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Abstract. We formalize the semantics of hybrid systems as sets of hy-
brid trajectories, including those generated by an hybrid transition sys-
tem. We study the abstraction of hybrid trajectory semantics for verifica-
tion, static analysis, and refinement. We mainly consider abstractions of
hybrid semantics which establish a correspondence between trajectories
derived from a correspondence between states such as homomorphisms,
simulations, bisimulations, and preservations with progress. We also con-
sider abstractions that cannot be defined stepwise like discretization. All
these abstractions are Galois connections between concrete and abstract
hybrid trajectory or discrete trace semantics. In contrast to semantic
based abstractions, we investigate the problematic trace-based composi-
tion of abstractions.
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1 Introduction

State and transition-based abstractions such as homomorphisms, simulations,
bisimulations [26], and preservations with progress (as used in type theory [38])
formalize a correspondence between concrete and abstract discrete semantics.
They have been successfully applied to the verification, analysis, and refinement
of programs. In program refinement, such state and transition-based abstractions
are used to transform specifications into implementations. In program verifica-
tion and analysis they are used to simplify the reasoning on properties of program
executions.

All these abstractions have two fundamental properties. The first is that a
reasoning on computation steps (via a transition system) is sufficient to estab-
lish a correspondence between program semantics (which is the set of all their
possible maximal executions). The second is that they compose. For example the
composition of simulations is a simulation. This allows, for example, for stepwise
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refinement in program construction or composing successive sound abstractions
in program verification.

Our objective is to extend and study these state and transition-based ab-
stractions for dynamical systems that exhibits both continuous and discrete
dynamic behavior as found in cyber-physical systems. We consider concrete and
abstract hybrid semantics (that is sets of sequences of configurations specifying
continuous behaviors between discrete changes of modes) that allow for arbitrary
timings, arbitrary continuous dynamic mode changes, and arbitrary evolutions
of the states over time. We also consider hybrid semantics generated by hybrid
transition systems hoping that, as in the discrete case, the abstraction of tran-
sition systems will induce the abstraction of the hybrid semantics. But contrary
to the discrete case, this is problematic.

Such hybrid trajectory semantics can be understood as specifications, imple-
mentations, or abstractions of hybrid dynamical systems. They are more general
than particular abstract models of hybrid systems such as synchronous systems
[7], timed automata [2], switched systems (for which the sequence of modes
and mutation times are known in advance) [22], hybrid automata [1], including
restrictions for decidability subclasses [4,18], Simulink [24], and so on. Hybrid
trajectory semantics can also be used to specify the semantics of these abstract
models, that is, the set of possible behaviors that they describe.

We study homomorphisms, simulations, (bisimulations, preservations with
progress in the ArXiv version) between concrete and abstract hybrid semantics
as well as discretization of hybrid semantics to establish a correspondence be-
tween an hybrid system and a discrete system (such as a computer). Considered
as semantic transformers they all form Galois connections and so do compose.
However, when considering individual concrete and abstract trajectories, the
problem is that in full generality, these abstraction may not compose well. For
examples the discretization of two trajectories of (bi)simular hybrid systems may
not be (bi)simular discrete traces. We investigate sufficient conditions to solve
this compositionally problem when reasoning on individual trajectories.

The paper organized as follows. In section 2 we recall the definitions of Galois
connections, Galois relations (ordered logical relations), and tensor products. In
section 3, we introduce hybrid trajectory semantics to define the arbitrary evo-
lution of hybrid systems over time. In section 4, we introduce hybrid transition
systems that can be used to generate hybrid trajectory semantics (the same way
that discrete transition systems generate a discrete trace-based operational se-
mantics for discrete systems). In section 5, we consider the abstraction of hybrid
trajectory semantics by reasoning on trajectories, that is executions of the hy-
brid system as defined by its semantics. It is often considered that reasoning on
states, or consecutive states, is simpler that reasoning on full trajectories (al-
though less general). This is the objective of section 6, where an abstraction of
states is shown to induce an abstraction of hybrid trajectories, hence of hybrid
semantics (which are sets of hybrid trajectories). In case the hybrid semantics is
defined by a transition system, we consider in section 7 the abstraction of tran-
sition systems by homomorphisms, simulations, (bisimulation and preservation
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with progress in the ArXiv version) and study which abstraction of trajectories
and hybrid semantics they induce. The main difficulty is that concrete and ab-
stract trajectories may have different, not necessarily comparable timelines, that
is timings for mode changes. A difficulty, in particular for discretization, is that
the abstraction of transition systems may not be an abstraction of their hybrid
semantics (which is never the case for discrete systems). We solve the problem
under sufficient conditions. We conclude in section 8.

2 Galois connections and relations

2.1 Galois connections

A Galois connection (C, C) % (A, X)! between posets (C, C) and (A, <) is
a pair of an abstraction function « and a concretization function « such that

aeC—-A is increasing (L.a)
¥ A )JyeEASC is increasing (1.b)
E % =
€0 @ {4, =) Yo is an upper closure (1.¢) (1)
oy is a lower closure (1.d)

where an upper closure is increasing, idempotent, and extensive (Ve € C' . x C
~ o a(z)) while a lower closure is increasing, idempotent, and reductive (Vy €
A . ao°v(y) < y). An equivalent definition of a Galois connection is a pair of
increasing functions satisfying

YY) A (2)
7(y) (3)

Ezample 1 (Classic examples of Galois connections). Set transformers form Ga-
lois connections

post[r] pre[r]

(9(S), ©) <p—T> (9(S), S) and (p(S), <) <p—ﬁ> (p(S), ©) (4)

where r € (S x S), post[r]P £ {y | 3z € P. (z, y) € r}, pre[r] = post[r!],
rt 2 {(y, @) | (2, y) €7}, f2 20 fom, and (f o g)(x) = f(g(x)) is function
composition.

Another classic example is an homomorphic abstraction, where given h €
S—S, ap(X) £ {h(x) |z € X}, and v,(Y) £ {z €S| h(z) € Y}, we have

(p(S), C) == (p(S5), ©) G) O

Interpreting C in (1) as a concrete semantics (e.g. a set of execution discrete
traces or hybrid trajectories) and A as an abstract semantics, the concretization

! see an introduction in [11, Ch. 11]
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~(y) is the concrete semantics corresponding to the abstract semantics y € A,
that is its concrete meaning. Conversely, «(z) is the abstraction of the concrete
semantics x € C.

The conditions (1.a) and (1.b) of order preservation express that the notions
of over approximation in the concrete and the abstract are the same.

Condition (1.c) implies x C vy(«(x)). This expresses that a(z) is an abstract
sound over approximation of z.

Condition (1.c) with y = a(x) implies (3) which expresses that a(x) is the
best abstraction of x (since given any other abstraction of « which is sound, that
is  C y(y), a(x) is more precise since a(x) < y).

2.2 Galois relations

Any Galois connection (C, C) % (A, <) can be encoded by a Galois relation
R, € p(C x A) (also called ordered logical relations) defined as

Ro & {(z,y) e CxAla(e) syt ={(z,y) eCxA|z Ty} (6)

If (C, C, | ]) and (A, <, \) are complete lattices such relations R, satisfy the
following characteristic properties of Galois relations R.

(zCa' A, y) e RAY s y) = ((z, y) € R) (a)
(Vie A (v, y) € R)= (| |z, ) €R (b) (7)
1€EA
(Vie A.(z, y;) € R) = (x, Ayi)ER (c)
1€EA

The tensor product (C, C) ® (A, <) of two complete lattices (C, C) and (A, <)
is [34]

(C,C)® (A, <) 2 {R € p(Cx A)| R is a relation satisfying (7)} (8)

Galois connections and relations are mathematically equivalent. If (C, C) and (A,
<) be complete lattices then (C, C) % (A, %) ifand only if R, € (C, C)® (A,
<) where R, is defined in (6) and, conversely, a(x) = A\{y | (x, y) € R,} and
Yy) = Uz | (=, y) € Ra}.

Dual definitions of Galois connections and relations can be used to cope with
under approximation.

3 Hybrid trajectory semantics

Time. We let the time ¢ run over the set R of all positive reals.

States and flows. We let S be a set of states. In our pictures, we use Cartesian
coordinates where the horizontal axis is time and the vertical axis is the set of
states (which we take to be S = R).
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Flows. A flow f e F £ R>¢ + S is a partial map from time to states represent-
ing the evolution of the state over time. Flows can be specified e.g. by ODEs
over a period of time (with appropriate hypothesis, see e.g. [21, Ch. XIX], [19,
ch. 8 & 9], [20], and [30]).

Time intervals. If t; € R, ta € Ryo U {00}, and ¢; < ta then [t1,ts] £ {t €
R>o | t1 <t < to} is the interval of time between ¢, and t2, the lower bound
b([t1,t2]) = t1 being included while the upper bound e([t1,t2[) = to is excluded.
The set of all such time intervals is

ielé{[tl,tQ[ltl ER)o/\tQER>0U{OO}/\t1+C<t2} (9)

where ¢ > 0 is any arbitrarily chosen infinitesimal defining the minimal duration
d(i) £ e(i) —b(i) of a time interval i. This implies that the duration of successive
configurations cannot tend to 0 so we exclude zeno systems (with infinitely many
successive configurations in a finite interval of time [39]).

The closure of an interval cl([ty,t2]) = [t1,t2] if t2 # oo and cl([ty, <) =
[t1,00[ includes the upper bound unless it is infinite. By convention, [t1,c0] =
[t1,00[ = {t € Rsq | t; < t}. We let cl(l) = {cl(i) | i € I}.

Configurations. A configuration is a pair of a flow and a time interval
ceCE{(f, i) eFxI|Vtei.f(t)eS} (10)
while final configurations include the upper bound
ced(Q)2{(f,i)eFxcd()|Vtei.f(t)eS} (11)

such that the flow is well-defined in the set of states S on the time interval, i.e.
i € dom(f). A configuration ¢ = (f, ) starts a time b(c) = b(¢) and ends at time
e(c) = e(i), excluded in (10) and included in (11). We call dom(c) = ¢ the time
interval of configuration c. Notice that by the choice of the infinitesimal { > 0
and the definition (9) of I, the intervals ¢ € | in (10) and (11) cannot be empty.

Configurations c¢ record the evolution of the state as specified by the flow
during the period of time dom(c). During that time interval the definition of the
flow f, which is the law of continuous evolution of the system as a function of
the time, is fixed. It may be different in the next configuration of the system. In
that case, it is common to say that the mode of the hybrid system has changed.
The duration d(c) = e(c) — b(c) > ¢ of the configuration is lower-bounded by
¢ > 0 so that infinite sequences of configurations are always nonzeno. Addi-
tional hypotheses might be necessary on the flow f of configurations (f, #) such
as continuity, uniform continuity, Lipschitz continuity, etc. However, disconti-
nuities are always allowed (but not mandatory) when changing mode between
consecutive configurations.

By convention the state of a configuration c at time ¢t € Ry is

c(t) = f(t) ifc=(f,i)and t €i (12)

undefined otherwise

(1>

(1>
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Let us define the concatenation of two consecutive configurations (f, i) € C and
(f', i) € CUc(C) where e(i) = b(i') (i.e. the concatenation is undefined for
non-consecutive intervals).

f(t) =
f(t) =

Since the state at the beginning of a configuration may be different from the
state at the end of the previous configuration at the same time, definitions (13),
(15), and (23) favor states at the beginning of configurations (because intervals
are left closed and open right).

To simplify notations, the empty configuration is, by convention, ¢ £ ({),
() where () is the empty set, that is, the everywhere undefined function. By
convention, b(¢) £ +o0o and e(¢) = —oo so that min(t,b(e)) = max(t,e(¢)) =t
when ¢t € Ryp. Observe that although ¢ ¢ CU cl(C) since the time interval is
empty, we nevertheless have (f, i) 5 £ ¢35 (f, i) 2 (f, i), for ease of writing.

The selection of a time slice during the configuration time interval.

<f, i>(]t1, tQD <f, 1N [tl,ﬁ2]> where b(Z N [tl,tg])
(f; )t 2 & (f, iN [t ta]) b(i N [t1,t2])

(fy i) (f', 4"y = (f", i Ui') where { (13)

(1>

In particular, we define (ty, ta) = e(t1, t2( = ¢.

Trajectories The trajectories over configurations C are nonempty finite or in-
finite sequences of contiguous configurations.

¢ £ {0 e[0,n] —cl(C)|b(oyg) =0AVie€[0,n].0; € CA
e(0;) = b(oit1) ANop € cl(C)}
finite trajectories o € TZ of length |[o| =n+1,n €N
Té = U T¢ finite nonempty trajectories
neN
¥ 2{0eN-C|b(oyg) =0AVieN.e(o;) =b(oi11)}
infinite trajectories o € T of length |o]| = oo

Té‘oo 2 Té uT nonempty trajectories (15)

A finite or infinite trajectory o € [0, |o|[ — C is a sequence of configurations that
will be denoted o = (04, i € [0, |o][). Such a trajectory o records the evolution
of the state along discrete changes of the flows encoded by configurations. The
state at the end of a configuration is that of the next state, if any. Therefore, the
configuration intervals are open right and consecutive except for the last one in
finite trajectories which is closed. No configuration in a trajectory can be empty.

We let oli, j] denote the subsequence of configurations in o of ranks ¢ to j,
i,j € [0,]o][. i, j[ excludes j (usually o).
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Traces. We let traces ¢ € T;‘ *° be discrete finite or infinite untimed sequences
of states in S and use the same notations for continuous trajectories and discrete
traces. The homomorphic timeline abstraction ((_?_ : ) is the conditional)
ay(oc) £2i€0,]0]]+(i=0?70: (i=00?x : e(0;_1)))
ay(T) £ {ay(o) | o €T}

00 vt oo
such that, by (5), (T, ) = (Tﬁzou{w},

of trajectories into traces (by projection of the mode change timings).

C) is an example of abstraction

Hybrid trajectory semantics and properties. Given a set S of states
and the corresponding configurations C in (10), a hybrid trajectory semantics
Sc € p(TE™) is a subset of all possible trajectories (15). Properties of hy-
brid trajectory semantics belong to p(p(TE>)) (sometimes called hyper proper-
ties) while there abstraction ay(P) = |J P into trajectory properties belong to

(TE™)
Pllc )

Similarly a trace semantics Ss € p(Td ) is a subset of all possible traces.

Trajectory states. The duration [Jo|] of a trajectory o is

S Z e(o;) — =e(on) when o€ T¢ (16)
= Z e(0;) — b(o;) = when o€ T (nonzeno hypothesis)
k=0

as indicated by the time at which the last configuration in the trajectory ends
or oo for infinite trajectories.

Time-evolution law abstraction. A trajectory o can be abstracted into a
function ay,(0) € Rx¢ — S mapping time to a state such that

dom(ay, (o)) 2 [0, o] (by convention, excluding oo if [o]] = o)
g (0)(t) £ £(t) such that Ik € [0, |o|[ . ox = (f, i) At € (17)
o1 2 ap(0)(t) (abbreviated notation)

So we have two different representations of trajectories, o in (15) and ay(o)
n (17), this second representation being closer to the time-evolution law of the
theory of dynamical systems [20]. Notice that ay.(0) is a function defined by
parts on the timeline abstraction ay; (o) of the trajectory o so the time-evolution
law «y,-(0) is not simpler that the trajectory o to reason upon, in particular
because the timeline information is abstracted away.

We leave this a4, abstraction implicit and use the same notation for both
cases. Therefore a trajectory o is either a discrete sequence of configurations
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o = (o4, © € [0,|0|]) or a state function of the time o = (o, t € [0, [o]])
where 0y £ a4,.(0)(t). By homomorphic abstraction (5), this extends to hybrid
trajectory semantics T with oy, (T) £ {ay.(0) | 0 € T}
Tt
(p(TE), ©) == (p(R0 = S), ) (18)

Oy

Maximal trajectory semantics. A trajectory semantics 7 € p(TE™) on
configurations C is a set of finite or infinite trajectories. Let us define the maximal
trajectories of T' as those without strict prefixes

max(T) £ {{o;, i € [0,|0|[) € T |Vn < |o| . (0s, i € [0,n[) € T}
A maximal trajectory semantics has no strict prefixes, that is max(T) = T.

Ezample 2 (Specification of a water tank [17]). A water tank (or water dam) runs
for ever with a continuous inflow and a valve (or spillway floodgate) than can
be opened or shut to control the outflow. The objective is to design a controller
to maintain the water level y between 0 and 3 (for some length unit). When the
valve is opened, the water level y decreases while, when the valve is shut down,
the water level y increases. The tank should never remain empty more than ¢
units of time.
Define states

s €S 2R x {open, shut} (19)
such that s.y € R and s.v € {open, shut}. Let C be the corresponding set (10)
of configurations. The above informal specification can be formalized by the
following abstract hybrid semantics of the water tank.

Po)2VteERy.0<o(t)y<3AVta >t >0. (a)  (20)
Vit € [t1,t2] . o(t).v = open => o (t1).y > o(t2).y A (b)
YVt € [t1,t2] . o(t).v = shut => o(t1).y < o(t2).y A ()
VteRso.0(t)y=0=0c(t+¢).y>0 (d)
The hybrid semantics specification the water tank is then
S* 2 {0 € {0} - C|b(og) =0Ae(0g) =00 A P(op)} (21)
with only one configuration, or using the homomorphic abstraction (17),
S*2 {0 €Rsy > S| Plo)} O

4 Transition-based hybrid trajectory semantics

As in the discrete case, a simple way to define a hybrid trajectory semantics, is to
first define a hybrid transition system and then to consider the hybrid semantic
defined as the set of all possible trajectories generated by the hybrid transition
system. As is the case for discrete trace semantics, not all hybrid semantics can
be generated by a hybrid transition system on the same set of configurations
(which cannot e.g. express fairness without adding a scheduler to the transition
system or adding conditions on the generated traces).
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Hybrid transition system. A hybrid transition system is defined by a triple
(C, C° 7) of a set of configurations C, initial configurations C° and a transition
relation 7 € p(C x (CUcl(C))) such that

initial configurations C®C{ceC|b(c) =0} (22)

consecutiveness V{c, Yy eT.ce CAe(c)=b(c)

closeness of final configurations ~ Vec. (V¢ . {c, ) ¢ 1) < cecl(Q)

Maximal trajectory semantics of a transition system. A transition se-
mantics (C, C°, 7) is usually used to define a hybrid trajectory semantics [(C,
C% 7)] abbreviated [r], for example the maximal one.

[7]" 2 {o € T¢ | oo € C°AVi € [0,n]. (04, 0i41) ETAVe. (op, c) €T}

[71" & "

neN
[7]° 2 {c €T | 0o € C°AVi €N . (0}, 0441) €T}
[]

[ U™ (23)
The trajectories of [7] are maximal, that is,

max([7]) = [r] (24)

lI>

ey
ey

Ezample 3 (Water tank automaton [17]). Continuing example 2, the water tank
specification can be implemented as described by the following hybrid automa-
ton.

y:=0

r=3—=>x:=0

As soon as the tank is empty, the valve is shut down. The valve is reopened after
3 units of time.

The states, conﬁgurations, initial configurations, and transitions are (we write
i for the derivative 92 of the everywhere differentiable (hence continuous) real-
valued function z(t) of the time ¢).

S £ {open, shut} x R x R

CMut 2 {(f, [t to]) | To,y . VL€ [ti,ta] . F(1) = (shut, 2(t), y(t)) A
(t=t; =>y(t) =0) Az(t) <3A(z(t) =3 =t =15)
ANE(t) =1Ag(t) =1}
CoPem & ((f [ty to]) | Tz, y .Vt € [t1,ta] . f(t) = (open, z(t), y(t )>
YAY(t) = 0N (y(t) =0 =t =t3)

(t:t1:>1'():0
Ni(t) =1 Ag() = -2}

C A Cshut U Copen
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CO2 {(f, [0,t) € C™ |t >0 ATz < 3. f(0) = (shut, z, 0)} € Chut
T8 & (CMut i CoPem) U (COPO™ x CM) as restricted by (22) (25)

Notice that the final time 5 is not part of the time interval of configurations in
C*hut but, by (22), the starting time of the next configuration in C°¢". Therefore,
at that time the value of x is 0, not 3. So in this example, f is continuous on
[t1,t2] that is continuous on ]t1,%2[ and right continuous at t;. Same for y in
Corem - An example of execution is given in figure (5.b). The hybrid semantics
[7%] of the water tank automaton is given by (23). O

Lemma 1. 2
If 7 C 7' and the blocking condition holds, i.e.
Ve. (Ve . (e, d) g T1)= (V¢ . (¢, ) & T') (26)
then [1] C [7'].

(so if [7'] has trajectory property P € o(T£™) (ie. [7'] € P) then lemma 1
implies that [7] has the same property P.)

Observe that the transition of one configuration to the next in (22) requires
the specification of the time at which the next configuration will terminate. As
shown by the water tank automaton example 3 of [17], this is not a problem
when the duration of the configuration is specified by a condition on the flow.

5 Trajectory-based hybrid trajectory semantics
abstraction

In many program verification and refinement methods, the hybrid semantics is
abstracted or concretized to simplify soundness and completeness proofs. One
way of simplifying the proofs is to reason on an abstraction of trajectories, by
applying an homomorphic abstraction (5) to these trajectories.

A classic example is sampling in signal processing, to reduce a continuous-
time signal to a discrete-time signal. For an hybrid semantics, this is defined as
follows.

Let § > 0 be a sampling interval (see [29, Ch. 9] for an adequate choice of
the sampling rate). Define

hs(o) £ (05, n € NARS < [of) (27)
as(T) £ {hao) | 0 € T)

which, by (5), is an homomorphic Galois connection

(P(TE™), ) = (9(TE™), ©) (28)

2 Underlined equation or theorem numbers link to proofs given in the ArXiv version.
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where 75(0) £ {0 € TE™® | hs(o) € O}.

(In general a trajectory o cannot be regained from its discretization hs(o).
This might be possible under specific hypotheses. For example, the Nyquist—
Shannon sampling theorem [28,33] establishes a sufficient condition for a sample
rate that permits a discrete sequence of samples to capture all the information
from a continuous-time signal of finite bandwidth.)

Trajectory based abstractions are useful to prove trajectory properties of
hybrid systems by considering one possible trajectory at a time (but inadequate
to prove (hyper) properties relating two of more trajectories). But reasoning on a
complete trajectory is often complicated, in which case local reasonings relating
states or transitions locally are preferred.

6 State-based hybrid trajectory semantics abstraction

Since reasoning on discrete execution traces (hence on hybrid trajectories) is
difficult, a number of proof techniques have been developed to reduce the rea-
soning on trajectories to reasonings on states (or pairs of states, that is transi-
tions). Examples are discrete simulations that we extend to hybrid trajectories
(and bisimulation [26] as well as preservation with progress [38] considered in the
ArXiv version). Sampling in (28) is a counter example since, in general, sampling
must be defined by reasoning on trajectories, not states and transitions.

Our objective is to show that a relation between states can be extended to
configurations, then to trajectories, and then to hybrid semantics (independently
of whether trajectories are generated by transition systems or not).

6.1 Relation between states

For timed trajectories, the relation r between concrete states S to abstract states
S is a function of the time.

re€Rso— p(SxS) (29)

For simplicity, we assume r to be a total function of the time. If necessary, a par-
tial function could be encoded using an undefined element (like L in denotational
semantics).

6.2 Relation between configurations

Let us define a partial relation between configurations with related states
V() 2L, (foa) [ ini£DAVEeind. (f(t), f(t) €r(t)} (30)

(which is said to be total when i = i e.g. for homomorphic abstractions or
well-nested when i C ¢). Define

a(R) £ At-{(f(t), f(t)) | Fi,i. t€iniA((f, i), (f,q)) € R} (31)
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Fig. 1. Relations r between states in (a), and relations v(r) between configurations
and ¥ (r) between trajectories in (b)

Define the set of all relations between overlapping configurations as
Rc 2 {R € p(Cx (CUd(Q) [V((f, i), (f.9)) e R.ini# 0}  (32)
We have a Galois isomorphism

(Re, C) == (Rz0 — p(S x 5), €) (33)

where C is the pointwise extension of set inclusion C. So when abstracting
trajectories by abstraction of their configurations, we can equivalently start from
a relation r between states and use the relation v(r) € Rc or start from a relation
between configurations R € R¢ which induces a relation «(R) between states. In
discrete systems, the two notions of state and configuration coincide.

6.3 Relation between trajectories

Let us also define a relation between trajectories so as to relate states of trajec-
tories

¥(r) £ {{o, 7) | Vt € [0,min(Jo], [F))[ . (or, T¢) € r(1)} (34)

as illustrated in figure (1.a) Notice that in the definition (34) of related trajec-
tories, we do not use the relation «(r) in (30) between configurations since the
states of the configurations with the same ranks in the concrete and abstract in
trajectories may be unrelated while the timings are (i.e. the concrete and abstract
configurations of same rank k may not even overlap in time). However, we have
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the following equivalent definition using ranks of configurations in trajectories,
as illustrated in figures (1.b) and (2).

y(r) (r) N7,(r) (35)
Ve(r) = {(o, @) | Vi <ol . (e(oy) < [o]) = Gk < [a]. (o, Tk) €7(r))} (a)
Va(r) = {0, @) [ VE <a] . (e(ar) < o) = (35 <ol . {0}, T&) € 7(r))} (b)

(By the isomorphism (33), there is a definition equivalent to (35) using R € R¢
instead of v(r).)

(> 1> 1>
_~—
—~ ——~ 0

_ Ikl = e(Tk)

(o)) ot o]
(a) (b)
Fig. 2. Relations 7 _(r) and 7, (r) between traces

Defining @(R) £ At -« {{0y, 7¢) | (0, 7) € R At € [0,min([o[, [7])[}, this is
a Galois connection

—

(P(TE= X TE), ©) =5 (Bz0 = 9(S x 5), ©) (36)

6.4 Relation between hybrid trajectory semantics

The abstraction (36) is then extended to hybrid trajectory semantics through
a preorder, a common one being the overapproximation in verification (7' is an
abstraction of T' since T has more possible behaviors than T') and underapprox-
imation in refinement (7T is a refinement of T since T" has less behaviors that the
specification T)), that is

¥(R) £ {(T, T) | T C pre[R|T} (37)
={{T,T)|Voe€T.3G€T.{o,7)€R}

Defining @(P) = {(0, &) | 3T . {{o}, T) € P AG € T}, we have the Galois

connection

y =

73l e8] sS] Il ’7 [eS] [eS]
({1, T) e p(TEX) @ p(TE™) | T=0 =T =0}, 2) = {(p(TE> x TE®), 2)
(38)
where by (37), (4), and (8), the concrete domain is a tensor product.

Ezample 4 (The water tank automaton is a state-based refinement of the speci-
fication). Le us define the state-based relation

P 2 {((v, @, y), (v, ) v € {shut, open} Az,y R} (39)
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between states (19) and (25) of the water tank specification and automaton.
This induces a relation (30) between configurations, as follows.

() ={{@At- ((t), (t), y(1), i), At @), T(), i)) [ini#DA  (40)
Vteini.v(t) =v(t) € {shut, open} Ay(t) =7y(t)}

i.e. at any time in overlapping configurations, the water height and the state of
the valve coincide. This induces a relation (35) between trajectories, as follows.

F(rt) = let p(c,e) £ v, z,v,4,0,7,1 . c = (At + (v(t), z(t), y(t)), i) A (41)
c= @At (@), yt), ) Aini#DAVEET Ni.v(t) =1(t) A
y(t) =7g(t) in
{o, 3| V) < ol . (elo) < [71) = (3 < [31] - ploz,7%) A
Vk <[o| . (e(or) < [o) = (Fj <ol . ploj,o%)}

Let us prove that the hybrid semantics [7°] (25) of the water tank automaton
of example 3 is a state based refinement of the water tank specification S* of
example 2 for r®® in (39) (denoted @ to avoid confusions), meaning that

(I7°l, 87) e 7))
or equivalently
Voe[r’] .. P@)AVt=20.0(t)y=0c(t)yAo(t)v=a(t)v (42)

By definition (20) of P, we have to show that ¥t € Ry . 0 < o(t).y < 3. In
a shut configuration of C*"“* y(¢) = 0 at the beginning, y evolves as the same
rate as x, and z(t) is bounded by 3 so that that y(¢) is also bounded by 3. By
definition of initial configurations C°, any trajectory of [7°] starts with a shut
configuration, and so, by definition (25) of the transition relation 7°, any open
configuration of C°P°" follows a shut configuration. At the end ¢ of this shut
configuration, and so at the beginning ¢ of the following open configuration, we
have shown that o(t).y < 3. In the open configuration, y decreases by y = —2
and remains positive, so the invariant holds.

Moreover, we must show that if the valve remains opened, then y decreases.
If Vt € [t1,t2] . o(t).v = open then t is within an open configuration, so § = —2
implies that y decreases between t; and to. Similarly, if V¢ € [t1,t2] . o(t).v =
shut then t is within a shut configuration, so y = 1 implies that y increases.

Finally, if at some point ¢ of time, y(t) = 0 then if we are in an open config-
uration, the system instantaneously moves to a shut configuration which last at
least ¢ by the nonzeno hypothesis, and so, by y = 1, we have o(t+ ).y > 0. O

7 Transition-based hybrid trajectory semantics
abstraction

Reasonings on trajectories is often considered difficult and reasonings involv-
ing only one computation step at a time are preferred. An example is Tur-
ing/Naur/Floyd/Hoare invariance proof method where verification conditions
involve only one computation step at a time.
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So we assume that the concrete and abstract semantics are generated by
transitions systems (C, C°, 7) and (C, C°, 7), that is T = [7] and T = [7],
and, given a relation (29) between states, we study relations between transition
relations which enable us to define relations (34) between trajectories hence
relations (38) between trajectory semantics. In the literature of abstraction of
discrete transition systems, basic state and transition-based abstractions are
homomorphisms, simulations, bisimulations, and preservations with progress,
which we extend to hybrid transition systems, adding discretization.

7.1 Homomorphisms

Homomorphisms are the case when relation r in (29) is given by a function

h(t) € S — S at time ¢. Following (30), the homomorphism is extended to
configurations as

an((f, i) & (ho f, i) (43)

The function h is composed with the flow and the timings remain the same. The
extension to trajectories is

an({oi, i €[0,]0])) £ {an(o:), i € [0, o) (44)
and to trajectory semantics
an(T) 2 {an(0) |0 € T} (45)

which, by (5), is a Galois connection
Th

(p(TEX), ©) 5= ((TE™), €) (46)

The homomorphic abstraction of a transition system is

an((C, C° 7)) £ ({h(c) | ¢ € C}, {h(c) | ¢ € C°}, {(h(c), h()) | (¢, ¢) € T})
(47)
For brevity, we write ay,(7) for a((C, C° 7)). The homomorphic abstraction
of the trajectory semantics generated by the concrete transition system is the

abstract trajectory semantics generated by the homomorphic abstraction of the
concrete transition system

Theorem 1.
an([r]) = [an(7)] (48)

The verification of a property of an hybrid system [r] defined by a transition
relation 7 can be done in the abstract, as follows.

Theorem 2. For any abstract hybrid trajectory property P € p(T%'OO),

an(r) €7, (26), [FIcP

7] €y (P)

(49)
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i.e. a sound abstract small-step semantics 7 overapproximating the concrete se-
mantics 7 is designed so that the concretization vy, (P) of its trace properties P
holds for the concrete semantics [7].

Given a specification in the form of an abstract transition system 7, re-
finement consists in designing a concrete transition system 7 such that [r] C
v ({[7]})- By induction principle (49) where P = {[7]}, it is sufficient to ensure
that ayp,(7) C 7 and the blocking condition (26).

Finally, the homomorphic abstraction is preserved by discretization (27).

Theorem 3.

as(an(T)) = an(as(T)) (50)

In conclusion of this section 7.1, homomorphic abstractions are very simple
since they compose (because h(t) € S — S and h(t) €S — S implies h(t) o h(t) €
S — S), there is a unique best abstract homomorphic abstract hybrid semantics
(by (46)), they extend from hybrid transition systems to hybrid semantics (by
theorem 1), allow proofs of trajectory properties by abstraction (by theorem 2),
and are preserved by discretization (by theorem 3). Homomorphic abstractions
seem to be almost the only ones considered in model-checking [5, pp. 499-504].

However, homomorphic abstractions are very restrictive in that the relation
between flows is deterministic and the concrete and abstract timelines must be

exactly the same3.

7.2 Simulations

Simulations were introduced by Robin Milner [26] to relate discrete transitions
systems hence, implicitly, their trace semantics or abstractions of these trace
semantics. They have been used for program verification and refinement. Notice
that Robin Milner originally used (bi)simulation relations to abstract reachabil-
ity /invariance properties for which reasoning on transitions and their reflexive
closure is sound and complete. So there was no need to consider (bi)similar
traces.

Various extensions to continuous and hybrid systems have been proposed
such as [23,3,31,13,14,25,15,12,15,16,35,6,36,9] among others. In contrast with
this previous work, our definition of (bi)simulation takes into account the fact
that concrete and abstract trajectories may have different durations and not
necessarily comparable timelines for mode changes.

3 One could argue that the time-evolution low abstraction of (17) applied to the con-
crete and abstract trajectories would solve the problem of having the same timeline
by merging the trajectories into a single configuration, but then the original timelines
are hidden in the flow functions, which does not make time-dependent reasonings
simpler.
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Definition of asynchronous hybrid simulations. A relation R € p(C x C)
between concrete and abstract configurations (which can be the extension (30)
R = ~(r) of the timed relation r between states in (29)) is a hybrid simulation
between the transition relations 7 and 7 if and only if

Ve,e,d .36 ((c,e) e RA (e, YyeTVv =¢) = (51)
(((e, @) €TV =e) A (c5c(min(b(c), b()), min(e(c), e())),
5 (min(b(c'), b(¢")), min(e(¢'), e(¢)))) € R)

To simplify notations, we write ¢’ = ¢ for e(¢') < e(c) A ¢ = ¢ and similarly
¢ = ¢ stands for e(¢’) < e(¢) AT = ¢, see figure 3.

T T
c— ¢ T —7"— -,
— — { ¢'=c
R: Ri
. C‘ | c'=e iﬁ—i—i
2 ' :
T e(@)<e(o) = e(c') <e(3)

Fig. 3. Empty successor configurations

As shown in figure 4, this definition of an asynchronous simulation takes into
account the fact that the concrete and abstract configurations may correspond
to different timelines. Concrete and abstract configurations {(c, ¢) € R are related

......... > - » c' St c' ([tz’ T3D

Fig. 4. Asynchronous hybrid simulation

and there is a concrete transition (¢, ¢’) € 7 from ¢ to ¢’ so there must exists
an abstract transition (¢, ¢) € T such that ¢’ and ¢ are related. But since ¢’
and ¢ may have different timings, one of them is extended in the past by the
previous configuration (¢’ extended to to = min(¢s,t2) = min(b(c’),b(¢')) using
the previous ¢ in figure 4) while one of them, maybe the same, is truncated in the
future to the first terminating configuration (¢ truncated to t3 = min(¢s,t3) =
min(e(c’),e(?)) in figure 4).
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The simulation R = {{c, ax(c)) | ¢ € C} may be the homomorphic abstraction
(43) which would enforce the concrete and abstract timings to be the same. More
generally, the simulation R may be many-to-many. For example the concrete
states can be equipped with a distance and R would ensure that, at each time
instant, the concrete state is in a ball around the abstract state [9,16], the size
of the ball evolving over time (this would, for example, account for cumulated
rounding errors when the abstract states are reals and the refined concrete states
are floats).

Another particular case is that of a synchronous simulation of well-nested
configurations when concrete timelines are subdivisions of the abstract timelines
(that is, if (f, i) € C, (f, i) € C, and i N7 # () then b(i) < b(i) < e(i) < e(7)).
If moreover all configurations have at least one successor, there are no blocking
configurations so that (51) becomes

Ve, .36 . ({(c,e) e RA ({c, ) eT)) = (52)
(((e, @)y eTVvd =) A{d, T (b(c),e(d))) € R)

Ezample 5 (Change of variables). Let (c;, i € [0,]|c|[) be a concrete semantics
with concrete configurations ¢; = (At f;(t — t£), [t%,t?]) where fi(t) is given
by the Cauchy-Euler implicit ordinary differential (ODE) equation 2 f/'(t) +
aitfl(t) + b fi(t) = 0. Under appropriate continuity hypotheses, a classic res-
olution method [30, ch.19, p. 170] consists in applying the change of variable
t = In(t), that is £ = e’ to get ¢;(t) solution of ¢!/ (t) + (a; — 1)¢k(t) + bip;(t) = 0
which is a linear ODE solved via its characteristic polynomial. Let the ab-
stract hybrid semantics be (¢;, i € [0,]|c|[) with abstract configurations ¢; =
(AT« ;(T — et), [eti, et [). This is a hybrid simulation (indeed a bisimulation)
(r) for 7(t) = {{fi(t — t1), ile! — e} [ i € [0, |e|[ At € [t €[} O

Ezample 6. Continuing the water tank automaton example 3, we refine the tank
specification by taking some time € to close (in off configuration) and open (in on
configuration) the valve while in shut mode. We assume € > ¢ to ensure that the
duration of the valve opening and closing is not infinitesimal. The water inflow
7 is increased to compensate for this delay. We assume that € is large enough for
the valve opening and closing to be mechanically feasible in this period of time.
We assume that € is small enough so that the duration of the shut configuration
in (25) is much larger than 2e. In particular it must be chosen so that the increase
of the inflow is physically possible.

The open mode is unchanged, as shown in figure (5.a). A formal definition
of example 6 is given in the ArXiv version.
The relation R®® between configurations of concrete trajectories in (5.a) and
the configurations of abstract trajectories in (5.b) is the following.

RO & LAt (my, x4, ye), [, o), At (g, T, 7y)s [, o) | (53)
P(Sg)(m7xay7t15t27ma§7?7¥17g2)}
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shut open shut open shut open shut
— gy )
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.’ (b)
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o (a)
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0 t 3t 6 9 12
off shut on open off shut on open off shut on open off shut on
Fig. 5. Concrete (a) and abstract (b) tank trajectories
I A - —_
P(53)(m7x,y,t1,t2,m,ac,y,thtg) = Vt S ﬁlth[ T = T A (54)
((my = shut A

((mt:()ﬁ/\y:O/\yt:t—tl/\tl :El/\tg :f1+6)

2(to —t)))

\/(mtzshut/\tl:f1+e/\t2:f2—e/\@t:yt+e(lf P
22—t

_ - _ to—t
\/(mt:on/\tl:752—6/\152:tg/\yt:yt—FE(E t>)))
2 — l2

\/(Wt:mtzopen/\yt:@/\tl:fl/\tngg))

By the Galois isomorphism (33), the relation R®*® between configurations defines
the relation r®* between states as a function of the time.

r(w) = {<<mt7 Tt yt>7 <mt7 ftv yt>> | H[tlatQ[ g [glaEQ[ .te [t17t2[ (@)
/\P(sg)(mvxvyatlat27m;fayvglvi2)}

R®» | that is y(r®%), is a synchronous simulation (52), where in shut mode
the concrete level is within e of the abstract water level while in open mode they
are the same. O

Trace abstraction by asynchronous hybrid simulations. Our objective
is now to generalize the results of section 7.1 on homomorphisms to (weaker
ones for) simulations. Similar to (48) for homomorphic abstractions, simulations
induce related hybrid trajectory semantics.

Theorem 4. If the timed relation r between states in (29) is such that its ex-
tension y(r) to configurations in (30) is a simulation (51) between (C, C°, 7)

and (C, C°, 7) satisfying the initialization hypothesis
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VeeC'.3ee C. (¢, e €q(r) (56)
then ([7], [[Tﬂ) F(F.(r)). If moreover, the blocking hypothesis
¢.({c,e)yeq(r) AV (e, Y gT)= (V. (¢, ) &T) (57)

holds then
(I=], [71) e (3 (r)) (58)

(that is, by (37), Yo € [r] . 35 € [7] . (0, T) € F(r) and so, by (34), Vt €
[0, min([Jo ], Ja])[Ndom(r) . (o, T¢) € 7(t)).

Example 7. Continuing the water tank automaton in examples 3 and 6, R®*
is a synchronous simulation (52). So the hybrid semantics of example 6 is a
simulation of (58) of the hybrid semantics [7°] of example 3. O

Simulations are abstractions. Observe that theorem 4 implies that hybrid
simulations are Galois connection-based abstractions (38).

Compositionality of simulations. The composition of simulations may not,
in general, correspond to the composition of their timed relations between states
(defined as (ry o ro)(t) = r1(t) o r2(t)). This is because the intermediate tra-
jectories may be shorter that those in the composition, as shown in figure 6.

_ = [o]
ceT 7 r 7 i
::.rl .‘:rlorz — H

zeT — 171 irer??
i1 b
UeT: “l .l! .l! UUH

Fig. 6. Non-composition due to short intermediate trajectory duration

Another problem is that of interval mismatches where the intervals along

trajectories thus leaving some states time-unrelate in the composition, see figure
7.

FeT r—5 = = —
in i{in Sin inoenm
geT A e .| :
i1 iriora?? | el iy,
peT RN i b

Fig. 7. Non-nested intervals

A sufficient condition for compositionally is that the involved trajectories be
all infinite with well nested interval, meaning

Y{(fj, i;), § ENY €T . V((fy, i), keEN) €T . (59)
Vi keN. (i;Nig #0) = (i; Cix)
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Theorem 5. IfT € TX, T € Tz, Te T%o are well-nested, (T, T) € (¥.(r1))
and (T, T) € (¥ .(r2)) then (T, T) € F(7,(r1 o r2)).

Ezample 8 (Composition of the water tank simulations). Continuing the water
tank specification in example 2, automaton in example 3, and implementation
in example 6, the hybrid trajectory semantics are well-nested according to (59).
The hybrid semantics [7°] of example 6 is a simulation of the hybrid semantics
[7%] of example 3 by r©®®  which itself is a simulation of the specification S* by
r®9 . So, by theorem 5, their composition 7% o r®9 holds at any time between
the implementation [7°] and the specification S2.

This may look paradoxical because if € > ( then water in the implementation
will remain at the zero level longer than prescribed by the specification (20.d).

However, this is not an anomaly since the composition is

PO o & (g, i), (W, ) | 3l tal € Bl € [0l A - (60)

P(SB)(mtaxhyt7t17t2;mt7mt7yt>i17i2)}

By definition (53), this expresses that the height 7, of the water in the specifi-
cation when the valve is off for e units of time is equal to t —t; = ¢t — t1, not
to the level of water y; = 0 in the implementation. So, although each simulation
r® and r® is a satisfactory specification, their composition is an incomplete
refinement of the expected water tank behavior. O

Greatest simulation. (51) can be rewritten as

RCF:-(R)  with (61)
FP~(R) = {(c, o) | V. ({¢, ) e 1) =
(3 . (z, @) € T A (e3¢ (min(b(c'), b)), min(e(c'), e(@))),
3¢ (min(b(¢'), b(@)), min(e(¢'), e(@)))) € R)}

where F?_ is increasing on the complete lattice (p(C x C), C) so that by Tarski’s
fixpoint theorem [37] there exists a greatest simulation between 7 and 7, thus
extending Robin Milner’s classic result [27, Proposition 16, section 4.6] to hybrid
simulations (and the least fixpoint is ).

Verification of trace properties by simulation. The homomorphic induc-
tion principle (49) can be generalized to hybrid asynchronous simulations 7(r)
as follows

(62)

Discretization by sampling.
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Discretization of a hybrid transition system. We have defined the discretization
(27) of a hybrid trajectory semantics. In general the discretization of a hybrid
transition system (22) and that of the generated trajectories (23) do not coincide,
as shown by the following counterexample (for which the discretization of the
trajectory and that of the configurations ¢y, co,c3,... in the transition relation
7 do not coincide).

Y i g T T T g trajectory discretization

° | transition-generated trajectory

Cc2 c3
} }
T T 1
T~ iy .
A transition configuration
A AAS discretization

¢ e
5
N,

To solve this dependency, it is generally assumed that the start time and duration
of configurations is a multiple of the discretization step

Vee C.3kk €N.b(c)= ks < k5 =e(c). (63)

The relation (29) between states is time-dependent. Simply ignoring the discrete
time (nd, n € N) might create circularities (see example 10 thereafter).

One solution is to incorporate the time (or at least the rank n € N) into
states to make the relation time-independent as in classic simulations. So (27)
becomes

05(0) £ {{0ng, ), m € NAns € [0, o)) (64)
and (29) becomes
as(r) = {{{s, n), (3, n)) |n € NAnSI € dom(r) A (s, 3) € r(nd)}.  (65)

The timeful discretization of the hybrid transition system is

a5(T> 2 {<<87 n>7 <8/7 n+ 1>> | (66)
(Fe.(ceC®Vvad.(d,c)er)A (a)
b(c) <nd < (n+1)6 <e(c)As=cps NS = Cini)s)
V(e d)er. (n+1)d=e(c) As=cas A5 = Clin)s) (b)
V(FceC.Vd . (e, )TN (n+1)d=¢e(c) A (c)
5= cns NS = Clny1)s)}
as(C%) 2 {{co, 0) | c € C°} (d)

which is well-defined by (22) and since the durations of the configurations are
assumed to be multiples of §. (66.a) covers discrete transitions within a configu-
ration but the last one. The last transition is either to the first state of the next
configurations (66.b), or in absence of any successor configuration, to the last
state of the current configuration (66.c). This condition (66.c) solves the problem
of having open right time intervals in configurations by defining the last state
of the last configuration of finite trajectories. This discretization applies to both
concrete and abstract transition systems.
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Ezample 9 (hybrid transition discretization). The various cases in (66) are illus-

trated below.
(b)
) ‘m =
f! as(7)

as(7)

— By (66.a), the initial configuration ¢ = (f, [0, 20]) starting at time 0 of duration
26 has an internal discrete transition ((f(0), 0), (f(d), 1)) € as(7) between
its states at times 0 and d;

— Similarly, by (66.a), the successor configuration ¢ = (f’, [2§,4d]) starting at
time 2§ of duration 26 has an internal discrete transition ((f’(29), 2), (f'(39),
3)) € as(7);

— By (66.b), the last discrete transition of configuration c is toward the beginning
state (f7(26), 2) of its successor configuration(s) ¢’ (and not toward its final
state (f(26), 2));

— In contrast, by (66.c), the last discrete transition for configuration ¢’ which
has no possible successor by 7 is toward its final state (f'(44), 4).

Observe that f(&) = f'(49) but they are distinguished by incorporating the rank
n of discrete times nJd. O

Example 10 (timeful and timeless abstraction). Consider S = {s}, C = C° =
{c}, 7 = 0 where ¢ = (f, [0,2]) with V¢t € [0,2] . f(t) = s, and § = 1. We have
[7] = {c} and as([7]) = {{s, 0)(s, 1)} as well as as(7) = 0 and [as(7)] = {(s,
0)(s, 1)}, that is, (67).

Ignoring time, we would have as([7]) = {ss} while the transition abstraction
as(t) = {(s, s)} yields a circularity so that [as(7)] = sT|s> and in general
as([7]) C [as(7)] which would be a rather imprecise overapproximation. O

By definition of ay, it follows that

Theorem 6. The timed discretization of the semantics is the semantics of the
timeful discretized transition system, formally

as([r]) = [as(7)] (67)

Is the discretization of a hybrid simulation a discrete simulation? If
the simulation of a hybrid transition system is a generalization of Robin Milner’s
simulation of discrete transition systems [26] there should be an abstraction of
time mapping the hybrid simulation of the hybrid transition system into a dis-
crete simulation for the discretized transition system. This is our next objective.
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Sampling in (28) is a discretization. But this discretization of a hybrid simu-
lation may not be a discrete simulation, even when configuration durations are
a multiples of a base duration ¢, as assumed in (63).

For a counter example, on figure (8.a), we have a hybrid simulation since
states are related by r on the common interval of time of ¢ and ¢. But in the
discretization, concrete state s has a successor while the related state s has none,
so this is not a discrete simulation.

(a) blocking states 5 and 5 (b) related states s and isolated state So or
s and 3 of unrelated configurations ¢ and ¢

Fig. 8. Effects of asynchronous discretization

A second counterexample is given in figure (8.b) when ty = #;. We have (s,
So) € 7(tg) but 3¢ does not belong to any configuration and so has no successor by
as(T). So the discretization of the hybrid simulation is not a discrete simulation.

A third counterexample is also given on figure (8.b) Configurations ¢ and
¢ are related because relation r between their states during the first period of
time (end included in successor) while ¢ and ¢ are not since r holds between
s and 5 whereas it does not hold between s’ and §'. After discretization, the
configuration @ generates a transition as(7) from 3 to 5. Now (s, 3) € =1 A (s,
s') € as(7) but the only successor 3 of 5 by a;(7) is not related to s’. So the
discretization of the hybrid simulation is not a discrete simulation.

Moreover, the relation r in (29) is the partial function of the time, whereas
its abstraction as(r)~! in Robin Milner’s simulation as(r)™! o as(7) € as(7) o
as(r)~! is a well-defined relation between states. So, in case 7 in (29) is not
total, and to be compatible with Robin Milner’s definition, we must assume that
r is well-defined at the discretization points

Yn €N . (Jdece C.nd € dom(c)) = (nd € dom(r)). (68)
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To prevent the case of isolated state 5y in (8.b), we assume that related states
must come from related configurations (either initial or successor ones).

Vee C,5€S,neN. (nd € dom(c) Ndom(r) A (cpns, 3) € r(nd)) = (69)
(FceC.(ce Vv . (¢, ) €7) And € dom(c) ACns = 3)

Beyond an initialization hypothesis (similar to (56)), a common hypothesis
for discrete simulations is the non-blocking condition, which, for hybrid simula-
tions, translates into

Ve e C,ee C. (3t € dom(c) Ndom(¢) Ndom(r) . {(ct, &) € r(t) A (70)
Ve . (¢, d) €7) = (e(c) = e(c))

The non-blocking condition (70) will avoid the blocking state s in figure 8, on
the left, since concrete blocking configurations can only be related to abstract
configurations with the same ending time.

Moreover, we request the relation r between states to be compatible with
the discretization (66) of transition relations. If a concrete configuration ¢ and
an abstract one ¢ have related states at some time ¢ then their states must be
related at any time nd in their common time intervals, except maybe at the end
of these time intervals (71.a).

Ve e C,c € C. (3t € dom(c) Ndom(e) Ndom(r) . (cs, &) € r(t)) = (71)
(¥nd € (dom(c) N dom(@)) \ {e(c), (@)} - (cns, Tus) € r(n6)) A

(
(Vn . nd =e(c) € dom(e)) = (
(V¢ . ((c, ')y € 7) = ((cl,5, Cns) € T(nF))) A (b.1)
(V' . (e, ') € T = cps # clis) = ((Cns, Cns) & r(nd)))) A (b.2)
(V' . (c, 'y &€ T) = ({cns, Cns) € T(nH))) A (b.3)
(Vn . (nd = e(c) € dom(c)) = (c)
(V¢ . ((c, @) € T) = ({cus, Cns) € T(NJ))) A (c.1)
(Ve . (e, @) €T = Cns # Co5) = ((Cns, Cns) € 7(nd))) A (c.2)
((v¢" . (¢, @) ¢7) = ({ens, Cns) € 7(nd)))) (c.3)

The relations between states at the end of a concrete configuration ¢ are illus-
trated in figure 9. In case (71.b.1), the state c] 5 at the beginning of the next
concrete configuration ¢’ is related to the abstract state ¢,s at the end of this
concrete configuration c.

Case (71.b.2) states that if there is no concrete configuration ¢’ which initial
state ¢5 is equal to the last state c¢,s of the previous configuration ¢ then
cns should not be related to the abstract state ¢,s at the end of this concrete
configuration c.

Case (71.b.3) states that if the concrete configuration ¢ ending at time nd
has no successor then its last state should be related to the abstract state ¢,,s at
the end of this concrete configuration c.

Cases (71.c) in figure 10 are symmetrical.
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Fig. 9. Relation between states after discretization of concrete configuration transitions
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Fig.10. Relation between states after discretization of abstract configuration transi-
tions

Then, we have the following result (72) that supports the intuition that
state-based hybrid simulations 7(r) satisfying (51) (or equivalently (61)) are a
meaningful generalization of Robin Milner discrete simulations (i.e. R ot C t o

R).
Theorem 7.

(F(r) € F7=(7(r)) A (68) A (69) A (70) A (T1)) = (72)
as(r)™ o as(1) € as(T) o as(r) ™!

8 Conclusion

We have studied correspondences between trajectory semantics of hybrid systems
with possibly different durations and timelines (that is different timing for mode
changes), including the case where the hybrid semantics is generated by an hybrid
transition system.
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The abstraction relation between semantics can be derived from relations
between trajectories, possibly themselves derived from relations between config-
urations, possibly themselves derived from timed relations between states. Such
correspondences include the particular cases of homomorphisms, simulations,
and discretization (as well as bisimulations, preservation, progress considered in
the ArXiv version). They induce abstractions of the hybrid semantics that are
Galois connections. So the abstractions between hybrid semantics defined by the
correspondences between trajectories do compose.

However, contrary to the discrete case [26,32] and with the exception of homo-
morphic trajectory abstraction in section 7.1, the correspondences between tra-
jectories or configurations do not necessarily compose with the correspondence
between states. For example, the discretization of similar hybrid trajectories may
not be similar discrete traces. The problem does not appear in Milner’s original
discrete definition [26] because the notion of state and configuration as well as
timings do coincide. We have studied sufficient conditions for composability of
trajectory correspondences to hold.

Like in the case of discrete systems [10], further abstractions of the hybrid
trajectory semantics will lead to a hierarchy of semantics, verification, and static
analysis methods. The most common abstraction is the reachability abstraction
a({{o?, ¥ € [0.]o[[) | j € A}) 2 (o, (1) | 5 € AN € [0.]o|[ At € [0,]07][},

see [8] for a documented and comprehensive survey.
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