zhang
Main reference S. Zhang, Arvind, M. Vijayaraghavan, “Taming Weak Memory Models”, arXiv:1606.05416v1
[es.PL], 2016
URL http://arxiv.org/abs/1606.05416

RISC-V, a newly developed open source ISA, has not finalized its memory model, and thus
offers an opportunity to explore the design space of weak memory models. We propose
two new weak memory models: WMM and WMM-S, which balance definitional simplicity
and implementation flexibility differently. Both allow all instruction reorderings except
overtaking of loads by a store. We show that this restriction has little impact on performance
and it considerably simplifies operational definitions. It also rules out the out-of-thin-air
problem that plagues many definitions. WMM is simple (it is similar to the Alpha memory
model), but it disallows behaviors arising due to shared store buffers and shared write-
through caches (which are seen in POWER processors). WMM-S; on the other hand, is more
complex and allows these behaviors. We give the operational definitions of both models using

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/BFb0012800
http://dx.doi.org/10.1007/BFb0012800
http://dx.doi.org/10.1007/BFb0012800
http://dx.doi.org/10.1007/BFb0012800
https://www.cl.cam.ac.uk/~gw104/eventStructures82.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1606.05416
http://arxiv.org/abs/1606.05416
http://arxiv.org/abs/1606.05416

Jade Alglave, Patrick Cousot, and Caterina Urban 127

Instantaneous Instruction Execution (I2E), which has been used in the definitions of SC and
TSO. We also show how both models can be implemented using conventional cache-coherent
memory systems and out-of-order processors, and encompasses the behaviors of most known
optimizations.

16471

128

16471 — Concurrency with Weak Memory Models

Participants

- Jade Alglave

University College London, GB
= Giovanni Tito Bernardi
University Paris-Diderot, FR
= Annette Bieniusa-Middelkoop
TU Kaiserslautern, DE

= Richard Bornat

Middlesex University —
London, GB

= Stephen Brookes

Carnegie Mellon University —
Pittsburgh, US

= Simon Castellan

ENS - Lyon, FR

= Andrea Cerone

Imperial College London, GB
= Pierre Clairambault

ENS - Lyon, FR

= Patrick Cousot

New York University, US

= Andrei Marian Dan

ETH Zirich, CH

= Will Deacon

ARM Ltd. — Cambridge, GB
= David Delmas

Airbus S.A.S. — Toulouse, FR
= Delphine Demange

IRISA — Rennes, FR

- Stephan Diestelhorst

ARM Ltd. — Cambridge, GB

= Charles Anthony Richard
Hoare

Microsoft Research UK —
Cambridge, GB

= Vincent Jacques
University College London, GB

= Bernhard Kragl
IST Austria —
Klosterneuburg, AT

= Ori Lahav
MPI-SWS — Kaiserslautern, DE

= Daniel Lustig
NVIDIA Corp. —
Santa Clara, US

= Yatin Manerkar
Princeton University, US
= Luc Maranget

INRIA - Paris, FR

= Paul McKenney
IBM — Beaverton, US

= Paul-Andre Mellies
University Paris-Diderot, FR
= Roland Meyer

TU Braunschweig, DE

= Maged M. Michael
Facebook — New York, US

= Antoine Miné
CNRS and University Pierre &
Marie Curie — Paris, FR

= Vincent Nimal
Microsoft Research UK —
Cambridge, GB

= Andrea Parri
INRIA - Paris, FR

= Gustavo Petri
University Paris-Diderot, FR

= Susmit Sarkar
University of St. Andrews, GB

= Helmut Seidl
TU Miinchen, DE

= Suzanne Shoaraee
ARM France SAS —
Sophia-Antipolis, FR

= Daryl Stewart
ARM Ltd. — Cambridge, GB

= Caroline J. Trippel
Princeton University, US

- Caterina Urban
ETH Ziirich, CH

= Viktor Vafeiadis
MPI-SWS — Kaiserslautern, DE

= Derek Williams
IBM Research Lab. — Austin, US

= Glynn Winskel
University of Cambridge, GB

= Sizhuo Zhang
MIT — Cambridge, US

	Executive Summary Jade Alglave and Patrick Cousot
	Table of Contents
	Overview of Talks
	Robustness against Consistency Models with Atomic Visibility Giovanni Tito Bernardi
	Transactions on Mergeable Objects in Shared-Memory Annette Bieniusa
	New Lace is a Program Logic for Weak Memory (Probably) Richard Bornat
	A Denotational Framework for Weak Memory Conucrrency Stephen Brookes
	Weak Memory using Event Structures Simon Castellan
	Analysing Snapshot Isolation Andrea Cerone
	Game Semantics based on Event Structures Pierre Clairambault
	Proof of Mutual-Exclusion and Non-Starvation of a Program: PostgreSQL Patrick Cousot and Jade Alglave
	Modeling and Analysis of Remote Memory Access Programming Andrei Marian Dan
	Formalising the ARM Memory Model ... Again Will Deacon
	A Plea for Industrial-Strength Formal Methods for Concurrent Software David Delmas
	Embedding Transactions in Weak Memory Models Stephan Diestelhorst
	A Discrete Model of Concurrent Program Execution Charles Anthony Richard Hoare
	(A New Methodology for) Inductive Verification of Message-Passing Programs Bernhard Kragl
	A Promising Semantics for Relaxed-Memory Concurrency Ori Lahav
	Automatic Synthesis of Comprehensive Litmus Test Suites Daniel Lustig
	C11 Compiler Mappings: Exploration, Verification, and Counterexamples Yatin Manerkar
	Taming CAT Luc Maranget
	Linux-Kernel Memory Ordering: Help Arrives At Last! Paul McKenney
	Portability Analysis for Axiomatic Memory Models Roland Meyer
	Hazard Pointers: C++ Memory Ordering Issues Maged M. Michael
	Static Analysis by Abstract Interpretation of Numeric Properties of Programs under Weak Memory Models Antoine Miné
	Musketeer in Dagstuhl: Automated Fencing in Software? Vincent Nimal
	Verifying a Concurrent Garbage Collector Gustavo Petri and Delphine Demange
	Mixed-Size Concurrency: ARM, POWER, C/C++11, and SC Susmit Sarkar
	Reachability for Dynamic Parametric Processes Helmut Seidl
	Data Consistency Check of Very Large Execution Traces Suzanne Shoaraee
	From Architecture to Implementation Daryl Stewart
	TriCheck: Memory Model Verification at the Trisection of Software, Hardware, and ISA Caroline J. Trippel
	Explaining Relaxed Memory Models with Program Transformations Viktor Vafeiadis
	Event Structures and Stable Families Glynn Winskel
	Weak Memory Models: Balancing Definitional Simplicity and Implementation Flexibility Sizhuo Zhang

	Participants

