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Abstract. We illustrate the sound and complete construction of pro-
gram logics by abstraction of a relational semantics into the theory of
the logic followed by the formal derivation of the proof system. We con-
sider Hoare logic, O’Hearn incorrectness logic and Hoare incorrectness
logic formalizing debugging.
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1 Introduction

We have recently proposed a methodology [6] to construct sound and complete
Hoare’style (or transformational) program logics by defining the structural re-
lational semantics of the programming language, which is abstracted into the
theory of the logic (specifying the true formulas of the logic) and then expressed
as an equivalent proof system using Peter Aczel correspondence between set-
theoretic fixpoints and deductive rules as well as fixpoint induction principles to
handle iteration. The construction of the logic consists in

1. Defining the relational semantics JSK of the programming language (in struc-
tural fixpoint form);

2. Defining the theory of the logics as an abstraction α({JSK}) of the collecting
semantics {JSK} (which is the strongest (hyper) property of statement S);

3. Calculating the theory α({JSK}) in structural fixpoint form by fixpoint ab-
straction;

4. Calculating the proof system by fixpoint induction and Aczel correspondence
[1] between fixpoints and deductive systems.

2 The Structural Natural Relational Semantics

We consider an imperative language S with assignments, sequential composition,
conditionals, and conditional iteration. The syntax is S ∈ S ::= x = A | skip |
S;S | if (B) S else S | while (B) S. States σ ∈ Σ ≜ X → V (also called
environments) map variables x ∈ X to their values σ(x) in V. We deliberately
leave unspecified the syntax and semantics of arithmetic expressions AJAK ∈
Σ → V and Boolean expressions BJBK ∈ ℘(Σ) ≃ Σ → {true, false}. The only
assumption on expressions is the absence of side effects. The natural (or angelic)
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semantics JSK ∈ ℘(Σ ×Σ) ignores nontermination [14]. We use judgements σ ⊢
S ⇒ σ′ for ⟨σ, σ′⟩ ∈ JSK. In addition we write σ ⊢ while (B) S i⇒ σ′ to mean
that if σ is a state before executing while (B) S, then σ′ is reachable after 0 or
more iterations of the loop body (so σ = σ′ for 0 iterations, before entering the
loop in case (1.a)). The semantics of iteration W = while (B) S is

(a) σ ⊢ W i⇒ σ (b)
σ ⊢ W i⇒ σ′, BJBKσ′, σ′ ⊢ S ⇒ σ′′

σ ⊢ W i⇒ σ′′
(c)

σ ⊢ W i⇒ σ′, BJ¬BKσ′

σ ⊢ W ⇒ σ′ (1)

Aczel correspondence between deductive systems and set-theoretic fixpoints [1]
allows us to derive an equivalent fixpoint definition of the semantics.

F (X) ≜ id ∪ (X # JBK # JSK), X ∈ ℘(Σ ×Σ) (2)Jwhile (B) SK ≜ lfp⊆ F # J¬BK (3)

where id is the identity relation and # is the composition of relations. The trans-
former F are defined on the complete lattice ⟨℘(Σ×Σ), ⊆, ∅, Σ×Σ, ∪, ∩⟩ and
is ⊆-increasing, so lfp⊆ F does exist [19].

3 Aczel correspondence between deductive systems and
fixpoints

Rules P
c on a universe U have a premise P ∈ ℘(U) and a conclusion c ∈ U .

The premise P = ∅ is empty for axioms. A deductive system is a set of rules
R =

{Pi

ci

∣∣ i ∈ ∆
}
∈ ℘(℘(U) × U). The semantics of {|R|} is the subset of the

universe U defined by the rules.
The traditional proof-theoretic semantics of deductive systems is the set of

provable terms (called theorems). Therefore {|R|}p = {tn ∈ U | ∃t1, . . . , tn−1 ∈
U . ∀k ∈ [1, n] . ∃Pc ∈ R . P ⊆ {t1, . . . , tk−1} ∧ tk = c} (such finite proofs require
the premiss P to be finite but transfinite proofs are also possible [15, Chapter
11], [1, Definition 1.4.1]). The model-theoretic semantics of deductive systems is
the least fixpoint {|R|}m = lfp⊆ FR where the consequence operator FR(X) ≜ {c |
∃Pc ∈ R . P ⊆ X} is increasing. Peter Aczel [1] proves that {|R|}m = {|R|}p. In the
case of finite premisses, the idea is that the n-th iterates of FR from ∅ is the set
of all proofs of length n (hence the axioms for the first iterates). Conversely, any
set-theoretic fixpoint lfp⊆ F of an increasing operator F (continuous for finite
premisses) on the powerset ℘(U) of a set U is the semantics {|RF |}m = {|RF |}p of
a deductive system RF =

{P

c

∣∣ P ∈ ℘(U) ∧ c ∈ F (P )
}

(or
{P

c

∣∣ P ∈ ℘(U) ∧ c ∈
F (P )∧∀P ′ ∈ ℘(U) . c ∈ F (P ′)⇒ P ⊆ P ′} to eliminate redundant rules). Given
the fixpoint characterization of the theory of a logic, obtained by abstraction
α({JSK}) of the fixpoint semantics JSK, we can derive the proof system of the
logic using this correspondence between fixpoints and rules.

4 Abstractions
Since the strongest property {JSK} of (the semantics JSK of) a statement S is an
hyperproperty, it must be abstracted into an execution property αC({JSK}) = JSK
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where αC(P ) ≜
⋃
P is surjective and γC(S) ≜ ℘(S) is injective and is a Galois

retraction ⟨℘(℘(D)),⊆⟩ −−−−→−→←−−−−−
αC

γC ⟨℘(D),⊆⟩ [5, Chapter 11]. So JSK is the strongest
property of executions of S.

Then program logics check reachability from preconditions or accessibility of
postconditions which can be formalized by the post-image isomorphism post(JSK)
of the relational semantics where post(r)X ≜ {y | ∃x ∈ X . ⟨x, y⟩ ∈ r} maps a
relation r ∈ ℘(X ×Y) to its union-preserving right-image post(r) so that ⟨℘(X ),
⊆⟩ −−−−−−→←−−−−−−

post(r)

p̃re(r)
⟨℘(Y), ⊆⟩ is a Galois connection with p̃re(r)Q = ¬post(r−1)¬Q =

{x | ∀y . ⟨x, y⟩ ∈ r ⇒ y ∈ Q}.
Contrary to predicate transformers, program logics are not functions but

relations between predicates. Since a function f ∈ X → Y is isomorphic to its
graph αG(f) = {⟨x, f(x)⟩ | x ∈ X}, we can abstract a predicate transformer
into a functional relation, which is a Galois isomorphism ⟨X → Y , =⟩ −−−−→−→←←−−−−−

αG

γG

⟨℘fun(X × Y), =⟩ where γG(r) ≜ λx . (y such that ⟨x, y⟩ ∈ r) is uniquely well-
defined since r is a functional relation.

5 The Strongest Postcondition Logic Theory

We can now define the strongest postcondition logic theory of a statement S as

T JSK = αG ◦ post ◦ αC({JSK}) = {⟨P, postJSKP ⟩ | P ∈ ℘(Σ)} (4)

The next step is to express this theory in fixpoint form. The main result from
[9] is that the abstraction of a fixpoint is a fixpoint.

Theorem 1 (Fixpoint abstraction [9]). If ⟨C, ⊑⟩ −−−→←−−−α
γ
⟨A, ⪯⟩ is a Galois

connection between complete lattices ⟨C, ⊑⟩ and ⟨A, ⪯⟩, f ∈ C
i−→ C and

f̄ ∈ A
i−→ A are increasing and commuting, that is, α ◦ f = f̄ ◦ α, then

α(lfp⊑ f) = lfp⪯ f̄ (while semi-commutation α ◦ f ⪯̇ f̄ ◦ α implies α(lfp⊑ f) ⪯
lfp⪯ f̄).

As a simple application, we have the following corollary (which will allows us
to define the predicate transformer for an iteration as the least fixpoint of a
predicate transformer, as opposed to a (predicate transformer) transformer).

Corollary 1 (Pointwise abstraction). Let ⟨L, ⊑, ⊤, ⊔⟩ and ⟨L′, ⊑′, ⊤′, ⊔′⟩
be complete lattices. Assume that F ∈ (L→ L′)

i−→ (L→ L′) is increasing and
that for all Q ∈ L, F̄Q ∈ L′ i−→ L′ is increasing. Assume ∀Q ∈ L . ∀f ∈ L →
L′ . F (f)Q = F̄Q(f(Q)). Then ∀Q ∈ L . (lfp

.
⊑

′
F )Q = lfp⊑′

F̄Q.

By calculational design we get a fixpoint definition of the theory of strongest
postconditions logics (common to Hoare logic and incorrectness logic with no
consequence rules at all). For the iteration W = while (B) S, we get T JWK ≜ {⟨P,
postJ¬BK(lfp⊆ F ′

P )⟩ | P ∈ ℘(Σ)} where F ′
P (X) = P ∪ post(JBK # JSK)X.

For the proof, we have the commutation
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post(F (X))P

= post(id ∪ (X # JBK # JSK))P Hdef. (2) of F I
= post(id)P ∪ post(X # JBK # JSK)P Hpost preserves arbitrary set unionsI
= P ∪ post(JBK # JSK)(post(X)P ) Hdef. post, post(X # Y ) = post(Y ) ◦ post(X)I
= F ′

P (post(X)P ) Hdef. F ′
P ≜ λX .P ∪ post(JBK # JSK)X, Q.E.D.I

It follows that
postJWK

= λP . post(lfp⊆ F # J¬BK)P Hby (3) and Church λ-notationI
= λP . postJ¬BK(post(lfp⊆ F )P ) Hpost(X # Y ) = post(Y ) ◦ post(X)I
= postJ¬BK(lfp⊆ F ′

P ) Hcommutation and corollary 1, Q.E.D.I (5)

The characterization T JSK = αG ◦ post ◦ αC({JSK}) = αG ◦ post(JSK) = {⟨P,
postJSKP ⟩ | P ∈ ℘(Σ)} follows directly from the definitions of αC and αG.

6 Deduction as Approximation

Lacking a consequence rule, the strongest postcondition logic theory is very
strong and would, e.g., require the use of the strongest invariant for iteration,
which by experience [20,16,12,13] is inadequately constraining.

The consequence abstraction can be defined by the component wise approx-
imation ⟨x′, y′⟩ ⊑,⪯ ⟨x, y⟩ ≜ x′ ⊑ x ∧ y′ ⪯ y. Then post(⊇,⊆) = λR . {⟨P,
Q⟩ | ∃⟨P ′, Q′⟩ ∈ R . P ⊆ P ′∧Q′ ⊆ Q} adds an over approximating consequence
rule to the strongest postcondition logic theory to get the theory of Hoare logic

THLJSK ≜ post(⊇,⊆)(T JSK) = {⟨P, Q⟩ | postJSKP ⊆ Q} (6)

while the ⊆-dual post(⊆,⊇) = λR . {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ R . P ′ ⊆ P ∧Q ⊆ Q′}
adds an under approximating consequence rule to the strongest postcondition
logic theory to get the theory of incorrectness logic.

TILJSK ≜ post(⊆,⊇)(T JSK) = {⟨P, Q⟩ | Q ⊆ postJSKP} (7)

Proof (of (6) and (7)).
post(⊇,⊆)(T JSK)

= {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ T JSK . ⟨P ′, Q′⟩ ⊇.⊆ ⟨P, Q⟩} Hdef. postI
= {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ T JSK . P ⊆ P ′ ∧Q′ ⊆ Q}Hand component wise order ⊇.⊆I
= {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ {⟨P ′′, postJSKP ′′⟩ | P ′′ ∈ ℘(Σ)} . P ⊆ P ′ ∧Q′ ⊆ Q}Hdef. (4) of T JSKI
= {⟨P, Q⟩ | ∃P ′, Q′, P ′′ . P ′ = P ′′ ∧Q′ = postJSKP ′′ ∧ P ⊆ P ′ ∧Q′ ⊆ Q}
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Hdef. ∈I
= {⟨P, Q⟩ | ∃P ′ . P ⊆ P ′ ∧ postJSKP ′ ⊆ Q} Hdef. =I
= {⟨P, Q⟩ | postJSK(P ) ⊆ Q}H(⇒) postJSK is increasing, (⇐) taking P ′ = P , proving (6)I

(7) follows from (6) by ⊆-order duality. ⊓⊔

At this point, we could use Aczel correspondence between fixpoints and rules
to get sound and complete proof rules with common rules for statements and
different consequence rules for Hoare and incorrectness logics.

This is not satisfactory since, for iteration, we can approximate the pre and
postconditions by the consequence rules but not the loop invariant itself. Requir-
ing the invariant to be the strongest would be too demanding. This is precisely
the point of fixpoint induction, which enables the use of consequences for the loop
invariant. Fixpoint induction differs for Hoare logic (which requires a fixpoint
over approximation) and incorrectness logic (which requires a fixpoint under
approximation).

7 Fixpoint induction

A sound and complete least fixpoint over approximation method is provided by
David Park [18,4].

Theorem 2 (Least fixpoint over approximation [18]). Let ⟨L, ⊑, ⊥, ⊤, ⊔,
⊓⟩ be a complete lattice, f ∈ L

i−→ L be increasing, and p ∈ L. Then lfp⊑ f ⊑ p
if and only if ∃i ∈ L . f(i) ⊑ i ∧ i ⊑ p.

where the inductive invariant i is an over approximation of the strongest invariant
lfp⊑ f .

For under approximation of least fixpoints, we can use the generalization [4]
of Scott-Kleene induction based on transfinite induction when continuity does
not apply and follows directly from the constructive version of Tarski’s fixpoint
theorem [8].

Theorem 3 (Fixpoint Under Approximation by Transfinite Iterates).
Let f ∈ L

i−→ L be an increasing function on a cpo ⟨L, ⊑, ⊥, ⊔⟩ (i.e. every
increasing chain in L has a least upper bound in L, including ⊥ = ⊔∅). P ∈ L
is a fixpoint under approximation, i.e. P ⊑ lfp⊑ f , if and only if there exists an
increasing transfinite sequence ⟨Xδ, δ ∈ O⟩ such that X0 = ⊥, Xδ+1 ⊑ f(Xδ) for
successor ordinals,

⊔
δ<λ X

δ exists for limit ordinals λ such that Xλ ⊑
⊔

δ<λ X
δ,

and ∃δ ∈ O . P ⊑ Xδ.

Theorem 3 could have assumed the existence of a well-founded set ⟨W, ≼⟩ ∈Wf
to replace the ordinals ⟨O, ⩽⟩. If f is continuous then δ = ω is the first infinite
ordinal.

Finally, to propose an alternative axiomatization of incorrectness, we will use
the following theorem.
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Theorem 4 (Non empty intersection with abstraction of least fixpoint).
Assume that (1) ⟨L, ⊑, ⊥, ⊤, ⊓, ⊔⟩ is an atomic complete lattice; (2) f ∈ L→ L

preserves nonempty joins ⊔; (3) ⟨L, ⊑⟩ −−−→−→←−−−−
α

γ
⟨L̄, ⪯, ⋏⟩; (4) Q̄ ∈ L̄ \{0} where

0 ≜ α(⊥); (5) There exists an inductive invariant I ∈ L of f (i.e. f(I) ⊑ I); (6)
⟨W, ⩽⟩ is a well-founded set and ν ∈ atoms(I)→W is a (variant) function; (7)
There exists a sequence ⟨ai ∈ atoms(I), i ∈ [1,∞]⟩ that (7.a) a1 ∈ f(⊥), (7.b)
∀i ∈ [1,∞] . ai+1 ∈ atoms(f(ai)), (7.c) ∀i ∈ [1,∞] . (ai ̸= ai+1) ⇒ (ν(ai) >
ν(ai+1), (7.d) ∀i ∈ [1,∞] . (ν(ai) ̸> ν(ai+1)⇒ α(ai)⋏ Q̄ ̸= 0; Then, hypotheses
(1) to (7) imply α(lfp⊑ f)⋏ Q̄ ̸= 0. Conversely (1) to (4) and lfp⊑ f ⊓ γ(Q̄) ̸= ⊥
imply (5) to (7).

Notice that if L = ℘(Σ) then atoms(L) = {{x} | x ∈ L} so that I ∈ ℘(Σ) and ν
can be chosen in I → W instead of {{x} | x ∈ I} → W . The proof of theorems
3 and 4 is given in [7].

8 Calculational Design of Hoare Logic

The calculus is by structural induction i.e. on the program syntax. The only
non-trivial case is iteration W = while (B) S. The theory of Hoare logic for
iteration is

THL(W) ≜ post(⊇,⊆)(T JWK) (8)
= {⟨P, Q⟩ | ∃I . P ⊆ I ∧ ⟨I ∩ BJBK, I⟩ ∈ THL(S) ∧ (I ∩ ¬BJBK) ⊆ Q}

Proof (of (8)).
THLJWK

= post(⊇.⊆)(T JWK) Hdef. (6) of THLI
= {⟨P ′, Q′⟩ | ∃⟨P, Q⟩ ∈ T JWK . ⟨P, Q⟩ ⊇,⊆ ⟨P ′, Q′⟩} Hdef. postI
= {⟨P ′, Q′⟩ | ∃⟨P, Q⟩ ∈ T JWK . P ′ ⊆ P ∧Q ⊆ Q′} Hcomponent wise def. ⊇,⊆I
= {⟨P ′, Q′⟩ | ∃P,Q . P ′ ⊆ P ∧ postJ¬BK(lfp⊆ F ′

P ) ⊆ Q ∧Q ⊆ Q′} H(5)I
= {⟨P ′, Q′⟩ | ∃P . P ′ ⊆ P ∧ postJ¬BK(lfp⊆ F ′

P ) ⊆ Q′}H(⊆) ∃Q . postJ¬BK(lfp⊆ F ′
P ) ⊆ Q ∧Q ⊆ Q′ and transitivity;

(⊇) take Q = Q′I
= {⟨P ′, Q′⟩ | ∃P,Q . P ′ ⊆ P ∧ lfp⊆ F ′

P ⊆ Q ∧ postJ¬BK(Q) ⊆ Q′}H(⊆) take Q = lfp⊆ F ′
P ; (⊇) postJBKP = P ∩ BJBK so postJBK is increasingI

= {⟨P ′, Q′⟩ | ∃P,Q, I . P ′ ⊆ P ∧ F ′
P (I) ⊆ I ∧ I ⊆ Q ∧ postJ¬BK(Q) ⊆ Q′}HPark fixpoint induction Th. 2I

= {⟨P ′, Q′⟩ | ∃Q, I . F ′
P ′(I) ⊆ I ∧ I ⊆ Q ∧ postJ¬BK(Q) ⊆ Q′}H(⊆) union hence F ′

P (X) = P ∪ post(JBK # JSK)X is ⊆-increasing in P so
P ′ ⊆ P implies F ′

P ′(I) ⊆ F ′
P (I) ⊆ I. (⊇) take P = P ′I

= {⟨P, Q′⟩ | ∃I . F ′
P (I) ⊆ I ∧ postJ¬BK(I) ⊆ Q′}
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HRename P ′ into P . (⊆) I ⊆ Q implies postJ¬BK(I) ⊆ postJ¬BK(Q) since
postJ¬BK is increasing hence postJ¬BK(I) ⊆ Q′ by transitivity;
(⊇) take Q = II

= {⟨P, Q⟩ | ∃I . P ∪ post(JBK # JSK)(I) ⊆ I ∧ postJ¬BK(I) ⊆ Q}Hrenaming Q′ into Q, def. F ′
P I

= {⟨P, Q⟩ | ∃I . P ⊆ I ∧ post(JBK # JSK)I ⊆ I ∧ postJ¬BK(I) ⊆ Q}Hdef. ⊆ and ∪I
= {⟨P, Q⟩ | ∃I . P ⊆ I ∧ postJSK(postJBKI) ⊆ I ∧ postJ¬BK(I) ⊆ Q}Hcomposition post(X # Y ) = post(Y ) ◦ post(X)I
= {⟨P, Q⟩ | ∃I . P ⊆ I ∧ postJSK(I ∩ BJBK) ⊆ I ∧ (I ∩ ¬BJBK) ⊆ Q}HpostJBKP = P ∩ BJBKI
= {⟨P, Q⟩ | ∃I . P ⊆ I∧⟨I∩BJBK, I⟩ ∈ {⟨P, Q⟩ | postJSKP ⊆ Q}∧(I∩¬BJBK) ⊆

Q} Hdef. ∈I
= {⟨P, Q⟩ | ∃I . P ⊆ I∧⟨I∩BJBK, I⟩ ∈ {⟨P, Q⟩ | ∃P ′, Q′ . P ⊆ P ′∧postJSKP ′ ⊆

Q′ ∧Q′ ⊆ Q} ∧ (I ∩ ¬BJBK) ⊆ Q}H(⇒) Take P ′ = P and Q′ = Q. (⇐) P ⊆ P ′ ∧ postJSKP ′ ⊆ Q′ ∧Q′ ⊆ Q
implies postJSKP ⊆ Q by transitivity.I

= {⟨P, Q⟩ | ∃I . P ⊆ I ∧ ⟨I ∩ BJBK, I⟩ ∈ post(⊇.⊆) ◦ T JSK ∧ (I ∩ ¬BJBK) ⊆ Q}Hdef. post and T JSKI
= {⟨P, Q⟩ | ∃I . P ⊆ I ∧ ⟨I ∩ BJBK, I⟩ ∈ THL(S) ∧ (I ∩ ¬BJBK) ⊆ Q}Hdef. THLI ⊓⊔

Defining {P } S {Q } ≜ ⟨P, Q⟩ ∈ T JSK, we can now derive the Hoare rules. For
conditional iteration, it is

P ⊆ I, {I ∩ BJBK} S {I}, (I ∩ ¬BJBK) ⊆ Q

{P} while (B) S {Q}
(9)

Proof (of (9)). By structural induction (S being a strict component of while
(B) S), the rule sfor {P} S {Q} have already been defined. By Aczel method,
the (constant) fixpoint lfp⊆ λX .S is defined by {∅c | c ∈ S}. So for while (B)

S we have an axiom ∅

{P} while (B) S {Q}
with side condition P ⊆ I, {I ∩

BJBK} S {I}, (I ∩ ¬BJBK) ⊆ Q. Traditionally, the side condition is written as a
premiss, to get (9). ⊓⊔

Notice that the proof system is semantically sound and complete by construction
(while using e.g. a logic for predicates might cause inexpressivity of the iteration
invariant [2,3]). The proof is machine checkable, if not machine checked!

As a last remark on the calculational design of Hoare logic, observe that
post is increasing so that (8) is THL(S) = post(=.⊆) ◦ T JSK. This means that
the consequence rule {P } S {Q }, Q⊆Q′

{P } S {Q′ }
is complete and the unique necessary use

of the precondition under approximation is that P ⊆ I of the invariant in the
iteration rule (9).
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9 Calculational Design of Incorrectness Logic

The incorrectness logic theory (7) is the ⊆-order dual of the Hoare logic theory
(6). So the rules for statements, but for iteration, are the same because all corre-
spond to the strongest postcondition logic theory (4) together with consequence
rule P ′ ⊆P, {P } S {Q }, Q⊆Q′

{P ′ } S {Q′ }
for Hoare logic and the dual P ′ ⊇P, {P } S {Q }, Q⊇Q′

{P ′ } S {Q′ }
for incorrectness logic. As for iteration, fixpoint induction is the over approxi-
mation theorem 2 for Hoare logic and under approximation theorem 3 for incor-
rectness logic.

For iteration W = while (B) S, the theory of incorrectness logic is

TILJWK ≜ post(⊆.⊇)(T JWK) (10)
= {⟨P, Q⟩ | ∃⟨Jn, n ∈ N⟩ . J0 = P ∧ ⟨Jn ∩ BJBK, Jn+1⟩ ∈ TILJSK ∧

Q ⊆ (
⋃

n∈N Jn) ∩ BJ¬BK}
(which is similar to OHearn backward variant [17] since the consequence rule
can also be separated).

Proof (of (10)). We let W =while (B) S.
TILJWK

= post(⊆.⊇)(T JWK) Hdef. (7) of TILI
= {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ T JWK . ⟨P ′, Q′⟩ ⊆.⊇ ⟨P, Q⟩} Hdef. postI
= {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ T JWK . P ′ ⊆ P ∧Q ⊆ Q′} Hdef. ⊆.⊇I
= {⟨P, Q⟩ | ∃⟨P ′, Q′⟩ ∈ {⟨P ′′, postJWKP ′′⟩ | P ′′ ∈ ℘(Σ)} . P ′ ⊆ P ∧Q ⊆ Q′}Hdef. (4) of T JWKI
= {⟨P, Q⟩ | ∃P ′, Q′, P ′′ . P ′ = P ′′ ∧Q′ = postJWKP ′′ ∧ P ′ ⊆ P ∧Q ⊆ Q′}Hdef. ∈I
= {⟨P, Q⟩ | ∃P ′ . P ′ ⊆ P ∧Q ⊆ postJWKP ′} Hdef. =I
= {⟨P, Q⟩ | Q ⊆ postJWKP}H(⊆) postJWK increasing and transitivity; (⊇) take P ′ = P and reflexivityI
= {⟨P, Q⟩ | Q ⊆ postJ¬BK(lfp⊆ F ′

P )} H(5) with F ′
P (X) ≜ P ∪ post(JBK # JSK)XI

= {⟨P, Q⟩ | ∃I . Q ⊆ postJ¬BK(I) ∧ I ⊆ lfp⊆ F ′
P }H(⊆) Take I = lfp⊆ F ′

P and reflexivity;
(⊇) By Galois connection ⟨℘(X ), ⊆⟩ −−−−−−→←−−−−−−

post(r)

p̃re(r)
⟨℘(Y), ⊆⟩, postJ¬BK is

increasing so Q ⊆ postJ¬BK(I) ⊆ postJ¬BK(lfp⊆ F ′
P ) and transitivityI

= {⟨P, Q⟩ | ∃I . Q ⊆ postJ¬BK(I)∧∃⟨Jn, n < ω⟩ . J0 = ∅∧Jn+1 ⊆ F ′
P (J

n)∧I ⊆⋃
n<ω

Jn} Hfixpoint under approximation Th. II.3.6I
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= {⟨P, Q⟩ | ∃⟨Jn, n < ω⟩ . J0 = ∅ ∧ Jn+1 ⊆ F ′
P (J

n) ∧Q ⊆ postJ¬BK( ⋃
n<ω

Jn)}

H(⊆) By Galois connection ⟨℘(X ), ⊆⟩ −−−−−−→←−−−−−−
post(r)

p̃re(r)
⟨℘(Y), ⊆⟩ postJ¬BK is in-

creasing so Q ⊆ postJ¬BK(I) ⊆ postJ¬BK(⋃n<ω Jn) and transitivity;
(⊇) take I =

⋃
n<ω JnI

= {⟨P, Q⟩ | ∃⟨Jn, n < ω⟩ . J0 = ∅ ∧ Jn+1 ⊆ (P ∪ post(JBK # JSK)(Jn)) ∧ Q ⊆
postJ¬BK( ⋃

n<ω

Jn)} Hdef. F ′
P I

= {⟨P, Q⟩ | ∃⟨Jn, 1 ⩽ n < ω⟩ . J1 = P ∧ Jn+1 ⊆ post(JBK # JSK)(Jn) ∧ Q ⊆
postJ¬BK( ⋃

1⩽n<ω

Jn)} Hgetting rid of J0 = ∅I
= {⟨P, Q⟩ | ∃⟨Jn, n ∈ N⟩ . J0 = P ∧ Jn+1 ⊆ post(JBK # JSK)(Jn) ∧ Q ⊆

postJ¬BK(⋃
n∈N

Jn)} Hchanging n+ 1 to nI
= {⟨P, Q⟩ | ∃⟨Jn, n ∈ N⟩ . J0 = P ∧ Jn+1 ⊆ postJSK(Jn ∩ BJBK) ∧ Q ⊆

(
⋃
n∈N

Jn) ∩ BJ¬BK} HpostJBKP = P ∩ BJBKI
= {⟨P, Q⟩ | ∃⟨Jn, n ∈ N⟩ . J0 = P ∧ ⟨Jn ∩ BJBK, Jn+1⟩ ∈ {⟨P ′, Q′⟩ | Q′ ⊆

postJSK)P )} ∧Q ⊆ (
⋃
n∈N

Jn) ∩ BJ¬BK} Hdef. ∈I
= {⟨P, Q⟩ | ∃⟨Jn, n ∈ N⟩ . J0 = P ∧ ⟨Jn ∩ BJBK, Jn+1⟩ ∈ TILJSK ∧ Q ⊆

(
⋃
n∈N

Jn) ∩ BJ¬BK} Hdef. TILI ⊓⊔

Defining [P ] S [Q ] ≜ ⟨P, Q⟩ ∈ TILJSK, the calculational design of incorrectness
logic rules is as follows

J0 = P, [Jn ∩ BJBK] S [Jn+1], Q ⊆ (
⋃
n∈N

Jn) ∩ BJ¬BK
[P ] while (B) S [Q]

(11)

Proof (of (11)). By structural induction (S being a strict component of while
(B) S), the rule for [P ] S [Q] have already been defined. By Aczel method, the
(constant) fixpoint lfp⊆ λX .S is defined by {∅c | c ∈ S}. So for while (B) S
we have an axiom ∅

{P} while (B) S {Q}
with side condition J0 = P, [Jn ∩

BJBK] S [Jn+1], Q ⊆ (
⋃

n∈N Jn)∩BJ¬BK; Traditionally, the side condition is writ-
ten as a premiss, to get (11). ⊓⊔

10 On Hoare Incorrectness

Incorrectness logic, a variant of reverse Hoare logic [21] was introduced by [17]
as a counterpoint of Hoare logic “When reasoning informally about a program,
people make abstract inferences about what might go wrong, as well as about what
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must go right. [. . . ] We explore our hypothesis by defining incorrectness logic, a
formalism that is similar to Hoare’s logic of program correctness [13], except that
it is oriented to proving incorrectness rather than correctness.” However, incor-
rectness logic is not Hoare incorrectness logic. It is sufficient but not necessary.
Assuming Q ̸= Σ, we have

¬({P} S {Q}) ̸⇒⇐ [P ] S [¬Q ] (12)
⇔ ∃R ∈ ℘(Σ) . [P ] S [R ] ∧R ∩ ¬Q ̸= ∅
⇔ ∃σ ∈ Σ . [P ] S [ {σ} ] ∧ σ ̸∈ Q

The incompleteness of incorrectness logic [P ] S [¬Q ] to prove Hoare incorrect-
ness ¬({P } S{Q }) comes from the fact that we may have {P } S{Q′ } for some
Q′ ⊆ Q. Therefore we have to select R = ¬Q \Q′ to ensure completeness. How-
ever, the formula ∃R ∈ ℘(Σ) . [P ] S [R ] ∧ R ∩ ¬Q ̸= ∅ is not a formula of the
incorrectness logic. Moreover, R can be reduced to a single state {σ} since a
single counter example is sufficient to prove Hoare incorrectness. This leads to
Hoare incorrectness logic.

Proof (of (12)).
[P ] S [¬Q ]

⇔ ⟨P, ¬Q⟩ ∈ TILJSK Hincorrectness triple definitionI
⇔ ¬Q ⊆ postJSKP Hdef. (7) of TILJSKI
⇒ postJSKP ∩ (¬Q) ̸= ∅ Hassuming Q ̸= Σ so (¬Q) ̸= ∅I
⇔ ¬(postJSKP ⊆ Q) Hdef. ⊆I
⇔ ¬(⟨P, Q⟩ ∈ {⟨P, Q⟩ | postJSKP ⊆ Q}) Hdef. ∈I
⇔ ¬(⟨P, Q⟩ ∈ THLJSK) Hdef. (6) of THLJSKI
⇔ ¬({P} S{Q}) HHoare triple definition, Q.E.D.I
The converse is not true, as shown by the counter example ¬({true} x = 0{x ̸=
0 ∧ x ̸= 1}) holds but not [true] x = 0[x = 0 ∨ x = 1].
¬({P} S{Q}) Hdef. incorrect Hoare tripleI

⇔ ¬(⟨P, Q⟩ ∈ THLJSK) Hdef. Hoare tripleI
⇔ ¬(⟨P, Q⟩ ∈ {⟨P, Q⟩ | postJSKP ⊆ Q}) Hdef. (6) of THLJSKI
⇔ ¬(postJSKP ⊆ Q) Hdef. ∈I
⇔ ¬({σ′ | ∃σ ∈ P . ⟨σ, σ′⟩ ∈ JSK} ⊆ Q) Hdef. postI
⇔ ¬(∀σ′ . (∃σ ∈ P . ⟨σ, σ′⟩ ∈ JSK)⇒ (σ′ ∈ Q)) Hdef. ⊆I
⇔ ∃σ′ . ∃σ ∈ P . ⟨σ, σ′⟩ ∈ JSK ∧ σ′ ̸∈ Q Hdef. negation ¬I
⇔ ∃σ ̸∈ Q . ∃σ′ ∈ P . ⟨σ′, σ⟩ ∈ JSK Hcommutativity and renamingI
⇔ ∃σ ∈ Σ . ∃σ′ ∈ P . ⟨σ′, σ⟩ ∈ JSK ∧ σ ̸∈ Q Hdef. ∃I
⇔ ∃σ ∈ Σ . ∀σ′′ ∈ {σ} . ∃σ′ ∈ P . ⟨σ′, σ′′⟩ ∈ JSK ∧ σ ̸∈ Q Hdef. ∈I
⇔ ∃σ ∈ Σ . {σ} ⊆ {σ′′ | ∃σ′ ∈ P . ⟨σ′, σ′′⟩ ∈ JSK} ∧ σ ̸∈ Q Hdef. ⊆I
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⇔ ∃σ ∈ Σ . {σ} ⊆ postJSKP} ∧ σ ̸∈ Q Hdef. postJSKI
⇔ ∃σ ∈ Σ . ⟨P, {σ}⟩ ∈ {⟨P, Q⟩ | Q ⊆ postJSKP} ∧ σ ̸∈ Q Hdef. ∈I
⇔ ∃σ ∈ Σ . ⟨P, {σ}⟩ ∈ TILJSK ∧ σ ̸∈ Q Hdef. (7) of TILJSKI
⇔ ∃σ ∈ Σ . [P ] S [{σ}] ∧ σ ̸∈ Q Hdef. incorrectness logic triple, Q.E.D.I
⇔ ∃R ∈ ℘(Σ) . [P ] S [R] ∧R ∩ ¬Q ̸= ∅H(⊆) take R = {σ};

(⊇) since R ∩ ¬Q ̸= ∅, we have ∃σ ∈ R . σ ̸∈ Q and [P ] S [{σ}] since
otherwise we would have ¬(∀σ′′ ∈ {σ} . ∃σ′ ∈ P . ⟨σ′′, σ′⟩ ∈ JSK) ⇔
∀σ′ ∈ P . ⟨σ, σ′⟩ ̸∈ JSK), in contradiction with [P ] S [R] and σ ∈ R. I ⊓⊔

11 Calculational Design of Hoare Incorrectness Logic

Incorrectness logic being incomplete to prove Hoare incorrectness, we design a
sound and semantically complete Hoare incorrectness logic HL.

Let us consider the negation of X ∈ ℘(X ), to be α¬(X) ≜ ¬X (where ¬X
≜ X \X) with Galois isomorphisms ⟨℘(X ), ⊆⟩ −−−−→−→←←−−−−−

α¬

α¬

⟨℘(X ), ⊇⟩ and ⟨℘(X ),

⊇⟩ −−−−→−→←←−−−−−
α¬

α¬

⟨℘(X ), ⊆⟩. The theory of Hoare incorrectness logic is

THLJSK ≜ α¬(THLJSK) (13)

For iteration W = while (B) S, the theory of Hoare incorrectness logic is
THLJWK = {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ .

⟨BJBK ∩ {σi}, ¬{σi+1}⟩ ∈ THLJSK ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q}
(14)

Proof (of (14)).
THLJWK

= α¬(THLJWK) Hdef. (13) of THLJWKI
= α¬({⟨P, Q⟩ | postJWKP ⊆ Q}) Hdef. (6) of THLJWKI
= {⟨P, Q⟩ | ¬(postJWKP ⊆ Q)} Hdef. α¬I
= {⟨P, Q⟩ | postJWKP ∩ ¬Q ̸= ∅} Hdef. ⊆ and ¬I
= {⟨P, Q⟩ | postJ¬BK(lfp⊆ F ′

P ) ∩ ¬Q ̸= ∅} H(5), F ′
P (X) ≜ P ∪ post(JBK # JSK)XI

= {⟨P, Q⟩ | lfp⊆ F ′
P ∩ preJ¬BK(¬Q) ̸= ∅}Hpost(R)P ∩Q ̸= ∅ ⇔ P ∩ pre(R)Q ̸= ∅I

= {⟨P, Q⟩ | ∃I ∈ ℘(Σ) . F ′
P (I) ⊆ I ∧ ∃⟨W, ⩽⟩ ∈ Wf . ∃ν ∈ I → W . ∃⟨σi ∈ I,

i ∈ [1,∞]⟩ . σ1 ∈ F ′
P (∅) ∧ ∀i ∈ [1,∞] . σi+1 ∈ F ′

P ({σi}) ∧ ∀i ∈ [1,∞] .
(σi ̸= σi+1) ⇒ (ν(σi) > ν(σi+1) ∧ ∀i ∈ [1,∞] . (ν(σi) ̸> ν(σi+1) ⇒ {σi} ∩
preJ¬BK(¬Q) ̸= 0} Hinduction principle Th. 4I

= {⟨P, Q⟩ | ∃I ∈ ℘(Σ) . P ⊆ I ∧ post(JBK # JSK)I ⊆ I ∧ ∃⟨W, ⩽⟩ ∈ Wf . ∃ν ∈
I → W . ∃⟨σi ∈ I, i ∈ [1,∞]⟩ . σ1 ∈ P ∧ ∀i ∈ [1,∞] . (σi+1 ∈ P ∨ {σi+1} ⊆
post(JBK # JSK){σi}) ∧ ∀i ∈ [1,∞] . (σi ̸= σi+1) ⇒ (ν(σi) > ν(σi+1) ∧ ∀i ∈
[1,∞] . (ν(σi) ̸> ν(σi+1)⇒ σi ∈ preJ¬BK(¬Q)}
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Hdef. F ′
P (X) ≜ P ∪ post(JBK # JSK)X, ⊆, and post, which is ∅-strictI

= {⟨P, Q⟩ | ∃I ∈ ℘(Σ) . P ⊆ I ∧ post(JBK # JSK)I ⊆ I ∧ ∃⟨W, ⩽⟩ ∈ Wf .
∃ν ∈ I → W . ∃⟨σi ∈ I, i ∈ [1,∞]⟩ . σ1 ∈ P ∧ ∀i ∈ [1,∞] . {σi+1} ⊆
post(JBK # JSK){σi} ∧ ∀i ∈ [1,∞] . (σi ̸= σi+1) ⇒ (ν(σi) > ν(σi+1) ∧ ∀i ∈
[1,∞] . (ν(σi) ̸> ν(σi+1)⇒ σi ∈ preJ¬BK(¬Q)}Hsince if σi+1 ∈ P , we can equivalently consider the sequence ⟨σj ∈ I,

j ∈ [i+ 1,∞]⟩I
= {⟨P, Q⟩ | ∃I ∈ ℘(Σ) . P ⊆ I ∧ post(JBK # JSK)I ⊆ I ∧ ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈

[1, n]⟩ . σ1 ∈ P ∧∀i ∈ [1, n[ . {σi+1} ⊆ post(JBK#JSK){σi}∧σn ∈ preJ¬BK(¬Q)}H(⊆) By ⟨W, ⩽⟩ ∈ Wf, ν ∈ I → W , ∀i ∈ [1,∞] . (σi ̸= σi+1) ⇒
(ν(σi) > ν(σi+1), the sequence is ultimately stationary at some rank n.
For then on, σi+1 = σi, i ⩾ n and so ν(σi) = ν(σi+1). Therefore ∀i ∈
[1,∞] . (ν(σi) ̸> ν(σi+1)⇒ σi ̸∈ Q implies that σn ∈ preJ¬BK(¬Q);
(⊇) Conversely, from ⟨σi ∈ I, i ∈ [1, n]⟩ we can define W = {σi | i ∈
[1, n]} ∪ {−∞} with −∞ < σi < σi+1 and ν(x) = Lx ∈ {σi | i ∈ [1, n] ?
x : −∞ M and the sequence ⟨σj ∈ I, j ∈ [1,∞]⟩ repeats σn ad infimum
for j ⩾ n.I

= {⟨P, Q⟩ | ∃I ∈ ℘(Σ) . P ⊆ I ∧ post(JBK # JSK)I ⊆ I ∧ ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈
[1, n]⟩ . σ1 ∈ P∧∀i ∈ [1, n[ . {σi+1} ⊆ post(JBK#JSK){σi}∧σn ̸∈ BJBK∧σn ̸∈ Q}Hdef. preI

= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ . {σi+1} ⊆
post(JBK # JSK){σi} ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q}HI is not used and can always be chosen to be ΣI

= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ . post(JBK #JSK){σi} ∩ {σi+1} ̸= ∅ ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q} Hsince x ∈ X ⇔ X ∩ {x} ̸= ∅I
= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ . post(JBK #JSK){σi} ∩ ¬(¬{σi+1}) ̸= ∅ ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q} Hdef. ¬X = Σ \XI
= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ . ¬(post(JBK #JSK){σi} ⊆ (¬{σi+1})) ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q} H¬(X ⊆ Y )⇔ (X ∩ ¬Y ̸= ∅I
= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ .
¬(post(JSK)(BJBK ∩ {σi}) ⊆ (¬{σi+1})) ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q}Hdef. post, JBK, and #I

= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ . ⟨BJBK ∩ {σi},
¬{σi+1}⟩ ∈ {⟨P, Q⟩ | ¬(post(JSK)P ⊆ Q)} ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q} Hdef. ∈I

= {⟨P, Q⟩ | ∃n ⩾ 1 . ∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧ ∀i ∈ [1, n[ . ⟨BJBK ∩ {σi},
¬{σi+1}⟩ ∈ THLJSK ∧ σn ̸∈ BJBK ∧ σn ∈ Q} Hdef. THLJSKI ⊓⊔
Defining LP M S LQ M ≜ ⟨P, Q⟩ ∈ THLJSK, the calculational design of incorrect-

ness logic rules is as follows,
∃⟨σi ∈ I, i ∈ [1, n]⟩ . σ1 ∈ P ∧

∀i ∈ [1, n[ . LBJBK ∩ {σi} M S L¬{σi+1} M ∧
σn ̸∈ BJBK ∧ σn ̸∈ QLP M while (B) S LQ M (15)
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Proof (of (15)).
By structural induction (S being a strict component of while (B) S), the

rule for LP M S LQ M have already been defined. By Aczel method, the (constant)
fixpoint lfp⊆ λX .S is defined by {∅c | c ∈ S}. So for while (B) S we have

an axiom ∅LP M while (B) S LQ M with side condition ∃⟨σi ∈ I, i ∈ [1, n]⟩ .

σ1 ∈ P ∧ ∀i ∈ [1, n[ . LBJBK ∩ {σi} M S L¬{σi+1} M ∧ σn ̸∈ BJBK ∧ σn ̸∈ Q whereLBJBK∩{σi} M S L¬{σi+1} M is well-defined by structural induction. Traditionally,
the side condition is written as a premiss, to get (15). ⊓⊔

Rule (15) states that ⟨σi ∈ I, i ∈ [1, n]⟩ is a finite iteration in the loop starting
with P true and finishing with Q false, which is obviously a counter example to
Hoare triple {P} while (B) S {Q}. Notice that, by structural induction, LBJBK∩
{σi} M S L¬{σi+1} M enforces the execution of the loop body S to start in state σi

and terminate in state σi+1.
It follows that Hoare incorrectness logic is nothing but debugging formalized

as a logic. So Hoare incorrectness logic could also be called the debugging logic,
to elevate debugging as the computer aided formal method of choice to prove
the presence of bugs [10, page 7].

12 Conclusion

A Hoare style (or transformational) logic is an abstract interpretation of a rela-
tional semantics, and together with fixpoint induction and Aczel correspondence
between set-theoretic fixpoint and deductive system, this leads to the calcula-
tional design of the logic proof system, which is semantically sound and complete,
by construction.

In this paper, we have considered the abstractions of figure 1. [6] exploits
this model theory-based point of view in greater details for many more logics.

•
collecting
semantics
{JSK}

•
relational
semanticsJSK

αC •
postcondition
transformer

post •
antecedent/
consequent

pairs

αG

•post(⊇.⊆)

•

post(⊆,⊇)

Hoare logic

incorrectness logic

•

Hoare incorrectness
logic

α¬

Fig. 1. Hoare style logic abstractions

We think that, in computer science, the Tarskian/model theoretic approach,
which is semantic in nature, is superior to Gentzen/Prawitz proof-theoretic ap-
proaches, which are syntactic in nature. Whereas proof calculi are used in math-
ematics to define truth from which models are derived, we have, in computer
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science, the advantage that the models of interest are known a priori. They
are the semantics of programming languages and systems. Our approach simply
exploits this advantage.

Although for most mathematicians and computer scientists, writing a fully
formal proof is too pedantic and long-winded to be in common use, the study
of program logics is useful to provide the intuition for informal reasonings on
program behaviors. Showing that program logic are nothing but an abstract ex-
pression of the program semantics strongly supports that intuition. The only
difference between logics and semantics is that logic offers ways of making de-
duction and inference, as made clear by our calculational design which shows
that logic = semantics + abstraction + deduction + inference. We have shown

Hoare logic = section 2 + (4) + (6) + theorem 2
Incorrectness logic = section 2 + (4) + (7) + theorem 3

Hoare incorrectness logic = section 2 + (4) + (8) + theorem 4

which provides a simple way to explain and compare logics. All the rest is iso-
morphisms, as shown by the calculational designs only based on equality. This
means that the automation of the calculational design might not need the full
power of theorem provers since it is essentially rewriting [11].

Disclosure of Interests. This paper is a written version of the talks I gave in London,
UK, at Peter O’Hearn Fest on January 14th, 2024 and at POPL’24 on January 19th
2024, with a few simplifications and improved results.

Acknowledgements. I thank Thomas Wies for careful proofreading.
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