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Abstract

We study abstract interpretations of a fixpoint protoderivation semantics defining the
maximal derivations of a transitional semantics of context-free grammars akin to pushdown
automata. The result is a hierarchy of bottom-up or top-down semantics refining the
classical equational and derivational language semantics and including Knuth grammar
problems, classical grammar flow analysis algorithms, and parsing algorithms.
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1. Introduction

Grammar flow problems consist in computing a function of the [proto]language
generated by the grammar for each nonterminal. This includes Knuth’s grammar problem
[1, 2], grammar decision problems such as emptiness and finiteness [3], and classical
compilation algorithms such as First and Follow [4]. For the later case, Ulrich Möncke
and Reinhard Wilhelm introduced grammar flow analysis to solve computation problems
over context-free grammars [5, 6, 7], [8, Sect. 8.2.4]. The idea is to provide two fixpoint
algorithm schemata, one for bottom-up grammar flow analysis and one for top-down
grammar flow analysis which can be instantiated with different parameters to get classical
iterative algorithms such as First and Follow.

More generally, we show that grammar flow algorithms are abstract interpretations
[9] of a hierarchy of bottom-up or top-down grammar semantics refining the classical
(proto-)language semantics.
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Then, we apply this comprehensive abstract-interpretation-based approach to the
systematic derivation of parsing algorithms.

The mathematical background and the necessary elements of abstract interpretation
are reminded in the Appendix A.

2. Languages

Let A be an alphabet, that is a finite set of letters. A sentence σ ∈ A? over the
alphabet A of length |σ| ∆= n > 0 is a possibly empty finite sequence σ1σ2 . . . σn of
letters σ1, σ2, . . . , σn ∈ A. For n = 0, the empty sentence is denoted ε of length |ε| = 0.
A language Σ over the alphabet A is a set of sentences Σ ∈ ℘(A?). We represent
concatenation by juxtaposition. It is extended to languages as ΣΣ′ ∆= {σσ′ | σ ∈ Σ∧ σ′ ∈
Σ′}. For brevity, σ denotes the language {σ} so that we can write ΣσΣ′ for Σ{σ}Σ′. The
junction of languages is Σ ; Σ′ ∆= {σ1σ2 . . . σmσ

′
2 . . . σ

′
n | σ1σ2 . . . σm ∈ Σ ∧ σ′1σ′2 . . . σ′n ∈

Σ′ ∧ σm = σ′1}. Given a set P
∆= {[i | i ∈ ∆} ∪ {]i | i ∈ ∆} of matching parentheses

and an alphabet A, the Dyck language DP,A ⊆ (P ∪ A)? over P and A is the set of
well-parenthesized sentences over P∪A. In any sentence σ ∈ DP,A the number of opening
parentheses [i for i ∈ ∆ is equal to the number of matching closing parentheses ]i while in
any prefix of σ there are more opening parentheses than closing parentheses. It is pure if A
= ∅. The parenthesized language over P and A is PP,A

∆= {[iσ]i | i ∈ ∆∧σ ∈ DP,A\{ε}}.

3. Context-free Grammars

A context-free grammar [10, 11] is a quadruple G = 〈T , N , S, R〉 where T is the
alphabet of terminals, N such that T ∩N = ∅ is the alphabet of nonterminals, S ∈ N
is the start symbol (or axiom) and R ∈ ℘(N × V ?) is the finite set of rules written
A→ σ where the lefthand side A ∈ N is a nonterminal and the righthand side σ ∈ V ? is
a possibly empty sentence over the vocabulary V

∆= T ∪N . By convention, the empty
sentence ε does not belong to the vocabulary, ε 6∈ V .

Example 1 〈{a}, {A}, A, {A→ AA,A→ a}〉 is a grammar. 2

4. Transitional Semantics of Context-free Grammars

Pushdown automata (PDA) are a classical language recognition mechanism first
introduced by Oettinger in 1961 [12]4. They are essentially finite state automata that can
use an unbounded stack as auxiliary memory. Afterwards, Chomsky [19], Evey [20] and
Schützenberger [21] showed that context-free grammars and PDA are equally expressive
[22, 23, 24] [8, Sec. 8.2]. Inspired by PDA, we define the transitional semantics of grammars
by labelled transition systems where states are stacks, labels encode the structure of
sentences and transitions are small steps in the recursive derivation of sentences.

4An anonymous referee pointed out that this invention was preceeded by [13], [14], and [15, 16], see
[17, 18].
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4.1. Stacks
Given a grammar G = 〈T , N , S, R〉, we let stacks $ ∈ S ∆= (R� ∪M )? be sentences

over rule states R�
∆= {[A→ σ�σ′] | A→ σσ′ ∈ R} specifying the state of the derivation

(σ has been derived while σ′ is still to be derived) and markers M = {`,a} where `
(resp. a) marks the beginning (resp. the end) of a sentence. The height of a stack $ is its
length |$|.

Example 2 A stack$ for the grammar
A→ AA, A→ a is a[A→ AA�][A→ A�A][A
→ a�]. It records the ancestors in an infix
traversal of a parse tree, as shown opposite.
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4.2. Labels
We let P

∆= O ∪ C be the set of parentheses where O
∆= {LA| A ∈ N } is the set of

opening parentheses while C
∆= {AM | A ∈ N } is the set of closing parentheses. We let

labels ` ∈ L be parentheses or terminals so that L
∆= P ∪ T . A pair of parentheses

LA. . .AM delimits the structure of a sentence deriving from nonterminal A ∈ N while
terminals describe elements of the sentence.

4.3. Labelled Transition System
Given a grammar G = 〈T , N , S, R〉, we define a labelled transition system StJGK

∆= 〈S, L , −→, `〉 where the initial state is ` and the labelled transition relation `−→,
` ∈ L is

` LA−→a[A→ �σ], A→ σ ∈ R (1)
$[A→ σ�aσ′] a−→$[A→ σa�σ′], A→ σaσ′ ∈ R (2)

$[A→ σ�Bσ′] LB−→$[A→ σB�σ′][B → �ς], A→ σBσ′ ∈ R ∧B → ς ∈ R (3)

$[A→ σ�] AM−→$, A→ σ ∈ R . (4)

Intuitively, the transition system StJGK generates the sentences of the language de-
scribed by G by recursive infix traversal of their derivation tree using a stack to eliminate
recursion. More precisely, (1) (resp. (3)) starts generating a terminal sentence for the
nonterminal A (resp. B), (2) generates a terminal a, and (4) finishes the generation of a
terminal sentence for the nonterminal A.

If we only want derivations from the grammar start symbol S then we replace transition
rule (1) by

` LS−→a[S → �σ], S → σ ∈ R . (1’)

5. Maximal Derivations

The maximal derivation semantics of a grammar is the set of all possible maximal
derivations for this grammar where a maximal derivation is a finite labelled trace of
maximal length generated by the transitional semantics.
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Example 3 The maximal derivation for the sentence a of the grammar 〈{a}, {A}, A,
{A→ AA,A→ a}〉 is ` LA−→ a [A→ �a] a−→ a [A→ a�] AM−→ a while for the sentence aa
it is ` LA−→ a [A → �AA] LA−→ a [A → A�A][A → �a] a−→ a [A → A�A][A → a�] AM−→ a [A
→ A�A] LA−→ a [A → AA�][A → �a] a−→ a [A → AA�][A → a�] AM−→ a [A → AA�] AM−→ a
. 2

5.1. Traces
Formally a trace θ ∈ Θ[n] of length |θ| = n+ 1, n > 0, has the form θ = $0

`0−→ $1

. . . $n−1
`n−1−→ $n whence it is a pair θ = 〈θ, θ〉 where θ ∈ [0, n] 7→ S is a nonempty

finite sequence of stacks θi = $n, i = 0, . . . , n and θ ∈ [0, n− 1] 7→ L is a finite sequence
of labels θj = `j , j = 0, . . . , n− 1. Traces θ ∈ Θ are nonempty, finite, of any length so
Θ ∆=

⋃
n>0 Θ[n].

Again concatenation is denoted by juxtaposition and extended to sets. We respectively
identify a single state $ and a transition $

`−→ $′ with the corresponding traces
containing only the single state $ and the transition $ `−→ $′. By abuse of notation, a
trace $0

`0−→ $1 . . . $n−1
`n−1−→ $n is also understood as the concatenation of $0,

`0−→,
$1, . . ., $n−1,

`n−1−→ , $n which, informally, matches the trace pattern ς0$1 . . . ςn−1$nςn

by letting ς0 = $0
`0−→, . . . , ςn−1 = $n−1

`n−1−→ and ςn = ε. We also need the junction of
sets of traces, as follows

T ; T ′
∆= {θ `−→ $

`′−→ θ′ | θ `−→ $ ∈ T ∧$′ `′−→ θ′ ∈ T ′ ∧$ = $′} .

The selection of the traces in T for nonterminal B is denoted T.B defined as

T.B
∆= {$ LB−→ θ | $ LB−→ θ ∈ T} .

For the recursive incorporation of a derivation ` `0−→ a$1 . . .a$n−1
`n−1−→ a into another

one, we need the operation

〈$, $′〉 ↑ ` `0−→ a$1 . . .a$n−1
`n−1−→ a ∆= $

`0−→ $′$1 . . . $
′$n−1

`n−1−→ $′

〈$, $′〉 ↑ T ∆= {〈$, $′〉 ↑ τ | τ ∈ T} .

Example 4 We have 〈a[A→ �AA], a[A→ A�A]〉 ↑ ` LA−→ a[A→ �a] a−→ a[A→ a�] AM−→
a = a[A→ �AA] LA−→ a[A→ A�A][A → �a] a−→ a[A→ A�A][A → a�] AM−→ a[A→ A�A]
which we can recognize as the replacement of the first A deriving into a in the derivation
for the sentence aa in Ex. 3. 2

5.2. Prefix, Suffix, and Maximal Derivations
A derivation of grammar G is a trace $0

`0−→ $1 . . . $n−1
`n−1−→ $n, n > 0 generated

by the transition system StJGK that is ∀i ∈ [0, n− 1] : $i
`i−→ $i+1. A prefix derivation

of grammar G is a derivation of grammar G starting with an initial state $0 = `. A
suffix derivation of grammar G is derivation of grammar G ending with an final state
∀$ ∈ S : ∀` ∈ L : ¬($n

`−→ $), so that $n = a by def. (1)—(4) of −→. A maximal
derivation of grammar G is both a prefix and a suffix derivation of the grammar G.
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5.3. The Well-Parenthesized Structure of Prefix and Maximal Derivations
Derivations are well-parenthesized so that the grammatical structure of sentences

can be described by trees. Let us define the parenthesis abstraction αp for a stack
$ by αp($$′) ∆= αp($′)αp($), αp(`) = αp(a) = ε and αp([A → σ�σ′]) ∆= AM, for
a label, αp(a) ∆= ε for all a ∈ T , αp(LA) ∆= LA and αp(AM) ∆= AM, and for a trace
αp($0

`0−→ $1
`1−→ . . . $n−1

`n−1−→ $n) ∆= αp(`0)αp(`1) . . . αp(`n−1)αp($n).

Lemma 5 For any prefix derivation θ of a grammar G, αp(θ) ∈ DP,∅ is a pure Dyck
language. A maximal derivation θ = ` `0−→ $1

`1−→ . . . $n−1
`n−1−→ a of G is well-

parenthesized in that αp(θ) = αp(`0)αp(`1) . . . αp(`n−1) ∈ DP,∅ is a pure Dyck language.e

Proof sketch The proof is by induction on the length of θ, where the basis is true for
the prefix derivation reduced to the initial state ` and the induction step is for a prefix
derivation of the form θ = ` `0−→ $1 . . . $n−1

`n−1−→ $n where αp(` `0−→ $1 . . . $n−1) is
well-parenthesized by induction hypothesis is handled by case analysis using the definition
(1—4) of the transition relation StJGK. �

Corollary 6 A maximal derivation θ = ` `0−→ $1
`1−→ . . . $n−1

`n−1−→ a of G is well-
parenthesized in that αp(θ) = αp(`0)αp(`1) . . . αp(`n−1) ∈ DP,∅ is a pure Dyck language.e

Proof A maximal derivation θ of G is a prefix derivation ` `0−→ $1
`1−→ . . . $n−1

`n−1−→
$n which is also a suffix derivation so $n = a. It follows by Lem. 5 that αp(θ) =
αp(`0)αp(`1) . . . αp(`n−1)αp(a) = αp(`0)αp(`1) . . . αp(`n−1) since αp(a) = ε. �

5.4. Well-Parenthesized Traces
Cor. 6 leads to the definition of the set Θ() ⊆ Θ of well-parenthesized traces

Θ()
∆= {` `0−→ $1

`1−→ . . . $n−1
`n−1−→ a ∈ Θ | αp(`0)αp(`1) . . . αp(`n−1) ∈ DP,∅} .

6. Prefix Derivation Semantics

The prefix derivation semantics S∂
→

JGK of a grammar G = 〈T , N , S, R〉 is the set of
all prefix derivations for the labelled transition system 〈S, L , −→, `〉, that is

S∂
→

JGK ∆= {$0
`0−→ $1 . . . $n−1

`n−1−→ $n | n > 0 ∧$0 = ` ∧
∀i ∈ [0, n− 1] : $i

`i−→ $i+1} .

Lemma 7 If the prefix derivation semantics S∂
→

JGK of a grammar G = 〈T , N , S, R〉
contains a prefix derivation θ1$θ2 then

• either $ = ` if and only if θ1 = ε

• or the stack $ has the form $ = a[A1 → η1A2�η′1][A2 → η2A3�η′2] . . . [An →
ηn�η′n] where Ai → ηiAi+1η

′
i ∈ R and An → ηnη

′
n ∈ R are grammar rules and

θ1 = `
LA1−→ θ′1.
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• Moreover if θ1$θ2 ∈ S∂
→

JGK.A then necessarily A1 = A. e

Proof sketch The proof is by induction on the position of the stack $ in the prefix
derivation θ1$θ2 distinguishing the first position, $ = `, the second position θ1$θ2 =
` LA−→ $θ2 with $ = a[A → �σ] and A → σ ∈ R, observing that if θ1$θ2 ∈ S∂

→

JGK.A
then A1 = A by definition of the trace selection •.A, and for the induction step where the
lemma holds up to position i and $ is in position i+ 1 that we have $i

`i−→ $ where the
lemma holds for $i by induction hypothesis so that the lemma follows from the definition
(1), (2), (3) and (4) of `i−→. �

It has been shown in the more general context of [25, Th. 11] that we have the following
fixpoint characterization of the prefix derivation semantics

Theorem 8

S∂
→

JGK = lfp
⊆

F∂
→

JGK = gfp
⊆

F∂
→

JGK

where F∂
→

JGK ∈ ℘(Θ) 7→ ℘(Θ) is a complete ∪ and ∩ morphism defined as

F∂
→

JGK ∆= λX . {`} ∪X; −→ . e

Proof See [25, Th. 11]. �

7. Transitional Maximal Derivation Semantics

The maximal derivation semantics Sd̂JGK ∈ ℘(Θ) of a grammar G = 〈T , N , S, R〉 is
the set of maximal derivations for the labelled transition system StJGK ∆= 〈S, L , −→, `〉,
that is the set of finite traces starting in an initial state `, where each step is generated
by the transition relation −→ and terminating in a blocking state, with no possible
successor5.

Sd̂JGK ∆= {$0
`0−→ $1 . . . $n−1

`n−1−→ $n | n > 0 ∧$0 = ` ∧ (5)

∀i ∈ [0, n− 1] : $i
`i−→ $i+1 ∧ ∀$ ∈ S : ∀` ∈ L : ¬($n

`−→ $)} .

Lemma 9 A maximal derivation of the transition system StJGK has the form ` LA−→ a[A
→ �σ] `1−→ a$2 . . .a$n−1

AM−→ a where $n−1 6= ε. e

Proof Observe that maximal derivations are traces $′0
`0−→ $′1 . . . $

′
n−1

`n−1−→ $′n neces-
sarily start with the initial state $′0 = `. Then the only possible derivation is ` LA−→ a[A
→ �σ] for some A → σ ∈ R so $′1 has the form a$1. Then, by induction, all states

5It is also possible to consider infinite traces in the style of [25] to cope with infinitary languages.
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$′i = a$i where $i is not empty do have a successor which, by definition of the transition
relation has the same form $′i+1 = a$i+1. Since maximal derivations are finite and
maximal traces, the derivation must end with $′n = a$n without a possible successor
in the transition relation ¬(∃$ ∈ S : ∃` ∈ L : a$n

`−→ $). The only possible one is
$′n = a.

By Lem. 5, αp(` LA−→ a[A→ �σ] `1−→ a$2 . . .a$n−1
`n−1−→ a) = LA αp(`1) . . . αp(`n−1)

is well-parenthesized so necessarily αp(`n−1) =AM proving that `n−1 =AM.
Observe that $n−1 6= ε since otherwise a AM−→ a which, by definition of −→, does not

hold. �

Let us define the final traces Θa ∆= {θ `−→ $ ∈ Θ | $ = a}, the final traces abstraction
αa

∆= λX .Θa ∩X (so that 〈Θ, ⊆〉 −−−−→−→←−−−−−
αa

γa

〈Θa, ⊆〉 with γa ∆= λY .Y ∪ Θ \ Θa). As
a corollary of Lem. 9, the maximal derivation semantics is an abstraction of the prefix
derivation semantics, as follows

Sd̂JGK = αa(S∂
→

JGK) = S∂
→

JGK ∩Θa . (6)

8. Bottom-Up Fixpoint Maximal Derivation Semantics

The maximal derivation semantics (5) can be expressed in structural fixpoint form.

Example 10 For the grammar G = 〈{a, b}, {A}, A, {A→ aA,A→ b}〉, we have Sd̂JGK
= lfp

⊆ F̂d̂JGK where

F̂d̂(T ) ∆= ` LA−→ a[A→ �b] b−→ a[A→ b�] AM−→ a ∪

` LA−→ (a[A→ �aA]) a−→ (〈a[A→ a�A], a[A→ aA�]〉 ↑ T.A) ; (a[A→ aA�]) AM−→ a .

The first iterates of F̂d̂JGK from F̂d̂0 = ∅ (as defined in Sect. A.1) are

F̂d̂1 = {` LA−→ a[A→ �b] b−→ a[A→ b�] AM−→ a}

F̂d̂2 = {` LA−→ a[A→ �b] b−→ a[A→ b�] AM−→ a,

` LA−→ a[A→ �aA] a−→ a[A→ a�A] LA−→ a[A→ aA�][A→ �b] b−→

a[A→ aA�][A→ b�] AM−→ a[A→ aA�] AM−→ a}
. . . . . .

F̂d̂ω = lfp
⊆

F̂d̂JGK . 2

8.1. Bottom-Up Set of Traces Transformer
More generally, let us define the set of traces bottom-up transformer F̂d̂JGK ∈ ℘(Θ) 7→

℘(Θ) as

F̂d̂JGK ∆= λT . ⋃
A→σ∈R

` LA−→ F̂�d̂[A→ �σ]T AM−→ a (7)

7



where F̂�d̂[A→ σ�σ′] ∈ ℘(Θ) 7→ ℘(Θ) is defined as

F̂�d̂[A→ σ�aσ′] ∆= λT . (a[A→ σ�aσ′]) a−→ F̂�d̂[A→ σa�σ′]T (8)

F̂�d̂[A→ σ�Bσ′] ∆= λT . (〈a[A→ σ�Bσ′], a[A→ σB�σ′]〉 ↑ T.B) ; F̂�d̂[A→ σB�σ′]T (9)

F̂�d̂[A→ σ�] ∆= λT . (a[A→ σ�]) . (10)

Lemma 11 For all [A→ σ�σ′] ∈ R�, F̂�d̂[A→ σ�σ′], is upper-continuous. e

Proof By forthcoming Lem. 28, observing that λT .` LA−→ T
AM−→ a, λT . (a[A →

σ�aσ′]) a−→ T , λT .T.B, 〈a[A → σ�Bσ′], a[A → σB�σ′]〉 ↑ T , ;, and concatenation are
continuous. �

Lemma 12 If all traces in T ⊆ Θ are derivations of the transition system StJGK then all
traces in F̂�d̂[A→ σ�σ′]T are generated by the transition system StJGK, start in state (a[A
→ σ�σ′]) and end in state (a[A→ σσ′�]). e

Proof The proof is by induction on the length of σ′.
For the base case σ′ = ε, the trace is (a[A→ σ�]) by (10), which is a correct state in

S, whence a trace generated by StJGK.
If σ′ = aσ′′, then (8) applies. By induction hypothesis, all traces θ in F̂�d̂[A→ σa�σ′′]T

are generated by StJGK, start in state (a[A→ σa�σ′′]) and end in state (a[A→ σaσ′′�]).
By (2), (a[A→ σ�aσ′′]) a−→ (a[A→ σa�σ′′]) is valid transition of StJGK so the trace (a[A
→ σ�aσ′′]) a−→ θ is generated by StJGK, starts with (a[A → σ�aσ′′]) and ends in state
(a[A→ σaσ′′�]).

Otherwise σ′ = Bσ′′ and (9) applies. All traces in T are assumed to be derivations of
the transition system StJGK, whence so are those in the subset T.B. By Lem. 9, these
traces have the form ` LA−→ a[A → �σ] `1−→ a$2 . . .a$n−1

`n−1−→ a. So all traces in 〈a[A
→ σ�Bσ′′], a[A→ σB�σ′′]〉 ↑ T.B have the form (a[A→ σ�Bσ′′]) LA−→ (a[A→ σB�σ′′][A
→ �σ]) `1−→ (a[A → σB�σ′′]$2) . . . (a[A → σB�σ′′]$n−1) `n−1−→ (a[A → σB�σ′′]). These
traces start with (a[A→ σ�Bσ′′]) and are generated by StJGK since the first transition
corresponds to (3) while, for the following ones, if $ `−→ $′ is one of the transitions (2),
(3) or (4) of StJGK then so is $′′$ `−→ $′′$′. By induction hypothesis, all traces in F̂�d̂[A
→ σB�σ′′]T are generated by StJGK, start with state (a[A→ σB�σ′′]) and end with state
(a[A→ σBσ′′�]). It follows that the junction, whence by (9), that F̂�d̂[A→ σ�Bσ′′] starts
with (a[A→ σ�Bσ′′]), is generated by StJGK and ends with (a[A→ σBσ′′�]). �

Corollary 13 If all traces in T are derivations of the transition system StJGK then so
are all traces in F̂d̂JGKT . e

Proof By (7), all traces in F̂d̂JGKT have the form ` LA−→ θ
AM−→ a where θ is a trace

of F̂d̂(a[A→ �σ])T . By Lem. 12, θ is generated by the transition system StJGK, starts
8



in state (a[A → �σ]) and ends in state (a[A → σ�]). But ` LA−→ (a[A → �σ]) is a
valid transition by (1) and (a[A → σ�]) AM−→ a is a valid transition of StJGK by (4) so
` LA−→ θ

AM−→ a is generated by StJGK. Since it ends by state a without successor, it is also
maximal whence a maximal derivation of StJGK. �

8.2. Bottom-Up Fixpoint Maximal Derivation Semantics
The derivation semantics of a grammar G can be expressed in fixpoint form for

transformer F̂d̂JGK as follows

Theorem 14 Sd̂JGK = lfp
⊆ F̂d̂JGK . e

Proof (a) Because F̂d̂JGK is continuous (indeed it preserves existing lubs), we have
lfp
⊆ F̂d̂JGK = Tω

∆=
⋃
i>0 T

i where the iterates (as defined in Sect. A.1) are T 0 ∆= ∅,
Tn+1 ∆= F̂d̂JGK(Tn).

(b) All traces in T 0 = ∅, whence by recurrence using Cor. 13, all traces in the T i,
hence all those in Tω = lfp

⊆ F̂d̂JGK are derivations of the transition system StJGK so
lfp
⊆ F̂d̂JGK ⊆ Sd̂JGK.

(c) Reciprocally, let θ be a derivation of Sd̂JGK. By Lem. 9, θ is of the form ` LA−→ a[A→
�σ] `1−→ a$2 . . .a$n−1

AM−→ a where $n−1 6= ε. We must prove that θ is in lfp
⊆ F̂d̂JGK that

is in some T i, i > 0. The proof is by recurrence on the maximal height h = max{|a[A→
�σ]|, |a$2|, . . . , |a$n−1|} > 2 of the stacks in θ.

By definition (7) of F̂d̂JGKT =
⋃
A→σ∈R `

LA−→ F̂�d̂[A→ �σ]T AM−→ a, it is sufficient to
prove that θ′ = a[A→ �σ] `1−→ a$2 . . .a$n−1 ∈ F̂�d̂[A→ �σ]T i for some i > 0.

If σ is empty then, by definition (4), θ′ is reduced to a[A→ �], which by (10) belongs
to F̂�d̂[A→ �]T i for all i > 0.

Otherwise, σ is not empty.
For the base case h = 2, rule (3) would yield to a maximum stack height of at least 3.

Hence this rule is not usable for trace θ′. This means that σ may only contain terminals
so that the trace can be built using rules (2) and (4) only. By induction on the length |σ|
of σ, the trace will be in F̂�d̂[A→ �σ]T 0 where T 0 = ∅ using respectively (8) and (10).

For the inductive case h > 2, we solve the more general problem of proving, given
σ = σ′σ′′, that a[A → σ′�σ′′] `k−→ a$k+1 . . .a$n−1 ∈ F̂�d̂[A → σ′�σ′′]T i for some i > 0
where $n−1 6= ε. We can then conclude by choosing σ′ = ε and σ′′ = σ. The proof
proceeds by induction on the length |σ′′| of σ′′ and there are three cases.

In case σ′′ = ε, then by (4), we must prove that a[A→ σ′�] AM−→ a$k+1 . . . a$n−1 ∈
F̂�d̂[A→ σ′�]T i for some i > 0 where $k+1 = ε. Because a has no successor by −→, we
have k + 1 = n − 1 but then $n−1 = ε, in contradiction with our assumption. So this
case is impossible.

In case σ′′ = aσ′′′, a[A→ σ′�aσ′′′] `k−→ a$k+1 must be of the form a[A→ σ′�aσ′′′] a−→
a[A→ σ′a�σ′′′] by (2) so that `k = a and $k+1 = [A→ σ′a�σ′′′]. Since |σ′′′| < |σ′′| there
exists, by induction hypothesis, some i > 0 such that a[A→ σ′a�σ′′′] . . .a$n−1 ∈ F̂�d̂[A
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→ σ′a�σ′′′]T i so that we conclude that a[A → σ′�aσ′′′] `k−→ a$k+1 . . .a$n−1 ∈ F̂�d̂[A →
σ′�aσ′′′]T i by (8).

In case σ′′ = Bσ′′′, a[A → σ′�Bσ′′′] `k−→ a$k+1 must be of the form a[A →
σ′�Bσ′′′] LB−→ a[A → σ′B�σ′′′][B → �ς] where B → ς ∈ R by (3) so that `k = LB

and $k+1 = [A → σ′B�σ′′′][B → �ς]. By Lem. 5, αp(θ) = αp(` LA−→ a[A → �σ] `1−→
a$2 . . .a[A → σ′�Bσ′′′] `k−→ a$k+1 . . .a$n−1

AM−→ a) is well-parenthesized so that the
opening parenthesis LB in `k must have a matching closing parenthesis BM in `m where
k < m 6 n− 1. By definition of −→ and (4), we must have a$m = $[B → ς�] BM−→ $ =
a$m+1. Moreover m 6= n− 1 since θ′ excludes the pair of external parentheses in θ.

Observe that in θ′, (1) is not applicable so that the only two transitions that can
change the stack height in θ′ are (3) and (4). The stack height is increased by one in (3)
on opening parentheses and decreased by one in (4) for closing parentheses. Since θ′ is
well-parenthesized, it follows that the stack have the same height on matching parentheses.
Moreover the transitions in StJGK never change the bottom of the stack. Since a$k

= a[A → σ′�Bσ′′′], a$k+1 = a[A → σ′B�σ′′′][B → �ς] the stack around the matching
parentheses are a$m = $[B → ς�] = a[A→ σ′B�σ′′′][B → ς�] and $ = a$m+1 = a[A→
σ′B�σ′′′]. Moreover the bottom of the stack in between is a[A→ σ′B�σ′′′]. It follows that
we can rewrite a$k

`k−→ a$k+1 . . .a$m
`m−→ a$m+1 in the form 〈a[A → σ′�Bσ′′′], a[A

→ σ′B�σ′′′]〉 ↑ $′k
`k−→ $′k+1a$′m

`m−→ $′m+1 where θ′′ = $′k
`k−→ $′k+1 . . . $

′
m

`m−→ $′m+1

= ` LB−→ a[B → ς�] . . .a[B → �ς] BM−→ a.
Since the maximal height of the stacks in θ′′ are strictly less than that in θ′, there

exists i > 0 such that θ′′ ∈ T i, whence by definition of selection θ′′ ∈ T i.B since θ′′

starts with label LB. It follows that a$k
`k−→ a$k+1 . . .a$m

`m−→ a$m+1 = 〈a[A →
σ′�Bσ′′′], θ′′〉 ↑ ∈ 〈a[A→ σ′�Bσ′′′], a[A→ σ′B�σ′′′]〉 ↑ T i.B. Since the fixpoint iterates
are ⊆-increasing and 〈a[A → σ′�Bσ′′′], a[A → σ′B�σ′′′]〉 ↑ • is monotone, we also have
a$k

`k−→ a$k+1 . . .a$m
`m−→ a$m+1 ∈ 〈a[A → σ′�Bσ′′′], a[A → σ′B�σ′′′]〉 ↑ T p.B for

all p > i.
Since |σ′′′| < |σ′′| there exists, by induction hypothesis, some i > 0 such that

a$m+1 . . .a$n−1 = a[A→ σ′B�σ′′′] . . .a$n−1 ∈ F̂�d̂[A→ σ′B�σ′′′]T j . Since the fixpoint
iterates are⊆-increasing and F̂�d̂[A→ σ′B�σ′′′] is monotone, we also have a$m+1 . . .a$n−1 ∈
F̂�d̂[A→ σ′B�σ′′′]T p for all p > j.

If we let p = max(i, j), we have a$k
`k−→ a$k+1 . . .a$m

`m−→ a$m+1 ∈ 〈a[A →
σ′�Bσ′′′], a[A → σ′B�σ′′′]〉 ↑ T p.B and a$m+1 . . .a$n−1 ∈ F̂�d̂[A → σ′B�σ′′′]T p so by
(9), a$k

`k−→ a$k+1 . . .a$m
`m−→ a$m+1 . . .a$n−1 ∈ F̂�d̂[A → σ�Bσ′]T p = (〈a[A →

σ′�Bσ′′′], a[A→ σ′B�σ′′′]〉 ↑ T p.B) ; F̂�d̂[A→ σ′B�σ′′′]T p, as required. �

The fixpoint structural big-step maximal derivation semantics of a context-free grammar
G in Th. 14 is “bottom-up” in that when abstracting to derivation or syntax, these trees
are constructed bottom-up (and left to right) which corresponds to the construction of
traces by induction on their length, that is smaller ones first (and left to right).
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9. Protoderivations

Prototraces (formally defined below) are traces in construction containing nonterminal
variables which are placeholders for unknown prototraces to be substituted for the
nonterminal variables. Protoderivations are prototraces generated by the grammar,
initially a nonterminal variable (such as the grammar axiom), obtained by top-down
replacement of a nonterminal on the lefthand side of a grammar rule by the corresponding
righthand side, until no nonterminal variable is left.

9.1. Examples of Protoderivations
Example 15 A prototrace derivation for the grammar G = 〈{a}, {A}, A, {A→ AA,A→
a}〉 is (the prototrace derivation relation is written Ď2Z=⇒G)

` A−→ a

Ď2Z=⇒G ` LA−→ a[A→ �AA] A−→ a[A→ A�A] A−→ a[A→ AA�] AM−→ a

Ď2Z=⇒G ` LA−→ a[A → �AA] A−→ a[A → A�A] LA−→ a[A → AA�][A → �a] a−→ a[A →
AA�][A→ a�] AM−→ a[A→ AA�] AM−→ a

Ď2Z=⇒G ` LA−→ a[A → �AA] LA−→ a[A → A�A][A → �a] a−→ a[A → A�A][A → a�] AM−→ a[A
→ A�A] LA−→ a[A → AA�][A → �a] a−→ a[A → AA�][A → a�] AM−→ a[A →
AA�] AM−→ a . 2

9.2. Prototraces
To each nonterminal A ∈ N we associate a nonterminal variable A representing an

unknown prototrace for A. The set of nonterminal variables is N 2 ∆= { A | A ∈ N }.
A prototrace π ∈ Πn of length |π| = n + 1, n > 0, has the form π = $0

κ0−→ $1 . . .

$n−1
κn−1−→ $n whence is a pair π = 〈π, π〉 where π ∈ [0, n] 7→ S is a nonempty finite

sequence of stacks πi = $n, i = 0, . . . , n and π ∈ [0, n − 1] 7→ (L ∪ N 2) is a finite
sequence of labels or nonterminal variables πj = κj , j = 0, . . . , n− 1. Prototraces π ∈ Π
are nonempty, finite, of any length so Π ∆=

⋃
n>0 Πn and Θ ⊆ Π.

Again prototrace pattern matching, prototrace concatenation, set of prototraces
concatenation, the assimilation of a single state $ and a transition $ `−→ $′ with the
corresponding prototraces, the junction ; of sets of prototraces, the selection P.B of
the prototraces in P for nonterminal B and the stack incorporation in a prototrace 〈$,
$′〉 ↑ π or a set T of prototraces 〈$, $′〉 ↑ T are defined as for traces and sets of traces.

9.3. Prototrace Generated by a Grammar Rule
The prototrace generated by a grammar rule A → σ ∈ R is ŘĎ[A → σ] where

ŘĎ ∈ R 7→ Π is

11



ŘĎ[A→ σ] ∆= ` LA−→ Ř�
Ď

[A→ �σ] AM−→ a (11)

Ř�
Ď

[A→ σ�aσ′] ∆= a[A→ σ�aσ′] a−→ Ř�
Ď

[A→ σa�σ′] (12)

Ř�
Ď

[A→ σ�Bσ′] ∆= a[A→ σ�Bσ′] B−→ Ř�
Ď

[A→ σB�σ′] (13)

Ř�
Ď

[A→ σ�] ∆= a[A→ σ�] . (14)

Example 16 For the grammar G = 〈{a}, {A}, A, {A→ AA,A→ a}〉, the prototrace
generated for the grammar rules A→ a and A→ AA is respectively

ŘĎ[A→ a] = ` LA−→ a[A→ �a] a−→ a[A→ a�] AM−→ a, and

ŘĎ[A→ AA] = ` LA−→ a[A→ �AA] A−→ a[A→ A�A] A−→ a[A→ AA�] AM−→ a .
2

9.4. Prototrace Derivation
The prototrace derivation relation Ď2Z=⇒G∈ ℘(Π×Π) for a grammar G = 〈T , N , S,

R〉 ( Ď2Z=⇒ when G is understood) consists in replacing one or several nonterminal variables
by the prototrace generated by a grammar rule for that nonterminal.

Formally, the prototrace derivation Ď2Z=⇒G∈ ℘(Π×Π) is defined as follows

π Ď2Z=⇒G π′ (15)
∆= ∃n > 0, ς1, . . . , ςn+1, $1, . . . , $n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :

π = ς1$1
A1−→ $2ς2 . . . ςn$n

An−→ $n+1ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧

π′ = ς1〈$1, $2〉 ↑ ŘĎ[A1 → σ1]ς2 . . . ςn〈$n, $n+1〉 ↑ ŘĎ[An → σn]ςn+1 .

10. Transitional Maximal Protoderivation Semantics

The top-down maximal protoderivation semantics SĎJGK ∈ N 7→ ℘(Π) of a context-
free grammar G is defined using the prototrace derivation transition relation Ď2Z=⇒G
as

SĎJGK ∆= λA . {π ∈ Π | (` A−→ a) ?

Ď2Z=⇒G π} . (16)

where rn, n ∈ N are the powers of relation r, rn? ∆=
⋃
i<n r

i (so that r0? ∆=
⋃

∅ = ∅), r+

(resp. r?) is the transitive closure (resp. reflexive transitive closure) of r.
The protoderivation semantics SĎJGK is “top-down” in that it starts from the gram-

mar nonterminal variable A , A ∈ N and expands the nonterminal variables into their
derivations until reaching a terminal derivation without nonterminal variables. When
abstracting to protoderivation or protosyntax trees, these trees are constructed from the
root towards the terminal leaves.
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11. Top-Down Fixpoint Maximal Protoderivation Semantics

The top-down maximal protoderivation semantics of a context-free grammar G can be
expressed in fixpoint form, as follows (where post ∈ ℘(Σ) 7→ ℘(Σ) is post[r]X ∆= {s′ ∈ Σ |
∃s ∈ X : 〈s, s′〉 ∈ r})

Theorem 17 SĎJGK = lfp
⊆̇ F̌ĎJGK where ⊆̇ is the pointwise extension of ⊆ and the

set of prototraces transformer F̌ĎJGK ∈ (N 7→ ℘(Π)) 7→ (N 7→ ℘(Π)) is
F̌ĎJGK ∆= λφ . λA . {` A−→ a} ∪ post[ Ď2Z=⇒G]φ(A) . e

Proof By [26, Th. 10-4.3] since SĎJGK(A) is the set of reachable states for Ď2Z=⇒G from

the singleton {` A−→ a}. �

Example 18 For the example grammar G = 〈{a, b}, {A}, A, {A → aA,A → b}〉, we
have

Ř�
Ď

[A→ �b] = ` LA−→ a[A→ �b] b−→ a[A→ b�] AM−→ a

Ř�
Ď

[A→ �aA] = ` LA−→ a[A→ �aA] a−→ a[A→ a�A] A−→ a[A→ aA�] AM−→ a

the first few iterates of F̌ĎJGK (as defined in Sect. A.1) are

F̌Ď0 = ∅

F̌Ď1 = {` A−→ a}

F̌Ď2 = {` A−→ a, 〈`, a〉 ↑ Ř�
Ď

[A→ �b], 〈`, a〉 ↑ Ř�
Ď

[A→ �aA]}

= {` A−→ a, ` LA−→ a[A→ �b] b−→ a[A→ b�] AM−→ a,
` LA−→ a[A→ �aA] a−→ a[A→ a�A] A−→ a[A→ aA�] AM−→ a}

F̌Ď3 = {` A−→ a, 〈`, a〉 ↑ Ř�
Ď

[A→ �b], 〈`, a〉 ↑ Ř�
Ď

[A→ �aA],
` LA−→ a[A→ �aA] a−→ 〈a[A→ a�A], a[A→ aA�]〉 ↑ Ř�

Ď
[A→ �b] AM−→ a,

` LA−→ a[A→ �aA] a−→ 〈a[A→ a�A], a[A→ aA�]〉 ↑ Ř�
Ď

[A→ �aA] AM−→ a}
= {` A−→ a, ` LA−→ a[A→ �b] b−→ a[A→ b�] AM−→ a,
` LA−→ a[A→ �aA] a−→ a[A→ a�A] A−→ a[A→ aA�] AM−→ a,
` LA−→ a[A→ �aA] a−→ a[A→ a�A] LA−→ a[A→ aA�][A→ �b] b−→ a[A→ aA�][A→
b�] AM−→ a[A→ aA�] AM−→ a,
` LA−→ a[A→ �aA] a−→ a[A→ a�A] LA−→ a[A→ aA�][A → �aA] a−→ a[A→ aA�][A
→ a�A] A−→ a[A→ aA�][A→ aA�] AM−→ a[A→ aA�] AM−→ a}

etc. 2

13



12. Abstraction of the Top-Down Protoderivation Semantics into the Bottom-
Up Derivation Semantics

12.1. Characterization of the Maximal Derivation Semantics by Prototrace Derivation
The trace derivations θ ∈ Sd̂JGK.A for a nonterminal A can be constructed top-down

using the prototrace derivation ?

Ď2Z=⇒G as (` A−→ a) ?

Ď2Z=⇒G θ.

Lemma 19 If T = {π ∈ Θ | ∃A ∈ N : (` A−→ a) n∗
Ď2Z=⇒G π} then F̂�d̂[A → σ�σ′](T ) =

{π ∈ Θ | Ř�
Ď

[A→ σ�σ′] n∗
Ď2Z=⇒G π} . e

Proof By induction on the length |σ′| of σ′. There are three cases.

F̂�d̂[A→ σ�aσ′](T )

= {(a[A→ σ�aσ′]) a−→ π ∈ Θ | Ř�
Ď

[A→ σa�σ′] n∗
Ď2Z=⇒G π ∧ π ∈ Θ}

Hdef. (8), ind. hyp., and def. concatenationI

= {π ∈ Θ | Ř�
Ď

[A→ σ�aσ′] n∗
Ď2Z=⇒G π}

Hdef. (15) of Ď2Z=⇒G and n∗
Ď2Z=⇒G, def. (12) of Ř�

Ď
[A→ σ�aσ′]I

F̂�d̂[A→ σ�Bσ′](T )

= (〈a[A→ σ�Bσ′], a[A→ σB�σ′]〉 ↑ {π ∈ Θ | ∃A′ ∈ N : (` A′−→ a) n∗
Ď2Z=⇒G π}.B) ; F̂�d̂[A

→ σB�σ′](T ) Hdef. (9) of F̂�d̂[A→ σ�Bσ′] and def. T I

=
⋃
{〈a[A→ σ�Bσ′], a[A→ σB�σ′]〉 ↑ π ;F̂�d̂[A→ σB�σ′](T ) | π ∈ Θ∧(` B−→ a) n∗

Ď2Z=⇒G
π}

Hdef. 〈•, •〉 ↑ •, Θ.B, (15) of Ď2Z=⇒G and n∗
Ď2Z=⇒G so that necessarily A′ = BI

=
⋃
{〈a[A → σ�Bσ′], a[A → σB�σ′]〉 ↑ π ; {π′ ∈ Θ | Ř�

Ď
[A → σB�σ′] n∗

Ď2Z=⇒G π′} | π ∈

Θ ∧ (` B−→ a) n∗
Ď2Z=⇒G π} Hind. hyp.I

= {π′′ ; π′ | π′′ ∈ Θ ∧ (a[A→ σ�Bσ′] B−→ a[A→ σB�σ′]) n∗
Ď2Z=⇒G π′′ ∧ Ř�

Ď
[A →

σB�σ′] n∗
Ď2Z=⇒G π′ ∧ π′ ∈ Θ}

Hdef. ;, (15) of Ď2Z=⇒G,
n∗

Ď2Z=⇒G and π′′ = 〈a[A→ σ�Bσ′], a[A→ σB�σ′]〉 ↑ πI

= {π ∈ Θ | a[A→ σ�Bσ′] B−→ Ř�
Ď

[A→ σB�σ′] n∗
Ď2Z=⇒G π}

Hdef. (15) of Ď2Z=⇒G,
n∗

Ď2Z=⇒G and π = π′′ ; π′, def. ; and Ř�
Ď

[A→ σB�σ′] which starts
with a[A→ σB�σ′]I

= {π ∈ Θ | Ř�
Ď

[A→ σ�Bσ′] n∗
Ď2Z=⇒G π} Hdef. (13) of Ř�

Ď
[A→ σ�Bσ′]I

F̂�d̂[A→ σ�](T )
= {π ∈ Θ | a[A→ σ�] n∗

Ď2Z=⇒G π}
Hdef. (10) of F̂�d̂[A→ σ�] and def. (15) of Ď2Z=⇒G and n∗

Ď2Z=⇒G so that necessarily π
= a[A→ σ�] since a[A→ σ�] contains no nonterminal variableI
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= {π ∈ Θ | Ř�
Ď

[A→ σ�] n∗
Ď2Z=⇒G π} Hdef. (14) of Ř�

Ď
[A→ σ�]I . �

Lemma 20 Let F̂d̂n be the iterates of F̂d̂JGK from F̂d̂0 = ∅ (as defined in Sect. A.1). We
have

F̂d̂n = {π ∈ Θ | ∃A ∈ N : (` A−→ a)
(n+1)∗
Ď2Z=⇒G π} e

Proof By recurrence on n.

For the basis n = 0, we have {π ∈ Θ | ∃A ∈ N : (` A−→ a) 1∗
Ď2Z=⇒G π}

= ∅ = F̂d̂0 Hdef. 1∗
Ď2Z=⇒G = 1Π, (` A−→ a) 6∈ Θ and def. iteratesI

For the induction step, assuming Lem. 20 for n > 0, we have
F̂d̂n+1 = F̂d̂JGK(F̂d̂n) Hdef. iteratesI

=
⋃

A→σ∈R

{` LA−→ π
AM−→ a | Ř�

Ď
[A→ �σ]

(n+1)∗
Ď2Z=⇒G π ∧ π ∈ Θ}

Hdef. (7) of F̂d̂JGK and Lem. 19I

=
⋃

A→σ∈R

{π ∈ Θ | 〈`, a〉 ↑ ŘĎ[A→ σ]
(n+1)∗
Ď2Z=⇒G π}

Hdef. (15) of Ď2Z=⇒G, 〈`, a〉 ↑ •, Ř�
Ď

[A→ �σ], and (11) of ŘĎ[A→ σ]I

= {π ∈ Θ | ∃A ∈ N : (` A−→ a)
(n+2)∗
Ď2Z=⇒G π} Hdef. (15) of Ď2Z=⇒G and

(n+2)∗
Ď2Z=⇒G I

= F̂d̂n+1 Hdef. F̂d̂n+1I . �

Theorem 21 Sd̂JGK = {π ∈ Θ | ∃A ∈ N : (` A−→ a) ?

Ď2Z=⇒G π} . e

Proof

Sd̂JGK = lfp
⊆

F̂d̂JGK =
⋃
n∈N

F̂d̂n

Hby Th. 14 where F̂d̂n, n ∈ N are the iterates of F̂d̂JGK since F̂d̂JGK preserves lubsI

=
⋃
n∈N
{π ∈ Θ | ∃A ∈ N : (` A−→ a)

(n+1)∗
Ď2Z=⇒G π} Hby Lem. 20I

= {π ∈ Θ | ∃A ∈ N :
∨
n>0

(` A−→ a) n∗
Ď2Z=⇒G π} Hsince ` A−→ a 6= π ∈ Θ and def.

⋃
I

= {π ∈ Θ | ∃A ∈ N : (` A−→ a) ?

Ď2Z=⇒G π} Hdef. ?

Ď2Z=⇒GI . �

12.2. Abstraction of the Maximal Protoderivation Semantics into the Maximal Derivation
Semantics

Let us define the abstraction

αĎd̂
∆= λP . λA .P (A) ∩Θ (17)
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which collects the terminal traces (without nonterminal variables) among prototraces.

This abstraction defines a Galois connection [27] 〈N 7→ ℘(Π), ⊆̇〉 −−−−→−→←−−−−−−
αĎd̂

γĎd̂

〈N 7→ ℘(Θ),

⊆̇〉. The restriction of the top-down maximal protoderivation semantics is the maximal
derivation semantics.

Theorem 22 αĎd̂(SĎJGK) = λA .Sd̂JGK.A . e

Proof

αĎd̂(SĎJGK)

= λA . {π ∈ Θ | (` A−→ a) ?

Ď2Z=⇒G π} Hdef. (16) of SĎJGK, def. αĎd̂, and Θ ⊆ ΠI

= λA . {π ∈ Θ | ∃A ∈ N : (` A−→ a) ?

Ď2Z=⇒G π}.A
Hdef. selection •.A and π is a trace for A by def. (15) of Ď2Z=⇒G and ?

Ď2Z=⇒GI
= λA . Sd̂JGK.A HTh. 21I . �

13. The Hierarchy of Grammar Semantics

Th. 22 shows that the bottom-up derivation semantics Sd̂JGK of a grammar G is, up
to an isomorphism, an abstraction of the top-down protoderivation semantics SĎJGK ∆=
λA . {π ∈ Π | (` A−→ a) ?

Ď2Z=⇒G π} by the abstraction αĎd̂. We now introduce a hierarchy
of abstractions of the protoderivation semantics SĎJGK, as given in Fig. 1. The various
semantics and abstractions in Fig. 1, (apart from SĎJGK (16), Sd̂JGK (5), and αĎd̂ (17)
which have already been defined), are described below.

13.1. [Proto]derivation Tree Abstraction αδ̌ and αδ̂
13.1.1. [Proto]derivation Trees

[Proto]derivations can be described by [proto]derivation trees where internal nodes are
labelled with nonterminals, leafs are labelled with terminals [or nonterminal variables]
and branches are decorated with rule states.

Example 23 One possible protoderiva-
tion tree for the protosentence AaA of the
grammar 〈{a}, {A}, A, {A→ AA,A→ a}〉
is given on the right. It can be represented in
parenthesized form through an infix traver-
sal as LA[A → �AA] A [A → A�A]LA[A →
�AA]LA[A→ �a]a[A → a�]AM[A → A�A] A [A
→ AA�]AM[A→ AA�]AM .

qA
q

A
qA

qA q
Aq

a

�
�

�
��

@
@
@
@@
�

�
�

��

@
@
@
@@

[A → �AA] [A → A�A] [A → AA�]

[A → �AA] [A → A�A] [A → AA�]

[A → �a] [A → a�]

2

We let Ǔ
∆= T ∪N 2 ∪R� and Ď ∆= (P∪ Ǔ )?. A protoderivation tree δ̌ is represented

by a well-parenthesized sentence over Ǔ so that δ̌ ∈ PP,Ǔ ⊆ Ď. We extend the selection
to ℘(Ď) whence ℘(PP,Ǔ ) as D.A ∆= {LBσBM ∈ D | B = A} ∪ { B ∈ D | B = A} so that
D.A is the set of protoderivation trees in D rooted at A ∈ N .
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↑ bottom-up semantics

top-down semantics ↓

s�����
�
��

�
��*

αĎd̂

6

SĎJGK
protoderivation se-
mantics

αδ̌

s�����
�
��

�
��*

αδ̌δ̂

6

Sδ̌JGK ∆= αδ̌(SĎJGK)
protoderivation
tree semantics

αš

s�����
�
��

�
��*

6

αšŝ

SšJGK ∆= αš(Sδ̌JGK
protosyntax tree
semantics

αĽ

s���
�
�
�
�
�
�
���

=SĽJGK ∆= αĽ(SšJGK
protolanguage se-
mantics

s Sd̂JGK = αa(S∂
→

JGK)
derivation semantics

6

αδ̂

s Sδ̂JGK ∆= αδ̂(Sd̂JGK)
derivation tree semantics

6

αŝ

s SŝJGK ∆= αŝ(Sδ̂JGK)
syntax tree semantics

6

α̇L̂

s SL̂JGK ∆= α̇L̂(SŝJGK
protolanguage semantics

6

α̇`α̇`

s S`JGK ∆= α̇`(SL̂JGK)
terminal language seman-
tics

s

6

S∂
→

JGK
prefix derivation semantics

αa

Figure 1: The hierarchy of grammar semantics.
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13.1.2. Protoderivation Tree Abstraction αδ̌ of Protoderivations
The protoderivation tree abstraction αδ̌ ∈ Π 7→ Ď of protoderivations is

αδ̌($ κ−→ τ) ∆= αδ̌($)καδ̌(τ) αδ̌(a) ∆= ε

αδ̌(ε) ∆= ε αδ̌(s1 . . . sn) ∆= sn, s1 . . . sn ∈ S,

αδ̌(`) ∆= ε n > 0, otherwise

which is extended elementwise to αδ̌ ∈ ℘(Π) 7→ ℘(Ď) as αδ̌(T ) ∆= {αδ̌(π) | π ∈ T} so that

we get the Galois connection 〈℘(Π), ⊆〉 −−−→−→←−−−−
αδ̌

γδ̌

〈℘(Ď), ⊆〉, further extended pointwise to

αδ̌ ∈ (N 7→ ℘(Π)) 7→ (N 7→ ℘(Ď)) as αδ̌(φ) ∆= λA .αδ̌(φ(A)).

13.1.3. Derivation Tree Abstraction αδ̂ of Derivations
The restriction of αδ̌ to derivation trees D̂ ∆= (P ∪ Û )? where Û

∆= T ∪ R� is
αδ̂ ∈ Θ 7→ D̂ such that

αδ̂(ε) ∆= ε αδ̂($ `−→ θ) ∆= αδ̂($)`αδ̂(θ)

αδ̂(`) ∆= ε

αδ̂(a) ∆= ε αδ̂(s1 . . . sn) ∆= sn, s1 . . . sn ∈ S, n > 0, otherwise

which is extented elementwise to αδ̂ ∈ ℘(Θ) 7→ ℘(D̂) as ∀T ∈ ℘(Θ) : αδ̂(T ) ∆= {αδ̂(θ) |
θ ∈ T} so that we get a Galois connection between sets of traces and sets of derivation

trees, as follows 〈℘(Θ), ⊆〉 −−−→−→←−−−−
αδ̂

γδ̂

〈℘(D̂), ⊆〉.

A derivation tree δ̂ is represented by a well-parenthesized sentence over Û so that
δ̂ ∈ PP,Û ⊆ D̂.

Lemma 24 If T is a set of derivations then
αδ̂(〈$, $′〉 ↑ T ) = {αδ̂($)αδ̂(τ)αδ̂($′) | τ ∈ T} . e

Proof For a derivation ` `0−→ a$1 . . .a$n−1
`n−1−→ a, we have

αδ̂(〈$, $′〉 ↑ ` `0−→ a$1 . . .a$n−1
`n−1−→ a)

= αδ̂($)αδ̂(`)`0αδ̂($1) . . . αδ̂($n−1)`n−1α
δ̂(a)αδ̂($′) Hdef. 〈$, $′〉 ↑ θ, αδ̂, and αδ̂I

= αδ̂($)αδ̂(` `0−→ a$1 . . .a$n−1
`n−1−→ a)αδ̂($′) Hdef. αδ̂I

It follows that for a set T of derivations, we have αδ̂(〈$, $′〉 ↑ T )
= {αδ̂(〈$, $′〉 ↑ τ) | τ ∈ T} Hdef. 〈$, $′〉 ↑ θ and αδ̂I
= {αδ̂($)αδ̂(τ)αδ̂($′) | τ ∈ T} Has shown aboveI . �
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13.2. [Proto]syntax tree abstraction αš and αŝ
13.2.1. Protosyntax Trees

[Proto]syntax trees are [proto]-derivation trees denuded of the rule states decorating
the branches. We represent [proto]syntax trees in parenthesized form through an infix
traversal. We let Ť ∆= (P ∪ T ∪ N 2)?. A protosyntax tree τ̌ is represented by a
well-parenthesized sentence over (T ∪N 2) so that τ̌ ∈ PP,(T∪N 2) ⊆ Ť .

Example 25 One possible protosyntax tree for the
protosentence AaA of the grammar 〈{a}, {A}, A, {A →
AA,A → a}〉 is given on the right and represented as
LA A LALAaAM A AMAM .

pAp
A

pApA p
Ap

a

��@@
��@@

2

13.2.2. Protosyntax Tree Abstraction αš of Protoderivation Trees
The protosyntax tree abstraction αš ∈ Ď 7→ Ť of protoderivation trees is (A ∈ N ,

` ∈ L )

αš(σLAσ′) ∆= αš(σ)LAαš(σ′) αš(σ[A→ ς�ς ′]σ′) ∆= αš(σ)αš(σ′)
αš(σAMσ′) ∆= αš(σ)AMαš(σ′) αš(σ`σ′) ∆= αš(σ)`αš(σ′)
αš(σ A σ′) ∆= αš(σ) A αš(σ′) αš(ε) ∆= ε

extended elementwise to αš ∈ ℘(Ď) 7→ ℘(Ť ) as αš(D) ∆= {αš(δ̌) | δ̌ ∈ D} so that we
get a Galois connection 〈℘(Ď), ⊆〉 −−−→−→←−−−−

αš

γš

〈℘(Ť ), ⊆〉 which can be extended pointwise

to (N 7→ ℘(Ď)) 7→ (N 7→ ℘(Ť )) as αš(φ) ∆= λA .αš(φ(A)) so that 〈N 7→ ℘(Ď),
⊆̇〉 −−−→←−−−

αš

γš

〈N 7→ ℘(Ť ), ⊆̇〉.

13.2.3. Syntax Tree Abstraction αŝ of Derivation Trees
The restriction αŝ to syntax trees T̂ ∆= (P ∪T )? is αŝ ∈ D̂ 7→ T̂ such that (A ∈ N ,

` ∈ L )

αŝ(σLAσ′) ∆= αŝ(σ)LAαŝ(σ′) αŝ(σ[A→ ς�ς ′]σ′) ∆= αŝ(σ)αŝ(σ′)
αŝ(σAMσ′) ∆= αŝ(σ)AMαŝ(σ′) αŝ(σ`σ′) ∆= αŝ(σ)`αŝ(σ′)

αŝ(ε) ∆= ε

extended elementwise to αŝ ∈ ℘(D̂) 7→ ℘(T̂ ) as αŝ(D) ∆= {αŝ(δ̂) | δ̂ ∈ D} so that we get
a Galois connection between sets of derivation trees and sets of syntax trees, as follows
〈℘(D̂), ⊆〉 −−−→−→←−−−−

αŝ

γŝ

〈℘(T̂ ), ⊆〉. A syntax tree τ̂ is represented by a well-parenthesized

sentence over T so that τ̂ ∈ PP,T ⊆ T̂ .

13.3. Protosentence Abstraction αĽ and α̇L̂
13.3.1. Protolanguages

The protolanguage of a grammar G = 〈T , N , S, R〉 with V
∆= T ∪N is the set of

protosentences deriving from the grammar axiom S where protosentences η ∈ V ? contain
both terminals in T and nonterminals in N and the derivation consists in replacing a
nonterminal A by the righthand side σ of a grammar rule A→ σ ∈ R.
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13.3.2. Protosentence Abstraction αĽ of Protosyntax Trees
The protolanguage abstraction αĽ ∈ Ť 7→ V ? of protosyntax trees is defined as (we

follow the tradition of confusing nonterminals A denoting the grammatical structure and
nonterminal variables A for protosentence substitution since confusion between attributes
of internal tree nodes in N and variables in N 2 is no longer possible)

αĽ(σLAσ′) ∆= αĽ(σ)αĽ(σ′), A ∈ N αĽ(σaσ′) ∆= αĽ(σ)aαĽ(σ′), a ∈ T

αĽ(σAMσ′) ∆= αĽ(σ)αĽ(σ′) αĽ(ε) ∆= ε

αĽ(σ A σ′) ∆= αĽ(σ)AαĽ(σ′)

extended elementwise to αĽ ∈ ℘(Ť ) 7→ ℘(V ?) as αĽ(D) ∆= {αĽ(τ̌) | τ̌ ∈ D} so that we get

a Galois connection 〈℘(Ť ), ⊆〉 −−−−→−→←−−−−−
αĽ

γĽ

〈℘(V ?), ⊆〉 which can be extended pointwise to

αĽ ∈ (N 7→ ℘(Ť )) 7→ (N 7→ ℘(V ?)) as αĽ(φ) ∆= λA .αĽ(φ(A)) such that 〈N 7→ ℘(Ť ),

⊆̇〉 −−−−→−→←−−−−−
αĽ

γĽ

〈N 7→ ℘(V ?), ⊆̇〉.

Example 26 For the protosyntax tree in Ex. 25 of the grammar 〈{a}, {A}, A, {A→
AA,A→ a}〉, we have αĽ

(
LA A LALAaAM A AMAM

)
= AaA . 2

13.3.3. Protosentence Abstraction α̇L̂ of Syntax Trees
For syntax trees, we define the flattener αL̂ ∈ T̂ 7→ ℘(V ?) as

αL̂(LAσAMσ′) ∆= ({A} ∪ αL̂(σ))αL̂(σ′) αL̂(aσ′) ∆= {a}αL̂(σ′) αL̂(ε) ∆= {ε}

extended elementwise to αL̂ ∈ ℘(T̂ ) 7→ ℘(V ?) as αL̂(Σ) ∆=
⋃
{αL̂(σ) | σ ∈ Σ} and

pointwise to α̇L̂ ∈ ℘(T̂ ) 7→ (N 7→ ℘(V ?)) as α̇L̂(S) ∆= λA .αL̂(S.A) so that we get the

Galois connection 〈℘(T̂ ), ⊆〉 −−−−→−→←−−−−−
α̇L̂

γ̇L̂

〈N 7→ ℘(V ?), ⊆̇〉.

13.4. Terminal Sentence Abstraction α̇`
13.4.1. Languages

The classical semantics of a context-free grammar G = 〈T , N , S, R〉 is a set of finite
terminal sentences in ℘(T ?) [10, 11].

13.4.2. Terminal Sentence Abstraction α̇` of Protolanguages
Terminal sentence abstraction eliminates the sentences of a protolanguage which are

not terminal. Let us define the eraser α` ∈ V ? 7→ ℘(T ?) as

α`(Aσ) ∆= ∅ α`(aσ) ∆= aα`(σ) α`(ε) ∆= ε

extended to α` ∈ ℘(V ?) 7→ ℘(T ?) as α`(Σ) ∆=
⋃
{α`(σ) | σ ∈ Σ} = Σ∩T ? so that we get

a Galois connection 〈℘(V ?), ⊆〉 −−−→−→←−−−−
α`

γ`

〈℘(T ?), ⊆〉 which can be extended pointwise to

α̇` ∈ (N 7→ ℘(V ?)) 7→ (N 7→ ℘(T ?)) as α̇`(ρ) ∆= λA .α`(ρ(A)) such that 〈N 7→ ℘(V ?),
⊆̇〉 −−−→−→←−−−−

α̇`

γ̇`

〈N 7→ ℘(T ?), ⊆̇〉.
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14. Fixpoint Bottom-Up Structural Abstract Semantics

14.1. Bottom-Up Abstract Interpreter
All bottom-up semantics S]̂JGK ∈ D̂]̂ of context-free grammars G are instances of the

following abstract interpreter (which generalizes the bottom-up grammar flow analysis of
[8, Def. 8.2.18]).

S]̂JGK = lfp
v

F̂]̂JGK (18)

where 〈D̂]̂, v, ⊥, t〉 is a cpo/complete lattice and the transformer F̂]̂JGK ∈ D̂]̂ 7→ D̂]̂ is

F̂]̂JGK ∆= λ ρ . ⊔
A→σ∈R

A]̂(F̂�]̂[A→ �σ]ρ) (19)

while 〈D̂�]̂, v�, ⊥�, t�〉 is a cpo/complete lattice, and the transformer F̂�]̂ ∈ R 7→ D̂]̂ 7→ D̂�]̂
is

F̂�]̂[A→ σ�aσ′] ∆= λ ρ . [A→ σ�aσ′]]̂ .]̂ F̂�]̂[A→ σa�σ′]ρ (20)

F̂�]̂[A→ σ�Bσ′] ∆= λ ρ . [A→ σ�Bσ′]]̂(ρ,B) ;]̂ F̂�]̂[A→ σB�σ′]ρ (21)

F̂�]̂[A→ σ�] ∆= λ ρ . [A→ σ�]]̂ (22)

with A]̂ ∈ D̂�]̂ 7→ D̂]̂ abstract rooting

[A→ σ�aσ′]]̂ ∈ D̂�]̂ terminal abstraction

.]̂ ∈ (D̂�]̂ × D̂�]̂) 7→ D̂�]̂ abstract concatenation

[A→ σ�Bσ′]]̂ ∈ (D̂�]̂ ×N ) 7→ D̂�]̂ nonterminal abstraction

;]̂ ∈ (D̂]̂ × D̂�]̂) 7→ D̂�]̂ abstract junction

[A→ σ�]]̂ ∈ D̂�]̂ emptiness abstraction .

Observe that Th. 14 is an instance of (18) where D̂]̂ = D̂�]̂ is ℘(Θ), F̂]̂JGK (19) is the
set of traces bottom-up transformer F̂d̂JGK ∈ ℘(Θ) 7→ ℘(Θ) (7), and F̂�]̂[A→ σ�σ′] is F̂�d̂[A
→ σ�σ′] ∈ ℘(Θ) 7→ ℘(Θ) as defined in (8)—(10), which is exactly of the form (20)—(22).

14.2. Well-Definedness of the Bottom-Up Abstract Interpreter
The existence of the least fixpoint is guaranteed by the following

Hypothesis 27 For all [A → σ�σ′] ∈ R�, λ ρ .A]̂(F̂�]̂[A → �σ]ρ) ∈ D̂]̂ 7→ D̂]̂ is upper
continuous for the ordering v on D̂]̂6. e

Hyp. 27 is guaranteed by the following local continuity conditions

Lemma 28 If A]̂ is continuous, .]̂ is continuous in its second argument, [A→ σ�Bσ′]]̂

is continuous in its first argument, ;]̂ is continuous then Hyp. 27 holds. e

Proof sketch The upper-continuity of F̂�]̂[A→ σ�σ′], by induction on the length |σ′| of
σ′. �

6Indeed monotony is sufficient [28].
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Abstract se− Maximal Derivation Syntax Proto− lan−
mantics S]̂JGK derivation Sd̂JGK tree SŝJGK tree SŝJGK guage SL̂JGK

D̂]̂ ℘(Θ) ℘(D̂) ℘(T̂ ) N 7→ ℘(V ?)
v ⊆ ⊆ ⊆ ⊆̇
⊥ ∅ ∅ ∅ ∅̇
t ∪ ∪ ∪ ∪̇

D̂�]̂ ℘(Θ) ℘(D̂) ℘(T̂ ) ℘(V ?)
v� ⊆ ⊆ ⊆ ⊆
⊥� ∅ ∅ ∅ ∅
t� ∪ ∪ ∪ ∪

A]̂(X) ` LA−→ X
AM−→ a LAXAM LAXAM AL̂(X)(1)

[A→ σ�aσ′]]̂ (a[A→ σ�aσ′]) a−→ [A→ σ�aσ′]a a(2) a

.]̂ .(3) . . .

[A→ σ�Bσ′]]̂(ρ,B) [A→ σ�Bσ′]d̂(ρ,B)(4) [A→ σ�Bσ′] ρ.B ρ.B {B} ∪ ρ(B)

;]̂ ; . . .

[A→ σ�]]̂ a[A→ σ�] [A→ σ�] ε(2) ε

where (tt ? a : b) = a, (ff ? a : b) = b, (ff ? a | tt ? b : c) = b, (ff ? a | ff ? b : c) = c,
etc., (1) AL̂(X) ∆= λA′ . (A′ = A ? {A} ∪X : ∅), (2) a (and ε) is a shorthand for {a}
(and {ε}), (3) sentence and language concatenation . is denoted by juxtaposition, extended
pointwise, and (4) [A→ σ�Bσ′]d̂(ρ,B) ∆= 〈a[A→ σ�Bσ′], a[A→ σB�σ′]〉 ↑ ρ.B.

Figure 2: Semantic instances of the abstract bottom-up grammar semantics (18).

14.3. Instances of the Bottom-Up Abstract Interpreter
The hierarchy of semantics discussed in Sect. 13 is obtained by the instances of the

bottom-up abstract semantics (18) given in Fig. 2. Classical semantics and flow analyzes
also have the same form given in Fig. 3. These facts are proved in the following Sect.
15 for the bottom-up semantics and in Sect. 19 for bottom-up grammar flow analysis.

14.4. Soundness and Completeness of the Bottom-Up Abstract Interpreter
Definition 29 An abstract semantics S]̂JGK ∈ D̂\̂ is sound and complete with respect to
a concrete semantics S\̂JGK ∈ D̂]̂ for an abstraction 〈D̂\̂, v\̂〉 −−−→←−−−α

γ
〈D̂]̂, v]̂〉. if and only

if α(S\JGK) = S]̂JGK. e

This global soundness and completeness condition on the abstraction is implied by
the rule soundness and completeness condition

α(A\̂(F̂�\̂[A→ �σ]ρ)) = A]̂(F̂�]̂[A→ �σ]α(ρ)) (23)
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Abstract se− Terminal First ε−Produc− Nonterminal pro−
mantics S]̂JGK language S`JGK S1JGK tivity SεJGK ductivity SE›JGK

D̂]̂ N 7→ ℘(T ?) N 7→ ℘(T ∪ {ε})N 7→ B(1) N 7→ B
v ⊆̇ ⊆̇ ˙=⇒ ˙=⇒
⊥ ∅̇ ∅̇ λN . ff λN . ff
t ∪̇ ∪̇ ∨̇ ∨̇

D̂�]̂ ℘(T ?) ℘(T ∪ {ε}) B B

v� ⊆ ⊆ =⇒ =⇒
⊥� ∅ ∅ ff ff

t� ∪ ∪ ∨ ∨

A]̂(X) A`(X)(2) A1(X)(2) Aε(X)(3) AE›(X)(3)

[A→ σ�aσ′]]̂ a a ff tt

.]̂ . ⊕̇1(4) ∧̇ ∧̇

[A→ σ�Bσ′]]̂(ρ,B) ρ(B) ρ(B) ρ(B) ρ(B)

;]̂ . ⊕̇1(4) ∧̇ ∧̇

[A→ σ�]]̂ ε ε tt tt

where (1) B ∆= {ff, tt}, (2) A`(X) = A1(X) ∆= λA′ . (A′ = A ? X : ∅), (3) Aε(X) = AE›(X)
∆= λA′ . (A′ = A ? X : ff), the first abstraction ⊕1 of language concatenation is defined
in Lem. 72, and (4) ⊕̇1 is its pointwise extension.

Figure 3: Flow analysis instances of the abstract bottom-up grammar semantics (18).
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Theorem 30 The local soundness and completeness condition (23) implies the soundness
and completeness of the abstract interpreter α(S\̂JGK) = α(lfp

v\̂ F̂\̂JGK) = lfp
v]̂ F̂]̂JGK =

S]̂JGK. e

Note 31 The local soundness and completeness condition (23) can be weakened according
to the hypotheses of one of the fixpoint abstraction theorems of Sect. A.2 such as
Cor. 101 or Cor. 106. e

Proof (of Th. 30) The main point is to show the commutation property

α(F̂\̂JGK(ρ)) = α(
⊔\̂

A→σ∈R

A\̂(F̂�\̂[A→ �σ]ρ)) Hdef. (19) of F̂\̂JGKI

=
⊔]̂

A→σ∈R

α(A\̂(F̂�\̂[A→ �σ]ρ)) Hα preserves lubs in Galois connectionsI

=
⊔]̂

A→σ∈R

A]̂(F̂�]̂[A→ �σ]α(ρ)) Hby local soundness cond. (24)I

= F̂]̂JGK(α(ρ)) Hdef. (19) of F̂]̂JGKI . �

The local soundness and completeness condition (23) is implied by the stronger local
soundness and completeness conditions on the abstract operators, where 〈D̂�\̂, v� \̂〉 −−−→←−−−α�

γ�

〈D̂�]̂, v� ]̂〉 and for all ρ ∈ D̂]̂ and x, y ∈ D̂�]̂,

α(A\̂(x)) = A]̂(α�(x)), α�([A→ σ�Bσ′]\̂(ρ,B)) = [A→ σ�Bσ′]]̂(α(ρ), B),

α�([A→ σ�aσ′]\̂) = [A→ σ�aσ′]]̂, α�(x ;\̂ y) = α�(x) ;]̂ α�(y), (24)

α�(x .\̂ y) = α�(x) .]̂ α�(y), α�([A→ σ�]\̂) = [A→ σ�]]̂ .

Corollary 32 The above local soundness and completeness conditions (24) imply the
soundness and completeness of the abstract interpreter α(S\̂JGK) = α(lfp

v\̂ F̂\̂JGK) =
lfp
v]̂ F̂]̂JGK = S]̂JGK. e

Proof sketch We observe that

α�(F̂�\̂[A→ σ�σ′]ρ) = F̂�]̂[A→ σ�σ′](α(ρ)) (25)

and so Cor. 32 follows from Th. 30 and (24). �

We now consider the instances of the abstract bottom-up semantics given in Fig. 2.
The grammar flow analysis instances in Fig. 3 are considered in Sect. 19.
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15. The Hierarchy of Bottom-Up Grammar Semantics

15.1. Fixpoint Bottom-Up Derivation Tree Semantics
15.1.1. Derivation Tree Semantics

The derivation tree semantics Sδ̂JGK ∈ ℘(D̂) of a context-free grammar G = 〈T , N ,
S, R〉, is the set of derivation trees generated by the grammar G. It is defined as the
derivation tree abstraction of the derivation semantics, as follows

Sδ̂JGK ∆= αδ̂(Sd̂JGK) . (26)

Lemma 33 Sδ̂JGK ∈ PP,Û . e

Proof By Lem. 5 and definition of αδ̂. �

15.1.2. Fixpoint Bottom-up Structural Derivation Tree Semantics
Let the transformer F̂δ̂JGK ∈ ℘(D̂) 7→ ℘(D̂) be defined as follows

F̂δ̂JGK ∆= λD . ⋃
A→σ∈R

LA F̂�δ̂[A→ �σ]D AM (27)

where F̂�δ̂JGK ∈ R 7→ ℘(D̂) 7→ ℘(D̂) is

F̂�δ̂[A→ σ�aσ′] ∆= λD . [A→ σ�aσ′] a F̂�δ̂[A→ σa�σ′]D

F̂�δ̂[A→ σ�Bσ′] ∆= λD . [A→ σ�Bσ′] D.B F̂�δ̂[A→ σB�σ′]D

F̂�δ̂[A→ σ�] ∆= λD . [A→ σ�] .

The derivation tree semantics of a grammar G can now be expressed in fixpoint form for
transformer F̂δ̂JGK as follows

Theorem 34

Sδ̂JGK = lfp
⊆

F̂δ̂JGK . e

Example 35 The derivation tree semantics of the grammar 〈{a}, {A}, A, {A→ AA,A→
a}〉, is the least fixpoint of the equation

D = {LA [A→ �a] a [A→ a�] AM}
∪
{LA [A→ �AA] σ [A→ A�A] σ′ [A→ AA�] AM | σ, σ′ ∈ D} 2

Proof sketch (of Th. 34) We apply Th. 30. By def. αδ̂, we have αδ̂(` LA−→ T
AM−→ a)

= LA αδ̂(T ) AM. To get (23), it remains to define F̂δ̂ such that

αδ̂ ◦ F̂�d̂[A→ σ�σ′] = F̂�δ̂[A→ σ�σ′] ◦ αδ̂ . (28)

We proceed by structural induction on the length of σ′ in [A → σ�σ′]. We let T ⊆
lfp
⊆ F̂d̂JGK so that T is a set of derivations. We prove (28) for T , by case analysis on the

prefix of σ′. This implies the commutation property αδ̂ ◦ F̂d̂JGK(T ) = F̂δ̂JGK ◦ αδ̂(T ) for
sets T of derivations so that we conclude by Cor. 106. �
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Lemma 36 For all [A → σ�σ′] ∈ R�, F̂�δ̂[A → σ�σ′] ∈ ℘(D̂) 7→ ℘(D̂) is upper continu-
ous. e

Proof By Lem. 28, observing that, given an increasing chain Di, i ∈ N of elements of
℘(D̂), we have LA

⋃
i∈NDiAM =

⋃
i∈NLADiAM so Aδ̂ is continuous, ;δ̂, which is concate-

nation .δ̂, is continuous, and [A → σ�Bσ′]
⋃
i∈NDi.B = [A → σ�Bσ′]

⋃
i∈NDi.B Hdef.

selection •.BI =
⋃
i∈N[A → σ�Bσ′] Di.B by continuity of concatenation, whence [A →

σ�Bσ′]δ̂ is continuous in its first argument. �

15.2. Fixpoint Bottom-Up Syntax Tree Semantics
15.2.1. Syntax Tree Semantics

The syntax tree semantics SŝJGK ∈ ℘(T̂ ) of a context-free grammar G = 〈T , N , S,
R〉 is the set of syntax trees generated by the grammar G for each nonterminal. It is
defined as the syntax tree abstraction of derivation tree semantics, as follows

SŝJGK ∆= αŝ(Sδ̂JGK) . (29)

Lemma 37 SŝJGK ∈ PP,T . e

Proof By Lem. 33 and definition of αŝ. �

15.2.2. Fixpoint Bottom-Up Structural Protolanguage Semantics
Let the transformer F̂ŝJGK ∈ ℘(T̂ ) 7→ ℘(T̂ ) be defined as follows

F̂ŝJGK ∆= λS . ⋃
A→σ∈R

LA F̂�ŝ[A→ �σ]S AM (30)

F̂�ŝ[A→ σ�aσ′] ∆= λS . a F̂�ŝ[A→ σa�σ′]S
F̂�ŝ[A→ σ�Bσ′] ∆= λS .S.B F̂�ŝ[A→ σB�σ′]S

F̂�ŝ[A→ σ�] ∆= λS . ε .
The syntax tree semantics of a grammar G can be expressed in fixpoint form for transformer
F̂ŝJGK as follows

Theorem 38

SŝJGK = lfp
⊆

F̂ŝJGK . e

Example 39 For the grammar 〈{a}, {A}, A, {A→ A,A→ a}〉, the above syntax tree
semantics is the least fixpoint of the equation

S = {LA a AM} ∪ {LA σ AM | σ ∈ S} .

The iterates (as defined in Sect. A.1) are
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S0 = ∅
S1 = {LA a AM}
S2 = {LA a AM, LA LA a AM AM}
. . . . . .

Sn = {LAk a AMk | 1 6 k 6 n}
. . . . . .

Sω =
⋃
n≥0

Sn = {LAn a AMn | n > 1} = {A
|
a

, A
|
A
|
a

, . . . , A
|
A
...
A
|
a

, . . .} 2

Proof (of Th. 38) We apply Cor. 32 and prove (24). For T, T ′ ∈ ℘(T̂ ), we have, by
definition of αŝ, αŝ(` LA−→ T

AM−→ a) = LA αŝ(T ) AM, αŝ([A→ σ�aσ′] a) = a, αŝ(T T ′) =
αŝ(T )αŝ(T ′), αŝ([A→ σ�Bσ′] D.B = αŝ(D.B) = αŝ(D).B, by def. selection, and αŝ([A
→ σ�]) = ε. �

Lemma 40 For all [A → σ�σ′] ∈ R�, F̂�ŝ[A → σ�σ′] ∈ ℘(T̂ ) 7→ ℘(T̂ ) is upper continu-
ous. e

Proof By Lem. 28, since concatenation .ŝ is continuous and given an increasing chain
Si, i ∈ N of elements of ℘(T̂ ), we have a (

⋃
i∈N Si) =

⋃
i∈N(a Si) by continuity of

concatenation so that Aŝ is continuous, (
⋃
i∈N Si).B =

⋃
i∈N(Si.B) by def. selection •.B

proving that [A→ σ�Bσ′]ŝ is continuous. �

15.3. Fixpoint Bottom-Up Protolanguage Semantics
15.3.1. Protolanguage Semantics

We define the protolanguage semantics SL̂JGK ∈ N 7→ ℘(V ?) of context-free grammars
G as the abstraction of their syntax-tree semantics, as follows

SL̂JGK ∆= α̇L̂(SŝJGK) . (31)

15.3.2. Fixpoint Bottom-Up Structural Protolanguage Semantics
We define the protolanguage transformer7

7Recall that
⋃
x∈∅ f(x) = ∅ so that the protolanguage for a nonterminal with no production is empty.
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F̂L̂JGK ∆= λ ρ . λA . ⋃
A→σ∈R

{A} ∪ F̂�L̂[A→ �σ]ρ (32)

F̂�L̂[A→ σ�aσ′] ∆= λ ρ . a F̂�L̂[A→ σa�σ′]ρ
F̂�L̂[A→ σ�Bσ′] ∆= λ ρ . ({B} ∪ ρ(B)) F̂�L̂[A→ σB�σ′]ρ

F̂�L̂[A→ σ�] ∆= λ ρ . ε
so as to characterize the protolanguage generated by each nonterminal of the grammar G
in fixpoint form,

Theorem 41

SL̂JGK = lfp
⊆

F̂L̂JGK . e

Example 42 If, for the grammar 〈{a}, {A}, A, {A→ AA,A→ a}〉, we abstract away
in the fixpoint equation of Ex. 35 the syntax trees for the nonterminal A by the tips of
their subtrees, we get the prototype language equation

X = {A} ∪ {a} ∪ XX .

This fixpoint equation is ρ = F̂L̂JGK(ρ) or equivalently ρ(A) = F̂L̂JGK(ρ)(A) that is
ρ(A) = {A} ∪ {a} ∪ ρ(A)ρ(A), which is X = {A} ∪ {a} ∪ XX where X ∆= ρ(A). 2

Proof sketch (of Th. 41) By Cor. 32 since by def. of α̇L̂ in Sect. 13.3.3, we have
α̇L̂(A\̂(S)) = α̇L̂(LASAM) = λB . (B = A ? αL̂(LASAM.B) : ∅) = λB . (B = A ?
αL̂(LASAM) : ∅) = λB . (B = A ? {A} ∪ αL̂(S) : ∅) = A]̂(αL̂(S)). It remains to define
F̂L̂ such that

αL̂ ◦ F̂�ŝ[A→ σ�σ′] = F̂�L̂[A→ σ�σ′] ◦ α̇L̂ . (33)

We proceed by structural induction on the length of σ′ in [A→ σ�σ′] and case analysis
on the prefix of σ′. Having proved the commutation property α̇L̂ ◦ F̂ŝJGK = F̂L̂JGK ◦ α̇L̂,
we conclude by Cor. 106. �

Lemma 43 For all [A→ σ�σ′] ∈ R�, F̂�L̂[A→ σ�σ′] ∈ ℘(V ?) 7→ ℘(V ?) is upper continu-
ous. e

Proof By Lem. 28 since AL̂ = λL . λA′ . (A′ = A ? {A} ∪ L : ∅) is pointwise
continuous, the junction ;L̂, which is concatenation .L̂, is continuous, and [A→ σ�Bσ′]L̂
= λ ρ . {B} ∪ ρ(B) is continuous. �
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15.4. Fixpoint Bottom-Up Terminal Language Semantics
15.4.1. Terminal Language Semantics

We define the terminal language semantics S`JGK ∈ N 7→ ℘(T ?) of context-free
grammars G by abstraction of their protolanguage semantics, as follows

S`JGK ∆= α̇`(SL̂JGK) . (34)

15.4.2. Fixpoint Right Bottom-Up Structural Terminal Language Semantics
In order to get the classical equational definition of the language generated by a

grammar [29, 30], let us define the language right transformer

F̂`JGK ∆= λ ρ . λA . ⋃
A→σ∈R

F̂�`[A→ �σ]ρ (35)

F̂�`[A→ σ�aσ′] ∆= λ ρ . a F̂�`[A→ σa�σ′]ρ
F̂�`[A→ σ�Bσ′] ∆= λ ρ . ρ(B) F̂�`[A→ σB�σ′]ρ

F̂�`[A→ σ�] ∆= λ ρ . ε .
We call F̂�`[A→ σ�σ′] the right transformer because it describes the derivation of σ′, on
the right of the dot. So it is defined by induction on the grammar rule right handside
from left to right.

The language generated by each nonterminal of the grammar G can be characterized
in fixpoint form, as follows

Theorem 44 (Ginsburg, Rice, Schützenberger)

S`JGK = lfp
⊆

F̂`JGK . e

Example 45 If, for the grammar G = 〈{a}, {A}, A, {A → AA,A → a}〉, we abstract
away the nonterminals in the fixpoint equation of Ex. 42, we get the language equation

X = {a} ∪ XX ,

which least solution is, according to the Ginsburg-Rice/Chomsky-Schützenberger theorem
[31, 29, 30], the language defined by G. By defining X ∆= ρ(A), this is ρ(A) = {a} ∪
ρ(A)ρ(A) or equivalently ρ(A) = F̂`JGK(ρ)(A), that is ρ = F̂`JGK(ρ). 2

Proof (of Th. 44) By Cor. 32, proving the local soundness and completeness condi-
tions (24). In particular, by def. of α̇` and α`, α̇`(λA′ . (A′ = A ? {A} ∪ L : ∅))
= λA′ . (A′ = A ? α`({A} ∪ L) : α`(∅))) = λA′ . (A′ = A ? α`(L) : ∅)) and
α`({B} ∪ ρ(B)) = α`(ρ(B)) = α̇`(ρ)B. �

Lemma 46 For all [A → σ�σ′] ∈ R�, F̂�`[A → σ�σ′] ∈ ℘(T ?) 7→ ℘(T ?) is upper
continuous. e

Proof According to Th. 109, by continuity of F̂L̂ (Lem. 43), commutation α` ◦ F̂�L̂[A
→ σ�σ′] = F̂�`[A→ σ�σ′] ◦ α̇` (25), and α` is onto in 〈℘(V ?), ⊆〉 −−−→−→←−−−−

α`

γ`

〈℘(T ?), ⊆〉. �
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Abstract Se− Protoderivation Protoderivation Protosyntax tree Protolanguage
mantics S]̌JGK SĎJGK tree Sδ̌JGK SšJGK SĽJGK

Ď]̌ ℘(Π) ℘(Ď) ℘(Ť ) ℘(V ?)
v ⊆ ⊆ ⊆ ⊆
⊥ ∅ ∅ ∅ ∅
t ∪ ∪ ∪ ∪

A]̌JGK {` A−→ a} { A } { A } {A}

Ť]̌JGKφ(A) post[ Ď2Z=⇒G] post[ δ̌2Z=⇒G] post[ š2Z=⇒G] post[ Z=⇒G]

Figure 4: Semantic instances of the abstract top-down grammar semantics (36).

16. Fixpoint Top-Down Abstract Semantics

16.1. Top-Down Abstract Interpreter
All top-down semantics S]̌JGK ∈ N 7→ Ď]̌ of context-free grammars G in the hierarchy

of Sect. 13 are instances of the following abstract interpreter (which generalizes the
top-down grammar flow analysis of [8, Def. 8.2.19]).

S]̌JGK = lfp
v̈

F̌]̌JGK where F̌]̌JGK ∆= λφ . λA .A]̌JGK t Ť]̌JGKφ(A) (36)

and 〈Ď]̌, v, ⊥, t〉 is a cpo/complete lattice extended pointwise to 〈N 7→ Ď]̌, v̇, ⊥̇,
ṫ〉 and 〈(N 7→ Ď]̌) 7→ (N 7→ Ď]̌), v̈, ⊥̈, ẗ〉, the abstract seed is A]̌JGK ∈ Ď]̌, and the
top-down post-transformer is Ť]̌JGK ∈ Ď]̌ 7→ Ď]̌.

16.2. Well-Definedness of the Top-Down Abstract Interpreter
The existence of the least fixpoint (36) is guaranteed by the following

Hypothesis 47 Ť]̌JGK is upper continuous for the ordering v̇ on N 7→ Ď]̌8. e

16.3. Instances of the Top-Down Abstract Interpreter
The hierarchy of semantics discussed in Sect. 13 is obtained by the instances of

the top-down abstract semantics (36) given in Fig. 4 (post[τ ] preserves ∪ whence is
upper-continuous). Observe that by Th. 17, the maximal protoderivation semantics
SĎJGK is of the form (36) for F̌ĎJGK is given in Fig. 4. The study of the other instances
of the top-down abstract interpreter is forthcoming, in Sect. 17 for top-down grammar
semantics and in Sect. 20 for top-down grammar analysis.

Classical top-down flow analyzes also have the same form given in Fig. 5.

8Indeed monotony is sufficient [28].
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Abstract Se− Follow semantics Accessibility semantics
mantics S]̌JGK Sf JGK SaJGK

Ď]̌ ℘(T ∪ {a}) B

v ⊆ =⇒
⊥ ∅ ff

t ∪ ∨

A]̌JGK {a | A = S} (A = S)

Ť]̌JGKφ(A)
⋃

B→σAσ′∈R

(
−→
S 1JGK(σ′) \ {ε}) ∪
(ε ∈
−→
S 1JGK(σ′) ? φ(B) : ∅)

∨
B→σAσ′∈R

φ(B)

Figure 5: Flow analysis instances of the abstract top-down grammar semantics (36).

16.4. Soundness of the Top-Down Abstract Interpreter
We can define the soundness of an abstract top-down interpreter S]̌JGK with respect

to a concrete interpreter S\JGK as α̇(S\JGK) vw S]̌JGK where vw denotes either v, = or
w and 〈D̂\̂, v\〉 −−−→←−−−α

γ
〈L]̌, v]̌〉 is a Galois connection extended pointwise to 〈N 7→ D̂\̂,

v̇\〉 −−−→←−−−
α̇

γ̇
〈N 7→ L]̌, v̇]̌〉. Then the sufficient soundness condition given in Cor. 101

in the form of the commutation condition ∀δ ∈ O : α̇ ◦ F̌\̌JGK(F δ) vw F̌]̌JGK ◦ α̇(F δ) is
implied by the following local soundness conditions on the abstract operators

α(A\̌JGK) vw A]̌JGK and α̇ ◦ Ť]̌JGK vw Ť\̌JGK ◦ α̇ .

Note 48 By Cor. 101, the condition can be restricted to α̇ ◦ Ť]̌JGK(φ) vw Ť\̌JGK ◦ α̇(φ)
where φ is an iterate of F̌\̌JGK, or, by Cor. 106 when vw is =, we can assume that
φ v\ lfp

v F̌\̌JGK. e

Theorem 49 The above local soundness conditions imply the soundness (and complete-
ness whenever vw is =) of the abstract top-down interpreter α̇(S\̌JGK) = α̇(lfp

v\ F̌\̌JGK) vw
lfp
v]̌ F̌]̌JGK = S]̌JGK. e

Proof We apply Cor. 101, proving the commutation property

α̇ ◦ F̌\̌JGK(φ)A = α(F̌\̌JGK(φ)A) Hdef. ◦ and pointwise def. α̇I

= α(A\̌JGK) t α(Ť\̌JGKφ(A))
Hdef. (36) of F̌\̌JGK and lower adjoint of Galois connection preserves lubsI

vw A]̌JGK t Ť]̌JGKα̇(φ)(A)
Hlocal soundness conditions, t is vw-monotonic, and pointwise def. α̇I

= (F̌]̌JGK ◦ α̇)(φ)A Hdef. (36) of F̌]̌JGK and ◦I . �
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17. The Hierarchy of Top-Down Grammar Semantics

17.1. Fixpoint Top-Down Protoderivation Tree Semantics
17.1.1. Protoderivation Tree Semantics

The protoderivation tree semantics Sδ̌JGK ∈ N 7→ ℘(Ď) of a context-free grammar G
= 〈T , N , S, R〉, is the set of protoderivation trees generated by the grammar G. It
is defined as the protoderivation tree abstraction of the protoderivation semantics, as
follows

Sδ̌JGK ∆= αδ̌(SĎJGK) . (37)

Lemma 50 ∀A ∈ N : Sδ̌JGK(A) ∈ PP,Ǔ . e

Proof By Lem. 5 and definition of αδ̌. �

17.1.2. Protoderivation Tree Derivation
Let us define Řδ̌ ∈ R 7→ Ď as

Řδ̌[A→ σ] ∆= LA Ř�
δ̌
[A→ �σ]AM (38)

where Ř�
δ̌
∈ R� 7→ Ď is

Ř�
δ̌
[A→ σ�aσ′] ∆= [A→ σ�aσ′] a Ř�

δ̌
[A→ σa�σ′] (39)

Ř�
δ̌
[A→ σ�Bσ′] ∆= [A→ σ�Bσ′] B Ř�

δ̌
[A→ σB�σ′] (40)

Ř�
δ̌
[A→ σ�] ∆= [A→ σ�] (41)

so that

δ̌ δ̌2Z=⇒G δ̌′ (42)
∆= ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : δ̌ = ς1 A1 ς2 . . . ςn An ςn+1 ∧

∀i ∈ [1, n] : Ai → σi ∈ R ∧ δ̌′ = ς1Řδ̌[A1 → σ1]ς2 . . . ςnŘδ̌[An → σn]ςn+1 .

17.1.3. Fixpoint Top-Down Protoderivation Tree Semantics
Theorem 51

Sδ̌JGK = lfp
⊆

F̌δ̌JGK
where F̌δ̌JGK ∆= λφ . λA . { A } ∪ post[ δ̌2Z=⇒G](φ(A)) . e

Proof We apply Th. 49. In the proof, we assume that φ is an iterate of F̌ĎJGK whence,
by (17), φ(A) = post[ n∗

Ď2Z=⇒G]({`
A−→ a}), as shown in Ex. 107. Let us calculate
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αδ̌(λA . {` A−→ a}) = λA . { A } Hdef. αδ̌I

αδ̌(λA . post[ Ď2Z=⇒G]φ(A)) = λA . {δ̌′ | ∃δ̌ ∈ αδ̌(φ(A)) : δ̌ δ̌2Z=⇒G δ̌′}
Hdef. post and αδ̌, provided we can define δ̌2Z=⇒G such that {αδ̌(π′) | ∃π ∈ φ(A) :
π Ď2Z=⇒G π′} = {δ̌′ | ∃δ̌ ∈ αδ̌(φ(A)) : δ̌ δ̌2Z=⇒G δ̌′}I

= λA . post[ δ̌2Z=⇒G](αδ̌(φ)(A)) Hdef. post and αδ̌ .I

αδ̌(ŘĎ[A→ σ]) = αδ̌(` LA−→ Ř�
Ď

[A→ �σ] AM−→ a) Hdef. (11) of Ř�
Ď

and αδ̌I

= LA Ř�
δ̌
[A→ �σ]AM

by defining Ř�
δ̌
[A→ σ�σ′] ∆= αδ̌(Ř�

Ď
[A→ σ�σ′]) by induction on the length |σ′| of σ′, as

follows

Ř�
δ̌
[A→ σ�aσ′] = [A→ σ�aσ′] a αδ̌(Ř�

Ď
[A→ σa�σ′])

Hdef. Ř�
δ̌
, (12) of Ř�

Ď
[A→ σ�aσ′], and αδ̌I

= [A→ σ�aσ′] a Ř�
δ̌
[A→ σa�σ′] Hind. def.I

Ř�
δ̌
[A→ σ�Bσ′] = [A→ σ�Bσ′] B αδ̌(Ř�

Ď
[A→ σB�σ′])

Hdef. Ř�
δ̌
, (13) of Ř�

Ď
[A→ σ�Bσ′], and αδ̌I

= [A→ σ�Bσ′] B Ř�
δ̌
[A→ σB�σ′] Hind. def.I

Ř�
δ̌
[A→ σ�] = [A→ σ�] Hdef. Ř�

δ̌
, (14) of Ř�

Ď
[A→ σ�], and αδ̌ .I

By induction on |σ′|, we observe that αδ̌(〈$′, $′〉 ↑ Ř�
Ď

[A→ σ�σ′]) = Ř�
δ̌
[A→ σ�σ′]. It

follows that

αδ̌(〈$, $′〉 ↑ ŘĎ[A→ σ]) = αδ̌($)LAŘ�
δ̌
[A→ σ�σ′]AMαδ̌($′)

Hdef. (11) of ŘĎ, αδ̌ and 〈$′, $′〉 ↑ •, and since αδ̌(〈$′, $′〉 ↑ Ř�
Ď

[A→ σ�σ′]) =
Ř�
δ̌
[A→ σ�σ′]I

= αδ̌($)Řδ̌[A→ σ]αδ̌($′) Hdef. (38) of Řδ̌[A→ σ] .I

Let us examine the pending condition

{αδ̌(π′) | ∃π ∈ φ(A) : π Ď2Z=⇒G π′} ⊆ {δ̌′ | ∃δ̌ ∈ αδ̌(φ(A)) : δ̌ δ̌2Z=⇒G δ̌′}
⇐= ∀π ∈ φ(A) : ∀π′ : (π Ď2Z=⇒G π′) =⇒ (∃δ̌ ∈ αδ̌(φ(A)) : δ̌ δ̌2Z=⇒G αδ̌(π′)) Hdef. ⊆I

⇐= ∀π, π′ : (π Ď2Z=⇒G π′) =⇒ (αδ̌(π) δ̌2Z=⇒G αδ̌(π′)) Hchoosing δ̌ = αδ̌(π) .I

This sufficient condition leads to the design of δ̌2Z=⇒G as follows

π Ď2Z=⇒G π′
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=⇒ ∃n > 0, ς1, . . . , ςn+1, $1, . . . , $n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :
αδ̌(π) =
αδ̌(ς1)αδ̌($1) A1 αδ̌($2)αδ̌(ς2) . . . αδ̌(ςn)αδ̌($n) An αδ̌($n+1)αδ̌(ςn+1) ∧ ∀i ∈
[1, n] : Ai → σi ∈ R ∧ αδ̌(π′) = αδ̌(ς1)αδ̌(〈$1, $2〉 ↑ ŘĎ[A1 →
σ1])αδ̌(ς2) . . . αδ̌(ςn)αδ̌(〈$n, $n+1〉 ↑ ŘĎ[An → σn])αδ̌(ςn+1)

Hdef. (15) of Ď2Z=⇒G, =, and αδ̌I
⇐⇒ ∃n > 0, ς1, . . . , ςn+1, $1, . . . , $n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :

αδ̌(π) = αδ̌(ς1)αδ̌($1) A1 α
δ̌($2)αδ̌(ς2) . . . αδ̌(ςn)αδ̌($n) An αδ̌($n+1)αδ̌(ςn+1)∧

∀i ∈ [1, n] : Ai → σi ∈ R ∧ αδ̌(π′) = αδ̌(ς1)αδ̌($1)Řδ̌[A1 →
σ1]αδ̌($2)αδ̌(ς2) . . . αδ̌(ςn)αδ̌($n)Řδ̌[An → σn]αδ̌($n+1)αδ̌(ςn+1)

Hsince αδ̌(〈$, $′〉 ↑ ŘĎ[A→ σ]) = αδ̌($)Řδ̌[A→ σ]αδ̌($′)I
⇐⇒ ∃n > 0, ς ′1, . . . , ς ′n+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αδ̌(π) =

ς ′1 A1 ς ′2 . . . ς
′
n An ς ′n+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αδ̌(π′) = ς ′1Řδ̌[A1 →

σ1]ς ′2 . . . ς ′nŘδ̌[An → σn]ς ′n+1 Hby letting ς ′i = αδ̌(ςi)αδ̌($i), i = 1, . . . , n+ 1I
⇐⇒ αδ̌(π′) δ̌2Z=⇒G αδ̌(π) Hby defining δ̌2Z=⇒G as in (42) .I

For the inverse inclusion, we have

{δ̌′ | ∃δ̌ ∈ αδ̌(φ(A)) : δ̌ δ̌2Z=⇒G δ̌′} ⊆ {αδ̌(π′) | ∃π ∈ φ(A) : π Ď2Z=⇒G π′}
⇐= ∀π′′ ∈ φ(A) : ∀δ̌′ : (αδ̌(π′′) δ̌2Z=⇒G δ̌′) =⇒ (∃π ∈ φ(A) : ∃π′ : π Ď2Z=⇒G π′ ∧ δ̌′ =

αδ̌(π′)) Hdef. ⊆ and since δ̌ ∈ αδ̌(φ(A))I
⇐= ∀π′′ ∈ φ(A) : ∀δ̌′ : (αδ̌(π′′) δ̌2Z=⇒G δ̌′) =⇒ (∃π′ : π′′ Ď2Z=⇒G π′ ∧ δ̌′ = αδ̌(π′))

Hchoosing π = π′′I

We have π′′ ∈ φ(A) so (` A−→ a) ?

Ď2Z=⇒G π′′ hence, by def. (15) of Ď2Z=⇒G, π′′ has necessarily

the form ς1$1
A1−→ $2ς2 . . . ςm−1$m−1

Am−1
−→ $mςm where m > 0 (m = 0 if π′′ has no

nonterminal variable). It follows that

αδ̌(π′′) δ̌2Z=⇒G δ̌′

=⇒ ∃n > 0, ς1, . . . , ςn+1, $1, . . . , $n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :

π′′ = ς1$1
A1−→ $2ς2 . . . ςn$n

An−→ $n+1ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈
R ∧ δ̌′ = αδ̌(ς1)αδ̌($1)Řδ̌[A1 → σ1]αδ̌($2)αδ̌(ς2) . . . αδ̌(ςn)αδ̌($n)Řδ̌[An →
σn]αδ̌($n+1)αδ̌(ςn+1)

Hdef. (42) of δ̌2Z=⇒G and def. αδ̌ so that ς ′1 = αδ̌(ς1)αδ̌($1), . . . , ς ′n+1 =
αδ̌($n+1)αδ̌(ςn+1)I

=⇒ ∃n > 0, ς1, . . . , ςn+1, $1, . . . , $n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :

π′′ = ς1$1
A1−→ $2ς2 . . . ςn$n

An−→ $n+1ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ δ̌′ =
αδ̌(ς1)αδ̌(〈$1, $2〉 ↑ ŘĎ[A1 → σ1])αδ̌(ς2) . . . αδ̌(ςn)αδ̌(〈$n, $n+1〉 ↑ ŘĎ[An →
σn])αδ̌(ςn+1) Hsince αδ̌(〈$, $′〉 ↑ ŘĎ[A→ σ]) = αδ̌($)Řδ̌[A→ σ]αδ̌($′)I

=⇒ ∃π′ : π′′ Ď2Z=⇒G π′ ∧ δ̌′ = αδ̌(π′) Hdef. αδ̌ and (15) of Ď2Z=⇒GI . �
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Observe that as a corollary of this proof, we have just shown that

Corollary 52

{αδ̌(π) | ∃A ∈ N : (` A−→ a) Ď2Z=⇒G π} = {δ̌ | ∃A ∈ N : A δ̌2Z=⇒G δ̌} . e

Corollary 53

Sδ̌JGK = λA . {δ̌ ∈ Ď | A
?

δ̌2Z=⇒G δ̌} . e

Proof By Th. 51, Sδ̌JGK = lfp
⊆ F̌δ̌JGK where F̌δ̌JGK = λφ . λA . { A } ∪ post[ δ̌2Z=⇒G

](φ(A)) so Sδ̌JGK(A) = lfp
⊆
λX . { A } ∪ post[ δ̌2Z=⇒G]X by Ex. 105 whence Sδ̌JGK(A) =

post[ ?

δ̌2Z=⇒G]({ A }) = {δ̌ ∈ Ď | A
?

δ̌2Z=⇒G δ̌} by (A.1). �

17.2. Fixpoint Top-Down Protosyntax Tree Semantics
17.2.1. Protosyntax Tree Semantics

The protosyntax tree semantics SšJGK ∈ N 7→ ℘(Ť ) of a context-free grammar G
= 〈T , N , S, R〉 is the set of protosyntax trees generated by the grammar G for each
nonterminal. It is defined as the protosyntax tree abstraction of the protoderivation tree
semantics, as follows

SšJGK ∆= αš(Sδ̌JGK) . (43)

17.2.2. Protosyntax Tree Derivation
Let us define Řš ∈ R 7→ Ť such that

Řš[A→ σ] ∆= LA Ř�
š
[A→ �σ]AM (44)

where Ř�
š
∈ R� 7→ Ť is

Ř�
š
[A→ σ�aσ′] ∆= a Ř�

š
[A→ σa�σ′] Ř�

š
[A→ σ�Bσ′] ∆= B Ř�

š
[A→ σB�σ′]

Ř�
š
[A→ σ�] ∆= ε

so that

τ̌ š2Z=⇒G τ̌ ′ (45)
∆= ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : τ̌ = ς1 A1 ς2 . . . ςn An ςn+1 ∧
∀i ∈ [1, n] : Ai → σi ∈ R ∧ τ̌ ′ = ς1Řš[A1 → σ1]ς2 . . . ςnŘš[An → σn]ςn+1 .
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17.2.3. Fixpoint Top-Down Structural Protosyntax Tree Semantics
Theorem 54

SšJGK = lfp
⊆

F̌šJGK where F̌šJGK ∆= λφ . λA . { A } ∪ post[ š2Z=⇒G]φ(A) . e

Proof We apply Th. 49 where Th. 51 provides a fixpoint characterization of Sδ̌JGK =
lfp
⊆ F̌δ̌JGK. Given an iterate φ of F̌δ̌JGK, we have to check the following local soundness

and completeness conditions

αš(λA . { A }) = λA . { A } Hdef. αšI

αš(λA . post[ δ̌2Z=⇒G]φ(A)) = λA . {αš(δ̌′) | ∃δ̌ ∈ φ(A) : δ̌ δ̌2Z=⇒G δ̌′} Hdef. post, αšI
= λA . {τ̌ ′ | ∃τ̌ ∈ αš(φ(A)) : τ̌ š2Z=⇒G τ̌ ′}

Hprovided we can define š2Z=⇒G such that {αš(δ̌′) | ∃δ̌ ∈ φ(A) : δ̌ δ̌2Z=⇒G δ̌′} =
{τ̌ ′ | ∃τ̌ ∈ αš(φ(A)) : τ̌ š2Z=⇒G τ̌ ′}I

= λA . post[ š2Z=⇒G](αš(φ)(A)) Hdef. post and αšI

The design of š2Z=⇒G follows from the evaluation of the condition

{αš(δ̌′) | ∃δ̌ ∈ φ(A) : δ̌ δ̌2Z=⇒G δ̌′} ⊆ {τ̌ ′ | ∃τ̌ ∈ αš(φ(A)) : τ̌ š2Z=⇒G τ̌ ′}
⇐⇒ ∀δ̌ ∈ φ(A) : ∀δ̌′ : (δ̌ δ̌2Z=⇒G δ̌′) =⇒ (∃τ̌ ∈ αš(φ(A)) : τ̌ š2Z=⇒G αš(δ̌′)) Hdef. ⊆, ∃I
⇐= ∀δ̌ ∈ φ(A) : ∀δ̌′ : (δ̌ δ̌2Z=⇒G δ̌′) =⇒ (αš(δ̌) š2Z=⇒G αš(δ̌′)) Hchoosing τ̌ = αš(δ̌)I

as follows

δ̌ δ̌2Z=⇒G δ̌′

=⇒ ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αš(δ̌) =
αš(ς1) A1 α

š(ς2) . . . αš(ςn) An α
š(ςn+1) ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αš(δ̌′) =

αš(ς1)αš(Řδ̌[A1 → σ1])αš(ς2) . . . αš(ςn)αš(Řδ̌[An → σn])αš(ςn+1)
Hdef. (42) of δ̌2Z=⇒G, =, and αšI

⇐⇒ ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αš(δ̌) =
αš(ς1) A1 α

š(ς2) . . . αš(ςn) An α
š(ςn+1) ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αš(δ̌′) =

αš(ς1)Řš[A1 → σ1]αš(ς2) . . . αš(ςn)Řš[An → σn]αš(ςn+1)
Hby defining Řš as in (44) so that αš(Řδ̌[A→ σ]) = Řš[A→ σ]I

=⇒ ∃n > 0, ς ′1, . . . , ς ′n+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αš(δ̌) =
ς ′1 A1 ς

′
2 . . . ς

′
n An ς

′
n+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αš(δ̌′) = ς ′1Řš[A1 →

σ1]ς ′2 . . . ς ′nŘš[An → σn]ς ′n+1 Hby letting ς ′i = αš(ςi), i = 1, . . . , n+ 1I
⇐⇒ αš(δ̌) š2Z=⇒G αš(δ̌′) Hby defining š2Z=⇒G as in (45)I .

Inversely, we must also check that

{τ̌ ′ | ∃τ̌ ∈ αš(φ(A)) : τ̌ š2Z=⇒G τ̌ ′} ⊆ {αš(δ̌′) | ∃δ̌ ∈ φ(A) : δ̌ δ̌2Z=⇒G δ̌′}
⇐⇒ ∀δ̌′′ ∈ φ(A) : ∀τ̌ ′ : (αš(δ̌′′) š2Z=⇒G τ̌ ′) =⇒ (∃δ̌ ∈ φ(A) : ∃δ̌′ : δ̌ δ̌2Z=⇒G δ̌′ ∧ τ̌ ′ =

αš(δ̌′)) Hdef. ⊆ and since τ̌ ∈ αš(φ(A)) so ∃δ̌′′ ∈ φ(A) : τ̌ = αš(δ̌′′)I
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We have δ̌′′ ∈ φ(A) and φ is an iterate of F̌δ̌JGK hence, S
?

š2Z=⇒G δ̌′′, so by def. (45) of
š2Z=⇒G, δ̌′′ has necessarily the form ς1 A′

1 ς2 . . . ςm A′
m ςm+1, m > 0.

αš(δ̌′′) š2Z=⇒G τ̌ ′

⇐⇒ ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αš(δ̌′′) =
ς1 A1 ς2 . . . ςn An ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ τ̌ ′ = ς1Řš[A1 →
σ1]ς2 . . . ςnŘš[An → σn]ςn+1 Hdef. (45) of š2Z=⇒GI

⇐⇒ ∃n > 0, ς ′1, . . . , ς ′n+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αš(δ̌′′) =
αš(ς ′1) A1 α

š(ς ′2) . . . αš(ς ′n) An α
š(ς ′n+1) ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ τ̌ ′ =

αš(ς ′1)Řš[A1 → σ1]αš(ς ′2) . . . αš(ς ′n)Řš[An → σn]αš(ς ′n+1)
Hdef. αš so that ςi = αš(ς ′i), i = 1, . . . , n+ 1I

⇐⇒ ∃n > 0, ς ′1, . . . , ς ′n+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αš(δ̌′′) =
αš(ς ′1) A1 α

š(ς ′2) . . . αš(ς ′n) An α
š(ς ′n+1) ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ τ̌ ′ =

αš(ς ′1)αš(Řδ̌[A1 → σ1])αš(ς ′2) . . . αš(ς ′n)αš(Řδ̌[An → σn])αš(ς ′n+1)
Hby def. (44) of Řš so that αš(Řδ̌[A→ σ]) = Řš[A→ σ]I

=⇒ ∃δ̌ ∈ φ(A) : ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : δ̌ =
ς1 A1 ς2 . . . ςn An ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ τ̌ ′ = αš(ς1)αš(Řδ̌[A1 →
σ1])αš(ς2) . . . αš(ςn)αš(Řδ̌[An → σn])αš(ςn+1)

Hby choosing δ̌ = δ̌′′ which, since αš(δ̌′′) =
αš(ς ′1) A1 αš(ς ′2) . . . αš(ς ′n) An αš(ς ′n+1) and δ̌′′ = ς ′′1 A′

1 ς
′′
2 . . . ς

′′
m A′

m ς ′′m+1

so, by def. of αš, m > n and δ̌′′ has the form ς1 A1 ς2 . . . ςn An ςn+1 with
αš(ς ′i) = αš(ςi), i = 1, . . . , n+ 1I

⇐⇒ ∃δ̌ ∈ φ(A) : ∃δ̌′ : ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :
δ̌ = ς1 A1 ς2 . . . ςn An ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ δ̌′ = ς1Řδ̌[A1 →
σ1]ς2 . . . ςnŘδ̌[An → σn]ςn+1 ∧ τ̌ ′ = αš(δ̌′)

Hby def. αš and by defining δ̌′ = ς1Řδ̌[A1 → σ1]ς2 . . . ςnŘδ̌[An → σn]ςn+1I

⇐⇒ ∃δ̌ ∈ φ(A) : ∃δ̌′ : δ̌ δ̌2Z=⇒G δ̌′ ∧ τ̌ ′ = αš(δ̌′) Hdef. (42) of δ̌2Z=⇒GI . �

As a corollary of this proof, we have shown that

Corollary 55

{αš(δ̌) | ∃A ∈ N : A δ̌2Z=⇒G δ̌} = {τ̌ | ∃A ∈ N : A š2Z=⇒G τ̌} . e

Corollary 56

SšJGK = λA . {τ̌ ∈ Ť | A
?

š2Z=⇒G τ̌} . e

Proof By Th. 54, SšJGK = lfp
⊆ F̌šJGK where F̌šJGK = λφ . λA . { A } ∪ post[ š2Z=⇒G

]φ(A) so SšJGK(A) = lfp
⊆
λX . { A } ∪ post[ š2Z=⇒G]X by Ex. 105 whence SšJGK(A) =

post[ ?
š2Z=⇒G]({ A }) = {τ̌ ∈ Ť | A

?
š2Z=⇒G τ̌} by (A.1). �
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17.3. Fixpoint Top-Down Protolanguage Semantics
17.3.1. Protolanguage Semantics

The protolanguage semantics SĽJGK ∈ N 7→ ℘(V ?) of a context-free grammar G =
〈T , N , S, R〉 is the protolanguage generated by the grammar G for each nonterminal.
It is defined as

SĽJGK ∆= αĽ(SšJGK) . (46)

17.3.2. Protolanguage Derivation
Let us define the protolanguage derivation Z=⇒G for a grammar G = 〈T , N , S, R〉

( Z=⇒ when G is understood)

η Z=⇒G η′ (47)
∆= ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An, σ1, . . . , σn : η = ς1A1ς2 . . . ςnAnςn+1 ∧

∀i ∈ [1, n] : Ai → σi ∈ R ∧ η′ = ς1σ1ς2 . . . ςnσnςn+1 .

This is [8, Def. 8.2.2] for n = 1, the difference being that we allow several simultaneous
substitutions.

17.3.3. Fixpoint Top-Down Structural Protolanguage Semantics
The protolanguage semantics can be defined in fixpoint form as

Theorem 57

SĽJGK = lfp
⊆̇

F̌ĽJGK where F̌ĽJGK ∆= λφ . λA . {A} ∪ post[ Z=⇒G]φ(A) . e

Proof We apply Th. 49 to the fixpoint characterization Th. 54 of SšJGK = lfp
⊆ F̌šJGK.

We have αĽ(λA . { A }) = λA . {A} and given an iterate φ of F̌šJGK, we have

αĽ(λA .post[ š2Z=⇒G]φ(A))
= λA . {αĽ(τ̌ ′) | ∃τ̌ ∈ φ(A) : τ̌ š2Z=⇒G τ̌ ′} Hdef. αĽ and postI
= λA . {η′ | ∃η ∈ αĽ(φ(A)) : η Z=⇒G η′}

Hprovided we can define Z=⇒G such that {αĽ(τ̌ ′) | ∃τ̌ ∈ φ(A) : τ̌ š2Z=⇒G τ̌ ′} =
{η′ | ∃η ∈ αĽ(φ(A)) : η Z=⇒G η′}I

= λA . post[ Z=⇒G](αĽ(φ)(A)) Hdef. post and αĽI .

The design of Z=⇒G derives from the condition

{αĽ(τ̌ ′) | ∃τ̌ ∈ φ(A) : τ̌ š2Z=⇒G τ̌ ′} ⊆ {η′ | ∃η ∈ αĽ(φ(A)) : η Z=⇒G η′}
⇐⇒ ∀τ̌ ∈ φ(A) : ∀τ̌ ′ : (τ̌ š2Z=⇒G τ̌ ′) =⇒ (∃η ∈ αĽ(φ(A)) : η Z=⇒G αĽ(τ̌ ′)) Hdef. ⊆, ∃I
⇐= ∀τ̌ ∈ φ(A) : ∀τ̌ ′ : (τ̌ š2Z=⇒G τ̌ ′) =⇒ (αĽ(τ̌) Z=⇒G αĽ(τ̌ ′)) Hchoosing η = αĽ(τ̌)I

as follows
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τ̌ š2Z=⇒G τ̌ ′

=⇒ ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αĽ(τ̌) =
αĽ(ς1)A1α

Ľ(ς2) . . . αĽ(ςn)AnαĽ(ςn+1) ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αĽ(τ̌ ′) =
αĽ(ς1)αĽ(Řš[A1 → σ1])αĽ(ς2) . . . αĽ(ςn)αĽ(Řš[An → σn])αĽ(ςn+1)

Hdef. (45) of š2Z=⇒G, =, and αĽI

⇐⇒ ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αĽ(τ̌) =
αĽ(ς1)A1α

Ľ(ς2) . . . αĽ(ςn)AnαĽ(ςn+1) ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αĽ(τ̌ ′) =
αĽ(ς1)σ1α

Ľ(ς2) . . . αĽ(ςn)σnαĽ(ςn+1)
Hdef. αĽ and (44) of Řš so that αĽ(Řš[A→ σ]) = σI

=⇒ ∃n > 0, ς ′1, . . . , ς ′n+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? : αĽ(τ̌) =
ς ′1A1ς

′
2 . . . ς

′
nAnς

′
n+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ αĽ(τ̌ ′) = ς ′1σ1ς

′
2 . . . ς

′
nσn − ςn+1

Hby letting ς ′i = αĽ(ςi), i = 1, . . . , n+ 1I

⇐⇒ αĽ(τ̌) Z=⇒G αĽ(τ̌ ′) Hby defining Z=⇒G as in (47)I .

Inversely, we must also check that

{η′ | ∃η ∈ αĽ(φ(A)) : η Z=⇒G η′} ⊆ {αĽ(τ̌ ′) | ∃τ̌ ∈ φ(A) : τ̌ š2Z=⇒G τ̌ ′}
⇐⇒ ∀η ∈ αĽ(φ(A)) : ∀η′ : (η Z=⇒G η′) =⇒ (∃τ̌ ∈ φ(A) : ∃τ̌ ′ : τ̌ š2Z=⇒G τ̌ ′ ∧ η′ = αĽ(τ̌ ′))

Hdef. ⊆I
⇐⇒ ∀τ̌ ′′ ∈ φ(A) : ∀η′ : (αĽ(τ̌ ′′) Z=⇒G η′) =⇒ (∃τ̌ ∈ φ(A) : ∃τ̌ ′ : τ̌ š2Z=⇒G τ̌ ′ ∧ η′ =

αĽ(τ̌ ′))
Hsince η ∈ αĽ(φ(A)) so η = αĽ(τ̌ ′′) for some τ̌ ′′ ∈ φ(A)I

We have τ̌ ′′ ∈ φ(A) and φ(A) is an iterate of F̌šJGK hence S š2Z=⇒G τ̌ ′′ so by def. (45) of
š2Z=⇒G, τ̌ ′′ has necessarily the form ς ′1 A′

1 ς
′
2 . . . ς

′
m A′

m ς ′m+1 where m > 0.

αĽ(τ̌ ′′) Z=⇒G η′

⇐⇒ ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An, σ1, . . . , σn : αĽ(τ̌ ′′) = ς1A1ς2 . . . ςnAnςn+1 ∧ ∀i ∈
[1, n] : Ai → σi ∈ R ∧ η′ = ς1σ1ς2 . . . ςnσnςn+1 Hdef. (47) of Z=⇒GI

=⇒ ∃n > 0, ς ′′1 , . . . , ς ′′n+1, A1, . . . , An, σ1, . . . , σn : τ̌ ′′ = ς ′′1 A′
1 ς
′
2 . . . ς

′′
n A′

n ς
′′
n+1 ∧ ∀i ∈

[1, n] : Ai → σi ∈ R ∧ η′ = αĽ(ς ′′1 )σ1α
Ľ(ς ′′2 ) . . . αĽ(ς ′′n)σnαĽ(ς ′′n+1)

Hsince τ̌ ′′ = ς ′1 A′
1 ς
′
2 . . . ς

′
m A′

m ς ′m+1 so αĽ(τ̌ ′′) =
αĽ(ς ′1)A′1αĽ(ς ′2) . . . αĽ(ς ′m)A′mαĽ(ς ′m+1) = ς1A1ς2 . . . ςnAnςn+1 hence,
by def. of αĽ, τ̌ ′′ has the form ς ′′1 A′

1 ς
′
2 . . . ς

′′
n A′

n ς
′′
n+1 with αĽ(ς ′′i ) = ςi,

i = 1, . . . , n+ 1I
⇐⇒ ∃n > 0, ς ′′1 , . . . , ς ′′n+1, A1, . . . , An, σ1, . . . , σn : τ̌ ′′ = ς ′′1 A′

1 ς
′′
2 . . . ς

′′
n A′

n ς
′′
n+1 ∧ ∀i ∈

[1, n] : Ai → σi ∈ R ∧ η′ = αĽ(ς1)αĽ(Řš[A1 → σ1])αĽ(ς2) . . . αĽ(ςn)αĽ(Řš[An →
σn])αĽ(ςn+1) Hdef. αĽ and (44) of Řš so that αĽ(Řš[A→ σ]) = σI

=⇒ ∃τ̌ ∈ φ(A) : ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An, σ1, . . . , σn : τ̌ =
ς1 A′

1 ς2 . . . ςn A′
n ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ η′ = αĽ(ς1Řš[A1 →

σ1]ς2 . . . ςnŘš[An → σn]ςn+1)
Hdef. αĽ, renaming ς ′′i as ςi, i = 1, . . . , n+ 1 and choosing τ̌ = τ̌ ′′I
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⇐⇒ ∃τ̌ ∈ φ(A) : ∃τ̌ ′ : ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V ? :
τ̌ = ς1 A1 ς2 . . . ςn An ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ τ̌ ′ = ς1Řš[A1 →
σ1]ς2 . . . ςnŘš[An → σn]ςn+1 ∧ η′ = αĽ(τ̌ ′) Hdef. ∃I

⇐⇒ ∃τ̌ ∈ φ(A) : ∃τ̌ ′ : τ̌ š2Z=⇒G τ̌ ′ ∧ η′ = αĽ(τ̌ ′) Hdef. (45) of š2Z=⇒GI . �

As a corollary of this proof and (16), it follows that

Corollary 58

λA . {αĽ(αš(αδ̌(π))) | (` A−→ a) ?

Ď2Z=⇒G π} = λA . {η | A Z=⇒G η} e

so that we also have the classical definition of the protolanguage generated by a grammar
[8, Def. 8.2.3]

Corollary 59

SĽJGK = λA . {η ∈ V ? | A ?Z=⇒G η} . e

Proof By Th. 57, SĽJGK = lfp
⊆ F̌ĽJGK where F̌ĽJGK = λφ . λA . {A}∪post[ Z=⇒G]φ(A)

so SĽJGK(A) = lfp
⊆
λX . {A}∪ post[ Z=⇒G]X by Ex. 105 whence SĽJGK(A) = post[ ?Z=⇒G

]({A}) = {η ∈ V ? | A ?Z=⇒G η} by (A.1). �

17.4. Extension of the Fixpoint Top-Down Structural Protolanguage Semantics to Gram-
mar Rule States

The protolanguage semantics SĽJGK ∈ N 7→ ℘(V ?) can be extended to grammar rule
states

−→
S ĽJGK ∈ R� 7→ ℘(V ?) as follows

−→
S ĽJGK[A→ σ�aσ′] ∆= a

−→
S ĽJGK[A→ σa�σ′] (48)

−→
S ĽJGK[A→ σ�Bσ′] ∆= SĽJGK(B)

−→
S ĽJGK[A→ σB�σ′]

−→
S ĽJGK[A→ σ�] ∆= ε

so that

Corollary 60
−→
S ĽJGK[A→ σ�σ′] = {ς ∈ V ? | σ′ ?Z=⇒G ς} . e

Proof By induction on the length |σ′| of σ′.
−→
S ĽJGK[A→ σ�aσ′] = a

−→
S ĽJGK[A→ σa�σ′] Hdef. (48) of

−→
S ĽJGKI

= a {ς ∈ V ? | σ′ ?Z=⇒G ς} Hind. hyp.I
= {ς ′ ∈ V ? | a σ′ ?Z=⇒G ς ′} Hdef. concatenation, ?Z=⇒G, Z=⇒G, and letting ς ′ = a ςI

−→
S ĽJGK[A→ σ�Bσ′] = SĽJGK(B)

−→
S ĽJGK[A→ σB�σ′] Hdef. (48) of

−→
S ĽJGKI
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= {η ∈ V ? | B ?Z=⇒G η}
−→
S ĽJGK[A→ σB�σ′] HCor. 59I

= {η ∈ V ? | B ?Z=⇒G η} {ς ∈ V ? | σ′ ?Z=⇒G ς} Hind. hyp.I
= {ς ′ ∈ V ? | Bσ′ ?Z=⇒G ς ′} Hdef. concatenation, ?Z=⇒G, Z=⇒G, and letting ς ′ = η ςI

−→
S ĽJGK[A→ σ�] = ε Hdef.

−→
S ĽJGKI

= {ς ∈ V ? | ε ?Z=⇒G ς} Hdef. ?Z=⇒G and Z=⇒GI . �

18. Abstraction of Top-Down Grammar Semantics into Bottom-Up Seman-
tics

In Sec. 11 and Sect. 17, we have constructed a hierarchy of top-down semantics
while in Sect. 8 and Sect. 15, we have constructed a hierarchy of bottom-up semantics,
as illustrated in Fig. 1.

Top-down semantics compute grammatical structures with nonterminal variables A

replacing these nonterminal variables by a function of the right-hand side of corresponding
grammar rules A→ σ. When no nonterminal variable is left in the structure, we get a
grammatical information which can also be computed bottom-up. As shown in Sect. 12
by Th. 22 in the particular case of protoderivations, bottom-up semantics can, up to an
isomorphic projection, be understood as abstractions of top-down ones by restriction to
terminal structures, that is, without any nonterminal variable.

As shown in Fig. 1, this can be extended to the hierarchy of semantics, up to an
isomorphic projection, as follows.

Top-down concrete Abstrac- Bottom-up abstract Isomorphic
grammar semantics tion grammar semantics projection

Protoderivation SĎJGK αĎd̂ Derivation Sd̂JGK πd̂
∆= λT . λA .T.A

Protoderiv. tree Sδ̌JGK αδ̌δ̂ Derivation tree Sδ̂JGK πδ̂
∆= λT . λA .T.A

Protosyntax tree SšJGK αšŝ Syntax tree SŝJGK πŝ
∆= λT . λA .T.A

Protolanguage SĽJGK = Protolanguage SL̂JGK πL̂
∆= 1

Protolanguage SĽJGK α̇` Language S`JGK π`
∆= 1

This shows that although the top-down grammar semantics and bottom-up grammar
semantics differ in the way derivations, derivation trees and syntax trees are built, they
do coincide for protolanguages whence for terminal languages and therefore define the
same language, although in different ways.

One level of abstraction in Fig. 1 (where the isomorphic projections are omitted for
simplicity) can be described as shown in Fig. 6.

Lemma 61 If π\̂ is a bijection, S]̌JGK ∆= α]̌(S\̌JGK), S]̂JGK ∆= α]̂(S\̂JGK), α]̌]̂ ◦ α]̌ = π]̂ ◦

α]̂ ◦ π\̂
−1
◦ α\̌\̂, α\̌\̂(S\̌JGK) = π\̂(S\̂JGK), then α]̌]̂(S]̌JGK) = π]̂(S]̂JGK). e

Proof
41



↑ bottom-up semantics

top-down semantics ↓

s�����
�
��

�
��*

α\̌\̂

6

S\̌JGK
top-down concrete se-
mantics

α]̌

s�����
�
��

�
��*

α]̌]̂

S]̌JGK ∆= α]̌(S\̌JGK)
top-down abstract se-
mantics

s� π\̂ s S\̂JGK
bottom-up concrete se-
mantics

6 6

α]̂

π]̂ ◦ α]̂ ◦ π\̂
−1

s� π]̂ s S]̂JGK ∆= α]̂(S\̂JGK)
bottom-up abstract se-
mantics

Figure 6: Top-down to bottom-up abstraction.

α]̌]̂(S]̌JGK)
= α]̌]̂ ◦ α]̌(S\̌JGK) Hsince S]̌JGK ∆= α]̌(S\̌JGK) and def. ◦I

= π]̂ ◦ α]̂ ◦ π\̂
−1
◦ α\̌\̂(S\̌JGK) Hsince α]̌]̂ ◦ α]̌ = π]̂ ◦ α]̂ ◦ π\̂

−1
◦ α\̌\̂I

= π]̂ ◦ α]̂ ◦ π\̂
−1
◦ π\̂(S\̂JGK) Hsince α\̌\̂(S\̌JGK) = π\̂(S\̂JGK)I

= π]̂(S]̂JGK) Hsince π\̂ is a bijection and S]̂JGK ∆= α]̂(S\̂JGK)I . �

18.1. Abstraction of the Top-Down Protoderivation Tree Grammar Semantics into the
Bottom-up Derivation Tree Semantics

Let us define the abstraction αδ̌δ̂ ∆= λT . λA .T (A) ∩ D̂ such that

〈N 7→ ℘(Ď), ⊆̇〉 −−−−→−→←−−−−−
αδ̌δ̂

γδ̌δ̂

〈N 7→ ℘(D̂), ⊆̇〉

which collects the terminal derivation trees (without nonterminal variables) among
protoderivation trees.

Lemma 62

αδ̌δ̂ ◦ αδ̌ = λP ∈ N 7→ ℘(Π) . λA .αδ̂(αĎd̂(P )A) e

Proof Given P ∈ N 7→ ℘(Π), we calculate

= αδ̌δ̂(αδ̌(P )) = λA .αδ̌(P (A)) ∩ D̂ Hdef. αδ̌δ̂ and αδ̌I
= λA . {αδ̌(π) | π ∈ P (A)} ∩ D̂

Hdef. αδ̌ ∈ Π 7→ Ď where Ď ∆= (P ∪ Ǔ )? and Ǔ
∆= T ∪N 2 ∪R�I
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= λA . {αδ̂(θ) | θ ∈ (P (A) ∩Θ)}
Hwhere αδ̂ ∈ Θ 7→ D̂, D̂ ∆= (P ∪ Û )? and Û

∆= T ∪R� since αδ̌(π) ∈ D̂ if and
only if π has not nonterminal variable in N 2 that is π ∈ ΘI

= λA .αδ̂(P (A) ∩Θ) Hdef. αδ̂ where (P (A) ∩Θ) ∈ ℘(Θ)I
= λA .αδ̂(αĎd̂(P )A) Hdef. αĎd̂I . �

The protoderivation tree semantics is a top-down way of defining the derivation tree
semantics, by restriction to terminal trees, as follows

Theorem 63

αδ̌δ̂(Sδ̌JGK) = λA . Sδ̂JGK.A = λA . {δ̂ ∈ D̂ | A δ̌2Z=⇒G δ̂} . e

Proof As shown in Lem. 61, we have:

αδ̌δ̂(Sδ̌JGK) = αδ̌δ̂(αδ̌(SĎJGK)) Hdef. (37) of Sδ̌JGKI
= λA .αδ̂(αĎd̂(SĎJGK)A) = λA .αδ̂(Sd̂JGK.A) Hby Lem. 62 and Lem. 22I

= λA . Sδ̂JGK.A Hdef. αδ̂ and (26) of Sδ̂JGKI .

Moreover

αδ̌δ̂(Sδ̌JGK) = λA . {αδ̌(π) | π ∈ SĎJGK(A)} ∩ D̂ Hdef. αδ̌δ̂, (37) of Sδ̌JGK, and αδ̌I

= λA . {αδ̌(π) | π ∈ Π ∧ ` A−→ a) ?

Ď2Z=⇒G π} ∩ D̂ Hdef. (16) of SĎJGKI

= λA . {αδ̌(π) | ∃A ∈ N : π ∈ Π ∧ ` A−→ a) ?

Ď2Z=⇒G π}.A ∩ D̂ Hdef. selection •.•I
= λA . {δ̌ | ∃A ∈ N : A δ̌2Z=⇒G δ̌}.A ∩ D̂ Hby Cor. 52I

= λA . {δ̂ ∈ D̂ | A δ̌2Z=⇒G δ̂} Hdef. selection •.• and ∩I . �

18.2. Abstraction of the Top-Down Protosyntax Tree Grammar Semantics into the Bottom-
up Syntax Tree Semantics

Let us define the abstraction αšŝ ∆= λT . λA .T (A) ∩ T̂ such that

〈N 7→ ℘(Ť ), ⊆̇〉 −−−−→−→←−−−−−
αšŝ

γšŝ

〈N 7→ ℘(T̂ ), ⊆̇〉

which collects the terminal syntax trees (without nonterminal variables) among protosyn-
tax trees.

Lemma 64

αšŝ ◦ αš = λT ∈ N 7→ ℘(Ť ) . λA .αŝ(αδ̌δ̂(T )A) e

Proof Given T ∈ N 7→ ℘(Ť ), we calculate
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= αšŝ(αš(T )) = λA .αš(T (A)) ∩ T̂ Hdef. αšŝ and αšI
= λA . {αš(δ̌) | δ̌ ∈ T (A)} ∩ T̂

Hdef. αš, where αš ∈ Ď 7→ Ť , Ď ∆= (P ∪ Ǔ )?, Ǔ
∆= T ∪ N 2 ∪ R�, Ť ∆=

(P ∪T ∪N 2)? and T̂ ∆= (P ∪T )?I
= λA . {αš(δ̌) | δ̌ ∈ T (A) ∩ D̂}

Hby def. αš since αš(δ̌) ∈ T̂ if and only if δ̌ contains no nonterminal variable in
N 2 that is δ̌ ∈ D̂ where D̂ ∆= (P ∪ Û )? and Û

∆= T ∪R�I
= λA . {αŝ(δ̂) | δ̂ ∈ (T (A) ∩ D̂)} Hby def. αš and αŝ which coincide on D̂I

= λA .αŝ(αδ̌δ̂(T )A) Hdef. αŝ and αδ̌δ̂I . �

The protosyntax tree semantics is a top-down way of defining the syntax tree semantics,
by restriction to terminal syntax trees, as follows
Theorem 65

αšŝ(SšJGK) = λA . SŝJGK.A = λA . {τ̂ ∈ T̂ | A š2Z=⇒G τ̂} . e

Proof As shown in Lem. 61, we have:

αšŝ(SšJGK) = αšŝ(αš(Sδ̌JGK)) Hdef. (43) of SšJGKI
= λA .αŝ(αδ̌δ̂(Sδ̌JGK)A) Hby Lem. 64I

= λA .αŝ((Sδ̂JGK).A) Hby Th. 63I

= λA . SŝJGK.A Hdef. αŝ, selection •.•, and (29) of SŝJGKI .
Moreover

λA . SŝJGK.A = λA .αŝ((Sδ̂JGK).A) Has shown aboveI
= λA .αŝ({δ̂ ∈ D̂ | A δ̌2Z=⇒G δ̂}) Hby Th. 63I

= λA . ({αŝ(δ̂) | δ̂ ∈ D̂ ∧ ∃A ∈ N : A δ̌2Z=⇒G δ̂}).A) Hdef. selection •.• and αŝI
= λA . ({αš(δ̌) | δ̌ ∈ D̂ ∧ ∃A ∈ N : A δ̌2Z=⇒G δ̌}).A

Hby def. αš and αŝ which coincide on D̂ I

= λA . ({αš(δ̌) | ∃A ∈ N : A δ̌2Z=⇒G δ̌} ∩ T̂ ).A
Hby def. αš since αš(δ̌) ∈ T̂ if and only if δ̌ contains no nonterminal variable in
N 2 that is δ̌ ∈ D̂ where D̂ ∆= (P ∪ Û )? and Û

∆= T ∪R�I
= λA . ({τ̂ | ∃A ∈ N : A š2Z=⇒G τ̂} ∩ T̂ ).A HCor. 55I

= λA . {τ̂ ∈ T̂ | A š2Z=⇒G τ̂} Hdef. ∩ and selection •.•I . �

18.3. Abstraction of the Top-Down Protolanguage Grammar Semantics into the Bottom-
Up Protolanguage Semantics

We consider the abstraction αp ∈ ℘(V ? × V ?) 7→ N 7→ ℘(V ?) defined as

αp(r) ∆= λA . {σ ∈ V ? | 〈A, σ〉 ∈ r} = λA . post[r]({A})

so that 〈℘(V ? × V ?), ⊆̇〉 −−−−→−→←−−−−−
αp

γp

〈N 7→ ℘(V ?), ⊆̇〉, pointwise.
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Lemma 66 Let Fn, n ∈ N be the iterates of F̂L̂JGK from ∅ (as defined in Sect. A.1)
with limit lfp

⊆ F̂L̂JGK = Fω =
⋃
n∈N F

n. αp(∅) = λA .∅ = F 0. For n > 0, we have
αp( n∗Z=⇒G) = Fn. e

Proof We first prove that ∀n > 0 : F̂�L̂[A → σ�σ′](αp( n∗Z=⇒G)) = {ς | σ′ n∗Z=⇒G ς} by
natural induction on the length |σ′| of σ′. We have three cases.

F̂�L̂[A→ σ�aσ′](αp( n∗Z=⇒G)) = a F̂�L̂[A→ σa�σ′](αp( n∗Z=⇒G)) Hdef. F̂L̂ & n∗Z=⇒GI
= a {ς | σ′ n∗Z=⇒G ς} Hind. hyp.I
= {ς ′ | aσ′ n∗Z=⇒G ς ′} Hdef. concatenation, n∗Z=⇒G, Z=⇒G, ς ′ = aς, def. n∗Z=⇒G & Z=⇒GI

F̂�L̂[A→ σ�Bσ′](αp( n∗Z=⇒G))
= ({B} ∪ {ς | B n∗Z=⇒G ς}) F̂�L̂[A→ σB�σ′](αp( n∗Z=⇒G)) Hdef. F̂L̂ and αpI
= {ς | B n∗Z=⇒G ς} F̂�L̂[A→ σB�σ′](αp( n∗Z=⇒G)) Hn > 0 so 1 ⊆ n∗Z=⇒GI
= {ς | B n∗Z=⇒G ς} {ς ′ | σ′

n∗Z=⇒G ς ′} Hind. hyp.I
= {ς ′′ | Bσ′ n∗Z=⇒G ς ′′} Hdef. concatenation, ς ′′ = ςς ′, def. n∗Z=⇒G & Z=⇒GI

F̂�L̂[A→ σ�](αp( n∗Z=⇒G)) = {ε} = {ς | ε n∗Z=⇒G ς} Hdef. F̂L̂, 1∗Z=⇒G = 1, n∗Z=⇒G & Z=⇒GI

The proof of the lemma is by recurrence on n. For the base case n = 1, we have

αp( 1∗Z=⇒G) = αp(1) ∪ αp( Z=⇒G) Hdef. 1∗Z=⇒G, αp preserves lubs, and def. nZ=⇒GI
= λA . {A} ∪ ⋃

A→σ∈R

{σ} Hdef. αp & Z=⇒GI

= λA . {A} ∪ ⋃
A→σ∈R

F̂�L̂[A→ �σ](λB .∅) Hdef. F̂L̂I

= F̂L̂JGK(F 0) = F 1 Hdef. F̂L̂JGK, and iterates F 0, F 1I

For the induction step n > 1, we calculate αp(n+1∗Z=⇒G )

= λA . {A} ∪ ⋃
A→σ∈R

{ς | σ n∗Z=⇒G ς} Hdef. n+1∗Z=⇒G , αp presering lubs, ◦ & Z=⇒GI

= λA . {A} ∪ ⋃
A→σ∈R

F̂�L̂[A→ �σ](αp( n∗Z=⇒G)) Has shown aboveI

= F̂L̂JGK(αp( n∗Z=⇒G)) = F̂L̂JGK(Fn) = Fn+1 Hdef. F̂L̂JGK, ind. hyp., and iterates.I �

The classical characterization of the protolanguage generated by a grammar [8, Def. 8.2.3]
is

Theorem 67

SL̂JGK = λA . {σ ∈ V ? | A ?Z=⇒G σ} . e

Proof We must prove that SL̂JGK = αp( ?Z=⇒G). We have
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SL̂JGK = F 0 ∪ F 1 ∪
⋃
n>1

Fn HTh. 41, F̂L̂JGK preserves lubs and def.
⋃

I

= αp( 1∗Z=⇒G) ∪
⋃
n>1

αp( n∗Z=⇒G) Hby Lem. 66I

= αp(
⋃
n>1

n∗Z=⇒G) = αp(
⋃
n>1

⋃
i6n

iZ=⇒G) Hαp preserves lubs andd def. n∗Z=⇒GI

= αp(
⋃
n∈N

nZ=⇒G) = αp( ?Z=⇒G) Hdef.
⋃

and ?Z=⇒GI . �

It follows that the bottom-up and top-down protolanguage semantics of a grammar
are identical (which was not the case at more concrete levels of abstraction).

Corollary 68

SL̂JGK = SĽJGK . e

Proof SL̂JGK = λA . {σ ∈ V ? | A ?Z=⇒G σ} = SĽJGK by Th. 67 and Cor. 59. �

It follows that

Corollary 69

λA .αL̂(αšŝ(SšJGK)A) = αĽ(SšJGK) . e

Proof

λA .αL̂(αšŝ(SšJGK)A) = SL̂JGK Hdef. α̇L̂ and (31) of SL̂JGKI
= SĽJGK = αĽ(SšJGK) Hby Cor. 68 and def. (46) of SĽJGKI . �

However, in general, we have αĽ(T ) 6= λA .αL̂(αšŝ(T )A), as shown by the following
counter-example.

Example 70 By the choice of T represented by its graph so that T (A) = {LA A A AM},
we have

αĽ(T ) = αĽ({〈A, {LA A A AM}〉}) = λA .αĽ({LA A A AM}) Hdef. αĽI

= λA . {αĽ(LA A A AM)} Hdef. αĽI

6= λA .∅ = λA .αL̂(∅) = λA .αL̂({LA A A AM}) ∩ T̂
Hdef. αL̂ and T̂ ∆= (P ∪T )? with no terminal variables A ∈ N 2I

= λA .αL̂(αšŝ(T )A) Hdef. αšŝ and T = {〈A, {LA A A AM}〉}I . 2
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18.4. Abstraction of the Top-Down Protolanguage Grammar Semantics into the Bottom-
Up Terminal Language Semantics

Applying the terminal language abstraction, we get the classical definition of the
terminal language generated by a grammar [8, Def. 8.2.3]

Theorem 71

S`JGK ∆= α̇`(SL̂JGK) = λA . {σ ∈ T ? | A ?Z=⇒G σ} . e

Proof We calculate

S`JGK = α̇`(λA . {σ ∈ V ? | A ?Z=⇒G σ}) Hdef. S`JGK and Th. 67I

= λA . {σ ∈ T ? | A ?Z=⇒G σ} Hdef. α̇`, α`, and V ? ∩T ? = T ?I . �

19. Bottom-Up Grammar Analysis

Classical grammar analysis algorithms such as First [8, Sect. 8.2.8], nonterminal
productivity [8, Sect. 8.2.4], and ε-productivity ε-Prod [8, Sect. 8.2.3] are abstractions of
the bottom-up grammar semantics and are instances of the bottom-up abstract interpreter
(18).

19.1. First
The first abstraction α1 ∈ T ? 7→ ℘(T ∪{ε}) of a terminal sentence is the first terminal

of this sentence or ε for empty sentences. α1 ∆= λσ . {a ∈ T | ∃σ′ ∈ T ? : σ = aσ′} ∪ {ε |
σ = ε}. It is extended to terminal languages α1 ∈ ℘(T ?) 7→ ℘(T ∪{ε}) in order to collect
the first terminals of the sentences of these languages α1 ∆= λΣ . ⋃

σ∈Σ α
1(σ) and finally

extended pointwise α̇1 ∈ (N 7→ ℘(T ?)) 7→ (N 7→ ℘(T ∪ {ε})) on terminal languages
derived for nonterminals as α̇1 ∆= λL . λA .α1(L(A)).

The first abstraction of language concatenation is

Lemma 72 For all Σ,Σ′ ∈ ℘(T ?) and F, F ′ ∈ ℘(T ), α1(ΣΣ′) = α1(Σ)⊕1 α1(Σ′)

where F ⊕1 F ′
∆= (F ′ 6= ∅ ? (F \ {ε}) ∪ (ε ∈ F ? F ′ : ∅) : ∅)

and {a} ⊕1 F ′
∆= (F ′ 6= ∅ ? {a} : ∅) . e

Proof We calculate

α1(ΣΣ′) =
⋃

σ∈ΣΣ′
α1(σ) =

⋃
σ1∈Σ,σ2∈Σ′

α1(σ1σ2) Hdef. α1 & language concat. ΣΣ′I

= {a ∈ T | ∃σ, σ1, σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ′ ∧ σ1σ2 = aσ} ∪ {ε | ε ∈ Σ ∧ ε ∈ Σ′}
Hdef. α1, ∪, & sentence concatenation σ1σ2I

= {a ∈ T | ∃σ1, σ2 : aσ1 ∈ Σ ∧ σ2 ∈ Σ′} ∪ {a ∈ T | ∃σ2 : ε ∈ Σ ∧ aσ2 ∈ Σ′} ∪ {ε | ε ∈
Σ ∧ ε ∈ Σ′} Hσ1σ2 = aσ with σ1 6= ε or σ1 = εI
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= (Σ′ 6= ∅ ? (({a ∈ T | ∃σ1 : aσ1 ∈ Σ} ∪ {ε | ε ∈ Σ}) \ {ε}) ∪ {a ∈ T | ∃σ2 : ε ∈
Σ ∧ aσ2 ∈ Σ′} ∪ {ε | ε ∈ Σ ∧ ε ∈ Σ′} : ∅) H∃σ2 : σ2 ∈ Σ′ ⇐⇒ Σ′ 6= ∅ and ε 6∈ T I

= (Σ′ 6= ∅ ? α1(Σ) \ {ε} ∪ (ε ∈ α1(Σ) ? α1(Σ′) : ∅) : ∅)
Hdef. α1 (Σ), conditional, and α1 so that ε ∈ Σ ⇐⇒ ε ∈ α1(Σ)I

= (α1(Σ′) 6= ∅ ? α1(Σ) \ {ε} ∪ (ε ∈ α1(Σ) ? α1(Σ′) : ∅) : ∅) = α1(Σ)⊕1 α1(Σ′)
Hdef. α1 so that Σ′ 6= ∅ ⇐⇒ α1(Σ′) 6= ∅ and def. ⊕1 I

{a} ⊕1 F ′ = (F ′ 6= ∅ ? {a} \ {ε} ∪ (ε ∈ {a} ? F ′ : ∅) : ∅) Hdef. ⊕1I

= (F ′ 6= ∅ ? {a} : ∅) Hε /∈ {a}I �

The first concatenation is monotone (hence upper-continuous since T is finite)

Lemma 73 If F1 ⊆ F ′1 and F2 ⊆ F ′2 then F1 ⊕1 F2 ⊆ F ′1 ⊕1 F ′2. e

Proof

F1 ⊕1 F2 = (F2 6= ∅ ? (F1 \ {ε}) ∪ (ε ∈ F1 ? F2 : ∅) : ∅) Hdef. ⊕1 in Lem. 72I

⊆ (F ′2 6= ∅ ? (F1 \ {ε}) ∪ (ε ∈ F1 ? F2 : ∅) : ∅)
Hsince F2 ⊆ F ′2 so F2 6= ∅ implies F ′2 6= ∅ and ∪ is monotoneI

⊆ (F ′2 6= ∅ ? (F1 \ {ε}) ∪ (ε ∈ F ′1 ? F2 : ∅) : ∅)
Hsince F1 ⊆ F ′1 so ε ∈ F1 implies ε ∈ F ′1 and ∪ is monotoneI

⊆ (F ′2 6= ∅ ? (F ′1 \ {ε}) ∪ (ε ∈ F ′1 ? F2 : ∅) : ∅)
Hsince F1 ⊆ F ′1 so (F1 \ {ε}) ⊆ (F ′1 \ {ε}) and ∪ is monotoneI

⊆ (F ′2 6= ∅ ? (F ′1 \ {ε}) ∪ (ε ∈ F ′1 ? F ′2 : ∅) : ∅) Hsince F2 ⊆ F ′2 and ∪ is monotoneI
= F ′1 ⊕1 F ′2 Hdef. ⊕1 in Lem. 72I . �

The first semantics S1JGK ∈ N 7→ ℘(T ∪ {ε}) of a grammar G is

S1JGK ∆= α̇1(S`JGK) . (49)

The classical definition of the First derivation of a grammar [8, Def. 8.2.33] is

Theorem 74

S1JGK = λA . {a ∈ T | ∃σ ∈ T ? : A ?Z=⇒G aσ} ∪ {ε | A
?Z=⇒G ε} . e

Proof We calculate

S1JGK = α̇1(S`JGK) = λA .α1(S`JGK(A)) Hdef. S1JGK and α̇1I

= λA .α1({σ ∈ T ? | A ?Z=⇒G σ}) HTh. 71I

= λA . {a ∈ T | ∃σ ∈ T ? : A ?Z=⇒G aσ} ∪ {ε | A
?Z=⇒G ε} Hdef. α1 and ∈I �
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The first semantics S1JGK ∈ N 7→ ℘(T ∪ {ε}) of a grammar G (49) can be extended
to
−→
S 1JGK ∈ V ? 7→ ℘(T ∪ {ε}) as

−→
S 1JGK(ε) ∆= {ε},

−→
S 1JGK(a) ∆= {a} (50)

−→
S 1JGK(A) ∆= S1JGK(A)

−→
S 1JGK(σ1σ2) ∆=

−→
S 1JGK(σ1)⊕1−→S 1JGK(σ2)

so that
Theorem 75

−→
S 1JGK = λσ . {a ∈ T | ∃σ′ ∈ T ? : σ ?Z=⇒G aσ′} ∪ {ε | σ = ε} . e

Proof By induction on the length |σ| of σ using Th. 74 for nonterminals. �

For parsing, the input sentence is often assumed to be followed by the final mark a,
so it is useful to extend S1JGK to S1aJGK ∈ N 7→ ℘(T ∪ {a}) as

S1aJGK ∆= λA . {a ∈ T | ∃σ ∈ T ? : A ?Z=⇒G aσ} ∪ {a | A
?Z=⇒G ε} . (51)

The first algorithm [32, Sect. 4.4] is indeed a fixpoint computation [8, Fig. 8.11] since
S1JGK = lfp

⊆̇ F̂1JGK where the bottom-up transformer F̂1JGK is (19) instantiated as given
in Sect. 149.

19.2. ε-Productivity
The classical definition of ε-Prod [8, Sect. 8.2.3] provides information on which

nonterminals can be empty. The corresponding abstraction is αε ∆= λΣ . (ε ∈ Σ ? tt : ff)
extended pointwise to αε ∆= λL . λA .αε(L(A)) so that

〈N 7→ ℘(T ?), ⊆̇〉 −−−→−→←−−−−
αε

γε

〈N 7→ B, ˙=⇒〉

The ε-productivity semantics SεJGK ∆= αε(S`JGK) = αε(S1JGK) since αε = αε ◦ α̇1 and
S1JGK = α̇1(S`JGK). This is the classical definition of ε-productivity for a grammar [8,
Sect. 8.2.9] since SεJGK = λA .A ?Z=⇒G ε. The ε-productivity iterative computation [8,
Fig. 8.14] is indeed a fixpoint computation SεJGK = lfp

=̇⇒ F̂εJGK where the bottom-up
transformer F̂εJGK is (19) instantiated as given in Sect. 14.

19.3. Nonterminal Productivity
The classical definition of nonterminal productivity [8, Sect. 8.2.4] provides information

on which nonterminals of the grammar can produce a non-empty terminal language. The
nonterminal productivity semantics of a context-free grammar is indeed an abstraction of
its first semantics

SE›JGK ∆= α̇E›(S`JGK) = α̇E›(S1JGK) . (52)

9The classical definition [8, Fig. 8.11] is simpler since all grammar nonterminals are assumed to be
productive.
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where the nonterminal productivity abstraction is defined pointwise on terminal languages
derived for nonterminals α̇E› ∆= λL . λA .αE›(L(A)) as true if the nonterminal can
produce a non-empty terminal language and false otherwise αE› ∆= λΣ . (Σ 6= ∅ ? tt : ff)
so that

〈N 7→ ℘(T ?), ⊆̇〉 −−−−→−→←−−−−−
α̇E›

γ̇E›

〈N 7→ B, ˙=⇒〉 .

The productivity iterative fixpoint computation [8, Ex. 8.2.12] is SE›JGK = lfp
=̇⇒ F̂E›JGK

where the bottom-up transformer F̂E›JGK is (19) instantiated as given in Sect. 14.
The classical definition of productivity for a grammar nonterminal [8, Def. 8.2.5] is

Theorem 76

SE›JGK = λA .∃σ ∈ T ? : A ?Z=⇒G σ . e

Proof We calculate
SE›JGK = α̇E›(S`JGK) = α̇E›(λA . {σ ∈ T ? | A ?Z=⇒G σ}) Hdef. SE›JGK and Th. 71I

= λA . ∃σ ∈ T ? : A ?Z=⇒G σ Hdef. α̇E›I . �

Corollary 77 We say that all nonterminals of a grammar G are productive if and only
if ∀A ∈ N : SE›JGK(A) = tt, in which case

∀η ∈ V :? ∃σ ∈ T ? : η ?Z=⇒G σ . e

Proof By induction over the length |η| of η. By cases,

if η = aη′ then ∃σ ∈ T ? : η′ ?Z=⇒G σ by induction hypothesis so η = aη′
?Z=⇒G aσ ∈ T ?

by def. ?Z=⇒G;
if η = Aη′ then ∃σ ∈ T ? : A ?Z=⇒G σ by Th. 76 and ∃σ′ ∈ T ? : η′ ?Z=⇒G σ′ by
induction hypothesis so η = Aη′

?Z=⇒G σσ′ ∈ T ? by def. ?Z=⇒G;
if η = ε then η ?Z=⇒G ε ∈ T ? by def. ?Z=⇒G . �

20. Top-Down Grammar Analysis

20.1. Follow Grammar Analysis
20.1.1. Follow

The classical definition of Follow [32, Sect. 4.4, p. 189], [8, Sect. 8.2.8] provides
information on the possible right context of nonterminals during syntax analysis.

The follow abstraction αf ∈ V ? 7→ (N 7→ ℘(T ∪ {a})) is

αf (η) ∆= λA . {a ∈ T | ∃η′, η′′ : η = η′Aη′′ ∧ ∃η′′′ ∈ T ? : η′′ ?Z=⇒G aη′′′} ∪
{a | ∃η′, η′′ : η = η′Aη′′ ∧ η′′ ?Z=⇒G ε}
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where we use the classical convention that sentences derived from the grammar axiom
S are assumed to be followed by the extra symbol a 6∈ V (a is $ in [32, Sect. 4.4] and
# in [8, Sect. 8.2.8]). This is extended to αf (Σ) ∈ ℘(V ?) 7→ (N 7→ ℘(T ∪ {a})) as
αf (Σ) ∆= λA . ⋃

η∈Σ α
f (η)A so that

〈℘(V ?), ⊆〉 −−−→−→←−−−−−
αf

γf

〈N 7→ ℘(T ∪ {a}), ⊆̇〉 .

The definition of Follow [32, Sect. 4.4, p. 189], [8, Def. 8.2.22] can also use that of
First since

Theorem 78

αf (Σ) = λA . ⋃
η′Aη′′∈Σ

−→
S 1JGK(η′′)[ε/a] where X[a/b] ∆= (X \ {a}) ∪ {b | a ∈ X} .

Proof

αf (Σ) = λA . ⋃
η∈Σ
{a ∈ T | ∃η′, η′′ : η = η′Aη′′∧∃η′′′ ∈ T ? : η′′ ?Z=⇒G aη′′′}∪{a |

∃η′, η′′ : η = η′Aη′′ ∧ η′′ ?Z=⇒G ε} Hdef. αfI
= λA . ⋃

η′Aη′′∈Σ
(
−→
S 1JGK(η′′) \ {ε}) ∪ {a | ε ∈

−→
S 1JGK(η′′)} Hby Th. 75I

= λA . ⋃
η′Aη′′∈Σ

−→
S 1JGK(η′′)[ε/a] Hby def. X[a/b]I . �

20.1.2. Follow Semantics
The follow semantics Sf JGK of a grammar G is

Sf JGK ∆= αf (SĽJGK(S))

so that we get [8, Def. 8.2.22]

Theorem 79

Sf JGK = λA . {a ∈ T | ∃η, η′ : S ?Z=⇒G ηAaη′} ∪ {a | ∃η : S ?Z=⇒G ηA} .

Proof

Sf JGK = λA . ⋃{{a ∈ T | ∃η′, η′′ : η = η′Aη′′∧∃η′′′ ∈ T ? : η′′ ?Z=⇒G aη′′′}∪{a |
∃η′, η′′ : η = η′Aη′′ ∧ η′′ ?Z=⇒G ε} | S

?Z=⇒G η} Hdef. Sf JGK, Cor. 59, and def. αfI
= λA . {a ∈ T | ∃η, η′ : S ?Z=⇒G ηAaη′} ∪ {a | ∃η : S ?Z=⇒G ηA} Hdef. ∪ & ?Z=⇒GI . �
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20.1.3. Fixpoint Top-Down Structural Follow Semantics
By abstraction of the fixpoint characterization Th. 57 of SĽJGK, we get the classical

Follow algorithm [32, Sect. 4.4, p. 189] as an iterative fixpoint computation [8, Fig.
8.13]

Theorem 80 Sf JGK j lfp
⊆̇ F̌f JGK where

F̌f JGK ∆= λφ . λA . {a | A = S} ∪⋃
B→σAσ′∈R

(
−→
S 1JGK(σ′) \ {ε}) ∪ (ε ∈

−→
S 1JGK(σ′) ? φ(B) : ∅) .

and j denotes = if all nonterminals in G are productive (as defined in Sect. 19.3) else
j denotes ⊆. e

Proof We have

= Sf JGK = αf ◦ αS(SĽJGK)
Hdef. Sf JGK where αS is the abstraction of functions at point S of Ex. 97I

= αf (lfp
⊆
λX . {S} ∪ post[ Z=⇒G]X) Hby Lem. 82I

so that we apply Th. 49 to this fixpoint definition.

αf ({S}) = λA . {a ∈ T | ∃η′, η′′ : S = η′Aη′′∧∃η′′′ ∈ T ? : η′′ ?Z=⇒G aη′′′}∪{a |
∃η′, η′′ : S = η′Aη′′ ∧ η′′ ?Z=⇒G ε} Hdef. αfI

= λA . {a | A = S} Hdef. sentence equality and ?Z=⇒GI

αf (post[ Z=⇒G]X)
λA . ⋃{−→S 1JGK(η′′)[ε/a] | ∃η, η′ : η ∈ X ∧ η Z=⇒G η′Aη′′} HTh. 78, def. ∪, postI

= λA . ⋃{−→S 1JGK(η′′)[ε/a] | ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An, σ1, . . . , σn :
ς1A1ς2 . . . ςnAnςn+1 ∈ X ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧ ∃η′ : η′Aη′′ =
ς1σ1ς2 . . . ςnσnςn+1} Hdef. (47) of Z=⇒G and ∃I

= λA . ⋃{−→S 1JGK(η′′)[ε/a] | ∃ς1, ς2, A1, σ1 : ς1A1ς2 ∈ X∧A1 → σ1 ∈ R∧∃η′ : η′Aη′′ =
ς1σ1ς2} Hchoosing n = 1I

= λA . ⋃{−→S 1JGK(η′′)[ε/a] | ∃ς ′1, ς ′′1 , ς2, A1, σ1 : ς ′1Aς ′′1A1ς2 ∈ X ∧A1 → σ1 ∈ R ∧ η′′ =

ς ′′1 σ1ς2} ∪
⋃
{
−→
S 1JGK(η′′)[ε/a] | ∃ς1, ς2, A1, σ

′
1, σ
′′
1 : ς1A1ς2 ∈ X ∧ A1 → σ′1Aσ

′′
1 ∈

R∧η′′ = σ′′1 ς2}∪
⋃
{
−→
S 1JGK(η′′)[ε/a] | ∃ς1, ς ′2, A1, σ1 : ς1A1ς

′
2Aη

′′ ∈ X∧A1 → σ1 ∈ R}
Hsince A must appear either in ς1, σ1 or ς2I

= λA . ⋃{−→S 1JGK(ς ′′1A1ς2)[ε/a] | ∃ς ′1, σ1 : ς ′1Aς
′′
1A1ς2 ∈ X ∧ A1 → σ1 ∈ R} ∪⋃

{
−→
S 1JGK(σ′′1 ς2)[ε/a] | ∃ς1, A1, σ

′
1 : ς1A1ς2 ∈ X ∧ A1 → σ′1Aσ

′′
1 ∈ R} ∪⋃

{
−→
S 1JGK(η′′)[ε/a] | ∃ς1, ς ′2, A1, σ1 : ς1A1ς

′
2Aη

′′ ∈ X ∧A1 → σ1 ∈ R}

Hby Th. 74 so that
−→
S 1JGK(ς ′′1A1ς2) =

−→
S 1JGK(ς ′′1 σ1ς2) whenever A1 → σ1 ∈ RI
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In this expression, let us first consider the term⋃
{
−→
S 1JGK(σ′′1 ς2)[ε/a] | ∃ς1, A1, σ

′
1 : ς1A1ς2 ∈ X ∧A1 → σ′1Aσ

′′
1 ∈ R}

=
⋃

A1→σ′1Aσ′′1 ∈R

⋃
ς1A1ς2∈X

((
−→
S 1JGKς2 6= ∅ ? (

−→
S 1JGKσ′′1 \ {ε}) ∪ (ε ∈

−→
S 1JGK ?

−→
S 1JGKς2 :

∅) : ∅))[ε/a] Hdef. ∪, by (50), ⊕1 in Lem. 72 and def. ⊕1 in Lem. 72I

=
⋃

A1→σ′1Aσ′′1 ∈R

⋃
ς1A1ς2∈X

(
−→
S 1JGKς2 6= ∅ ? (

−→
S 1JGKσ′′1 \{ε})∪ (ε ∈

−→
S 1JGK ?

−→
S 1JGKς2[ε/a] :

∅) : ∅)
Hdef. X[a/b] so that (X \ {a})[a/b] = (X \ {a}), ∅[a/b] = ∅ and X = ∅ iff
X[a/b] = ∅I

j Hj denotes = if all nonterminals in G are productive (as defined in Sect. 19.3)
in which case

−→
S 1JGKς2 6= ∅ else j denotes ⊆I⋃

A1→σ′1Aσ′′1 ∈R

⋃
ς1A1ς2∈X

(
−→
S 1JGKσ′′1 \ {ε}) ∪ (ε ∈

−→
S 1JGKσ′′1 ?

−→
S 1JGKς2[ε/a] : ∅)

Hby Th. 76 extended to protosentencesI
=

⋃
A1→σ′1Aσ′′1 ∈R

(
−→
S 1JGKσ′′1 \ {ε}) ∪ (ε ∈

−→
S 1JGKσ′′1 ? αf (X)A1 : ∅)

Hdef. conditional and by Th. 78;I

Second, in the above expression, the term⋃
{
−→
S 1JGK(ς ′′1A1ς2)[ε/a] | ∃ς ′1, σ1 : ς ′1Aς ′′1A1ς2 ∈ X ∧A1 → σ1 ∈ R}

is either ∅ or, by Th. 78, is ⊆-over approximated by αf (X)A;
Third, and finally, in the above expression, the term⋃

{
−→
S 1JGK(η′′)[ε/a] | ∃ς1, ς ′2, A1, σ1 : ς1A1ς

′
2Aη

′′ ∈ X ∧A1 → σ1 ∈ R}
is either ∅ or, by Th. 78, is ⊆-over approximated by αf (X)A.

It follows from the above calculation that

If all nonterminals of G are productive, then

F̌f JGK(αf (X)) ⊆ αf ({S} ∪ post[ Z=⇒G]X) ⊆ F̌f JGK(αf (X)) ∪ αf (X)

pointwise and so, by Cor. 101,

lfp
⊆

F̌f JGK ⊆ αf (lfp
⊆
λX . {S} ∪ post[ Z=⇒G]X) ⊆ lfp

⊆
λX . F̌f JGK(X) ∪X

pointwise. By Ex. 103 applied pointwise, we have

lfp
⊆

F̌f JGK = lfp
⊆
λX . F̌f JGK(X) ∪X

so that αf (lfp
⊆
λX . {S} ∪ post[ Z=⇒G]X) = lfp

⊆ F̌f JGK;
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Otherwise, we have

αf ({S} ∪ post[ Z=⇒G]X) ⊆ F̌f JGK(αf (X)) ∪ αf (X)

so that αf (lfp
⊆
λX . {S}∪post[ Z=⇒G]X) ⊆ lfp

⊆
λX . F̌f JGK(X)∪X = lfp

⊆ F̌f JGK

We conclude that αf (lfp
⊆
λX . {S} ∪ post[ Z=⇒G]X) j lfp

⊆ F̌f JGK, whence by equality or
monotony, Sf JGK = αf (lfp

⊆
λX . {S} ∪ post[ Z=⇒G]X) j lfp

⊆ F̌f JGK. �

20.2. Nonterminal Accessibility
The classical definition of accessible nonterminals [8, Def. 8.2.4] provides information

on which nonterminals of the grammar are used in the definition of the language generated
for the grammar axiom.

20.2.1. Accessibility Abstraction of Protosentences
The accessibility abstraction is defined on protolanguages as the characteristic function

of the set of nonterminals appearing in the protosentences of this protolanguage

αa
∆= λΣ . λA . (∃σ, σ′ ∈ V ? : σAσ′ ∈ Σ ? tt : ff)

so that
〈N 7→ ℘(V ?), ⊆̇〉 −−−→−→←−−−−−

αa

γa

〈N 7→ B, ˙=⇒〉 .

20.2.2. Accessibility Semantics
The nonterminal accessibility semantics is

SaJGK ∆= αa(SĽJGK(S)) = αa ◦ αS(SĽJGK) . e

where αS is the abstraction of functions at point S considered in Ex. 97.
This is the classical definition of productivity for a grammar nonterminal [8, Def.

8.2.4] since

Theorem 81

SaJGK = λA . ∃σ, σ′ ∈ V ? : S ?Z=⇒G σAσ′ . e

Proof We calculate SaJGK

= λA . (∃σ, σ′ ∈ V ? : σAσ′ ∈ {η′′ ∈ V ? | S ?Z=⇒G η′′} ? tt : ff)
Hdef. SaJGK, Cor. 59, and def. αa I

= λA . ∃σ, σ′ ∈ V ? : S ?Z=⇒G σAσ′ Hdef. ∈I . �
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20.2.3. Fixpoint Top-Down Structural Accessibility Semantics
We can project the top-down protolanguage semantics on a given nonterminal, in

particular the start symbol S, as follows

Lemma 82

αS(SĽJGK) = lfp
⊆
λX . {S} ∪ post[ Z=⇒G]X e

Proof We have SĽJGK = lfp
⊆ F̌ĽJGK where F̌ĽJGK = λφ . λA . f(A, φ(A)) with f(A,X) =

{A} ∪ post[ Z=⇒G]X by Th. 57 whence, by Ex. 105, αS(SĽJGK) = lfp
⊆
λX . {S} ∪

post[ Z=⇒G]X. �

The accessibility semantics SaJGK has the following fixpoint characterization

Theorem 83

SaJGK = lfp
⊆̇

F̌aJGK where F̌aJGK ∆= λφ . λA . (A = S) ∨
∨

B→σAσ′∈R

φ(B) . e

Proof Let us calculate αa({S} ∪ post[ Z=⇒G]Xδ)

= λA . (A = S) ∨ ∃η ∈ Xδ : ∃η′, η′′ : η Z=⇒G η′Aη′′

Hαa preserves lubs, def. αa and postI
= λA . (A = S) ∨

(∃η ∈ Xδ : ∃η′, η′′, η′′′, η′′′′, B → σ ∈ R : η = η′Aη′′ ∧ η = η′′′Bη′′′′) ∨
(∃B → σAσ′ ∈ R : αa(Xδ)(A)) Hdef. αaI

There are four possible cases for subformula

(∃η ∈ Xδ : ∃η′, η′′, η′′′, η′′′′, B → σ ∈ R : η = η′Aη′′ ∧ η = η′′′Bη′′′′) , (53)

as follows

1. ∀η′, η′′ : η 6= η′Aη′′, in which case (53) is false so αa({S} ∪ post[ Z=⇒G]Xδ) =
F̌aJGK(αa(Xδ)) where F̌aJGK(φ) ∆= λA . (A = S) ∨ (∃B → σAσ′ ∈ R : φ(B));

2. ∃η′, η′′ : η = η′Aη′′, with three subcases
(a) neither η′ nor η′′ contains a nonterminal B so that ∀η′′′, η′′′′ : η = η′Aη′′ 6=

η′′′Bη′′′′ in which case (53) is false so αa({S}∪post[ Z=⇒G]Xδ) = F̌aJGK(αa(Xδ)),
(b) for all nonterminals B in either η′ nor η′′, their is no corresponding grammar

rule ∀σ : B → σ 6∈ R in which case (53) is true so αa({S} ∪ post[ Z=⇒G]Xδ) =
F̌aJGK(αa(Xδ)),

(c) either η′ or η′′ contains a nonterminal B such that B → σ ∈ R, in which
case (53) is equal to F (αa(Xδ)) where F (φ) ∆= λA . (A = S) ∨ φ(A) ∨ (∃B →
σAσ′ ∈ R : φ(B)).
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Moreover F̌aJGK =⇒ F pointwise, so

F̌aJGK(αa(Xδ)) =⇒ αa({S} ∪ post[ Z=⇒G]Xδ) =⇒ F (αa(Xδ))

and so by Cor. 101,

lfp
=⇒

F̌aJGK =⇒ αa(lfp
⊆
λX . {S} ∪ post[ Z=⇒G]X) =⇒ lfp

=⇒
F .

By Ex. 103 applied pointwise, we have lfp
=⇒ F̌aJGK = lfp

=⇒
F so by def. (53), Lem. 82

and antisymmetry, we conclude that SaJGK = lfp
=⇒ F̌aJGK. �

The accessibility semantics of a context-free grammar is an abstraction of the follow
semantics since, if all nonterminals are productive (as defined in Sect. 19.3), a nonterminal
is accessible if and only if it has a non-empty follow set.

Theorem 84

(All nonterminals are productive) =⇒
(
SaJGK = αE›(Sf JGK)

)
. e

Proof Assuming all nonterminals to be productive, we prove that αa = α̇E› ◦ αf , as
follows

α̇E›(αf (Σ))
= (

⋃
η∈Σ
{a ∈ T | ∃η′, η′′ : η = η′Aη′′ ∧ ∃σ ∈ T ? : η′′ ?Z=⇒G aσ} ∪ {a | ∃η′, η′′ : η =

η′Aη′′ ∧ η′′ ?Z=⇒G ε} 6= ∅ ? tt : ff) Hdef. α̇E›, αE›, and αfI
= ({η′Aη′′ ∈ Σ | ∃σ ∈ T ? : η′′ ?Z=⇒G σ} 6= ∅ ? tt : ff) Hdef. T ?I

= ({η′Aη′′ ∈ Σ} 6= ∅ ? tt : ff)
HCor. 77 so that ∃σ ∈ T ? : η′′ ?Z=⇒G σ by productivity hypothesisI

= αa(Σ) Hdef. αaI . �

21. Grammar Problem

Knuth’s grammar problem [1], a generalization of the single-source shortest-path
problem, is to compute the minimum-cost derivation of a terminal string from each
non-terminal of a given superior grammar that is a context-free grammar, with rules of
the form A → g(A1, . . . , An), n > 0 (where ‘g’, ‘(’, ‘,’, and ‘)’ are terminals), equipped
with a cost function val such that the cost of a derivation is val(A→ g(A1, . . . , An)) =
val(g)(val(A1), . . . , val(An)) and val(g) ∈ Rn+ 7→ R+, R+

∆= {x ∈ R | x > 0} ∪ {∞}, is a
so-called superior function [1], a condition weakened in [2] where Knuth’s algorithm is
also given an incremental version.

Knuth’s grammar problem [1] can be generalized to any bottom-up abstract grammar
semantics S]̂JGK by considering α(S]̂JGK) where 〈D̂]̂,v〉 −−−→←−−−α

γ
〈R+,>〉 is a Galois connection

and 〈R+, >, ∞, 0, min, max〉 is a complete lattice.
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Knuth considers the particular case when S]̂JGK = S`JGK and 〈D̂]̂, v〉 = 〈℘(S), ⊆〉
where S is a set (indeed S = ℘(T ?) in [1, 2]) with α(X) ∆= min{val(x) | x ∈ X} and
γ(m) ∆= {x ∈ S | val(x) > m}. Since α is antitone, the corresponding abstract semantics is
taken in terms of greatest fixpoints for 6 [2]. Knuth’s monotony hypothesis [1, 2] ensures
the existence of the greatest fixpoint. The rule soundness and completeness condition (23)
then amounts to Knuth’s hypothesis that for every nonterminal A, every string in S`JGKA
is a composition of superior functions α(g(x1, . . . , xn)) = val(g)(α(x1), . . . , α(xn)).

Knuth superiority condition [1] and its variant [2] ensure that the greatest fixpoint
can be computed by an elimination algorithm (generalizing Dijkstra’s algorithm to solve
shortest path problems [33]). However in general one must resort to an infinite fixpoint
iteration as shown with the choice of S = ℘(T ?), val(x) = 1

|x| so that val(g)() = 1
3

and val(g)(x1, . . . , xn) = 1
1
x1

+...+ 1
xn

+n+2 which, for the grammar A→ a(), A→ b(A,A)
requires an infinite iteration and a passage to the limit 0.

Our generalization also copes with implicit abstractions of a grammar considered by
[1, 2] where a grammar is “recoded” into a superior grammar, which can indeed be defined
by an appropriate α.

22. Bottom-Up Parsing

Given a grammar G = 〈T , N , S, R〉 and an input σ = σ1σ2 . . . σn ∈ T ?, n ≥ 0,
parsing consists in proving either σ ∈ S`JGK(S) or σ 6∈ S`JGK(S), that is, by Th. 71,
providing an algorithmic answer to the question S ?Z=⇒G σ?

Bottom-up parsing is an abstraction of a bottom-up grammar semantics by restriction
to a given input sentence. This is illustrated with the Cocke-Younger-Kasami or CYK
algorithm [4, Sect. 4.2.1] attributed by [34] to John Cocke, [35, 36]). It is traditionally
restricted to grammars G = 〈T , N , S, R〉 in Chomsky normal form with rules of the
form A → BC and A → a where A,B,C ∈ N and a ∈ T . We now design CYK by
calculus for arbitrary grammars.

22.1. The Concrete Semantics and its Abstraction
CYK is an abstract interpretation of the terminal language semantics S`JGK (34) by

αCYK ∆= λσ . λX . {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 ∈ X} (54)
where

D̂CYK ∆= λσ . {〈i, j〉 | i ∈ [1, |σ|+ 1] ∧ j ∈ [0, |σ|] ∧ i+ j ≤ |σ|+ 1}
so that 〈i, j〉 denotes the subsentence of length j from position i in σ (in particular
〈|σ|+ 1, 0〉 denotes the empty sentence ε after σ = σε). Given σ ∈ T ?, we have

〈℘(T ?), ⊆〉 −−−−−−−→←−−−−−−−
αCYK (σ)

γCYK (σ)
〈℘(D̂CYK (σ)), ⊆〉 .

The pointwise extension to N is

αCYK ∆= λσ . λX . λA .αCYK (X(A)) (55)
so that

〈N 7→ ℘(T ?), ⊆̇〉 −−−−−−−→←−−−−−−−
αCYK (σ)

γCYK (σ)
〈N 7→ ℘(D̂CYK (σ)), ⊆̇〉 .
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22.2. Soundness of the Parser
The correctness of this parsing approach is proved by the following

Theorem 85 σ ∈ S`JGK(S)⇐⇒ 〈1, |σ|〉 ∈ αCYK (σ)(S`JGK)(S) . e

Proof 〈1, |σ|〉 ∈ αCYK (σ)(S`JGK)(S)

⇐⇒ 〈1, |σ|〉 ∈ {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 ∈ S`JGK(S)} Hdef. (55) of αCYKI

⇐⇒ σ ∈ S`JGK(S) Hdef. ∈ and σ1 . . . σ|σ|I . �

22.3. Design of the Parser
The CYK algorithm is derived by abstracting the fixpoint definition Th. 44 of

S`JGK = lfp
⊆̇ F̂`JGK by αCYK .

Theorem 86
αCYK (σ)(S`JGK)(S) = lfp

⊆̇
F̂CYKJGK(σ)

where
F̂CYKJGK ∈ ℘(D̂CYK ) 7→ ℘(D̂CYK )
F̂CYKJGK ∆= λ ρ . λA . ⋃

A→σ∈R

F̂CYK [A→ �σ]ρ

F̂CYK [A→ σ�aσ′] ∆= λ ρ . {〈i, j〉 ∈ D̂CYK (σ) | σi = a ∧
〈i+ 1, j − 1〉 ∈ F̂CYK [A→ σa�σ′]ρ}

F̂CYK [A→ σ�Bσ′] ∆= λ ρ . {〈i, j〉 ∈ D̂CYK (σ) | ∃k : 0 6 k 6 j : 〈i, k〉 ∈ ρ(B)
∧ 〈i+ k, j − k〉 ∈ F̂CYK [A→ σB�σ′]ρ}

F̂CYK [A→ σ�] ∆= λ ρ . {〈i, 0〉 | 1 6 i 6 |σ|} e

Proof We apply Cor. 106.

αCYK (σ)(F̂`JGK(ρ))
= αCYK (σ)(λA . ⋃

A→σ∈R

F̂�`[A→ �σ]ρ) Hdef. (35) of F̂`JGKI

= {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 ∈
⋃

A→σ∈R

F̂�`[A→ �σ]ρ} Hdef. (55) of αCYKI

=
⋃

A→σ∈R

αCYK (σ)(F̂�`[A→ �σ]ρ) Hdef. ∈ and (54) of αCYKI

=
⋃

A→σ∈R

F̂CYK [A→ �σ](αCYK (σ)(ρ))

Hprovided we can define F̂CYK such that αCYK(σ)(F̂�`[A → σ�σ′]ρ) = F̂CYK [A
→ σ�σ′](αCYK (σ)(ρ))I .

We proceed by induction on the length |σ′| of σ′, with three cases.

αCYK (σ)(F̂�`[A→ σ�aσ′]ρ) = αCYK (σ)(a F̂�`[A→ σa�σ′]ρ) Hdef. F̂`JGKI
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= {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 ∈ (a F̂�`[A→ σa�σ′]ρ)} Hdef. (54) of αCYKI

= {〈i, j〉 ∈ D̂CYK (σ) | σi = a ∧ 〈i+ 1, j − 1〉 ∈ αCYK (σ)(F̂�`[A→ σa�σ′]ρ)}
Hdef. concat., ∈, and (54) of αCYKI

= {〈i, j〉 ∈ D̂CYK (σ) | σi = a ∧ 〈i+ 1, j − 1〉 ∈ F̂CYK [A→ σa�σ′](αCYK (σ)(ρ))}
Hind. hyp.I

= F̂CYK [A→ σ�aσ′](αCYK (σ)(ρ))
Hby defining F̂CYK [A→ σ�aσ′]ρ ∆= {〈i, j〉 ∈ D̂CYK (σ) | σi = a ∧ 〈i+ 1, j − 1〉 ∈
F̂CYK [A→ σa�σ′]ρ}I

αCYK (σ)(F̂�`[A→ σ�Bσ′]ρ) = αCYK (σ)(ρ(B) F̂�`[A→ σB�σ′]ρ) Hdef. F̂`JGKI
= {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 ∈ (ρ(B) F̂�`[A→ σB�σ′]ρ)} Hdef. (54) of αCYKI

= {〈i, j〉 ∈ D̂CYK (σ) | ∃k : 0 6 k 6 j : 〈i, k〉 ∈ αCYK (ρ)(B)∧〈i+k, j−k〉 ∈ αCYK (F̂�`[A
→ σB�σ′]ρ)} Hdef. concatenation, (54) and (55) of αCYKI

= {〈i, j〉 ∈ D̂CYK (σ) | ∃k : 0 6 k 6 j : 〈i, k〉 ∈ αCYK (ρ)(B) ∧ 〈i+ k, j − k〉 ∈ F̂CYK [A
→ σB�σ′](αCYK (ρ))} Hind. hyp.I

= F̂CYK [A→ σ�Bσ′](αCYK (σ)(ρ))
Hby defining F̂CYK [A → σ�Bσ′]ρ ∆= {〈i, j〉 ∈ D̂CYK(σ) | ∃k : 0 6 k 6 j : 〈i,
k〉 ∈ ρ(B) ∧ 〈i+ k, j − k〉 ∈ F̂CYK [A→ σB�σ′]ρ}I

αCYK (σ)(F̂�`[A→ σ�]ρ) = {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 = ε}
Hdef. F̂`JGK and (54) of αCYKI

= {〈i, 0〉 | 1 6 i 6 |σ|} = F̂CYK [A→ σ�](αCYK (σ)(ρ)) Hdef. equality of sentences
and by defining F̂CYK [A→ σ�]ρ ∆= {〈i, 0〉 | 1 6 i 6 |σ|}I . �

The original CYK algorithm is only defined for grammars in CNF (Chomsky Normal
Form) whence we get a generalization to arbitrary context-free grammars.

22.4. Parsing Algorithm
Because the abstract domain 〈N 7→ ℘(D̂CYK(σ)), ⊆̇〉 is finite, the iterative compu-

tation of lfp
⊆̇ FCYKJGK(σ) terminates whence by Th. 86 and Th. 85 so does the CYK

parsing algorithm. The CYK dynamic programming algorithm organizes the computation
of the pairs 〈i, j〉 ∈ D̂CYK (σ) in order to avoid repetition of work already done.

23. Top-Down Parsing

23.1. Nonrecursive Predictive Parser
The general idea of the formal derivation of parsers by abstract interpretation is that

a parser is an abstraction of a grammar semantics by restriction of this semantics to a
given input sentence.

A nonrecursive predictive parser is formally derived from the prefix derivation semantics
S∂
→

JGK of Sect. 6 by applying this idea with the abstraction
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αLL ∆= λS . λσ . λX . {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S :
i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$ = $m}

where the terminal abstraction ατ ∈ Θ 7→ T ? collects terminal labels of derivations, as
follows

ατ (θ1
LA−→ θ2) ∆= ατ (θ1)ατ (θ2) ατ ($) ∆= ε, $ ∈ S

ατ (θ1
AM−→ θ2) ∆= ατ (θ1)ατ (θ2) ατ (`) ∆= ε

ατ (θ1
a−→ θ2) ∆= ατ (θ1)aατ (θ2), a ∈ T ατ (a) ∆= ε .

The interpretation of the pair 〈i, $i〉 is that in the left-to-right scanning of the input
sentence σ up to position i, the prefix σ1 . . . σi (ε when i = 0) has been recognized by a
prefix derivation from the start symbol S. The stack $ allows for the recognition of the
rest of the sentence, if possible.

Let us write ℘1(S) ∆= {{x} | x ∈ S} for the set of singletons of a set S and let
α• ∈ ℘1(S) 7→ S be α•({x}) ∆= x. We have

Lemma 87

∀θ ∈ Θ() : ατ (θ) = α• ◦ α` ◦ αL̂ ◦ αŝ ◦ αδ̂(θ) . e

Proof Given a well-parenthesized trace θ ∈ Θ(), we prove, by induction on the length
of traces, that α` ◦ αL̂ ◦ αŝ ◦ αδ̂(θ) is a singleton and ατ (θ) = α• ◦ α` ◦ αL̂ ◦ αŝ ◦ αδ̂(θ).
We proceed by cases.

If θ contains parentheses in P, then by definition of well-parenthesized traces in
Sect. 5.4, the trace θ must have the form θ = θ1$1

LA−→ θ2
AM−→ $2θ3 where LA and

AM are matching parentheses. Therefore
α• ◦ α` ◦ αL̂ ◦ αŝ ◦ αδ̂(θ1$1

LA−→ θ2
AM−→ $2θ3)

= α• ◦ α` ◦ αL̂(αŝ(αδ̂(θ1))αŝ(αδ̂($1))LAαŝ(αδ̂(θ2))AMαŝ(αδ̂($2))αŝ(αδ̂(θ3)))
Hdef. αδ̂ ∈ Θ 7→ D̂ and αŝ ∈ D̂ 7→ T̂ I

= α• ◦ α` ◦ αL̂(αŝ(αδ̂(θ1))LAαŝ(αδ̂(θ2))AMαŝ(αδ̂(θ3)))
Hdef. αδ̂ ∈ Θ 7→ D̂ and αŝ ∈ D̂ 7→ T̂ so that ∀$ ∈ S : αŝ(αδ̂($)) = εI

= α• ◦ α`(αL̂(αŝ(αδ̂(θ1)))({A} ∪ αL̂(αŝ(αδ̂(θ2))))αL̂(αŝ(αδ̂(θ3))))
Hdef. αL̂ and well-parenthesization hypothesisI

= α•(α`(αL̂(αŝ(αδ̂(θ1))))α`(αL̂(αŝ(αδ̂(θ2))))α`(αL̂(αŝ(αδ̂(θ3)))))
Hdef. α` and, by ind. hyp., concatenation of singletons which is a singletonI

= α•(α`(αL̂(αŝ(αδ̂(θ1)))))α•(α`(αL̂(αŝ(αδ̂(θ2))))α•(α`(αL̂(αŝ(αδ̂(θ3)))))
Hdef. α• and concatenation of singletonsI

= ατ (θ1)ατ (θ2)ατ (θ3) Hby ind. hyp.I
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= ατ (θ1$1
LA−→ θ2

AM−→ $2θ3) Hdef. ατI

α• ◦ α` ◦ αL̂ ◦ αŝ ◦ αδ̂(θ1
a−→ θ2)

= α• ◦ α`(αL̂(αŝ(αδ̂(θ1))){a}αL̂(αŝ(αδ̂(θ2))))
Hdef. αδ̂ ∈ Θ 7→ D̂, αŝ ∈ D̂ 7→ T̂ , and αL̂ since θ2 and θ2 are well-parenthesizedI

= α•(α`(αL̂(αŝ(αδ̂(θ1)))))aα•(α`(αL̂(αŝ(αδ̂(θ)))))
Hdef. α` and α• and concatenation of singletons by ind. hyp.I

= ατ (θ1)aατ (θ2) = ατ (θ1
a−→ θ2) Hby ind. hyp. and def. ατI

α• ◦ α` ◦ αL̂ ◦ αŝ ◦ αδ̂(`) = α•(
⋃
{{ε}}) Hdef. αδ̂ ∈ Θ 7→ D̂, αŝ ∈ D̂ 7→ T̂ ,

αL̂ ∈ T̂ 7→ ℘(V ?), α` ∈ ℘(V ?) 7→ ℘(T ?), and α` ∈ V ? 7→ ℘(T ?)I
= α•({ε}) = ε = ατ (`) Hdef.

⋃
, α•, and ατI

α• ◦ α` ◦ αL̂ ◦ αŝ ◦ αδ̂(a) = α• ◦ α` ◦ αL̂ ◦ αŝ(ε) Hdef. αδ̂ ∈ Θ 7→ D̂I

= ατ (a) = ε Has shown above and by def. ατI . �

Fixing the start symbol S and the input sentence σ, we have a Galois connection

〈℘(Θ), ⊆〉 −−−−−−−−→←−−−−−−−−
αLL(S)(σ)

γLL(S)(σ)
〈℘([0, |σ|]× S), ⊆〉

The correctness of this parsing approach is proved by the following

Theorem 88

σ ∈ S`JGK(S) ⇐⇒ 〈|σ|, a〉 ∈ αLL(S)(σ)(S∂
→

JGK) . e

Proof We calculate σ ∈ S`JGK(S)

⇐⇒ σ ∈ α`(αL̂(αŝ(αδ̂(Sd̂JGK.S))))
Hdef. (34) of S`JGK, (31) of SL̂JGK, (29) of SŝJGK, (26) of Sδ̂JGK, α̇`, Sect. 13.3.3
of α̇L̂, αŝ, αδ̂ and selection •.S I

⇐⇒ ∃θ ∈ Sd̂JGK.S : σ ∈ α`(αL̂(αŝ(αδ̂({θ}))))
Hsince α` ◦ αL̂ ◦ αŝ ◦ αδ̂ is the lower adjoint of a composition of Galois
connections whence of a Galois connection, whence preserves lubs hence
σ ∈ α(X) = α(

⋃
x∈X{x}) =

⋃
x∈X α({x}) if and only if ∃x ∈ X : σ ∈ α({x})I

⇐⇒ ∃θ ∈ Sd̂JGK.S : σ = α• ◦ α`(αL̂(αŝ(αδ̂({θ}))))
Hdef. α• and the image of a singleton by α`, αL̂, αŝ or αδ̂ is a singletonI

⇐⇒ ∃θ ∈ Sd̂JGK.S : ατ (θ) = σ HLem. 87I

⇐⇒ ∃θ ∈ (S∂
→

JGK.S ∩Θa) : ατ (θ) = σ Hby (6) so that Sd̂JGK = S∂
→

JGK ∩Θa & def. •.SI

⇐⇒ ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ S∂
→

JGK.S ∩Θa : ατ (θ) = σ

Hdef. (5) of S∂
→

JGK (so that θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m)I
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⇐⇒ ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ a ∈ S∂
→

JGK.S : ατ (θ) = σ

Hsince $m = a by def. ΘaI
⇐⇒ 〈|σ|, a〉 ∈ {〈i, $′〉 | ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ S∂

→

JGK.S : i ∈
[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$′ = $m} Hsince σ = σ1 . . . σ|σ| and def. ∈I

⇐⇒ 〈|σ|, a〉 ∈ αLL(S)(σ)(S∂
→

JGK) Hdef. αLL(S)(σ)I . �

To get a correct parsing algorithm, it remains

• to express αLL(S)(σ)(S∂
→

JGK) in fixpoint form by abstraction of the fixpoint definition
Th. 8 of S∂

→

JGK (as shown in Th. 89), and

• to prove the termination of the fixpoint iteration (as shown in Th. 91 for non
left-recursive grammars).

Theorem 89
αLL(S)(σ)(S∂

→

JGK) = lfp
⊆

FLLJGK(σ)
where

FLLJGK(σ) ∈ ℘([0, |σ|]× S) 7→ ℘([0, |σ|]× S)
FLLJGK(σ) = λX . {〈0, `〉} ∪ {〈0, a[S → �η]〉 | 〈0, `〉 ∈ X ∧ S → η ∈ R}

∪ {〈i+ 1, $[A→ ηa�η′]〉 | 〈i, $[A→ η�aη′]〉 ∈ X ∧ a = σi+1}
∪ {〈i, $[A→ ηB�η′][B → �ς]〉 | 〈i, $[A→ η�Bη′]〉 ∈ X ∧B → ς ∈ R}
∪ {〈i, $〉 | 〈i, $[A→ η�]〉 ∈ X} . e

Proof We use the fixpoint characterization of S∂
→

JGK in Th. 8 as S∂
→

JGK = lfp
⊆ F∂
→

JGK
and apply the commutation condition to the transformer F∂

→

JGK ∆= λX . {`} ∪X; −→.
Assuming X to be an iterate of F∂

→

JGK, we calculate αLL(S)(σ)({`} ∪X; −→)
= αLL(S)(σ)({`}) ∪ αLL(S)(σ)(X; −→) Hlub preservation in Galois connectionsI
= {〈0, `〉} ∪ αLL(S)(σ)(X; −→)

Hdef. αLL(S)(σ) with i = 0 so σ1 . . . σi = ε and {`}.S ∆= {`}I
We go on with the evaluation of αLL(S)(σ)(X; −→)

= αLL(S)(σ)({θ `−→ $
`′−→ $′ | θ `−→ $ ∈ X ∧$ `′−→ $′ ∈−→} Hdef. ; and −→I

= αLL(S)(σ)({θ `−→ ` LA−→ a[A→ �η] | θ `−→ ` ∈ X ∧A→ η ∈ R} ∪ (A)
{θ `−→ $[A→ η�aη′] a−→ $[A→ ηa�η′] | θ `−→ $[A→ η�aη′] ∈ X ∧

A→ σaσ′ ∈ R} ∪
(B)

{θ `−→ $[A→ η�Bη′] LB−→ $[A→ ηB�η′][B → �ς] |
θ

`−→ $[A→ η�Bη′] ∈ X ∧A→ σBσ′ ∈ R ∧B → ς ∈ R} ∪
(C)

{θ `−→ $[A→ η�] AM−→ $ | θ `−→ $[A→ η�] ∈ X ∧A→ η ∈ R}) (D)
Hby cases (1), (2), (3) and (4) of the def. of −→I

= αLL(S)(σ)(A) ∪ αLL(S)(σ)(B) ∪ αLL(S)(σ)(C) ∪ αLL(S)(σ)(D)
Hlub preservation in Galois connectionsI
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We now have four cases, as follows

αLL(S)(σ)(A)

= αLL(S)(σ)({θ `−→ ` LA−→ a[A→ �η] | θ `−→ ` ∈ X ∧A→ η ∈ R}) Hdef. case (A)I

= αLL(S)(σ)({` LA−→ a[A→ �η] | ` ∈ X ∧A→ η ∈ R})
HX is an iterate of F∂

→

JGK so included in the prefix derivation semantics S∂
→

JGK
hence, by Th. 7, the only trace of the form θ

`−→ ` is `I

= {〈i, $〉 | ∃θ = $0
`0−→ $1 = ` LS−→ a[S → �ς] ∧ ` ∈ X ∧ S → ς ∈ R ∧ i ∈

[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$ = $1} Hdef. αLL(S)(σ), selection •.S, and ∈I

= {〈i, $〉 | ∃θ = $0
`0−→ $1 = ` LS−→ a[S → �ς]∧` ∈ X ∧S → ς ∈ R ∧ i ∈ [0, |σ|]∧ ε =

σ1 . . . σi ∧$ = $1} Hdef. ατI
= {〈0, a[S → �ς]〉 | ` ∈ X ∧ S → ς ∈ R} Hsince ε = σ1 . . . σi ⇐⇒ i = 0I

= {〈0, a[S → �ς]〉 | 〈0, `〉 ∈ αLL(S)(σ)(X) ∧ S → ς ∈ R} Hdef. αLLI

αLL(S)(σ)(B)
= αLL(S)(σ)({θ `−→ $[A→ η�aη′] a−→ $[A→ ηa�η′] | θ `−→ $[A→ η�aη′] ∈ X ∧A→

σaσ′ ∈ R}) Hdef. case (B)I
= αLL(S)(σ)({θ `−→ $[A→ η�aη′] a−→ $[A→ ηa�η′] | θ `−→ $[A→ η�aη′] ∈ X})

Hbecause X is an iterate of F∂
→

JGK so, by Lem. 7, [A → η�aη′] can be on the
stack only if A→ σaσ′ is a grammar rule in RI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {θ′
`−→ $′[A → η�aη′] a−→ $′[A →

ηa�η′] | θ′ `−→ $′[A→ η�aη′] ∈ X.S} : i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$ = $m}
Hdef. αLL(S)(σ) and selection •.SI

= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A → η�aη′], `m−1 =

a,$m = $′[A→ ηa�η′] : m > 1∧i ∈ [0, |σ|]∧ατ (θ′′ `m−1−→ $m) = σ1 . . . σi∧$ = $m}
Hdef. ∈ with θ = θ′′

`m−1−→ $mI

= {〈i, $′[A → ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A → η�aη′] : i ∈

[0, |σ|] ∧ ατ (θ′′)a = σ1 . . . σi}
Hdef. ατ and setting the dummy variable m to m− 1 > 0I

= {〈i, $′[A → ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A → η�aη′] : i ∈

[1, |σ|] ∧ ατ (θ′′)a = σ1 . . . σi} Hsince ατ (θ′′)a = σ1 . . . σi implies 1 6 i 6 |σ|I
= {〈i+ 1, $′[A→ ηa�η′]〉 | ∃θ′′ = $0

`0−→ $1 . . . $m ∈ X.S,$m = $′[A→ η�aη′] : i ∈
[0, |σ| − 1] ∧ ατ (θ′′)a = σ1 . . . σi+1} Hsetting the dummy variable i to i+ 1I

= {〈i+ 1, $′[A→ ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A→ η�aη′] : i ∈

[0, |σ| − 1] ∧ ατ (θ′′) = σ1 . . . σi ∧ σi+1 = a} Hdef. equality of sequencesI
= {〈i + 1, $[A → ηa�η′]〉 | ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧

ατ (θ) = σ1 . . . σi ∧$[A→ η�aη′] = $m ∧ a = σi+1}
Hsince σi+1 = a implies i+ 1 6 |σ|I

= {〈i+ 1, $[A→ ηa�η′]〉 | 〈i, $[A→ η�aη′]〉 ∈ αLL(S)(σ)(X) ∧ a = σi+1}
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Hdef. ∈ and αLL(S)(σ)I

αLL(S)(σ)(C)

= αLL(S)(σ)({θ `−→ $[A → η�Bη′] LB−→ $[A → ηB�η′][B → �ς] | θ `−→ $[A →
η�Bη′] ∈ X ∧A→ σBσ′ ∈ R ∧B → ς ∈ R}) Hdef. case (C)I

= αLL(S)(σ)({θ `−→ $[A → η�Bη′] LB−→ $[A → ηB�η′][B → �ς] | θ `−→ $[A →
η�Bη′] ∈ X ∧B → ς ∈ R})

Hbecause X is an iterate of F∂
→

JGK so by Lem. 7, [A → η�Bη′] can be on the
stack only if A→ σBσ′ is a grammar rule in RI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {θ′
`−→ $′[A→ η�Bη′] LB−→ $′[A→

ηB�η′][B → �ς] | θ′ `−→ $′[A → η�Bη′] ∈ X.S ∧ B → ς ∈ R} : i ∈ [0, |σ|] ∧ ατ (θ) =
σ1 . . . σi ∧$ = $m} Hdef. αLL(S)(σ) and selection •.SI

= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A → η�Bη′], `m−1 =

LB,$m = $′[A → ηB�η′][B → �ς] : m > 1 ∧ B → ς ∈ R ∧ i ∈ [0, |σ|] ∧ ατ (θ′′ `m−1−→
$m) = σ1 . . . σi ∧$ = $m} Hdef. ∈ and θ = θ′′

`m−1−→ $mI
= {〈i, $′[A → ηB�η′][B → �ς]〉 | ∃θ′′ = $0

`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A →
η�Bη′] : m > 1 ∧B → ς ∈ R ∧ i ∈ [0, |σ|] ∧ ατ (θ′′) = σ1 . . . σi} Hdef. ατI

= {〈i, $[A → ηB�η′][B → �ς]〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S : i ∈
[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$[A→ η�Bη′] = $m ∧B → ς ∈ R}

Hsetting the dummy variable m to m− 1 > 0 and θ = θ′′I

= {〈i, $[A→ ηB�η′][B → �ς]〉 | 〈i, $[A→ η�Bη′]〉 ∈ αLL(S)(σ)(X) ∧B → ς ∈ R}
Hdef. ∈ and αLL(S)(σ)I

αLL(S)(σ)(D)

= αLL(S)(σ)({θ `−→ $[A→ η�] AM−→ $ | θ `−→ $[A→ η�] ∈ X ∧A→ η ∈ R})
Hdef. case (D)I

= αLL(S)(σ)({θ `−→ $[A→ η�] AM−→ $ | θ `−→ $[A→ η�] ∈ X})
Hbecause X is an iterate of F∂

→

JGK so, by Lem. 7, [A→ η�] can be on the stack
only if A→ η is a grammar rule in RI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {θ′
`−→ $′[A→ η�] | θ′ `−→ $′[A→

η�] ∈ X.S} : i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$ = $m} Hdef. αLL(S)(σ) & •.SI

= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ {θ′

`−→ $′[A → η�] AM−→ $′ | θ′ `−→ $′[A →
η�] ∈ X.S} : i ∈ [0, |σ|] ∧ ατ (θ′′) = σ1 . . . σi ∧$[A→ η�] = $m−1}

Hsetting θ = θ′′
`m−1−→ $m with `m−1 =AM, $m = $′ and $m−1 = $[A → η�]

since ατ (θ) = ατ (θ′′)I
= {〈i, $〉 | ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧ ατ (θ) =

σ1 . . . σi ∧$[A→ η�] = $m} Hdef. ∈ & setting dummy variable m to m− 1 > 0I
= {〈i, $〉 | 〈i, $[A→ η�]〉 ∈ αLL(S)(σ)(X)} Hdef. ∈ and αLL(S)(σ)I �
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23.2. The Nonrecursive Predictive Parsing Algorithm
Observe that, by Ex. 107, lfp

⊆ FLLJGK(σ) is exactly the set of reachable states of the
transition system 〈[0, |σ|]× S, LL−→〉 where

〈0, `〉 LL−→ 〈0, a[S → �η]〉 S → η ∈ R (56)
〈i, $[A→ η�σi+1η

′]〉 LL−→ 〈i+ 1, $[A→ ησi+1�η
′]〉 (57)

〈i, $[A→ η�Bη′]〉 LL−→ 〈i, $[A→ ηB�η′][B → �ς]〉 B → ς ∈ R (58)
〈i, $[A→ η�]〉 LL−→ 〈i, $〉 (59)

with initial state 〈0, `〉. By Th. 88, parsing is therefore reduced to proving that the final
state 〈|σ|, a〉 is reachable (which can be done by computing the iterates of FLLJGK(σ) or
equivalently by exploring the descendants of the transition relation LL−→ with backtracking
when reaching a dead-end [4, Alg. 4.1, Sect. 4.1.3]).

Example 90 Consider the grammar G = 〈{a, b}, {A}, A, {A → A,A → a}〉. For the
input sentence σ = a we have

〈0, `〉 LL−→ 〈0, a[A→ �a]〉 Hfrom initial state by (56) with rule A→ aI

〈1, a[A→ a�]〉 LL−→ 〈1, a〉 Hby (57) since σ1 = a and (59), which is a final state .I

On the other hand, the transitions for σ = b either lead to dead ends or do not terminate

〈0, `〉 LL−→ 〈0, a[A→ �A]〉
Hfrom initial state by (56) with rule A→ A since A→ a would lead to a dead
end because σ1 = b 6= aI

LL−→ 〈0, a[A→ �A][A→ �A]〉
Hby (58) with rule A → A since A → a would lead to a dead end because
σ1 = b 6= aI

LL−→ 〈0, a[A→ �A][A→ �A][A→ �A]〉
Hby (58) with rule A → A since A → a would lead to a dead end because
σ1 = b 6= aI

LL−→ . . .

Hetc, ad infinitum, without any possibility of success or failure in a blocking
state.I 2

Theorem 91 The nonrecursive predictive parsing algorithm for a grammar G = 〈T ,

N , S, R〉 terminates (i.e. the transition relation LL−→ has no infinite trace for all input
sentences σ ∈ T ?) if and only if the grammar G has no left recursion (that is ∃A ∈ N :
∃η ∈ V ? : A +Z=⇒G Aη). e

Proof By reductio ad absurdum, assume that there exists an infinite trace for some
input σ.
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Because (56) is only applicable in the initial state 〈0, `〉 and (57) strictly increases i
which is bounded by the finite length |σ| of the input sentence σ, there must be a point
in the infinite trace where only (58) and (59) are applicable and the stack has minimal
height (no stack appearing later in the trace can have a strictly less height).

This stack cannot be reduced to a since in this case the state would be final or blocking.
So the corresponding state has necessarily the form 〈i, $[A1 → η1�A2η

′
1]〉 (the stack

cannot be of the form $[A→ η�] since then (59) would strictly reduce the height of the
stack nor of the form $[A→ η�aη′] which would be a dead-end since (57) is no longer
applicable). All later state in the trace correspond to the position i since (57) is assumed
to be no longer applicable in the trace. Moreover no later state in the trace can be of the
form 〈i, $[A1 → η1A2η

′
1�]〉 since (59) would then strictly reduce the height of the stack,

which would be in contradiction with the minimality of the height of the stack from now
on. So there is a later position in the trace of this form with η′1 of minimal length.

Assume, by induction hypothesis, that the trace contains a later state of the form 〈i,
$[A1 → η1A2�η′1] . . . [Ak → ηk�Ak+1η

′
k]〉 with η′k of minimal length (no later state can be

of the form 〈i, $[A1 → η1A2η
′
1�] . . . [Ak → ηk�A′k+1η

′′
k ]〉 with |η′′k | < η′k).

The next state is then 〈i, $[A1 → η1A2�η′1] . . . [Ak → ηkAk+1�η′k][Ak+1 → �η]〉 by (58).
All later states have necessarily the form 〈i, $[A1 → η1A2�η′1] . . . [Ak → ηkAk+1�η′k][Ak+1
→ ηk+1�Ak+2η

′
k+1]〉 with ηk+1 Z=⇒G ε and η′k+1 6= ε.

• We have η′k+1 6= ε since the stack cannot be of the form 〈i, $[A1 → η1A2�η′1] . . . [Ak
→ ηkAk+1�η′k][Ak+1 → η�]〉 since then (59) would strictly reduce the height of
the stack in contradiction with the minimality of η′k nor of the form 〈i, $[A1 →
η1A2�η′1] . . . [Ak → ηkAk+1�η′k][Ak+1 → ηk+1�aη′k+1]〉 which would be a dead-end
since (57) is no longer applicable).

• It follows that the only applicable transitions to reach 〈i, $[A1 → η1A2�η′1]
. . . [Ak → ηkAk+1�η′k][Ak+1 → ηk+1�Ak+2η

′
k+1]〉 from 〈i, $[A1 → η1A2�η′1] . . . [Ak

→ ηkAk+1�η′k][Ak+1 → ηk+1Ak+2η
′
k+1�]〉 are (58) with B → ς ∈ R immediately

followed by (59) so that ς = ε proving that ηk+1 Z=⇒G ε.

So there is one later state of the form 〈i, $[A1 → η1A2�η′1] . . . [Ak → ηkAk+1�η′k][Ak+1 →
ηk+1�Ak+2η

′
k+1]〉 with η′k+1 of minimal length. This means that this construction can go

on for ever.
Since there are only finitely many grammar rules, some rule, say A1 → η1A2η

′
1, must

be applied at least twice. So we have a finite sequence of grammar rules A1 → η1A2η
′
1,

. . . , Ak → ηkAk+1η
′
k, k > 1, where we have shown that η1 Z=⇒G ε, . . . , ηk Z=⇒G ε and

Ak+1 = A1. It follows that we have a left recursion for A1 since by def. (47) of Z=⇒G, we
have A1

+Z=⇒G Ak+1η
′
k . . . η

′
1 = A1η

′
k . . . η

′
1.

Because there are finitely many nonterminals, terminals and grammar rules, the
transition system has a finitely bounded nondeterminism. So if all traces are finite,
there are finitely many of them, whence the iterates in the iterative computation of
lfp
⊆ FLLJGK(σ) do converge in finitely many steps. �

23.3. Nonrecursive Predictive Parsing with Lookahead
The nondeterminism in predictive parsing can be reduced by driving the right context

in derivations (as approximated using First and Follow).
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23.4. Right Context in Derivations
We start by elucidating the rôle of the right context in derivations.
Given a stack $ = a[A1 → η1�η′1] . . . [Ap → ηp�η′p], p > 0 where $ = a when p = 0,

we define the right context $4 of $ as

$4
∆= η′pη

′
p−1 . . . η

′
2η
′
1

with η′pη′p−1 . . . η
′
2η
′
1 = ε when p = 0.

Theorem 92 Let $0
`0−→ $1 . . . $i−1

`i−1−→ $i
`i−→ $i+1 . . . $n−1

`n−1−→ $n ∈ Sd̂JGK be a
maximal derivation of the grammar G = 〈T , N , S, R〉 with i > 0. Then

$i
4 ?Z=⇒G ατ ($i

`i−→ $i+1 . . . $n−1
`n−1−→ $n) . e

We call ατ ($i
`i−→ $i+1 . . . $n−1

`n−1−→ $n) the terminal right context of $i.

Proof The facts that n > 1, $0 = ` and $n = a follow from Lem. 9. By Lem. 7,
the stack $i has the shape $i = a[A1 → η1�η′1] . . . [Ap → ηp�η′p], p > 0 when i > 0. The

proof is by induction on the length of the suffix $i
`i−→ $i+1 . . . $n−1

`n−1−→ $n.
If i = n then $i = $n = a so $i

4 = η′pη
′
p−1 . . . η

′
2η
′
1 = ε

?Z=⇒G ε = ατ (a) = ατ ($n)

= ατ ($i
`i−→ $i+1 . . . $n−1

`n−1−→ $n) by def. ατ and i = n.
Otherwise, for the induction step, i < n. By def. (5) of the transition-based maximal

derivation semantics Sd̂JGK, $i
`i−→ $i+1 is a transition of the labelled transition system

〈S, L , −→, `〉. We go on by cases.

The case (1) of a transition $i
`i−→ $i+1 = ` LA−→ a[A → �η] is impossible since

i > 0 so $i is not the initial state `

In case (2) $i
`i−→ $i+1 = $[A→ η�aη′] a−→ $[A→ ηa�η′], we have $i

4

= a$i+1
4

Hsince $i = $[A→ η�aη′], def. ($[A→ η�aη′])4, def. ($[A→ ηa�η′])4 and
$i+1 = $[A→ ηa�η′]I

?Z=⇒G aατ ($i+1
`i+1−→ $i+2 . . . $n−1

`n−1−→ $n) Hind. hyp.I
= ατ ($i

`i−→ $i+1 . . . $n−1
`n−1−→ $n) Hdef. ατ since `i = a ∈ T I

In case (3) $i
`i−→ $i+1 = $[A→ η�Bη′] LB−→ $[A→ ηB�η′][B → �ς], we have

$i
4 = Bσ′$4 Hdef. $i

4 = ($[A→ η�Bη′])4I

Z=⇒G ςσ′$4 Hdef. (47) of Z=⇒G since B → ς ∈ R by def. (3) of LB−→I

= $i+1
4 Hdef. $i+1

4 = $[A→ ηB�η′][B → �ς]I
?Z=⇒G ατ ($i+1

`i+1−→ $i+2 . . . $n−1
`n−1−→ $n) Hind. hyp.I

= ατ ($i
`i−→ $i+1 . . . $n−1

`n−1−→ $n) Hdef. ατ since `i = LBI
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and so $i
4 ?Z=⇒G ατ ($i

`i−→ $i+1 . . . $n−1
`n−1−→ $n) by def. of ?Z=⇒G as the

reflexive transitive closure of Z=⇒G

Finally, in case (4) $i
`i−→ $i+1 = $[A→ η�] AM−→ $, we have $i

4

= $i+1
4 Hsince $i = $[A→ η�], def. ($[A→ η�])4, and $i+1 = $I

?Z=⇒G ατ ($i+1
`i+1−→ $i+2 . . . $n−1

`n−1−→ $n) Hind. hyp.I
= ατ ($i

`i−→ $i+1 . . . $n−1
`n−1−→ $n) Hdef. ατ since `i = AMI . �

23.5. First Approximation of the Right Context in Derivations
In order to approximate the right contexts in derivations by their first symbol, we

define
−→
S 1JGK[A→ η�η′] ∆=

−→
S 1JGK(η′)⊕1 Sf JGK(A) (60)

= (Sf JGK(A) 6= ∅ ? (
−→
S 1JGK(η′) \ {ε}) ∪ (ε ∈

−→
S 1JGK(η′) ? Sf JGK(A) : ∅) : ∅)

= (Sf JGK(A) 6= ∅ ? (
−→
S 1JGK(η′) \ {ε}) ∪ (

−→
S εJGK(η′) ? Sf JGK(A) : ∅) : ∅) .

Corollary 93 Let $0
`0−→ $1 . . . $i−1

`i−1−→ $i
`i−→ $i+1 . . . $n−1

`n−1−→ $n ∈ Sd̂JGK.S,
i > 0 be a maximal derivation of the grammar G = 〈T , N , S, R〉 from the grammar
start symbol S. Then

ατ ($i
`i−→ $i+1 . . . $n−1

`n−1−→ $n)a = aσ

where $i = $′i[A→ η�η′], a ∈ T ∪ {a}, σ ∈ (T ∪ {a})? and

a ∈
−→
S 1JGK[A→ η�η′] . e

Proof By Lem. 7 and i > 0, we have $i of the form $i = a[A1 → η1A2�η′1][A2
→ η2A3�η′2] . . . [An → ηn�η′n] = $′i[A → η�η′] where $′i = a[A1 → η1A2�η′1][A2 →
η2A3�η′2] . . . [An−1 → ηn−1An�η′n−1], An = A, ηn = η and η′n = η′.

Since the trace belongs to Sd̂JGK.S, the definition of the selection •.S and Lem. 7
imply that A1 = S so $i = a[S → η1A2�η′1][A2 → η2A3�η′2] . . . [An → ηn�η′n] where, again
by Lem. 7, S → η1A2η

′
1 ∈ R, A2 → η2A3η

′
2 ∈ R, . . .An → ηnη

′
n = A→ ηη′ ∈ R are all

grammar rules.
It follows, by induction on n and def. (47) of Z=⇒G, that S Z=⇒G η1A2η

′
1 Z=⇒G

η1η2A3η
′
2η
′
1 . . . Z=⇒G η1η2 . . . ηn−1Anη

′
n−1 . . . η

′
2η
′
1 = η1η2 . . . ηn−1Aη

′
n−1 . . . η

′
2η
′
1 Z=⇒G

η1η2 . . . ηn−1ηη
′η′n−1 . . . η

′
2η
′
1 proving that

S
?Z=⇒G η1η2 . . . ηn−1Aη

′
n−1 . . . η

′
2η
′
1

and S
?Z=⇒G η1η2 . . . ηn−1ηη

′η′n−1 . . . η
′
2η
′
1 .

We have η′($′i)
4
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= $i
4 Hdef. •4 and since $i = $′i[A→ η�η′], as shown above.I

?Z=⇒G ατ ($i
`i−→ $i+1 . . . $n−1

`n−1−→ $n) Hby Th. 92I

ατ ($i
`i−→ $i . . . $n−1

`n−1−→ $n)a ∈ (T ∪ {a})+ is not empty whence of the form aσ
where a ∈ T ∪ {a} and σ ∈ (T ∪ {a})?. We have

a ∈ {a} =
−→
S 1JGK(aσ) Hby def. ∈ and Th. 74I

=
−→
S 1JGK(ατ ($i

`i−→ $i+1 . . . $n−1
`n−1−→ $n)a)

Hsince aσ = ατ ($i
`i−→ $i . . . $n−1

`n−1−→ $n)aI
= {a ∈ T | ∃σ ∈ T ? : ατ ($i

`i−→ $i+1 . . . $n−1
`n−1−→ $n) ?Z=⇒G aσ} ∪ {a | ατ ($i

`i−→
$i+1 . . . $n−1

`n−1−→ $n) ?Z=⇒G ε}
Hdef. (51) of the extension of

−→
S 1JGK to V ?{a} 7→ ℘(T ∪ {a})I

⊆ {a ∈ T | ∃σ ∈ T ? : η′($′i)
4 ?Z=⇒G aσ} ∪ {a | η′($′i)

4 ?Z=⇒G ε}
Hsince η′($′i)

4 ?Z=⇒G ατ ($i
`i−→ $i+1 . . . $n−1

`n−1−→ $n) and ?Z=⇒G is transitiveI
=
−→
S 1JGK(η′($′i)

4a) Hdef. (51) of the extension of
−→
S 1JGK to V ?{a} 7→ ℘(T ∪ {a})I

=
−→
S 1JGK(η′)⊕1−→S 1JGK(($′i)

4a) Hby (50)I

Moreover
−→
S 1JGK(($′i)

4a)
=

−→
S 1JGK((a[A1 → η1A2�η

′
1][A2 → η2A3�η

′
2] . . . [An−1 → ηn−1An�η

′
n−1])4a)

Hsince $′i = a[A1 → η1A2�η′1][A2 → η2A3�η′2] . . . [An−1 → ηn−1An�η′n−1]I
=

−→
S 1JGK(η′1η′2 . . . η′n−1a) Hdef. •4I

= {a ∈ T | ∃σ ∈ T ? : η′1η′2 . . . η′n−1
?Z=⇒G aσ} ∪ {a | η′1η′2 . . . η′n−1

?Z=⇒G ε}
Hdef. (51) of the extension of

−→
S 1JGK to V ?{a} 7→ ℘(T ∪ {a})I

= {a ∈ T | ∃σ ∈ T ? : S ?Z=⇒G η1η2 . . . ηn−1Aη
′
n−1 . . . η

′
2η
′
1 ∧ η′1η′2 . . . η′n−1

?Z=⇒G
aσ} ∪ {a | S ?Z=⇒G η1η2 . . . ηn−1Aη

′
n−1 . . . η

′
2η
′
1 ∧ η′1η′2 . . . η′n−1

?Z=⇒G ε}
Hsince S ?Z=⇒G η1η2 . . . ηn−1Aη

′
n−1 . . . η

′
2η
′
1, as shown aboveI

⊆ {a ∈ T | ∃σ ∈ T ? : S ?Z=⇒G η1η2 . . . ηn−1Aaσ} ∪ {a | S
?Z=⇒G η1η2 . . . ηn−1A}

Hdef. ?Z=⇒G and Z=⇒G so that η ?Z=⇒G η′η′′ and η′′
?Z=⇒G η′′′ implies η ?Z=⇒G η′η′′′

and ε neutral element of concatenationI
⊆ {a ∈ T | ∃η, η′ : S ?Z=⇒G ηAaη′} ∪ {a | ∃η : S ?Z=⇒G ηA} Hdef. ∃I
= Sf JGK(A) Hby Th. 79I

By def. ⊕1, we conclude that a ∈
−→
S 1JGK(η′)⊕1−→S 1JGK(($′i)

4a) ⊆
−→
S 1JGK(η′)⊕1 Sf JGK(A)

∆=
−→
S 1JGK[A→ η�η′]. �

If the input sentence σ derives from the start symbol S then the right context $4
of the stack $ in 〈i, $〉 should derive in the rest σi+1 . . . σn of the input sentence. In
order to introduce a lookahead, this can be approximated by the fact that, according to
Cor. 93, the first symbol of this right context should be σi+1 (which, by definition, is a
when i = n so that σ|σ|+1

∆= a).
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αLL(1) ∆= λS . λσ . λX . {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S :
i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$ = $m ∧ ∀$′ ∈ S, A→ ηη′ ∈ R :

($ = $′[A→ η�η′] ∧ i 6 |σ|) =⇒ (σi+1 ∈
−→
S 1JGK[A→ η�η′])} .

The correctness of the nonrecursive predictive parser with lookahead is established by the
following

Theorem 94 σ ∈ S`JGK(S) ⇐⇒ 〈|σ|, a〉 ∈ αLL(1)(S)(σ)(S∂
→

JGK) . e

Proof σ ∈ S`JGK(S)
⇐⇒ ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ S∂

→

JGK.S : |σ| ∈ [0, |σ|]∧ατ (θ) = σ1 . . . σ|σ|∧
a = $m Has shown in the proof of Th. 88I

⇐⇒ 〈|σ|, a〉 ∈ {〈i, $′〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ S∂
→

JGK.S : i ∈
[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧ $′ = $m ∧ ∀$′ ∈ S, A → ηη′ ∈ R : ($ = $′[A →
η�η′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A→ η�η′])}

Hdef. ∈ and ∀$′ ∈ S : ∀A→ ηη′ ∈ R : a 6= $′[A→ η�η′]I
⇐⇒ 〈|σ|, a〉 ∈ αLL(1)(S)(σ)(S∂

→

JGK) Hdef. αLL(1)(S)(σ)I . �

The nonrecursive predictive parser with lookahead is obtained by expressing the abstract
semantics in fixpoint form

Theorem 95 αLL(1)(S)(σ)(S∂
→

JGK) = lfp
⊆ FLL(1)JGK(σ) where FLL(1)JGK(σ) ∈ ℘([0, |σ|]×

S) 7→ ℘([0, |σ|]× S) is

FLL(1)JGK(σ) = λX . {〈0, `〉} (61)

∪ {〈0, a[S → �η]〉 | 〈0, `〉 ∈ X ∧ S → η ∈ R ∧ σ1 ∈
−→
S 1JGK[S → �η]}

∪ {〈i+ 1, $[A→ ηa�η′]〉 | 〈i, $[A→ η�aη′]〉 ∈ X ∧

a = σi+1 ∧ σi+2 ∈
−→
S 1JGK[A→ ηa�η′]}

∪ {〈i, $[A→ ηB�η′][B → �ς]〉 | 〈i, $[A→ η�Bη′]〉 ∈ X ∧
B → ς ∈ R ∧ σi+1 ∈

−→
S 1JGK[B → �ς]}

∪ {〈i, $〉 | 〈i, $[A→ η�]〉 ∈ X} . e

Proof The proof is similar to that of Th. 89. We have αLL(1)(S)(σ)({`}) = {〈0,
`〉} by def. αLL(1)(S)(σ) with i = 0 so σ1 . . . σi = ε and {`}.S ∆= {`}. We go on
with the evaluation of αLL(1)(S)(σ)(X; −→) = αLL(1)(S)(σ)(A) ∪ αLL(1)(S)(σ)(B) ∪
αLL(1)(S)(σ)(C) ∪ αLL(1)(S)(σ)(D) as in the proof of Th. 89. We now have four cases,
as follows

αLL(1)(S)(σ)(A)

= αLL(1)(S)(σ)({θ `−→ ` LA−→ a[A→ �η] | θ `−→ ` ∈ X ∧A→ η ∈ R}) Hdef. case (A)I
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= αLL(1)(S)(σ)({` LA−→ a[A→ �η] | ` ∈ X ∧A→ η ∈ R})
HX is an iterate of F∂

→

JGK so included in the prefix derivation semantics S∂
→

JGK
hence, by Th. 7, the only trace of the form θ

`−→ ` is `I

{〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {`
LS−→ a[S → �ς] | ` ∈ X ∧ S → ς ∈

R} : i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$ = $m ∧ ∀$′ ∈ S, A→ ηη′ ∈ R : ($ = $′[A
→ η�η′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A→ η�η′])} Hdef. αLL(1)(S)(σ) & •.SI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 = ` LS−→ a[S → �ς]∧` ∈ X ∧S → ς ∈ R ∧ i ∈ [0, |σ|]∧ ε =

σ1 . . . σi ∧ $ = $1 ∧ ∀$′ ∈ S, A → ηη′ ∈ R : ($ = $′[A → η�η′] ∧ i 6 |σ|) =⇒
(σi+1 ∈

−→
S 1JGK[A→ η�η′])} Hdef. ∈ and ατI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 = ` LS−→ a[S → �ς]∧` ∈ X ∧S → ς ∈ R ∧ i ∈ [0, |σ|]∧ ε =

σ1 . . . σi ∧$ = $1 ∧ σi+1 ∈
−→
S 1JGK[S → �ς]}

Hsince $ = $1 = a[S → �ς] = $′[A→ η�η′] so $′ = a, A = S, η = ε and η′ = ςI

= {〈0, a[S → �ς]〉 | ` ∈ X ∧ S → ς ∈ R ∧ σ1 ∈
−→
S 1JGK[S → �ς]}

Hsince ε = σ1 . . . σi ⇐⇒ i = 0I

= {〈0, a[S → �ς]〉 | 〈0, `〉 ∈ αLL(1)(S)(σ)(X) ∧ S → ς ∈ R ∧ σ1 ∈
−→
S 1JGK[S → �ς]}

Hdef. αLL(1)I

αLL(1)(S)(σ)(B)
= αLL(1)(S)(σ)({θ `−→ $[A → η�aη′] a−→ $[A → ηa�η′] | θ `−→ $[A → η�aη′] ∈

X ∧A→ σaσ′ ∈ R}) Hdef. case (B)I
= αLL(1)(S)(σ)({θ `−→ $[A→ η�aη′] a−→ $[A→ ηa�η′] | θ `−→ $[A→ η�aη′] ∈ X})

Hbecause X is an iterate of F∂
→

JGK so, by Lem. 7, [A → η�aη′] can be on the
stack only if A→ σaσ′ is a grammar rule in RI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {θ′
`−→ $′[A → η�aη′] a−→ $′[A

→ ηa�η′] | θ′ `−→ $′[A → η�aη′] ∈ X.S} : i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧ $ =
$m ∧ ∀$′ ∈ S, A→ ηη′ ∈ R : ($ = $′[A→ η�η′]∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A→

η�η′])} Hdef. αLL(1)(S)(σ) and selection •.SI
= {〈i, $〉 | ∃θ′′ = $0

`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A → η�aη′], `m−1 =
a,$m = $′[A → ηa�η′] : m > 1 ∧ i ∈ [0, |σ|] ∧ ατ (θ′′ `m−1−→ $m) = σ1 . . . σi ∧ $ =
$m ∧ ∀$′ ∈ S, A→ ηη′ ∈ R : ($ = $′[A→ η�η′]∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A→

η�η′])} Hdef. ∈ with θ = θ′′
`m−1−→ $mI

= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A → η�aη′], `m−1 =

a,$m = $′[A → ηa�η′] : m > 1 ∧ i ∈ [0, |σ|] ∧ ατ (θ′′ `m−1−→ $m) = σ1 . . . σi ∧ $ =
$m ∧ σi+1 ∈

−→
S 1JGK[A→ ηa�η′]}

Hsince $ = $m = $′[A→ ηa�η′] so σi+1 ∈
−→
S 1JGK[A→ ηa�η′]I

= {〈i, $′[A → ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A → η�aη′] : i ∈

[0, |σ|] ∧ ατ (θ′′)a = σ1 . . . σi ∧ σi+1 ∈
−→
S 1JGK[A→ ηa�η′]}
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Hdef. ατ and setting the dummy variable m to m− 1 > 0I

= {〈i, $′[A → ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A → η�aη′] : i ∈

[1, |σ|] ∧ ατ (θ′′)a = σ1 . . . σi ∧ σi+1 ∈
−→
S 1JGK[A→ ηa�η′]}
Hsince ατ (θ′′)a = σ1 . . . σi implies 1 6 i 6 |σ|I

= {〈i+ 1, $′[A→ ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A→ η�aη′] : i ∈

[0, |σ| − 1] ∧ ατ (θ′′)a = σ1 . . . σi+1 ∧ σi+2 ∈
−→
S 1JGK[A→ ηa�η′]}
Hsetting the dummy variable i to i+ 1I

= {〈i+ 1, $′[A→ ηa�η′]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m ∈ X.S,$m = $′[A→ η�aη′] : i ∈

[0, |σ| − 1] ∧ ατ (θ′′) = σ1 . . . σi ∧ σi+1 = a ∧ σi+2 ∈
−→
S 1JGK[A→ ηa�η′]}

Hdef. equality of sequencesI
= {〈i + 1, $[A → ηa�η′]〉 | ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧

ατ (θ) = σ1 . . . σi ∧$[A→ η�aη′] = $m ∧ a = σi+1 ∧ σi+2 ∈
−→
S 1JGK[A→ ηa�η′]}

Hsince σi+1 = a implies i+ 1 6 |σ|I
= {〈i + 1, $[A → ηa�η′]〉 | ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧

ατ (θ) = σ1 . . . σi∧$[A→ η�aη′] = $m∧a = σi+1∧σi+1 ∈
−→
S 1JGK[A→ η�aη′]∧σi+2 ∈

−→
S 1JGK[A→ ηa�η′]} Hsince

−→
S 1JGK[A→ η�aη′] = {a} = {σi+1}I

= {〈i + 1, $[A → ηa�η′]〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧
ατ (θ) = σ1 . . . σi ∧ $[A → η�aη′] = $m ∧ a = σi+1 ∧ ∀$′′ ∈ S, A′ → η′′η′′′ ∈ R :
($m = $′′[A′ → η′′�η′′′]∧i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])∧σi+2 ∈

−→
S 1JGK[A

→ ηa�η′]} Hwith A′ = A, η′′ = η and η′′′ = η′′a since $m = $[A→ η�aη′]I
= {〈i + 1, $[A → ηa�η′]〉 | 〈i, $[A → η�aη′]〉 ∈ αLL(1)(S)(σ)(X) ∧ a = σi+1 ∧ σi+2 ∈
−→
S 1JGK[A→ ηa�η′]} Hdef. ∈ and αLL(1)(S)(σ)I

αLL(1)(S)(σ)(C)

= αLL(1)(S)(σ)({θ `−→ $[A → η�Bη′] LB−→ $[A → ηB�η′][B → �ς] | θ `−→ $[A →
η�Bη′] ∈ X ∧A→ σBσ′ ∈ R ∧B → ς ∈ R}) Hdef. case (C)I

= αLL(1)(S)(σ)({θ `−→ $[A → η�Bη′] LB−→ $[A → ηB�η′][B → �ς] | θ `−→ $[A →
η�Bη′] ∈ X ∧B → ς ∈ R})

Hbecause X is an iterate of F∂
→

JGK so by Lem. 7, [A → η�Bη′] can be on the
stack only if A→ σBσ′ is a grammar rule in RI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {θ′
`−→ $′[A→ η�Bη′] LB−→ $′[A→

ηB�η′][B → �ς] | θ′ `−→ $′[A → η�Bη′] ∈ X.S ∧ B → ς ∈ R} : i ∈ [0, |σ|] ∧ ατ (θ) =
σ1 . . . σi ∧ $ = $m ∧ ∀$′′ ∈ S, A′ → η′′η′′′ ∈ R : ($ = $′′[A′ → η′′�η′′′] ∧ i 6
|σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])} Hdef. αLL(1)(S)(σ) and selection •.SI

= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A → η�Bη′], `m−1 =

LB,$m = $′[A → ηB�η′][B → �ς] : m > 1 ∧ B → ς ∈ R ∧ i ∈ [0, |σ|] ∧ ατ (θ′′ `m−1−→
$m) = σ1 . . . σi∧$ = $m∧∀$′′ ∈ S, A′ → η′′η′′′ ∈ R : ($ = $′′[A′ → η′′�η′′′]∧ i 6
|σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])} Hdef. ∈ and θ = θ′′

`m−1−→ $mI
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= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A → η�Bη′], `m−1 =

LB,$m = $′[A → ηB�η′][B → �ς] : m > 1 ∧ B → ς ∈ R ∧ i ∈ [0, |σ|] ∧ ατ (θ′′ `m−1−→
$m) = σ1 . . . σi ∧$ = $m ∧ σi+1 ∈

−→
S 1JGK[B → �ς]}

Hsince $ = $m−1 = $′[A → ηB�η′][B → �ς] so $′′ = $′[A → ηB�η′], A′ = B,
η′′ = ε and η′′′ = ςI

= {〈i, $′[A → ηB�η′][B → �ς]〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ X.S,$m−1 = $′[A →

η�Bη′] : m > 1 ∧ B → ς ∈ R ∧ i ∈ [0, |σ|] ∧ ατ (θ′′) = σ1 . . . σi ∧ σi+1 ∈
−→
S 1JGK[B →

�ς]} Hdef. ατI
= {〈i, $[A → ηB�η′][B → �ς]〉 | ∃θ = $0

`0−→ $1 . . . $m−1
`m−1−→ $m ∈ X.S : i ∈

[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$[A→ η�Bη′] = $m ∧B → ς ∈ R ∧ σi+1 ∈
−→
S 1JGK[B →

�ς]} Hsetting the dummy variable m to m− 1 > 0 and θ = θ′′I

= {〈i, $[A → ηB�η′][B → �ς]〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S : i ∈
[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧$[A→ η�Bη′] = $m ∧B → ς ∈ R ∧ σi+1 ∈

−→
S 1JGK[A→

η�Bη′] ∧ σi+1 ∈
−→
S 1JGK[B → �ς]}

Hsince
−→
S 1JGK[A→ η�Bη′] =

−→
S 1JGK[B → �ς] by def. (60) of

−→
S 1JGKI

= {〈i, $[A → ηB�η′][B → �ς]〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S : i ∈
[0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧ $[A → η�Bη′] = $m ∧ B → ς ∈ R ∧ ∀$′′ ∈ S, A′ →
η′′η′′′ ∈ R : ($m = $′′[A′ → η′′�η′′′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′]) ∧

σi+1 ∈
−→
S 1JGK[B → �ς]}

Hsince $m = $[A→ η�Bη′] so that A′ = A, η′′ = η and η′′′ = Bη′I

= {〈i, $[A → ηB�η′][B → �ς]〉 | 〈i, $[A → η�Bη′]〉 ∈ αLL(1)(S)(σ)(X) ∧ B → ς ∈
R ∧ σi+1 ∈

−→
S 1JGK[B → �ς]} Hdef. ∈ and αLL(1)(S)(σ)I

αLL(1)(S)(σ)(D)

= αLL(1)(S)(σ)({θ `−→ $[A→ η�] AM−→ $ | θ `−→ $[A→ η�] ∈ X ∧A→ η ∈ R})
Hdef. case (D)I

= αLL(1)(S)(σ)({θ `−→ $[A→ η�] AM−→ $ | θ `−→ $[A→ η�] ∈ X})
Hbecause X is an iterate of F∂

→

JGK so, by Lem. 7, [A→ η�] can be on the stack
only if A→ η is a grammar rule in RI

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ {θ′
`−→ $′[A → η�] AM−→ $′ | θ′ `−→

$′[A → η�] ∈ X.S} : i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧ $ = $m ∧ ∀$′′ ∈ S, A′ →
η′′η′′′ ∈ R : ($ = $′′[A′ → η′′�η′′′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])}

Hdef. αLL(1)(S)(σ) and selection •.SI

= {〈i, $〉 | ∃θ′′ = $0
`0−→ $1 . . . $m−1 ∈ {θ′

`−→ $′[A → η�] | θ′ `−→ $′[A →
η�] ∈ X.S} : i ∈ [0, |σ|] ∧ ατ (θ′′) = σ1 . . . σi ∧$m−1 = $[A → η�] ∧ ∀$′′ ∈ S, A′ →
η′′η′′′ ∈ R : ($ = $′′[A′ → η′′�η′′′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])}

Hsetting θ = θ′′
`m−1−→ $m with `m−1 =AM, $m = $ and $m−1 = $[A → η�]

since ατ (θ) = ατ (θ′′)I
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= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1 ∈ X.S : m > 1 ∧ i ∈ [0, |σ|] ∧ ατ (θ) =

σ1 . . . σi ∧ $[A → η�] = $m−1 ∧ ∀$′′ ∈ S, A′ → η′′η′′′ ∈ R : ($ = $′′[A′ →
η′′�η′′′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])} Hdef. ∈I

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧ ατ (θ) =
σ1 . . . σi ∧ $[A → η�] = $m ∧ ∀$′′ ∈ S, A′ → η′′η′′′ ∈ R : ($ = $′′[A′ →
η′′�η′′′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])}

Hsetting the dummy variable m to m− 1 > 0I

= {〈i, $〉 | ∃θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S : i ∈ [0, |σ|] ∧ ατ (θ) =
σ1 . . . σi ∧$[A → η�] = $m ∧ ∀$′′ ∈ S, A′ → η′′η′′′ ∈ R : ($[A → η�] = $′′[A′ →
η′′�η′′′] ∧ i 6 |σ|) =⇒ (σi+1 ∈

−→
S 1JGK[A′ → η′′�η′′′])}

Hsince θ = $0
`0−→ $1 . . . $m−1

`m−1−→ $m ∈ X.S so that by Lem. 7, $m = $[A
→ η�] = a[A1 → η1A2�η′1][A2 → η2A3�η′2] . . . [An−1 → ηn−1A�η′n−1][A → η�]
and therefore $ = a[A1 → η1A2�η′1][A2 → η2A3�η′2] . . . [An−1 → ηn−1A�η′n−1]
with An−1 → ηn−1Aη

′
n−1, [A → η�] ∈ R that is necessarily $′′ = a[A1 →

η1A2�η′1][A2 → η2A3�η′2] . . . and [A′ → η′′�η′′′] = [An−1 → ηn−1A�η′n−1] so
−→
S 1JGK[A′ → η′′�η′′′] =

−→
S 1JGK[An−1 → ηn−1A�η′n−1] =

−→
S 1JGK[A → η�] by def.

(60) of
−→
S 1JGKI

= {〈i, $〉 | 〈i, $[A→ η�]〉 ∈ αLL(1)(S)(σ)(X)} Hdef. ∈ and αLL(1)(S)(σ)I �

Again, observe that, by Ex. 107, lfp
⊆ FLL(1)JGK(σ) is exactly the set of reachable states

of the transition system 〈[0, |σ|]× S, LL(1)−→〉 where

〈0, `〉LL(1)−→〈0, a[S → �η]〉 S → η ∈ R ∧ σ1 ∈
−→
S 1JGK[S → �η]

〈i, $[A→ η�σi+1η
′]〉LL(1)−→〈i+ 1, $[A→ ησi+1�η

′]〉 σi+2 ∈
−→
S 1JGK[A→ ηa�η′]

〈i, $[A→ η�Bη′]〉LL(1)−→〈i, $[A→ ηB�η′][B → �ς]〉 B → ς ∈ R ∧ σi+1 ∈
−→
S 1JGK[B → �ς]}

〈i, $[A→ η�]〉LL(1)−→〈i, $〉

with initial state 〈0, `〉. This is essentially the algorithm suggested at the end of [4, Sect.
4.1.4] to speed up top-down nondeterministic parsing.

Indeed the lookahead may been done freely between the two extremes of everywhere
in Th. 94 and nowhere Th. 88, as follows

Corollary 96 If FLL(1)JGK(σ) ⊆ FJGK(σ) ⊆ FLLJGK(σ) then

σ ∈ S`JGK(S) ⇐⇒ 〈|σ|, a〉 ∈ lfp
⊆

FJGK(σ) .

The iterative computation of lfp
⊆ FJGK(σ) terminates for all σ if and only if the grammar

G has no left recursion. e
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Proof We have FLL(1)JGK(σ)⊆ FJGK(σ)⊆ FLLJGK(σ) so, byCor. 102, lfp
⊆ FLL(1)JGK(σ)

⊆ lfp
⊆ FJGK(σ) ⊆ lfp

⊆ FLLJGK(σ).
It follows that σ ∈ S`JGK(S) implies 〈|σ|, a〉 ∈ αLL(1)(S)(σ)(S∂

→

JGK) by Th. 94 and
therefore 〈|σ|, a〉 ∈ lfp

⊆ FLL(1)JGK(σ) by Th. 95 whence 〈|σ|, a〉 ∈ lfp
⊆ FJGK(σ).

Reciprocally, 〈|σ|, a〉 ∈ lfp
⊆ FJGK(σ) implies 〈|σ|, a〉 ∈ lfp

⊆ FLLJGK(σ) whence 〈|σ|,
a〉 ∈ αLL(S)(σ)(S∂

→

JGK) by Th. 89 so σ ∈ S`JGK(S) by Th. 88.
If the grammar has no left-recursion then by Th. 91, lfp

⊆ FLLJGK(σ) has only finite
traces whence so has lfp

⊆ FJGK(σ) ⊆ lfp
⊆ FLLJGK(σ).

Reciprocally, if the grammar is left-recursive, then by Th. 91, there is an infinite trace
in lfp

⊆ FJGK(σ) ⊆ lfp
⊆ FLLJGK(σ). To show that it is also in lfp

⊆ FJGK(σ), it is sufficient
to shown that it is in lfp

⊆ FLL(1)JGK(σ) ⊆ lfp
⊆ FJGK(σ) which follows from the fact that

the lookahead conditions prevent none of these transitions by Cor. 93. �

23.6. Correspondance with the Classical Nonrecursive Predictive Parsing Algorithm
Our presentation of LL(1) parsing differs from the classical introduction in [32] or

[8], mainly because, for practical efficiency and simplicity reasons, only the table-driven
deterministic case is classically considered.

24. Conclusion

Many meanings assigned to grammars (such as syntax tree, protolanguage or terminal
language generation) and grammar manipulation algorithms (such as grammar flow
analyses or parsers) have quite similar structures. We have shown that this is because
they are all abstract interpretations of a grammar small-step operational semantics to
derive sentences together with their structure.

The verification of compilers is an old and challenging problem [37] which has recently
made significant progress [38, 39]. Indeed [37] originated the use of abstract syntax in
order to get rid of the concrete parsing problem. Having formalized parsing by abstract
interpretation, one can hope that the parser correctness can be integrated in the full
compiler correctness proof, together with the validity of the concrete to abstract syntax
translation. Because abstraction can be constructed by calculational design [40], as shown
in our formal proofs, proof assistant or theorem provers can be used to automatically
check or perform these calculations. This has been done for simple abstract interpreters
in restricted cases excluding the use of Galois connections [41], whence some progress
in automatic verification/proof checking is still needed before this paper can be entirely
checked mechanically, which is the ultimate “proof by construction” goal in abstract-
interpretation-based designs.

The results obtained in this paper directly extend to the semantics and static analysis
of resolution-based languages [42]. Future work should include the extension of the
approach to context-sensitive grammars such as contextual grammars [43, 44] or to mildly
context-sensitive grammars attempting to express the formal power needed to define the
syntax of natural languages by tree rewriting such as (multicomponent) tree adjoining
grammars or, more generally, range concatenation grammars [45].
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Appendix A.

A.1. Posets, Booleans, Maps, Iteration, Fixpoints
A poset 〈P, �〉 is a set P equipped with a partial order � [46]. If X ⊆ P then

b
X

denotes the least upper bound (lub) of X and
c
X denotes its greatest lower bound (glb),

if any. A complete lattice has all lubs whence all glbs, an infimum 0 and a suppremum
1. A complete Boolean lattice is a complete lattice with unique complement ¬ (i.e.
∀x ∈ P : (xg ¬x = 1) ∧ (xf ¬x = 0).

We let B ∆= {ff, tt} where ff is false tt is true be the Booleans ordered by implication
ff =⇒ ff =⇒ tt =⇒ tt. It is a complete Boolean lattice 〈B, =⇒, ff, tt, ∨, ∧, ¬〉. The
conditional (b ? x : y) is x if b holds and y otherwise that is (tt ? x : y) = x and
(ff ? x : y) = y. We sometimes write (b ? tt : ff) for b, a redundancy emphasizing the
computer boolean encoding of b.

If 〈Q, v, t〉 is a poset, we say that the map f ∈ P 7→ Q is monotone if and only
if ∀x, y ∈ P : (x � y) =⇒ (f(x) v f(y)). f is lub-preserving whenever the existence
of

b
β x

β in P implies the existence of
⊔
β f(xβ) in Q such that f(

b
β x

β) =
⊔
β f(xβ).

f is upper-continuous (continuous for short) if and only if it preserves existing lubs of
increasing denumerable chains xn, n ∈ N, that is if ∀n ∈ N : xn � xn+1 and the lubb
n∈N xn does exist then

⊔
n∈N f(xn) exists such that f(

b
n∈N xn) =

⊔
n∈N f(xn).

The transfinite iterates of F ∈ P 7→ P from a ∈ P are partially defined as F 0 ∆= a,
F δ+1 ∆= F (F δ) for successor ordinals and Fλ ∆=

b
β<λ F

β for limit ordinals λ [28]. This is
well-defined only when the lubs

b
do exist in 〈P, �〉.

If 〈P, �〉 is a partial order and F ∈ P 7→ P then lfp
�
F denotes the least fixpoint of

F on P , if any, that is F (lfp
�
F ) = lfp

�
F and ∀x ∈ P : F (x) = x =⇒ lfp

�
F � x. If

P has an infimum ⊥, F is continuous (in particular F preserves existing lubs) and the
iterates of F from ⊥ have a lub Fω then Fω = lfp

�
F [8, Sec. 8.2.5]. Hereafter we use

the notation lfp
�
F only when it exists (most often because 〈P, �〉 is a complete lattice

and F preserves lubs or is continuous [28]).

A.2. Abstraction, Fixpoint abstraction
In this paper, all abstract interpretations [27] use Galois connections 〈P, �〉 −−−→←−−−α

γ
〈Q,

v〉 that is, by definition, 〈P, �〉 and 〈Q, v〉 are posets, α ∈ P 7→ Q and γ ∈ Q 7→ P
satisfy ∀x ∈ P : ∀y ∈ Q : α(x) v y ⇐⇒ x � γ(y). It follows that α preserves lubs existing
in P and, by duality, γ preserves greatest glbs existing in Q. Given a lub-preserving α
(resp. glb-preserving γ), there exists a unique γ (resp. α) such that 〈P, �〉 −−−→←−−−α

γ
〈Q, v〉.

α is onto if and only if γ is one-to-one, written 〈P, �〉 −−−→−→←−−−−
α

γ
〈Q, v〉. Dually, γ is onto

if and only if α is one-to-one, written 〈P, �〉 −−−−→←←−−−−
α

γ
〈Q, v〉. A Galois isomorphism is

written 〈P, �〉 −−−→−→←←−−−−
α

γ
〈Q, v〉.

Example 97 (Function abstraction at a point) If 〈L, v, >〉 is a poset 〈L, v〉 with
supremum > and x ∈ L then we define the abstraction of functions in L 7→ L at point x
by αx ∆= λ f . f(x) and γx ∆= λ v . λ s . (s = x ? v : >). We have 〈L 7→ L, v〉 −−−→←−−−

αx

γx

〈L,
v〉.

Proof For all f ∈ L 7→ L and v ∈ L, we have αx(f) v v
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⇐⇒ ∀s ∈ L : f(s) v (s = x ? v : >) Hdef. αx and > is the supremum of LI

⇐⇒ f v γx(v) Hdef. pointwise ordering and γxI � 2

Let ◦ be the composition of relations or functions. The composition of Galois connections
〈P, �〉 −−−→←−−−

α1

γ1 〈Q, v〉 and 〈Q, v〉 −−−→←−−−
α2

γ2 〈R, 6〉 is a Galois connection 〈P, �〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈R,
6〉.

We use a weaker variant of the fixpoint abstraction theorem [27, Th. 7.1.0.4(3)] as
follows

Theorem 98 If 〈P, �, 0, ∨〉 is a poset with infimum 0, F ∈ P 7→ P is monotone, the
iterates of F from 0 are well-defined with iteration order ε, 〈Q, v, ⊥, t〉 is a poset with
infimum ⊥, F ] ∈ Q 7→ Q is monotone, the iterates of F ] from ⊥ are well-defined with
iteration order ε], then lfp

�
F and lfp

v
F ] do exist. Moreover, if for all ordinals δ ∈ O,

the maps αδ ∈ P 7→ Q satisfy the correspondence property

∀δ : αδ(F δ) vw F ]
δ
,

where vw denotes either @, v, =, w or A, then

αmax(ε,ε])(lfp
�
F ) vw lfp

v
F ] .

Proof By monotony and well-definedness, the iterates of F form an increasing chain,
ultimately stationary at rank ε, with lub F ε = lfp

�
F [28]. Similarly, the iterates of F ]

form an increasing chain, ultimately stationary at rank ε], with lub F ]ε
]

= lfp
v
F ] [28].

By stationarity, we have αmax(ε,ε])(lfp
�
F ) = αmax(ε,ε])(F ε) = αmax(ε,ε])(Fmax(ε,ε]))

vw F ]
max(ε,ε]) = F ]

ε] = lfp
v
F ].

Corollary 99 If 〈P, �, 0, ∨〉 is a poset with infimum 0, F ∈ P 7→ P is monotone, the
iterates of F from 0 are well-defined with iteration order ε, 〈Q, v, ⊥, t〉 is a poset with
infimum ⊥, F ] ∈ Q 7→ Q is monotone, the iterates of F ] from ⊥ are well-defined with
iteration order ε] then lfp

�
F and lfp

v
F ] do exist. Moreover, if, for all ordinals δ ∈ O,

the maps αδ ∈ P 7→ Q satisfy the commutation property

∀δ ∈ O : αδ+1 ◦ F (F δ) vw F ] ◦ αδ(F δ),

where vw denotes either v, = or w, α0(0) vw ⊥ and for all limit ordinals λ, αλ(
∨
β<λ F

β)
vw
⊔
β<λ αβ(F β) then ∀δ : αδ(F δ) vw F ]

δ and

αmax(ε,ε])(lfp
�
F ) vw lfp

v
F ] .

Proof By monotony and well-definedness, the iterates of F form an increasing chain,
ultimately stationary at rank ε, with lub F ε = lfp

�
F [28]. Similarly, the iterates of F ]

form an increasing chain, ultimately stationary at rank ε], with lub F ]ε
]

= lfp
v
F ] [28].

We have α0(F 0) = α0(0) vw ⊥ = F ]
0. Assuming αδ(F δ) vw F δ

0 by induction
hypothesis, we have αδ+1(F δ+1)
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= αδ+1(F (F δ)) vw F ](αδ(F δ)) Hdef. iterates and commutation hyp.I
vw F ](F ]δ) Hind. hyp. & monotony of F ] (when vw is, v or w) or equalityI
= F ]

δ+1
Hdef. iterates.I

For limit ordinals, αλ(Fλ)
= αλ(

∨
β<λ

F β) vw
⊔
β<λ

αβ(F β) Hdef. iterates andlub approximation hypothesisI

vw
⊔
β<λ

F ]
β

Hind. hyp. & monotony of the lubI

= F ]
λ

Hdef. well-defined iterates (so the lub exists)I
We proved ∀δ : αδ(F δ) vw F ]

δ and conclude by Th. 98. �

Note that we may have ε] > ε as in P = {0}, F (0) = 0 so ε = 0, Q = {⊥,>} with
⊥ � ⊥ ≺ > � >, F ](⊥) = F ](>) = > so ε] = 1, α0(0) = ⊥ and α1(0) = >.

Corollary 100 Cor. 99 holds with the stronger commutation property

∀x ∈ P : x � lfp
�
F =⇒ αδ+1 ◦ F (x) vw F ] ◦ αδ(x) . e

Corollary 101 If 〈P, �, 0, ∨〉 is a poset with infimum 0, F ∈ P 7→ P is monotone, the
iterates of F are well-defined with iteration order ε, 〈Q, v, t〉 is a poset, F ] ∈ Q 7→ Q is
monotone, the Galois connection 〈P, �〉 −−−→←−−−α

γ
〈Q, v〉 satisfy the commutation property

∀δ ∈ O : α ◦ F (F δ) vw F ] ◦ α(F δ),

where vw denotes either v, = or w, then ∀δ ∈ O : α(F δ) vw F ]
δ and lfp

v
F ] does exist

such that

α(lfp
�
F ) vw lfp

v
F ] .

Proof We apply Cor. 99 with ∀δ ∈ O : αδ = α. 〈P, �〉 −−−→←−−−α
γ
〈Q, v〉 implies that α(0)

is the infimum ⊥ of Q and α preserves existing lubs, so the iterates of F ] do exist and for
all limit ordinals λ, αλ(

∨
β<λ F

β) vw
⊔
β<λ αβ(F β) by reflexivity of vw. �

Corollary 102 If F and G are monotone transformers on a cpo 〈P, �, 0, ∨〉 and F � G
pointwise, then lfp

�
F � lfp

�
G. e

Proof By Cor. 101 with α = 1P . �

Example 103 (Common least fixpoint) If F is monotone on a cpo then lfp
�
F =

lfp
�
λX .X t F (X).

Proof lfp
�
F is a fixpoint of λX .X t F (X) so lfp

�
λX .X t F (X) � lfp

�
F . F �

λX .X t F (X) pointwise so by Cor. 102 lfp
�
F � lfp

�
λX .X t F (X). We conclude

by antisymmetry. �
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In the particular case when vw is =, we can weaken the hypotheses in Cor. 99 as follows

Corollary 104 If 〈P, �, 0, ∨〉 is a poset with infimum 0, F ∈ P 7→ P is monotone, the
iterates of F are well-defined with iteration order ε, 〈Q, v, t〉 is a poset, F ] ∈ Q 7→ Q,
the Galois connection 〈P, �〉 −−−→←−−−α

γ
〈Q, v〉 satisfy the commutation property

∀δ ∈ O : α ◦ F (F δ) = F ] ◦ α(F δ),

then ∀δ ∈ O : α(F δ) = F ]
δ and

α(lfp
�
F ) = F ]

ε]

with ε] 6 ε. Let F ] � I] be the restriction of F ] to its iterates I] ∆= {F ]δ | 0 6 δ 6 ε]}.
Then F ]ε

]

= lfp
v
F ] � I] and if F ] is monotone then F ]ε

]

= lfp
v
F ]. e

Proof We apply Cor. 101 since it is not necessary to assume F ] to be monotone for
these iterates to be increasing since they are the image of an increasing chain by the
monotone α.

By the commutation property and definition of ε, F ](F ]ε) = F ](α(F ε)) = α ◦ F (F ε)
= α(F ε) = F ]

ε, proving ε] ≤ ε.
We have F ]ε

]

= lfp
v
F ] � I] since F ]ε

]

is the only fixpoint of F ] on its iterates. In
general, F ]ε

]

6= lfp
v
F ] as shown by the following counterexample

F

F

F F !

F !

F !

F !

However if F ] is monotone and F ](x) = x then by induction ∀δ 6 ε] : F ]δ v x so
F ]

ε] = lfp
v
F ]. �

Example 105 (Fixpoint abstraction at a point) Continuing Ex. 97, let 〈L, v, ⊥,
>〉 be a poset with infimum ⊥ and supremum >, x ∈ L, S be a set and F =
λφ . λ z . f(z, φ(z)) where f ∈ (S × L) 7→ L) is such that F ∈ (S 7→ L) 7→ (S 7→ L) is
monotone and the iterates of F are well defined. Then αx(lfp

v
F ) = lfp

v
λX . f(x,X).

Proof We apply Cor. 104 to F and discover F ] = λX . f(x,X) by calculus αx(F (φ))
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= αx(λ z . f(z, φ(z))) = f(x, φ(x)) Hdef. F and αxI
= f(x, αx(φ)) Hdef. αx so we let F ] = λX . f(x,X)I . � 2

The particular case [40, Th. 2] is

Corollary 106 If 〈P, �, 0, ∨〉 is a cpo, 〈P, �〉 −−−→←−−−α
γ
〈Q, v〉, F ∈ P 7→ P is monotone,

F ] ∈ Q 7→ Q and the commutation property

∀x ∈ P : x � lfp
�
F =⇒ α ◦ F (x) = F ] ◦ α(x)

holds, then ∀δ : α(F δ) = F ]
δ, lfp

�
F as well as lfp

v
F ] do exist such that

α(lfp
�
F ) = lfp

v
F ]

and the iteration order ε] of F ] is less than or equal to that ε of F . If 〈P, �〉 −−−→−→←−−−−
α

γ
〈Q,

v〉 then we can choose F ] = α ◦ F ◦ γ. e

Proof We apply Cor. 104. The iterates for a monotone F do exist in a cpo. If 〈P,
�〉 −−−→−→←−−−−

α

γ
〈Q, v〉 then γ ◦ α = 1Q so α ◦ F (x) = α ◦ F ◦ γ ◦ α(x) = F ] ◦ α(x). �

Example 107 (Reachable states) Let 〈Σ, τ〉 be a transition system (where Σ is a
non-empty set of states and τ ∈ ℘(Σ× Σ) is a transition relation). The reachable states
from initial states I ⊆ Σ by τ is the right/post-image of I by τ? that is post[τ?]I where
post ∈ ℘(Σ) 7→ ℘(Σ) is post[r]X ∆= {s′ ∈ Σ | ∃s ∈ X : 〈s, s′〉 ∈ r}. We have

post[τ?]I = lfp
⊆
F where F

∆= λX . I ∪ post[τ ]X (A.1)

where the iterates of F satisfy ∀δ ≤ ω : F δ = post[rδ?]I.

Proof We apply Cor. 106 to τ? = lfp
⊆
F with F = λx .1Σ ∪ (x ◦ τ) with abstraction

α
∆= λ r . post[r]I such that 〈℘(Σ × Σ), ⊆〉 −−−→←−−−α

γ
〈℘(Σ), ⊆〉 using the commutation

condition α ◦ F = F ◦ α to design the abstract transformer F . We have α ◦ (λx . τ0 ∪x ◦
τ) = λx . post[τ0]I ∪ post[x ◦ τ ]I by def. ◦, α preserves lubs, and def. α.

post[τ0]I = {s′ | ∃s ∈ I : 〈s, s′〉 ∈ {〈s, s〉 | s ∈ S}} = I Hdef. post, τ0 = 1Σ, ∈I

post[x ◦ τ ]I = {s′ | ∃s ∈ I : ∃s′′ ∈ S : 〈s, s′′〉 ∈ x ∧ 〈s′, s′′〉 ∈ τ} Hdef. post, ◦, & ∈I

= {s′ | ∃s′′ ∈ S : s′′ ∈ {s′′ | ∃s ∈ I : 〈s, s”〉 ∈ x} ∧ 〈s′, s′′〉 ∈ τ}
Hcommutativity of ∃ and def. ∈I

= post[τ ](α(x)) Hdef. post and αI . � 2

The Galois connection hypothesis can be weaken into a continuity hypothesis on the
abstraction α. For example
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Corollary 108 If 〈P, �, 0, ∨〉 is a poset with infimum 0, F ∈ P 7→ P is monotone, the
iterates of F are well-defined with iteration order ε less than or equal to ω 10, 〈Q, v, ⊥,
t〉 is a poset with infimum ⊥, F ] ∈ Q 7→ Q, the abstraction function α ∈ P 7→ Q is strict
(α(0) = ⊥), continuous and satisfies the commutation property

∀δ ∈ O : α ◦ F (F δ) = F ] ◦ α(F δ),

then ∀δ 6 ω : α(F δ) = F ]
δ and

α(lfp
�
F ) = F ]

ε]

with ε] 6 ε 6 ω. Let F ] � I] be the restriction of F ] to its iterates I] ∆= {F ]δ | 0 6 δ 6 ε]}.
Then F ]ε

]

= lfp
v
F ] � I] and if F ] is monotone then F ]ε

]

= lfp
v
F ]. e

Proof By definition of the iterates and induction, we have ∀δ ∈ O : α(F δ) = F ]
δ by

strictness for the basis δ = 0, by induction hypothesis and commutation property for
0 < δ < ω, by induction induction hypothesis and for δ = ω and ∀δ > ω, F δ = Fω since
ε ≤ ω.

The proof then follows that of Cor. 104. �

Theorem 109 If 〈P, �, ∨〉 is a poset, F ∈ P 7→ P is continuous, 〈Q, v, t〉 is a poset,
F ] ∈ Q 7→ Q, 〈P, �〉 −−−→−→←−−−−

α

γ
〈Q, v〉 and α ◦ F = F ] ◦ α then F ] is continuous. e

Proof Let xi, i ∈ N be a v-increasing chain of elements of Q. We have⊔
i∈N

F ](xi) = α(
∨
i∈N

F (γ(xi))) Hα ◦ γ = 1Q, def ◦, commutation, α preserves lubsI

= α(F (
∨
i∈N

γ(xi)))

Hγ monotone, so γ(xi), i ∈ N is an increasing chain, and F continuousI
= F ](

⊔
i∈N

xi) Hcommutation, α preserves lubs, α ◦ γ = 1Q, def ◦I . �

10ω is the first infinite limit ordinal. An example is when F ∈ P 7→ P is continuous.
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