
Grammar Analysis and Parsing by Abstract

Interpretation

Patrick Cousot1 and Radhia Cousot2

1 École Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05 (France)
nr @ rftso .Ct k uo eic s.Pa www.di.ens.fr/~cousot

2 CNRS & École polytechnique, 91128 Palaiseau cedex (France)
s c eyi .a uo ro h. t@ fC qhd ieo nu t paR l

www.enseignement.polytechnique.fr/profs/informatique/Radhia.Cousot/

Abstract. We study abstract interpretations of a fixpoint protoderiva-
tion semantics defining the maximal derivations of a transitional seman-
tics of context-free grammars akin to pushdown automata. The result
is a hierarchy of bottom-up or top-down semantics refining the classi-
cal equational and derivational language semantics and including Knuth
grammar problem, classical grammar flow analysis algorithms, and pars-
ing algorithms.

1 Introduction

Grammar flow problems consist in computing a function of the [proto]language
generated by the grammar for each nonterminal. This includes Knuth’s gram-
mar problem [1,2], grammar decision problems such as emptiness and finiteness
[3], and classical compilation algorithms such as First and Follow [4]. For
the later case, Ulrich Möncke and Reinhard Wilhelm introduced grammar flow
analysis to solve computation problems over context-free grammars [5,6,7], [8,
Sect. 8.2.4]. The idea is to provide two fixpoint algorithm schemata, one for
bottom-up grammar flow analysis and one for top-down grammar flow analy-
sis which can be instantiated with different parameters to get classical iterative
algorithms such as First and Follow.

More generally, we show that grammar flow algorithms are abstract interpre-
tations [9] of a hierarchy of bottom-up or top-down grammar semantics refining
the classical (proto-)language semantics.

Then, we apply this comprehensive abstract-interpretation-based approach
to the systematic derivation of parsing algorithms.

2 Languages and Context-free Grammars

A sentence σ ∈ A⋆ over the alphabet A of length |σ|
∆
= n > 0 is a possibly

empty finite sequence σ1σ2 . . . σn of letters σ1, σ2, . . . , σn ∈ A. For n = 0, the
empty sentence is denoted ǫ of length |ǫ| = 0. A language Σ over the alphabet A

http://www.di.ens.fr/~cousot/
http://www.enseignement.polytechnique.fr/profs/informatique/Radhia.Cousot/

is a set of sentences Σ ∈ ℘(A⋆). We represent concatenation by juxtaposition.

It is extended to languages as ΣΣ′ ∆
= {σσ′ | σ ∈ Σ ∧ σ′ ∈ Σ′}. For brevity, σ

denotes the language {σ} so that we can write ΣσΣ′ for Σ{σ}Σ′. The junction

of languages is Σ ; Σ′ ∆
= {σ1σ2 . . . σmσ′

2 . . . σ′
n | σ1σ2 . . . σm ∈ Σ ∧ σ′

1σ
′
2 . . . σ′

n ∈

Σ′∧σm = σ′
1}. Given a set P

∆
= {[i | i ∈ ∆}∪{]i | i ∈ ∆} of matching parentheses

and an alphabet A, the Dyck language DP,A ⊆ (P∪A)⋆ over P and A is the set
of well-parenthesized sentences over P∪A. It is pure if A = ?. The parenthesized

language over P and A is PP,A
∆
= {[iσ]i | i ∈ ∆ ∧ σ ∈ DP,A \ {ǫ}}.

A context-free grammar [10,11] is a quadruple G = 〈T , N , S, R〉 where
T is the alphabet of terminals, N such that T ∩ N = ? is the alphabet of
nonterminals, S ∈ N is the start symbol (or axiom) and R ∈ ℘(N ×V ⋆) is the
finite set of rules written A→ σ where the lefthand side A ∈ N is a nonterminal
and the righthand side σ ∈ V ⋆ is a possibly empty sentence over the vocabulary

V
∆
= T ∪N . By convention, ǫ 6∈ V .

3 Transitional Semantics of Context-free Grammars

Pushdown automata (PDA) and context-free grammars are equivalent [8, Sect.
8.2]. Inspired by PDA, we define the transitional semantics of grammars by
labelled transition systems where states are stacks, labels encode the structure of
sentences and transitions are small steps in the recursive derivation of sentences.

Stacks. Given a grammar G = 〈T , N , S, R〉, we let stacks ̟ ∈ S
∆

=

(R˝ ∪M)⋆ be sentences over rule states R˝ ∆
= {[A → σ˝σ′] | A → σσ′ ∈ R}

specifying the state of the derivation (σ′ is still to be derived) and markers M

= {⊢,⊣} where ⊢ (resp. ⊣) marks the beginning (resp. the end) of a sentence.
The height of a stack ̟ is its length |̟|.

Example 1 A stack ̟ for the gram-
mar A → AA, A → a is ⊣[A →
AA˝][A → A˝A][A → a˝]. It records the
ancestors in an infix traversal of a parse
tree, as shown opposite.

�� @@@@@@

������ @@

A

A
· · ·

A

A
· · ·

A

a
N

⊣
[A→ AA˝]

[A→ A˝A]

[A→ a˝]

2

Labels. We let P
∆
= O∪C be the set of parentheses where O

∆
= {LA| A ∈ N }

is the set of opening parentheses while C
∆
= {AM | A ∈ N } is the set of closing

parentheses. We let labels ℓ ∈ L be parentheses or terminals so that L
∆
= P∪T .

A pair of parentheses LA. . .AM delimits the structure of a sentence deriving from
nonterminal A ∈ N while terminals describe elements of the sentence.

Labelled Transition System. Given a grammar G = 〈T , N , S, R〉, we

define a labelled transition system StJGK
∆
= 〈S, L , −→, ⊢〉 where the initial state

is ⊢ and the labelled transition relation
ℓ
−→, ℓ ∈ L is

⊢
LA
−→ ⊣[A→ ˝σ], A→ σ ∈ R (1)

̟[A→ σ˝aσ′]
a
−→̟[A→ σa˝σ′], A→ σaσ′ ∈ R (2)

̟[A→ σ˝Bσ′]
LB
−→̟[A→ σB˝σ′][B → ˝ς], A→ σBσ′ ∈ R ∧B → ς ∈ R (3)

̟[A→ σ˝]
AM
−→̟, A→ σ ∈ R . (4)

4 Maximal Derivations

The maximal derivation semantics of a grammar is the set of all possible maximal
derivations for this grammar where a maximal derivation is a finite labelled trace
of maximal length generated by the transitional semantics.

Example 2 The maximal derivation for the sentence a of the grammar 〈{a},

{A}, A, {A → AA, A → a}〉 is ⊢
LA
−→ ⊣ [A → ˝a]

a
−→ ⊣ [A → a˝]

AM
−→ ⊣ while

for the sentence aa it is ⊢
LA
−→ ⊣ [A → ˝AA]

LA
−→ ⊣ [A → A˝A][A → ˝a]

a
−→

⊣ [A → A˝A][A → a˝]
AM
−→ ⊣ [A → A˝A]

LA
−→ ⊣ [A → AA˝][A → ˝a]

a
−→ ⊣

[A→ AA˝][A→ a˝]
AM
−→ ⊣ [A→ AA˝]

AM
−→ ⊣ . 2

Traces. Formally a trace θ ∈ Θn of length |θ| = n + 1, n > 0, has the

form θ = ̟0
ℓ0−→ ̟1 . . . ̟n−1

ℓn−1
−→ ̟n whence it is a pair θ = 〈θ, θ〉 where

θ ∈ [0, n] 7→ S is a nonempty finite sequence of stacks θi = ̟n, i = 0, . . . , n and
θ ∈ [0, n− 1] 7→ L is a finite sequence of labels θj = ℓj , j = 0, . . . , n− 1. Traces

θ ∈ Θ are nonempty, finite, of any length so Θ
∆
=

⋃

n>0 Θn.

Again concatenation is denoted by juxtaposition and extended to sets. We

respectively identify a single state ̟ and a transition ̟
ℓ
−→ ̟′ with the cor-

responding traces containing only the single state ̟ and the the transition

̟
ℓ
−→ ̟′. By abuse of notation, a trace ̟0

ℓ0−→ ̟1 . . . ̟n−1
ℓn−1
−→ ̟n is also

understood as the concatenation of ̟0,
ℓ0−→, ̟1, . . ., ̟n−1,

ℓn−1
−→ , ̟n which,

informally, matches the trace pattern ς0̟1 . . . ςn−1̟nςn by letting ς0 = ̟0
ℓ0−→,

. . . , ςn−1 = ̟n−1
ℓn−1
−→ and ςn = ǫ. We also need the junction of sets of traces,

as follows

T ; T ′ ∆
= {θ

ℓ
−→ ̟

ℓ′

−→ θ′ | θ
ℓ
−→ ̟ ∈ T ∧̟′ ℓ′

−→ θ′ ∈ T ′ ∧̟ = ̟′} .

The selection of the traces in T for nonterminal B is denoted T.B defined as

T.B
∆

= {̟
LB
−→ θ | ̟

LB
−→ θ ∈ T } .

For the recursive incorporation of a derivation ⊢
ℓ0−→ ⊣̟1 . . .⊣̟n−1

ℓn−1
−→ ⊣ into

another one, we need the operation

〈̟, ̟′〉 ↑ ⊢
ℓ0−→ ⊣̟1 . . .⊣̟n−1

ℓn−1
−→ ⊣

∆
= ̟

ℓ0−→ ̟′̟1 . . . ̟′̟n−1
ℓn−1
−→ ̟′

〈̟, ̟′〉 ↑ T
∆
= {〈̟, ̟′〉 ↑ τ | τ ∈ T } .

Example 3 We have 〈⊣[A → ˝AA], ⊣[A → A˝A]〉 ↑ ⊢
LA
−→ ⊣[A→ ˝a]

a
−→

⊣[A→ a˝]
AM
−→ ⊣ = ⊣[A→ ˝AA]

LA
−→ ⊣[A→ A˝A][A→ ˝a]

a
−→ ⊣[A→ A˝A][A→

a˝]
AM
−→ ⊣[A→ A˝A] which we can recognize as the replacement of the first A

deriving into a in the derivation for the sentence aa in Ex. 2. 2

A derivation of grammar G is a trace ̟0
ℓ0−→ ̟1 . . . ̟n−1

ℓn−1
−→ ̟n, n > 0

generated by the transition system StJGK that is ∀i ∈ [0, n − 1] : ̟i
ℓi−→ ̟i+1.

A prefix derivation of grammar G is a derivation of grammar G starting with an
initial state ̟0 = ⊢. A suffix derivation of grammar G is derivation of grammar

G ending with an final state ∀̟ ∈ S : ∀ℓ ∈ L : ¬(̟n
ℓ
−→ ̟), so that ̟n = ⊣

by def. (1–4) of −→. A maximal derivation of grammar G is both a prefix and a
suffix derivation of the grammar G.

Derivations are well-parenthesized so that the grammatical structure of sen-
tences can be described by trees. Let us define the parenthesis abstraction αp for

a stack ̟ by αp(̟̟′)
∆
= αp(̟′)αp(̟), αp(⊢) = αp(⊣) = ǫ and αp([A→ σ˝σ′])

∆
=

AM, for a label, αp(a)
∆
= ǫ for all a ∈ T , αp(LA)

∆
= LA and αp(AM)

∆
= AM, and for a

trace αp(̟0
ℓ0−→ ̟1

ℓ1−→ . . .̟n−1
ℓn−1
−→ ̟n)

∆
= αp(ℓ0)α

p(ℓ1) . . . αp(ℓn−1)α
p(̟n).

Lemma 4 For any prefix derivation θ of a grammar G, αp(θ) ∈ DP,? is a pure

Dyck language. A maximal derivation θ = ⊢
ℓ0−→ ̟1

ℓ1−→ . . . ̟n−1
ℓn−1
−→ ⊣ of G

is well-parenthesized in that αp(θ) = αp(ℓ0)α
p(ℓ1) . . . αp(ℓn−1) ∈ DP,? is a pure

Dyck language. e

5 Prefix Derivation Semantics

The prefix derivation semantics S
∂
→

JGK of a grammar G = 〈T , N , S, R〉 is the
set of all prefix derivations for the labelled transition system 〈S, L , −→, ⊢〉,
that is

S
∂
→

JGK
∆
= {̟0

ℓ0−→ ̟1 . . . ̟n−1
ℓn−1
−→ ̟n | n > 0 ∧̟0 = ⊢ ∧

∀i ∈ [0, n− 1] : ̟i
ℓi−→ ̟i+1} .

Lemma 5 If the prefix derivation semantics S∂
→

JGK of a grammar G = 〈T , N ,
S, R〉 contains a prefix derivation θ1̟θ2 then

– either ̟ = ⊢ if and only if θ1 = ǫ
– or the stack ̟ has the form ̟ = ⊣[A1 → η1A2˝η′

1][A2 → η2A3˝η′
2] . . . [An →

ηn˝η′
n] where Ai → ηiAi+1η

′
i ∈ R and An → ηiη

′
n ∈ R are grammar rules

and θ1 = ⊢
LA1−→ θ′1.

– Moreover if θ1̟θ2 ∈ S
∂
→

JGK.A then necessarily A1 = A. e

It has been shown in the more general context of [12, Th. 11] that we have the
following fixpoint characterization of the prefix derivation semantics

Theorem 6

S
∂
→

JGK = lfp
⊆

F
∂
→

JGK = gfp
⊆

F
∂
→

JGK

where F∂
→

JGK ∈ ℘(Θ) 7→ ℘(Θ) is a complete ∪ and ∩ morphism defined as

F
∂
→

JGK
∆
= λX . {⊢} ∪X ; −→ . e

6 Transitional Maximal Derivation Semantics

The maximal derivation semantics Sd̂JGK ∈ ℘(Θ) of a grammar G = 〈T , N , S,

R〉 is the set of maximal derivations for the labelled transition system StJGK
∆
=

〈S, L , −→, ⊢〉.

S
d̂JGK

∆
= {̟0

ℓ0−→ ̟1 . . . ̟n−1
ℓn−1
−→ ̟n | n > 0 ∧̟0 = ⊢ ∧

∀i ∈ [0, n− 1] : ̟i
ℓi−→ ̟i+1 ∧ ∀̟ ∈ S : ∀ℓ ∈ L : ¬(̟n

ℓ
−→ ̟)} .

(5)

Lemma 7 A maximal derivation of the transition system StJGK has the form

⊢
LA
−→ ⊣[A→ ˝σ]

ℓ1−→ ⊣̟2 . . .⊣̟n−1
AM
−→ ⊣ where ̟n−1 6= ǫ. e

7 Bottom-Up Fixpoint Maximal Derivation Semantics

The maximal derivation semantics (5) can be expressed in fixpoint form.

Example 8 For the grammar G = 〈{a, b}, {A}, A, {A→ aA, A→ b}〉, we have

Sd̂JGK = lfp
⊆−→̂

F d̂JGK where

−→̂
F

d̂(T)
∆
= ⊢

LA
−→ ⊣[A → ˝b]

b
−→ ⊣[A → b˝]

AM
−→ ⊣ ∪

⊢
LA
−→ (⊣[A → ˝aA])

a
−→ (〈⊣[A → a˝A], ⊣[A → aA˝]〉 ↑ T.A) ; (⊣[A → aA˝])

AM
−→ ⊣.

The first iterates of
−→̂
F d̂JGK from

−→̂
F d̂

0 = ? are

−→̂
F

d̂
1 = {⊢

LA
−→ ⊣[A→ ˝b]

b
−→ ⊣[A→ b˝]

AM
−→ ⊣}

−→̂
F

d̂
2 = {⊢

LA
−→ ⊣[A→ ˝b]

b
−→ ⊣[A→ b˝]

AM
−→ ⊣,

⊢
LA
−→ ⊣[A→ ˝aA]

a
−→ ⊣[A→ a˝A]

LA
−→ ⊣[A→ aA˝][A→ ˝b]

b
−→

⊣[A→ aA˝][A→ b˝]
AM
−→ ⊣[A→ aA˝]

AM
−→ ⊣}

.
−→̂
F

d̂
ω = lfp

⊆−→̂
F

d̂JGK 2

More generally, let us define the set of traces bottom-up transformer
−→̂
F d̂JGK ∈

℘(Θ) 7→ ℘(Θ) as

−→̂
F

d̂JGK
∆
= λT .

⋃

A→σ∈R

⊢
LA
−→
−→̂
F

d̂[A→ ˝σ]T
AM
−→ ⊣ (6)

where
−→̂
F d̂[A→ σ˝σ′] ∈ ℘(Θ) 7→ ℘(Θ) is defined as

−→̂
F

d̂[A → σ˝aσ
′]

∆
= – T . (⊣[A → σ˝aσ

′])
a
−→

−→̂
F

d̂[A → σa˝σ
′]T (7)

−→̂
F

d̂[A → σ˝Bσ
′]

∆
= – T . (〈⊣[A → σ˝Bσ

′], ⊣[A → σB˝σ
′]〉 ↑ T.B) ;

−→̂
F

d̂[A → σB˝σ
′]T (8)

−→̂
F

d̂[A → σ˝]
∆
= – T . (⊣[A → σ˝]) . (9)

Observe that
−→̂
F d̂JGK is upper-continuous.

Lemma 9 If all traces in T ⊆ Θ are derivations of the transition system StJGK

then all traces in
−→̂
F

d̂[A → σ˝σ′]T are generated by the transition system S
tJGK,

start in state (⊣[A → σ˝σ′]) and end in state (⊣[A → σσ′˝]). It follows that all

traces in
−→̂
F d̂JGKT are derivations of the transition system StJGK.

The derivation semantics of a grammar G can be expressed in fixpoint form as

Theorem 10 Sd̂JGK = lfp
⊆−→̂

F d̂JGK . e

8 Protoderivations

Prototraces (formally defined below) are traces in construction containing non-
terminal variables which are placeholders for unknown prototraces to be substi-
tuted for the nonterminal variables. Protoderivations are prototraces generated
by the grammar, initially a nonterminal variable (such as the grammar axiom),
obtained by top-down replacement of a nonterminal on the lefthand side of a
grammar rule by the corresponding righthand side, until no nonterminal variable
is left.

Example 11 A prototrace derivation for the grammar G = 〈{a}, {A}, A, {A→

AA, A→ a}〉 is (the prototrace derivation relation is written Ď2Z=⇒G)

⊢
A
−→ ⊣

Ď2Z=⇒G ⊢
LA
−→ ⊣[A→ ˝AA]

A
−→ ⊣[A→ A˝A]

A
−→ ⊣[A→ AA˝]

AM
−→ ⊣

Ď2Z=⇒G ⊢
LA
−→ ⊣[A → ˝AA]

A
−→ ⊣[A → A˝A]

LA
−→ ⊣[A → AA˝][A → ˝a]

a
−→

⊣[A→ AA˝][A→ a˝]
AM
−→ ⊣[A→ AA˝]

AM
−→ ⊣

Ď2Z=⇒G ⊢
LA
−→ ⊣[A → ˝AA]

LA
−→ ⊣[A → A˝A][A → ˝a]

a
−→ ⊣[A → A˝A][A →

a˝]
AM
−→ ⊣[A → A˝A]

LA
−→ ⊣[A → AA˝][A → ˝a]

a
−→ ⊣[A → AA˝][A →

a˝]
AM
−→ ⊣[A→ AA˝]

AM
−→ ⊣ . 2

Prototraces. The set of nonterminal variables is N 2
∆
= {A | A ∈ N }. A

prototrace π ∈ Πn of length |π| = n +1, n > 0, has the form π = ̟0
κ0−→ ̟1 . . .

̟n−1
κn−1
−→ ̟n whence is a pair π = 〈π, π〉 where π ∈ [0, n] 7→ S is a nonempty

finite sequence of stacks πi = ̟n, i = 0, . . . , n and π ∈ [0, n− 1] 7→ (L ∪N 2)
is a finite sequence of labels or nonterminal variables πj = κj , j = 0, . . . , n− 1.

Prototraces π ∈ Π are nonempty, finite, of any length so Π
∆
=

⋃

n>0 Πn and
Θ ⊆ Π .

Again prototrace pattern matching, prototrace concatenation, set of pro-
totraces concatenation, the assimilation of a single state ̟ and a transition

̟
ℓ
−→ ̟′ with the corresponding prototraces, the junction ; of sets of proto-

traces, the selection P.B of the prototraces in P for nonterminal B and the stack
incorporation in a prototrace 〈̟, ̟′〉 ↑ π or a set T of prototraces 〈̟, ̟′〉 ↑ T
are defined as for traces and sets of traces.

Prototrace Derivation. The prototrace generated by a grammar rule A→
σ ∈ R is ŘĎ[A→ σ] where ŘĎ ∈ R 7→ Π is

Ř
Ď[A→ σ]

∆
= ⊢

LA
−→ F̌

Ď[A→ ˝σ]
AM
−→ ⊣ (10)

F̌
Ď[A→ σ˝aσ′]

∆
= ⊣[A→ σ˝aσ′]

a
−→ F̌

Ď[A→ σa˝σ′]

F̌
Ď[A→ σ˝Bσ′]

∆
= ⊣[A→ σ˝Bσ′]

B
−→ F̌

Ď[A→ σB˝σ′]

F̌
Ď[A→ σ˝]

∆
= ⊣[A→ σ˝] .

The prototrace derivation relation Ď2Z=⇒G∈ ℘(Π×Π) for a grammar G = 〈T , N ,
S, R〉 consists in replacing one or several nonterminal variables by the prototrace
generated by a grammar rule for that nonterminal.

π Ď2Z=⇒G π′ (11)
∆
= ∃n > 0, ς1, . . . , ςn+1, ̟1, . . . , ̟n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V

⋆ :

π = ς1̟1
A1

−→ ̟2ς2 . . . ςn̟n

An

−→ ̟n+1ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧

π′ = ς1〈̟1, ̟2〉 ↑ Ř
Ď[A1 → σ1]ς2 . . . ςn〈̟n, ̟n+1〉 ↑ Ř

Ď[An → σn]ςn+1 .

9 Maximal Protoderivation Semantics

The top-down maximal protoderivation semantics SĎJGK ∈ N 7→ ℘(Π) of a
context-free grammar G is

S
ĎJGK

∆
= λA . {π ∈ Π | (⊢

A
−→ ⊣)

⋆

Ď2Z=⇒G π} . (12)

where rn, n ∈ N are the powers of relation r, rn⋆ ∆
=

⋃

i<n ri (so that r0⋆ ∆
=

⋃

? =
?), r+ (resp. r⋆) is the transitive closure (resp. reflexive transitive closure) of r.

10 Top-Down Fixpoint Maximal Protoderivation

Semantics

The protoderivation semantics can be expressed in fixpoint form, as follows

(where post ∈ ℘(Σ) 7→ ℘(Σ) is post[r]X
∆
= {s′ ∈ Σ | ∃s ∈ X : 〈s, s′〉 ∈ r})

Theorem 12 SĎJGK = lfp
⊆̇

F̌ĎJGK where ⊆̇ is the pointwise extension of ⊆

and the set of prototraces transformer F̌ĎJGK ∈ (N 7→ ℘(Π)) 7→ (N 7→ ℘(Π))
is

F̌
ĎJGK

∆
= λφ . λA . {⊢ A

−→ ⊣} ∪ post[Ď2Z=⇒G]φ(A) . e

11 Abstraction of the Top-Down Protoderivation

Semantics into the Bottom-Up Derivation Semantics

The trace derivations θ ∈ Sd̂JGK.A for a nonterminal A can be constructed top-

down using the prototrace derivation
⋆

Ď2Z=⇒G as (⊢
A
−→ ⊣)

⋆

Ď2Z=⇒G θ.

Lemma 13 If T = {π ∈ Θ | ∃A ∈ N : (⊢
A
−→ ⊣)

n∗

Ď2Z=⇒G π} then
−→̂
F d̂[A →

σ˝σ′](T) = {π ∈ Θ | F̌Ď[A→ σ˝σ′]
n∗

Ď2Z=⇒G π} . e

Lemma 14 Let
−→̂
F d̂

n be the iterates of
−→̂
F d̂JGK from

−→̂
F d̂

0 = ?. We have
−→̂
F d̂

n = {π ∈ Θ | ∃A ∈ N : (⊢
A
−→ ⊣)

(n+1)∗

Ď2Z=⇒G π} e

Theorem 15 Sd̂JGK = {π ∈ Θ | ∃A ∈ N : (⊢
A
−→ ⊣)

⋆

Ď2Z=⇒G π} . e

Let us define the abstraction αĎd̂ ∆
= λP . λ A .P (A)∩Θ which collects the ter-

minal traces (without nonterminal variables) among prototraces. This abstrac-

tion defines a Galois connection [13] 〈N 7→ ℘(Π), ⊆̇〉 −−−−→−→←−−−−−−
αĎd̂

γĎd̂

〈N 7→ ℘(Θ),

⊆̇〉. The restriction of the top-down maximal protoderivation semantics is the
maximal derivation semantics.

Theorem 16 αĎd̂(SĎJGK) = λ A .Sd̂JGK.A . . e

12 The Hierarchy of Grammar Semantics

Th. 16 shows that the bottom-up derivation semantics Sd̂JGK of a grammar G is,
up to an isomorphism, an abstraction of the top-down protoderivation semantics

SĎJGK
∆
= λ A . {π ∈ Π | (⊢

A
−→ ⊣)

⋆

Ď2Z=⇒G π} by the abstraction αĎd̂. We now

introduce a hierarchy of abstractions of the protoderivation semantics SĎJGK, as
given in Fig. 1. The various semantics and abstractions in Fig. 1 (apart from

SĎJGK, S
d̂JGK, and αĎd̂) are described below.

↑ bottom-up semantics

top-down semantics ↓

r�������*
αĎd̂

6

S
ĎJGK

protoderivation se-
mantics

αδ̌

r�������*
αδ̌δ̂

6

S
δ̌JGK

∆
= αδ̌(SĎJGK)

protoderivation
tree semantics

αš

r�������*

6

αšŝ

S
šJGK

∆
= αš(Sδ̌JGK

protosyntax tree se-
mantics

αĽ

r�
�

�
�

�
���

=
S

ĽJGK
∆
= αĽ(SšJGK

protolanguage
semantics

r S
d̂JGK

derivation semantics

6

αδ̂

r S
δ̂JGK

∆
= αδ̂(Sd̂JGK)

derivation tree semantics

6

αŝ

r S
ŝJGK

∆
= αŝ(Sδ̂JGK)

syntax tree semantics

6
α̇L̂

r S
L̂JGK

∆
= α̇L̂(SŝJGK

protolanguage semantics

6

α̇ℓα̇ℓ

r S
ℓJGK

∆
= α̇ℓ(SL̂JGK)

terminal language semantics

Fig. 1. The hierarchy of bottom-up grammar semantics

[Proto]derivation tree abstraction α‹̌ and α‹̂. [Proto]derivations can
be described by [proto]derivation trees where internal nodes are labelled with
nonterminals, leafs are labelled with terminals [or nonterminal variables] and
branches are decorated with rule states.

Example 17 One possible pro-
toderivation tree for the protosentence
AaA of the grammar 〈{a}, {A}, A,
{A → AA, A → a}〉 is given on the
right. It can be represented in paren-
thesized form through an infix traversal
as LA[A → ˝AA] A [A → A˝A]LA[A →
˝AA]LA[A → ˝a]a[A → a˝]AM[A →
A˝A]A [A→ AA˝]AM[A→ AA˝]AM .

q

A

q

A
q

A

q

A
q

A
q

a

�
�

�
�

@
@

@
@
�

�
�

�

@
@

@
@

[A → ˝AA] [A → A˝A] [A → AA˝]

[A → ˝AA] [A → A˝A] [A → AA˝]

[A → ˝a] [A → a˝]

2

We let Ǔ
∆
= T ∪N 2 ∪R˝ and Ď

∆
= (P ∪ Ǔ)⋆. A protoderivation tree δ̌ is

represented by a well-parenthesized sentence over Ǔ so that δ̌ ∈ P
P,Ǔ ⊆ Ď. We

extend the selection to ℘(Ď) whence ℘(P
P,Ǔ) as D.A

∆
= {LBσBM ∈ D | B =

A} ∪ {B ∈ D | B = A} so that D.A is the set of protoderivation trees in D
rooted at A ∈ N .

The protoderivation tree abstraction αδ̌ ∈ Π 7→ Ď of protoderivations is

αδ̌(̟
κ
−→ τ)

∆
= αδ̌(̟)καδ̌(τ) αδ̌(⊣)

∆
= ǫ

αδ̌(ǫ)
∆
= ǫ αδ̌(s1 . . . sn)

∆
= sn, s1 . . . sn ∈ S,

αδ̌(⊢)
∆
= ǫ n > 0, otherwise

which is extended elementwise to αδ̌ ∈ ℘(Π) 7→ ℘(Ď) as αδ̌(T)
∆
= {αδ̌(π) |

π ∈ T } so that we get the Galois connection 〈℘(Π), ⊆〉 −−−→−→←−−−−
αδ̌

γ δ̌

〈℘(Ď), ⊆〉,

further extended pointwise to αδ̌ ∈ (N 7→ ℘(Π)) 7→ (N 7→ ℘(Ď)) as αδ̌(φ)
∆
=

λA .αδ̌(φ(A)). The restriction of αδ̌ to derivation trees D̂
∆
= (P ∪ Û)⋆ where

Û
∆
= T ∪R˝ is written αδ̂ so that 〈℘(Θ), ⊆〉 −−−→−→←−−−−

αδ̂

γ δ̂

〈℘(D̂), ⊆〉. A derivation tree

δ̂ is represented by a well-parenthesized sentence over Û so that δ̂ ∈ P
P,Û

⊆ D̂.

[Proto]syntax tree abstraction αš and αŝ. [Proto]syntax trees are [proto]-
derivation trees denuded of the rule states decorating the branches. We represent
[proto]syntax trees in parenthesized form through an infix traversal. We let Ť
∆
= (P ∪T ∪N 2)⋆. A protosyntax tree τ̌ is represented by a well-parenthesized
sentence over (T ∪N 2) so that τ̌ ∈ PP,(T ∪N 2) ⊆ Ť .

Example 18 One possible protosyntax tree for
the protosentence AaA of the grammar 〈{a}, {A},
A, {A→ AA, A→ a}〉 is given on the right and rep-
resented as LAA LALAaAMAAMAM .

p

A

p

A

p

A

p

A
p

A
p

a

�� @@
�� @@

2

The protosyntax tree abstraction αš ∈ Ď 7→ Ť of protoderivation trees is
(A ∈ N , ℓ ∈ L)

αš(σLAσ′)
∆
= αš(σ)LAαš(σ′) αš(σ[A→ ς˝ς ′]σ′)

∆
= αš(σ)αš(σ′)

αš(σAMσ′)
∆
= αš(σ)AMαš(σ′) αš(σℓσ′)

∆
= αš(σ)ℓαš(σ′)

αš(σ Aσ′)
∆
= αš(σ)Aαš(σ′) αš(ǫ)

∆
= ǫ

extended elementwise to αš ∈ ℘(Ď) 7→ ℘(Ť) as αš(D)
∆
= {αš(δ̌) | δ̌ ∈ D} so that

we get a Galois connection 〈℘(Ď), ⊆〉 −−−→−→←−−−−
αš

γš

〈℘(Ť), ⊆〉 which can be extended

pointwise to (N 7→ ℘(Ď)) 7→ (N 7→ ℘(Ť)) as αš(φ)
∆
= λ A .αš(φ(A)). The

restriction αŝ to syntax trees T̂
∆
= (P∪T)⋆ is such that 〈℘(D̂),⊆〉 −−−→−→←−−−−

αŝ

γŝ

〈℘(T̂),

⊆〉. A syntax tree τ̂ is represented by a well-parenthesized sentence over T so
that τ̂ ∈ PP,T ⊆ T̂ .

Protosentence abstraction αĽ and α̇L̂. The protolanguage of a grammar

G = 〈T , N , S, R〉 with V
∆
= T ∪N is the set of protosentences deriving from

the grammar axiom S where protosentences η ∈ V ⋆ contain both terminals in T

and nonterminals in N and the derivation consists in replacing a nonterminal
A by the righthand side σ of a grammar rule A→ σ ∈ R.

The protolanguage abstraction αĽ ∈ Ť 7→ V ⋆ of protosyntax trees is defined
as (we follow the tradition of confusing nonterminals A denoting the grammatical
structure and nonterminal variables A for protosentence substitution)

αĽ(σLAσ′)
∆
= αĽ(σ)αĽ(σ′), A ∈ N αĽ(σaσ′)

∆
= αĽ(σ)aαĽ(σ′), a ∈ T

αĽ(σAMσ′)
∆
= αĽ(σ)αĽ(σ′) αĽ(ǫ)

∆
= ǫ

αĽ(σ Aσ′)
∆
= αĽ(σ)AαĽ(σ′)

extended elementwise to αĽ ∈ ℘(Ť) 7→ ℘(V ⋆) as αĽ(D)
∆
= {αĽ(τ̌) | τ̌ ∈ D}

so that we get a Galois connection 〈℘(Ť), ⊆〉 −−−−→−→←−−−−−
αĽ

γĽ

〈℘(V ⋆), ⊆〉 which can

be extended pointwise to αĽ ∈ (N 7→ ℘(Ť)) 7→ (N 7→ ℘(V ⋆)) as αĽ(φ)
∆
=

λA .αĽ(φ(A)).

Example 19 For the protosyntax tree in Ex. 18 of the grammar 〈{a}, {A}, A,

{A→ AA, A→ a}〉, we have αĽ
(

LAA LALAaAMAAMAM
)

= AaA . 2

For syntax trees, we define the flattener αL̂ ∈ T̂ 7→ ℘(V ⋆) as

αL̂(LAσAMσ′)
∆

= ({A} ∪ αL̂(σ))αL̂(σ′) αL̂(aσ′)
∆

= {a}αL̂(σ′) αL̂(ǫ)
∆

= {ǫ}

extended elementwise to αL̂ ∈ ℘(T̂) 7→ ℘(V ⋆) as αL̂(Σ)
∆
=

⋃

{αL̂(σ) | σ ∈ Σ}

and pointwise to α̇L̂ ∈ ℘(T̂) 7→ (N 7→ ℘(V ⋆)) as α̇L̂(S)
∆
= λ A .αL̂(S.A) so that

we get the Galois connection 〈℘(T̂), ⊆〉 −−−−→−→←−−−−−
α̇L̂

γ̇L̂

〈N 7→ ℘(V ⋆), ⊆̇〉.

Terminal sentence abstraction α̇‘. Terminal sentence abstraction elimi-
nates the sentences of a protolanguage which are not terminal. Let us define the
eraser αℓ ∈ V ⋆ 7→ ℘(T ⋆) as

αℓ(Aσ)
∆
= ? αℓ(aσ)

∆
= aαℓ(σ) αℓ(ǫ)

∆
= ǫ

extended to αℓ ∈ ℘(V ⋆) 7→ ℘(T ⋆) as αℓ(Σ)
∆
=

⋃

{αℓ(σ) | σ ∈ Σ} = Σ ∩ T ⋆

so that we get a Galois connection 〈℘(V ⋆), ⊆〉 −−−→−→←−−−−
αℓ

γℓ

〈℘(T ⋆), ⊆〉 which can

be extended pointwise to α̇ℓ ∈ (N 7→ ℘(V ⋆)) 7→ (N 7→ ℘(T ⋆)) as α̇ℓ(ρ)
∆
=

λA .αℓ(ρ(A)).

13 Fixpoint Bottom-Up Abstract Semantics

All bottom-up semantics S♯̂JGK ∈ D̂♯̂ of context-free grammars G are instances
of the following abstract interpreter (which generalizes the bottom-up grammar

flow analysis of [8, Def. 8.2.18]).

S
♯̂JGK = lfp

⊑−→̂
F

♯̂JGK (13)

where 〈D̂♯̂, ⊑, ⊥, ⊔〉 is a cpo/complete lattice and the transformer
−→̂
F ♯̂JGK ∈ D̂♯̂ 7→

D̂♯̂ is

−→̂
F

♯̂JGK
∆
= λ ρ .

⊔

A→σ∈R

A♯̂(
−→̂
F

♯̂[A→ ˝σ]ρ) (14)

−→̂
F

♯̂[A→ σ˝aσ′]
∆
= λ ρ . [A→ σ˝aσ′]♯̂ .♯̂

−→̂
F

♯̂[A→ σa˝σ′]ρ

−→̂
F

♯̂[A→ σ˝Bσ′]
∆
= λ ρ . [A→ σ˝Bσ′]♯̂(ρ, B) ;♯̂

−→̂
F

♯̂[A→ σB˝σ′]ρ

−→̂
F

♯̂[A→ σ˝]
∆
= λ ρ . [A→ σ˝]♯̂

where the abstract rooting is A♯̂ ∈ D̂♯̂ 7→ D̂♯̂, [A → σ˝aσ′]♯̂ ∈ D̂♯̂, the abstract

concatenation is .♯̂ ∈ (D̂♯̂ × D̂♯̂) 7→ D̂♯̂, [A → σ˝Bσ′]♯̂ ∈ (D̂♯̂ ×N) 7→ D̂♯̂, the

abstract junction is ;♯̂ ∈ (D̂♯̂ × D̂♯̂) 7→ D̂♯̂, and [A→ σ˝]♯̂ ∈ D̂♯̂.
The existence of the least fixpoint is guaranteed by the following

Hypothesis 20 For all [A → σ˝σ′] ∈ R˝,
−→̂
F ♯̂[A → σ˝σ′] ∈ (N 7→ L) 7−→ L is

upper continuous for the ordering ⊑ on D̂♯̂3. e

Hyp. 20 is guaranteed by the following local continuity conditions

Lemma 21 If A♯̂ is continuous, .♯̂ is continuous in its second argument, [A→

σ˝Bσ′]♯̂ is continuous in its first argument, ;♯̂ is continuous then Hyp. 20 holds.e

The hierarchy of semantics discussed in Sect. 12 is obtained by the instances
of the bottom-up abstract semantics (13) given in Fig. 2. Classical semantics

and flow analyzes also have the same form given in Fig. 3 (where B∆
= {ff, tt}).

We can define the soundness of an abstract interpreter S
♯̂JGK with respect

to a concrete interpreter S♮JGK as α(S♮JGK) = S♯̂JGK using a Galois connection

〈L♮, ⊑♮〉 −−−→←−−−α

γ
〈L♯̂, ⊑♯̂〉. This global soundness condition on the abstraction is

implied by the rule soundness condition

α(A♮(
−→̂
F

♮[A → ˝σ]ρ)) = A
♯̂(
−→̂
F

♯̂[A → ˝σ]α(ρ)) (15)

which is itself implied by the local soundness conditions on the abstract operators

(for all x, y, ρ ∈ L♯̂)

α(A♮(x)) = A
♯̂(α(x)), α([A → σ˝Bσ

′]♮(ρ,B)) = [A → σ˝Bσ
′]♯̂(α(ρ), B),

α([A → σ˝aσ
′]♮) = [A → σ˝aσ

′]♯̂, α(x ;♮ y) = α(x) ;♯̂ α(y),

α(x .♮ y) = α(x) .♯̂ α(y), α([A → σ˝]♮) = [A → σ˝]♯̂ .

3 Indeed monotony is sufficient [14].

Abstract se− Maximal Derivation Syntax Proto−

mantics S
♯̂JGK derivation S

d̂JGK tree S
ŝJGK tree S

ŝJGK language S
L̂JGK

D̂
♯̂

℘(Θ) ℘(D̂) ℘(T̂) N 7→ ℘(V ⋆)

⊑ ⊆ ⊆ ⊆ ⊆̇

⊥ ? ? ? ?̇

⊔ ∪ ∪ ∪ ∪̇

A
♯̂(X) ⊢

LA
−→ X

AM
−→ ⊣ LAXAM LAXAM A

L̂(X)

[A → σ˝aσ
′]♯̂ (⊣[A → σ˝aσ

′])
a
−→ [A → σ˝aσ

′]a a4
– A

′ . a

.
♯̂

.5 . . .

[A → σ˝Bσ
′]♯̂(ρ,B) [A → σ˝Bσ

′]d̂(ρ,B) [A → σ˝Bσ
′] ρ.B ρ.B – A

′ . {B} ∪ ρ(B)

;
♯̂

; . . .

[A → σ˝]♯̂ ⊣[A → σ˝] [A → σ˝] ǫ – A
′ . ǫ

where AL̂(X)
∆
= – A′ . (A′ = A ? {A} ∪ X(A) : ?)6and [A → σ˝Bσ′]d̂(ρ, B)

∆
= 〈⊣[A →

σ˝Bσ′], ⊣[A → σB˝σ′]〉 ↑ ρ.B.

Fig. 2. Semantic instances of the abstract bottom-up grammar semantics (13)

Theorem 22 The above local soundness conditions imply the soundness and

completeness of the abstract interpreter α(S♮̂JGK) = S
♯̂JGK. e

For example, the terminal language semantics S
ℓJGK defines the classical equa-

tional definition of the language generated by a grammar [15,16].

Theorem 23 (Ginsburg, Rice, Schützenberger) SℓJGK = lfp
⊆̇−→̂

F ℓJGK . e

Example 24 For the grammar G = 〈{(,)}, {A}, A, {A→ (A)A, A → ǫ}〉, the

fixpoint equation ρ =
−→̂
F ℓJGK(ρ) or equivalently ρ(A) =

−→̂
F ℓJGK(ρ)(A) is ρ(A) =

(ρ(A))ρ(A)∪ǫ, which defining X = ρ(A), is X = {(}X{)}X∪{ǫ} which generates
the Dyck language over parentheses {(,)} that is, by iteration, {ǫ} ∪ {()} ∪
{(()), ()()} ∪ 2

14 Extension of the Bottom-Up Structural Abstract

Semantics to Grammar Rule States

When D̂♯̂ is of the form N 7→ L, the abstract semantics S♯̂JGK ∈ N 7→ L can be

extended to grammar rule states
−→̂
S

ˆ
♯JGK ∈ R˝ 7→ L as

−→̂
S

♯̂JGK[A→ σ˝σ′]
∆
=
−→̂
F

♯̂[A→ σ˝σ′](S♯̂JGK) (16)

where
−→̂
F ♯̂JGK ∈ (R˝ 7→ L) 7→ (R˝ 7→ L) is

−→̂
F

♯̂JGKρ[A→ σ˝aσ′]
∆
= [A→ σ˝aσ′]♯̂ .♯̂

−→̂
F

♯̂JGKρ[A→ σa˝σ′] (17)

Abstract se− Terminal First ǫ−Produc− Nonterminal pro−

mantics S
♯̂JGK language S

ℓJGK S
1JGK tivity S

ǫJGK ductivity S
E›JGK

D̂
♯̂

N 7→ ℘(T ⋆) N 7→ ℘(T ∪ {ǫ}) N 7→ B N 7→ B

⊑ ⊆̇ ⊆̇ ˙=⇒ ˙=⇒

⊥ ?̇ ?̇ – N . ff – N . ff

⊔ ∪̇ ∪̇ ∨̇ ∨̇

A
♯̂(X) A

ℓ(X) A
1(X) A

ǫ(X) A
E›(X)

[A → σ˝aσ
′]♯̂ – A

′ . a – A
′ . a – A

′ . ff – A
′ . tt

.
♯̂

. ⊕̇
1

∧̇ ∧̇

[A → σ˝Bσ
′]♯̂(ρ, B) – A

′ . ρ(B) – A
′ . ρ(B) – A

′ . ρ(B) – A
′ . ρ(B)

;
♯̂

. ⊕̇
1

∧̇ ∧̇

[A → σ˝]♯̂ – A
′ . ǫ – A

′ . ǫ – A
′ . tt – A

′ . tt

where Aℓ(X) = A1(X)
∆
= – A′ . (A′ = A ? X(A) : ?), Aǫ(X) = AE›(X)

∆
= – A′ . (A′ =

A ? X(A) : ff), the first abstraction ⊕1 of language concatenation is defined in Lem.

29, and ⊕̇
1

is its pointwise extension.

Fig. 3. Flow analysis instances of the abstract bottom-up grammar semantics
(13)

−→̂
F

♯̂JGKρ[A→ σ˝Bσ′]
∆
= [A→ σ˝Bσ′]♯̂(

⊔

C→ς∈R

C ♯̂(
−→̂
F

♯̂[C → ˝ς](ρ)), B) ;♯̂

−→̂
F

♯̂JGKρ[A→ σB˝σ′]

−→̂
F

ˆ
♯JGKρ[A→ σ˝]

∆
= [A→ σ˝]♯̂

with the following fixpoint characterization

Theorem 25

−→̂
S

♯̂JGK = lfp
⊑−→̂

F
♯̂JGK . e

The relationship between the abstract semantics S♯̂JGK and its extension
−→̂
S ♯̂JGK

to grammar rule states is given by (16) and the following

Theorem 26 If G = 〈T , N , S, R〉 is a grammar then

S
♯̂JGK =

⊔

A→σ∈R

A♯̂(
−→̂
S

ˆ
♯JGK[A→ ˝σ]) . e

15 Fixpoint Top-Down Abstract Semantics

The top-down semantics in the hierarchy of Sect. 12 can all be viewed as
instances of an abstract interpreter generalizing the top-down flow analysis
of [8, Def. 8.2.19]. For brevity, we consider only the protolanguage semantics

SĽJGK ∈ N 7→ ℘(V ⋆) of a context-free grammar G = 〈T , N , S, R〉, which
is the protolanguage generated by the grammar G for each nonterminal. It is
defined as

S
ĽJGK

∆
= αĽ(αš(αδ̌(SĎJGK))) . (18)

Let us define the protolanguage derivation Z=⇒G for a grammar G = 〈T , N , S,
R〉 (Z=⇒ when G is understood)

η Z=⇒G η′ (19)
∆
= ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An, σ1, . . . , σn : η = ς1A1ς2 . . . ςnAnςn+1 ∧

∀i ∈ [1, n] : Ai → σi ∈ R ∧ η′ = ς1σ1ς2 . . . ςnσnςn+1 .

This is [8, Def. 8.2.2] for n = 1, the difference being that we allow several
simultaneous substitutions.

The protolanguage semantics can be defined in fixpoint form as

Theorem 27

S
ĽJGK = lfp

⊆̇

F̌
ĽJGK

where F̌
ĽJGK

∆
= λφ . λ A . {A} ∪ post[Z=⇒G]φ(A) . e

As a corollary of this proof and (12), it follows that

λA . {αĽ(αš(αδ̌(π))) | (⊢
A
−→ ⊣)

⋆

Ď2Z=⇒G π} = λA . {η | A Z=⇒G η} (20)

so that we also have the classical definition of the protolanguage generated by a
grammar [8, Def. 8.2.3]

S
ĽJGK = λA . {η ∈ V

⋆ | A
⋆

Z=⇒G η} . (21)

Applying the terminal language abstraction, we get the classical definition of the
terminal language generated by a grammar [8, Def. 8.2.3]

Theorem 28 SℓJGK
∆
= α̇ℓ(SL̂JGK) = λA . {σ ∈ T ⋆ | A

⋆
Z=⇒G σ}. e

The protolanguage semantics SĽJGK ∈ N 7→ ℘(V ⋆) can be extended to grammar

rule states
−→̂
S ĽJGK ∈ R˝ 7→ ℘(V ⋆) as follows

−→̂
S

ĽJGK[A→ σ˝aσ′]
∆
= a
−→̂
S

ĽJGK[A→ σa˝σ′] (22)

−→̂
S

ĽJGK[A→ σ˝Bσ′]
∆

= S
ĽJGK(B)

−→̂
S

ĽJGK[A→ σB˝σ′]

−→̂
S

ĽJGK[A→ σ˝]
∆
= ǫ

so that

−→̂
S

ĽJGK[A→ σ˝σ′] = {ς ∈ V
⋆ | σ′ ⋆

Z=⇒G ς} . (23)

16 Bottom-Up Grammar Analysis

Classical grammar analysis algorithms such as First [8, Sect. 8.2.8], nonter-
minal productivity [8, Sect. 8.2.4], and ǫ-productivity ǫ-Prod [8, Sect. 8.2.3]
are abstractions of the bottom-up grammar semantics and are instances of the
bottom-up abstract interpreter (13).

16.1 First

The first abstraction α1 ∈ T ⋆ 7→ ℘(T ∪ {ǫ}) of a terminal sentence is the first

terminal of this sentence or ǫ for empty sentences. α1 ∆
= λ σ . {a ∈ T | ∃σ′ ∈ T ⋆ :

σ = aσ′}∪{ǫ | σ = ǫ}. It is extended to terminal languages α1 ∈ ℘(T ⋆) 7→ ℘(T ∪
{ǫ}) in order to collect the first terminals of the sentences of these languages

α1 ∆
= λ Σ . ⋃

σ∈Σ α1(σ) and finally extended pointwise α̇1 ∈ (N 7→ ℘(T ⋆)) 7→

(N 7→ ℘(T ∪ {ǫ})) on terminal languages derived for nonterminals as α̇1 ∆

=
λL . λA .α1(L(A)).

The first abstraction of language concatenation is

Lemma 29 For all Σ, Σ′ ∈ ℘(T ⋆) and F, F ′ ∈ ℘(T),

α1(ΣΣ′) = α1(Σ)⊕1 α1(Σ′)

where F ⊕1 F ′ ∆
= (F ′ 6= ? ? (F \ {ǫ}) ∪ (ǫ ∈ F ? F ′ : ?) : ?)

and {a} ⊕1 F ′ ∆
= (F ′ 6= ? ? {a} : ?) . e

The first concatenation is monotone (hence upper-continuous since T is finite)

Lemma 30 If F1 ⊆ F ′
1 and F2 ⊆ F ′

2 then F1 ⊕
1 F2 ⊆ F ′

1 ⊕
1 F ′

2. e

The first semantics S1JGK ∈ N 7→ ℘(T ∪ {ǫ}) of a grammar G is

S
1JGK

∆
= α̇1(SℓJGK) . (24)

The classical definition of the First derivation of a grammar [8, Def. 8.2.33] is

Theorem 31

S
1JGK = λ A . {a ∈ T | ∃σ ∈ T

⋆ : A
⋆

Z=⇒G aσ} ∪ {ǫ | A
⋆

Z=⇒G ǫ} . e

For parsing, the input sentence is often assumed to be followed by the final mark
⊣, so it is useful to extend S1JGK to S1⊣JGK ∈ N 7→ ℘(T ∪ {⊣}) as

S
1⊣JGK

∆
= λ A . {a ∈ T | ∃σ ∈ T

⋆ : A
⋆

Z=⇒G aσ} ∪ {⊣ | A
⋆

Z=⇒G ǫ} . (25)

The first algorithm [8, Fig. 8.11] is indeed a fixpoint computation S1JGK =

lfp
⊆̇−→̂

F 1JGK where the bottom-up transformer
−→̂
F 1JGK is (14) instantiated as given

in Sect. 137.

7 The classical definition [8, Fig. 8.11] is simpler since all grammar nonterminals are
assumed to be productive.

16.2 ǫ-Productivity

The classical definition of ǫ-Prod [8, Sect. 8.2.3] provides information on which

nonterminals can be empty. The corresponding abstraction is αǫ ∆
= λ Σ . (ǫ ∈

Σ ? tt : ff) extended pointwise to αǫ ∆
= λL . λA .αǫ(L(A)) so that 〈N 7→

℘(T ⋆), ⊆̇〉 −−−→−→←−−−−
αǫ

γ̇ǫ

〈N 7→ B, ˙=⇒〉. The ǫ-productivity semantics SǫJGK
∆
=

αǫ(SℓJGK) = αǫ(S1JGK) since αǫ = αǫ ◦ α̇1 and S1JGK = α̇1(SℓJGK). This is
the classical definition of ǫ-productivity for a grammar [8, Sect. 8.2.9] since
SǫJGK = λ A .A

⋆
Z=⇒G ǫ. The ǫ-productivity iterative computation [8, Fig.

8.14] is indeed a fixpoint computation S
ǫJGK = lfp

=̇⇒−→̂
F

ǫJGK where the bottom-

up transformer
−→̂
F ǫJGK is (14) instantiated as given in Sect. 13.

16.3 Nonterminal Productivity

The classical definition of nonterminal productivity [8, Sect. 8.2.4] provides infor-
mation on which nonterminals of the grammar can produce a non-empty terminal
language. The nonterminal productivity semantics of a context-free grammar is

indeed an abstraction of its first semantics SE›JGK
∆
= α̇E›(SℓJGK) = α̇E›(S1JGK)

where the nonterminal productivity abstraction is defined pointwise on termi-

nal languages derived for nonterminals α̇E›
∆
= λL . λA .αE›(L(A)) as true if the

nonterminal can produce a non-empty terminal language and false otherwise

αE›
∆
= λ Σ . (Σ 6= ? ? tt : ff) so that 〈N 7→ ℘(T ⋆), ⊆̇〉 −−−−→−→←−−−−−

α̇E›

γ̇E›

〈N 7→ B,

˙=⇒〉.The productivity iterative fixpoint computation [8, Ex. 8.2.12] is S
E›JGK =

lfp
=̇⇒−→̂

F E›JGK where the bottom-up transformer
−→̂
F E›JGK is (14) instantiated as

given in Sect. 13.

17 Top-down Grammar Analysis

17.1 Follow

The classical definition of Follow [8, Sect. 8.2.8] provides information on the
possible right context of nonterminals during syntax analysis. The follow ab-
straction αf ∈ V ⋆ 7→ (N 7→ ℘(T ∪ {⊣})) is

αf (η)
∆
= λA . {a ∈ T | ∃η′, η′′ : η = η′Aη′′ ∧ ∃η′′′ ∈ T

⋆ : η′′ ⋆
Z=⇒G aη′′′} ∪

{⊣ | ∃η′, η′′ : η = η′Aη′′ ∧ η′′ ⋆
Z=⇒G ǫ}

where we use the classical convention that sentences derived from the grammar
axiom S are assumed to be followed by the extra symbol ⊣ 6∈ V (⊣ is # in [8,
Sect. 8.2.8]). This is extended to αf (Σ) ∈ ℘(V ⋆) 7→ (N 7→ ℘(T ∪ {⊣})) as

αf (Σ)
∆
= λA . ⋃

η∈Σ αf (η)A so that 〈℘(V ⋆), ⊆〉 −−−→−→←−−−−−
αf

γf

〈N 7→ ℘(T ∪ {⊣}),

⊆̇〉.The definition of Follow [8, Def. 8.2.22] can also use that of First since

Theorem 32 αf (Σ) = λ A . ⋃

η′Aη′′∈Σ

−→̂
S 1JGK(η′′)[ǫ/⊣] where X [a/b]

∆
= (X \

{a}) ∪ {b | a ∈ X}. e

The follow semantics Sf JGK of a grammar G is Sf JGK
∆
= αf (SĽJGK(S)) so that

we get [8, Def. 8.2.22]

Theorem 33 Sf JGK = λ A . {a ∈ T | ∃η, η′ : S
⋆

Z=⇒G ηAaη′} ∪ {⊣ | ∃η : S
⋆

Z=⇒G

ηA} .

By abstraction of the fixpoint characterization Th. 27 of SĽJGK, we get the
classical Follow algorithm as an iterative fixpoint computation [8, Fig. 8.13]

Theorem 34 Sf JGK j lfp
⊆̇

F̌f JGK where

F̌
f JGK

∆
= λφ . λA . {⊣ | A = S} ∪

⋃

B→σAσ′∈R

(
−→̂
S

1JGK(σ′) \ {ǫ}) ∪ (ǫ ∈−→̂S 1JGK(σ′) ? φ(B) : ?) .

and j denotes = if all nonterminals in G are productive (as defined in Sect.

16.3) else j denotes ⊆. e

17.2 Nonterminal Accessibility

The classical definition of accessible nonterminals [8, Def. 8.2.4] provides in-
formation on which nonterminals of the grammar are used in the definition of
the language generated for the grammar axiom. The accessibility abstraction is

αa ∆
= λΣ . λA . (∃σ, σ′ ∈ V ⋆ : σAσ′ ∈ Σ ? tt : ff) so that 〈N 7→ ℘(V ⋆),

⊆̇〉 −−−→−→←−−−−−
αa

γa

〈N 7→ B, ˙=⇒〉 . The nonterminal accessibility semantics is SaJGK
∆
=

αa(SĽJGK(S)). This is the classical definition [8, Def. 8.2.4] since

Theorem 35 SaJGK = λA .∃σ, σ′ ∈ V ⋆ : S
⋆

Z=⇒G σAσ′ . e

The accessibility semantics SaJGK has the following fixpoint characterization

Theorem 36 SaJGK = lfp
⊆̇

F̌aJGKwhere F̌aJGKφA
∆
= (A = S) ∨

∨

B→σAσ′∈R

φ(B). e

The accessibility semantics is an abstraction of the follow semantics since, if
all nonterminals are productive (as defined in Sect. 16.3), a nonterminal is
accessible if and only if it has a non-empty follow set.

Theorem 37 (All nonterminals are productive) =⇒
(

S
aJGK = αE›(Sf JGK)

)

. e

18 Grammar Problem

Knuth’s grammar problem [1], a generalization of the single-source shortest-path
problem, is to compute the minimum-cost derivation of a terminal string from
each non-terminal of a given superior grammar that is a context-free grammar,
with rules of the form A → g(A1, . . . , An), n > 0 (where ‘g’, ‘(’, ‘,’, and ‘)’ are
terminals), equipped with a cost function val such that the cost of a derivation is
val(A → g(A1, . . . , An)) = val(g)(val(A1), . . . , val(An)) and val(g) ∈ Rn

+ 7→ R+,

R+
∆
= {x ∈ R | x > 0} ∪ {∞}, is a so-called superior function [1], a condition

weakened in [2] where Knuth’s algorithm is also given an incremental version.
Knuth’s grammar problem [1] can be generalized to any bottom-up abstract

grammar semantics S♯̂JGK by considering α(S♯̂JGK) where 〈D̂♯̂, ⊑〉 −−−→←−−−α

γ
〈R+, >〉

is a Galois connection and 〈R+, >, ∞, 0, min, max〉 is a complete lattice.

Knuth considers the particular case when S
♯̂JGK = S

ℓJGK and 〈D̂♯̂,⊑〉 = 〈℘(S),

⊆〉 where S is a set (indeed S = ℘(T ⋆) in [1,2]) with α(X)
∆
= min{val(x) | x ∈

X} and γ(m)
∆
= {x ∈ S | val(x) > m}. Since α is antitone, the corresponding

abstract semantics is taken in terms of greatest fixpoints for 6 [2]. Knuth’s
monotony hypothesis [1,2] ensures the existence of the greatest fixpoint. The
rule soundness condition (15) then amounts to Knuth’s hypothesis that for every
nonterminal A, every string in SℓJGKA is a composition of superior functions
α(g(x1, . . . , xn)) = val(g)(α(x1), . . . , α(xn)).

Knuth superiority condition [1] and its variant [2] ensure that the greatest
fixpoint can be computed by an elimination algorithm (generalizing Dijkstra’s
algorithm to solve shortest path problems [17]). However in general one must
resort to an infinite fixpoint iteration as shown with the choice of S = ℘(T ⋆),
val(x) = 1

|x| so that val(g)() = 1
3 and val(g)(x1, . . . , xn) = 1

1
x1

+...+ 1
xn

+n+2
which,

for the grammar A → a(), A → b(A, A) requires an infinite iteration and a
passage to the limit 0.

Our generalization also copes with implicit abstractions of a grammar con-
sidered by [1,2] where a grammar is “recoded” into a superior grammar, which
can indeed be defined by an appropriate α.

19 Bottom-Up Parsing

Given a grammar G = 〈T , N , S, R〉 and an input σ = σ1σ2 . . . σn ∈ T ⋆, n ≥ 0,
parsing consists in proving either σ ∈ S

ℓJGK(S) or σ 6∈ S
ℓJGK(S), that is, by Th.

28, providing an algorithmic answer to the question S
⋆

Z=⇒G σ?
Bottom-up parsing is an abstraction of a bottom-up grammar semantics by

restriction to a given input sentence. This is illustrated with the Cocke-Younger-
Kasami or CYK algorithm [4, Sect. 4.2.1] attributed by [18] to John Cocke,
[19,20]). It is traditionally restricted to grammars G = 〈T , N , S, R〉 in Chomsky
normal form with rules of the form A → BC and A → a where A, B, C ∈ N

and a ∈ T . We now design CYK by calculus for arbitrary grammars.
CYK is an abstract interpretation of the terminal language semantics SℓJGK

by

αCYK ∆
= λσ . λ X . {〈i, j〉 ∈ D̂

CYK (σ) | σi . . . σi+j−1 ∈ X} (26)

where

D̂
CYK ∆

= λ σ . {〈i, j〉 | i ∈ [1, |σ|+ 1] ∧ j ∈ [0, |σ|] ∧ i + j ≤ |σ|+ 1}

so that 〈i, j〉 denotes the subsentence of length j from position i in σ (in par-
ticular 〈|σ| + 1, 0〉 denotes the empty sentence ǫ after σ = σǫ). Given σ ∈ T ⋆,
we have

〈℘(T ⋆), ⊆〉 −−−−−−−→←−−−−−−−
αCYK (σ)

γCYK (σ)
〈℘(D̂CYK (σ)), ⊆〉 .

The pointwise extension to N is

αCYK ∆

= λσ . λ X . λ A .αCYK (X(A)) (27)

so that

〈N 7→ ℘(T ⋆), ⊆̇〉 −−−−−−−→←−−−−−−−
αCYK (σ)

γCYK (σ)
〈N 7→ ℘(D̂CYK (σ)), ⊆̇〉 .

The correctness of this parsing approach is proved by the following

Theorem 38 σ ∈ SℓJGK(S)⇐⇒ 〈1, |σ|〉 ∈ αCYK (σ)(SℓJGK)(S) . e

The CYK algorithm is derived by abstracting the fixpoint definition Th. 23 of

SℓJGK = lfp
⊆̇−→̂

F ℓJGK by αCYK .

Theorem 39

αCYK (σ)(SℓJGK)(S) = lfp
⊆̇−→̂

F
CYK JGK(σ)

where

−→̂
F

CYK JGK ∈ ℘(D̂CYK) 7→ ℘(D̂CYK)

−→̂
F

CYK JGK
∆
= λ ρ . λ A .

⋃

A→σ∈R

−→̂
F

CYK [A→ ˝σ]ρ

−→̂
F

CYK [A→ σ˝aσ′]
∆

= λ ρ . {〈i, j〉 ∈ D̂
CYK (σ) | σi = a ∧

〈i + 1, j − 1〉 ∈
−→̂
F

CYK [A→ σa˝σ′]ρ}

−→̂
F

CYK [A→ σ˝Bσ′]
∆
= λ ρ . {〈i, j〉 ∈ D̂

CYK (σ) | ∃k : 0 6 k 6 j : 〈i, k〉 ∈ ρ(B)

∧ 〈i + k, j − k〉 ∈
−→̂
F

CYK [A→ σB˝σ′]ρ}

−→̂
F

CYK [A→ σ˝]
∆
= λ ρ . {〈i, 0〉 | 1 6 i 6 |σ|} e

Because the abstract domain 〈N 7→ ℘(D̂CYK (σ)), ⊆̇〉 is finite, the iterative

computation of lfp
⊆̇

FCYK JGK(σ) terminates whence by Th. 39 and Th. 38 so
does the CYK parsing algorithm. The CYK dynamic programming algorithm
organizes the computation of the pairs 〈i, j〉 ∈ D̂CYK (σ) in order to avoid
repetition of work already done.

20 Top-down Parsing

20.1 Nonrecursive Predictive Parser

A nonrecursive predictive parser is formally derived from the prefix derivation

semantics S∂
→

JGK of Sect. 5 by applying the abstraction

αLL ∆
= λ S . λ σ . λ X . {〈i, ̟〉 | ∃θ = ̟0

ℓ0−→ ̟1 . . .̟m−1
ℓm−1
−→ ̟m ∈ X.S :

i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧̟ = ̟m}

where the terminal abstraction ατ ∈ Θ 7→ T ⋆ collects terminal labels of deriva-
tions, as follows

ατ (θ1
LA
−→ θ2)

∆
= ατ (θ1)α

τ (θ2) ατ (̟)
∆
= ǫ, ̟ ∈ S

ατ (θ1
AM
−→ θ2)

∆
= ατ (θ1)α

τ (θ2) ατ (⊢)
∆
= ǫ

ατ (θ1
a
−→ θ2)

∆

= ατ (θ1)aατ (θ2), a ∈ T ατ (⊣)
∆

= ǫ .

Let us write ℘1(S)
∆
= {{x} | x ∈ S} for the set of singletons of a set S and let

α• ∈ ℘1(S) 7→ S be α•({x})
∆
= x. We have

Lemma 40 ∀θ ∈ Θ() : ατ (θ) = α• ◦ αℓ ◦ αL̂ ◦ αŝ ◦ αδ̂(θ).

The interpretation of the pair 〈i, ̟i〉 is that in the left-to-right scanning of
the input sentence σ up to position i, the prefix σ1 . . . σi (ǫ when i = 0) has
been recognized by a prefix derivation from the start symbol S. The stack ̟i

allows for the recognition of the rest of the sentence, if possible. Fixing the start
symbol S and the input sentence σ, we have a Galois connection

〈℘(Θ), ⊆〉 −−−−−−−−→←−−−−−−−−
αLL(S)(σ)

γLL(S)(σ)
〈℘([0, |σ|]× S), ⊆〉

The correctness of this parsing approach is proved by the following

Theorem 41 σ ∈ S
ℓJGK(S)⇐⇒ 〈|σ|, ⊣〉 ∈ αLL(S)(σ)(S∂

→

JGK). e

To get a correct parsing algorithm, it remains

– to express αLL(S)(σ)(S∂
→

JGK) in fixpoint form by abstraction of the fixpoint

definition Th. 6 of S∂
→

JGK (as shown in Th. 42), and
– to prove the termination of the fixpoint iteration (as shown in Th. 44 for

non left-recursive grammars).

Theorem 42 αLL(S)(σ)(S∂
→

JGK) = lfp
⊆

F
LLJGK(σ) where

F
LLJGK(σ) ∈ ℘([0, |σ|]× S) 7→ ℘([0, |σ|]× S)

F
LLJGK(σ) = λX . {〈0, ⊢〉} ∪ {〈0, ⊣[S → ˝η]〉 | 〈0, ⊢〉 ∈ X ∧ S → η ∈ R} ∪

{〈i + 1, ̟[A→ ηa˝η′]〉 | 〈i, ̟[A→ η˝aη′]〉 ∈ X ∧ a = σi+1} ∪

{〈i, ̟[A→ ηB˝η′][B → ˝ς]〉 | 〈i, ̟[A→ η˝Bη′]〉 ∈ X ∧B → ς ∈ R}

∪ {〈i, ̟〉 | 〈i, ̟[A→ η˝]〉 ∈ X} . e

lfp
⊆

FLLJGK(σ) is exactly the set of reachable states of the transition system

〈[0, |σ|]× S,
LL
−→〉 where

〈0, ⊢〉
LL
−→ 〈0, ⊣[S → ˝η]〉 S → η ∈ R (28)

〈i, ̟[A→ η˝σi+1η
′]〉

LL
−→ 〈i + 1, ̟[A→ ησi+1˝η′]〉 (29)

〈i, ̟[A→ η˝Bη′]〉
LL
−→ 〈i, ̟[A→ ηB˝η′][B → ˝ς]〉 B → ς ∈ R (30)

〈i, ̟[A→ η˝]〉
LL
−→ 〈i, ̟〉 (31)

with initial state 〈0, ⊢〉. By Th. 41, parsing is therefore reduced to proving that
the final state 〈|σ|, ⊣〉 is reachable (which can be done by computing the iterates
of FLLJGK(σ) or equivalently by exploring the descendants of the transition rela-

tion
LL
−→ with backtracking when reaching a dead-end [4, Alg. 4.1, Sect. 4.1.3]).

Example 43 Consider the grammar G = 〈{a, b}, {A}, A, {A → A, A → a}〉.

For the input sentence σ = a we have

〈0, ⊢〉 Hinitial stateI
LL
−→ 〈0, ⊣[A→ ˝a]〉 Hby (28) with rule A→ aI
LL
−→ 〈1, ⊣[A→ a˝]〉 Hby (29) since σ1 = aI
LL
−→ 〈1, ⊣〉 Hby (31), which is a final state .I

On the other hand, the transitions for σ = b either lead to dead ends or do not

terminate

〈0, ⊢〉 Hinitial stateI
LL
−→ 〈0, ⊣[A→ ˝A]〉 Hby (28) with rule A→ A since A→ a would lead to a

dead end because σ1 = b 6= aI
LL
−→ 〈0, ⊣[A→ ˝A][A→ ˝A]〉 Hby (30) with rule A→ A since A→ a would

lead to a dead end because σ1 = b 6= aI
LL
−→ 〈0, ⊣[A→ ˝A][A→ ˝A][A→ ˝A]〉 Hby (30) with rule A→ A since A→ a

would lead to a dead end because σ1 = b 6= aI
LL
−→ . . . Hetc, ad infinitum, without any possibility of success or failure in a

blocking state.I 2

Theorem 44 The nonrecursive predictive parsing algorithm for a grammar G

= 〈T , N , S, R〉 terminates (i.e. the transition relation
LL
−→ has no infinite

trace for all input sentences σ ∈ T ⋆) if and only if the grammar G has no left

recursion (that is ∃A ∈ N : ∃η ∈ V ⋆ : A
+

Z=⇒G Aη). e

20.2 Nonrecursive Predictive Parsing with Lookahead

The nondeterminism in predictive parsing can be reduced by driving the right
context in derivations (as approximated using First and Follow). We start
by elucidating the rôle of the right context in derivations.

Given a stack ̟ = ⊣[A1 → η1˝η′
1] . . . [Ap → ηp˝η′

p], p > 0 where ̟ = ⊣ when

p = 0, we define the right context ̟△ of ̟ as

̟△ ∆
= η′

pη
′
p−1 . . . η′

2η
′
1

with η′
pη

′
p−1 . . . η′

2η
′
1 = ǫ when p = 0.

Theorem 45 Let ̟0
ℓ0−→ ̟1 . . . ̟i−1

ℓi−1
−→ ̟i

ℓi−→ ̟i+1 . . . ̟n−1
ℓn−1
−→ ̟n ∈

Sd̂JGK be a maximal derivation of the grammar G = 〈T , N , S, R〉 with i > 0.
Then

̟i
△ ⋆

Z=⇒G ατ (̟i
ℓi−→ ̟i+1 . . . ̟n−1

ℓn−1
−→ ̟n) e

We call ατ (̟i
ℓi−→ ̟i+1 . . . ̟n−1

ℓn−1
−→ ̟n) the terminal right context of ̟i.

In order to approximate the right contexts in derivations by their first symbol,
we define

−→̂
S

1JGK[A→ η˝η′] (32)

∆
=
−→̂
S

1JGK(η′)⊕1
S

f JGK(A)

= (Sf JGK(A) 6= ? ? (
−→̂
S

1JGK(η′) \ {ǫ}) ∪ (ǫ ∈−→̂S 1JGK(η′) ? S
f JGK(A) : ?) : ?)

= (Sf JGK(A) 6= ? ? (
−→̂
S

1JGK(η′) \ {ǫ}) ∪ (−→̂S ǫJGK(η′) ? S
f JGK(A) : ?) : ?) .

Corollary 46 Let ̟0
ℓ0−→ ̟1 . . . ̟i−1

ℓi−1
−→ ̟i

ℓi−→ ̟i+1 . . . ̟n−1
ℓn−1
−→ ̟n ∈

Sd̂JGK.S, i > 0 be a maximal derivation of the grammar G = 〈T , N , S, R〉 from
the grammar start symbol S. Then

ατ (̟i
ℓi−→ ̟i+1 . . .̟n−1

ℓn−1
−→ ̟n)⊣ = aσ

where ̟i = ̟′
i[A→ η˝η′], a ∈ T ∪ {⊣}, σ ∈ (T ∪ {⊣})⋆ and

a ∈
−→̂
S

1JGK[A→ η˝η′] . e

If the input sentence σ derives from the start symbol S then the right context
̟△ of the stack ̟ in 〈i, ̟〉 should derive in the rest σi+1 . . . σn of the input
sentence. In order to introduce a lookahead, this can be approximated by the
fact that, according to Cor. 46, the first symbol of this right context should be

σi+1 (which, by definition, is ⊣ when i = n so that σ|σ|+1
∆
= ⊣).

αLL(1) ∆
= λ S .λσ . λ X . {〈i, ̟〉 | ∃θ = ̟0

ℓ0−→ ̟1 . . . ̟m−1
ℓm−1
−→ ̟m ∈ X.S :

i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧̟ = ̟m ∧ ∀̟
′ ∈ S, A→ ηη′ ∈ R :

(̟ = ̟′[A→ η˝η′] ∧ i 6 |σ|) =⇒ (σi+1 ∈
−→̂
S 1JGK[A→ η˝η′])} .

The correctness of the nonrecursive predictive parser with lookahead is estab-
lished by the following

Theorem 47

σ ∈ S
ℓJGK(S)⇐⇒ 〈|σ|, ⊣〉 ∈ αLL(1)(S)(σ)(S∂

→

JGK) . e

The nonrecursive predictive parser with lookahead is obtained by expressing the
abstract semantics in fixpoint form

Theorem 48

αLL(1)(S)(σ)(S∂
→

JGK) = lfp
⊆

F
LL(1)JGK(σ)

where FLL(1)JGK(σ) ∈ ℘([0, |σ|]× S) 7→ ℘([0, |σ|]× S) is

F
LL(1)JGK(σ) = λ X . {〈0, ⊢〉} ∪ (33)

{〈0, ⊣[S → ˝η]〉 | 〈0, ⊢〉 ∈ X ∧ S → η ∈ R ∧

σ1 ∈
−→̂
S 1JGK[S → ˝η]} ∪

{〈i + 1, ̟[A→ ηa˝η′]〉 | 〈i, ̟[A→ η˝aη′]〉 ∈ X ∧

a = σi+1 ∧ σi+2 ∈
−→̂
S

1JGK[A→ ηa˝η′]} ∪

{〈i, ̟[A→ ηB˝η′][B → ˝ς]〉 | 〈i, ̟[A→ η˝Bη′]〉 ∈ X ∧

B → ς ∈ R ∧ σi+1 ∈
−→̂
S 1JGK[B → ˝ς]} ∪

{〈i, ̟〉 | 〈i, ̟[A→ η˝]〉 ∈ X} . e

Again, observe that lfp
⊆

FLL(1)JGK(σ) is exactly the set of reachable states of

the transition system 〈[0, |σ|]× S,
LL(1)
−→〉 where

〈0, ⊢〉
LL(1)
−→ 〈0, ⊣[S → ˝η]〉 S → η ∈ R ∧ (34)

σ1 ∈
−→̂
S

1JGK[S → ˝η]

〈i, ̟[A→ η˝σi+1η
′]〉

LL(1)
−→ 〈i + 1, ̟[A→ ησi+1˝η′]〉 (35)

σi+2 ∈
−→̂
S

1JGK[A→ ηa˝η′]

〈i, ̟[A→ η˝Bη′]〉
LL(1)
−→ 〈i, ̟[A→ ηB˝η′][B → ˝ς]〉 B → ς ∈ R ∧ (36)

σi+1 ∈
−→̂
S

1JGK[B → ˝ς]}

〈i, ̟[A→ η˝]〉
LL(1)
−→ 〈i, ̟〉 (37)

with initial state 〈0, ⊢〉. This is essentially the algorithm suggested at the end
of [4, Sect. 4.1.4] to speed up top-down nondeterministic parsing.

Indeed the lookahead may been done freely between the two extremes of
everywhere in Th. 47 and nowhere Th. 41, as follows

Corollary 49 If FLL(1)JGK(σ) ⊆ FJGK(σ) ⊆ FLLJGK(σ) then

σ ∈ S
ℓJGK(S)⇐⇒ 〈|σ|, ⊣〉 ∈ lfp

⊆

FJGK(σ) .

The iterative computation of lfp
⊆

FJGK(σ) terminates for all σ if and only if the
grammar G has no left recursion. e

Our presentation of LL(1) parsing differs from the classical introduction in
[8], mainly because, for practical efficiency and simplicity reasons, only the table-
driven deterministic case is classically considered.

21 Conclusion

Many meanings assigned to grammars (such as syntax tree, protolanguage or
terminal language generation) and grammar manipulation algorithms (such as
grammar flow analyses or parsers) have quite similar structures. We have shown
that this is because they are all abstract interpretations of a grammar small-step
operational semantics to derive sentences together with their structure.

Future work should include the extension of the approach to context-free
grammars such as contextual grammars [21] or to mildly context-sensitive gram-
mars attempting to express the formal power needed to define the syntax of
natural languages by tree rewriting such as (multicomponent) tree adjoining
grammars or, more generally, range concatenation grammars [22].

Acknowledgements We thank Tom Reps for drawing our attention to [1,2].

References

1. Knuth, D.: A generalization of Dijkstra’s algorithm. Inf. Process. Lett. 6(1) (Feb.
1977) 1–5

2. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms 21(2) (1996) 267–305

3. Bar-Hillel, J., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Z. Phonetik. Sprachwiss. Kommunikationforsch. 14 (1961) 143–172

4. Aho, A., Ullman, J.: Parsing. Volume 1 of The Theory of Parsing, Translation and
Compiling. Prentice-Hall (1972)

5. Möncke, U., Wilhelm, R.: Iterative algorithms on grammar graphs. In Schneider,
H., Gottler, H., eds.: Proc. 8th Conf. on Graphtheoretic Concepts in Computer
Science (WG’82), Hanser Verlag (1982) 177–194

6. Möncke, U.: Generierung von Systemen zur Transformation attributierter Opera-
torbäume; Komponenten des Systems und Mechanismen der Generierung. Diplo-
marbeit, Universität des Saarlandes, Saarbrücken (1985)

7. Möncke, U., Wilhelm, R.: Grammar flow analysis. In Alblas, H., Melichar, B.,
eds.: Attribute Grammars, Applications and Systems, Intl. Summer School SAGA,
Prague, CZ, 4–13 June , 1991, Proc. Volume 545 of LNCS., Springer (1991) 151–186

8. Wilhelm, R., Maurer, D.: Übersetzerbau. Theorie, Konstruktion, Generierung.
Springer (1992)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
Los Angeles, CA, ACM Press (1977) 238–252

10. Chomsky, N.: Three models for the description of language. IEEE Trans. Infor-
mation Theory 2(3) (1956) 113–124

11. Chomsky, N.: Syntactic Structures. Mouton, de Gruyter (1957)
12. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system

by abstract interpretation. Theoret. Comput. Sci. 277(1—2) (2002) 47–103
13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL, San Antonio, TX, ACM Press (1979) 269–282
14. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems.

Pacific J. Math. 82(1) (1979) 43–57
15. Ginsburg, S., Rice, G.: Two families of languages related to ALGOL. J. ACM 9

(1962) 350–371
16. Schützenberger, M.: On a theorem of R. Jungen. Proc. Amer. Math. Soc. 13

(1962) 885–889
17. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1

(1959) 269–271
18. Hays, D.: Introduction to Computational Linguistics. Amer. Elsevier (1967)
19. Younger, D.: Recognition and parsing of context-free languages in time n3. Inform.

and Control 10(2) (1967) 609–617
20. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free

languages. Technical report, Air Force Cambridge Research Laboratory, Bedford,
MA, US (Aug. 1965)

21. Ehrenfeucht, A., Päun, G., Rozenberg, G.: Contextual grammars and formal lan-
guages. In Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages.
Volume 2. Springer (1997) 237–293

22. Boullier, P.: From contextual grammars to range concatenation grammars. ENTCS
53 (Apr. 2001) 41–52 http://www.elsevier.nl/locate/entcs/volume53.html.

http://www.elsevier.nl/locate/entcs/volume53.html

