

Engineering Secure and Dependable Software Systems
A. Pretschner et al. (Eds.)
IOS Press. 2019
© 2019 The authors and IOS Press. All rights reserved.
doi: 10.3233/978-1-61499-977-5-9

9

A Formal Introduction to
Abstract Interpretation

Patrick COUSOT
Courant Institute of mathematical Sciences, New York University

Abstract. We introduce basic concepts of abstract interpretation using
the example of arithmetic and boolean expression semantics, properties,
verification, static analysis, and their formal calculational design.

Keywords. Semantics, Property, Verification, Proof method, Static
analysis, Calculational design.

1. Introduction

Abstract interpretation [1,2,3] aims at formalizing reasonings on the semantics
of programs and automating the inference of properties of such semantics. The
very basic concepts of abstract interpretation are illustrated using arithmetic and
boolean expressions. We define their syntax, semantics, properties, and formally
design static analyses of expressions by calculus.

2. The rule of signs

The Indian mathematician and astronomer Brahmagupta (born c. 598, died after
665) was the first to give rules to compute with zero and invented the rule of signs
[4, page 151]. Verses 18.30–35 of his Brāhma-sphu.t-a-siddhānta state

[The sum] of two positives is positive, of two negatives negative; of a positive
and a negative [the sum] is their difference; if they are equal it is zero. The
sum of a negative and zero is negative, [that] of a positive and zero positive,
[and that] of two zeros zero.
…
A negative minus zero is negative, a positive [minus zero] positive; zero [minus
zero] is zero. When a positive is to be subtracted from a negative or a negative
from a positive, then it is to be added.
The product of a negative and a positive is negative, of two negatives positive,
and of positives positive; the product of zero and a negative, of zero and a
positive, or of two zeros is zero.

https://en.wikipedia.org/wiki/Brahmagupta

10 Patrick Cousot / A Formal Introduction to Abstract Interpretation

A positive divided by a positive or a negative divided by a negative is positive;
a zero divided by a zero is zero1; a positive divided by a negative is negative;
a negative divided by a positive is [also] negative.

A negative or a positive divided by zero has that [zero] as its divisor, or zero
divided by a negative or a positive [has that negative or positive as its divisor].
The square of a negative or of a positive is positive; [the square] of zero is
zero.

Following the pseudo-evaluation idea of Peter Naur in compilation [5,6],
Michel Sintzoff [7] postulates the sign analysis in the following way:

“a × a + b × b yields always the object “pos” when a and b are the objects
“pos” or “neg”, and when the valuation is defined as follows :

pos+pos = pos pos × pos = pos
pos+neg = pos,neg pos × neg = neg
neg+pos = pos,neg neq × pos = neg
neg+neg = neg neg × neg = pos
V(p+q) = V(p)+V(q) V(p × q) = V(p) × V(q)

V(0) = V(1) = … = pos
V(-1) = V(-2) = … = neg

The valuation of a× a+ b× b yields “pos” by the following computation :

V(a) = pos,neg V(b) = pos,neg
V(a× a) = pos × pos, neg × neg V(b× b) = pos × pos, neg × neg

= pos,pos = pos = pos,pos = pos
V(a× a+ b× b) = V(a× a)+V(b× b) = pos+pos = pos”

Observe that V(0×-1) = V(0)×V(-1) = pos×neg = neg while V(0×-1) = V(0) =
pos. The error follows from an unsound handling of the abstraction V(0) of 0 into
pos. The correct rule should be neq × pos = neg,pos which is less precise than
Brahmagupta’s rule of signs which singles 0 out.

Our objective is to show that such abstract interpretations of the seman-
tics of expressions can be designed formally, without error, by machine-checkable
calculational design.

3. Sign analysis of iterative programs

The rule of signs generalizes to programs. For example the sign of x in
x = 0; while (…) { x = x+1 }

(where the iteration condition (…) is ignored) can be determined as follows:

1This was Brahmagupta’s only error, 0
0

is undefined.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 11

• After zero iteration, when entering the loop, if ever, x = 0;
• After one iteration, the sign of x is zero, 1 is positive, so the sum x+1 of

zero and positive is positive;
• For the basis, we have shown that after zero or one iteration, the sign of x

is zero (at iteration 0) or positive (at iteration 1) that is positive after at
most 1 iteration;

• For the induction step, if after at most n ⩾ 0 iterations, the sign of x is
positive, then 1 is positive, so the sum x+1 of positive and positive is positive
after the next iteration;

• After at most n+1 iterations, x is positive (at the previous n ⩾ 0 iterations)
or positive (at the n+ 1-th iteration) then x is positive after at most n+ 1
iterations;

• By recurrence on the number of iterations in the loop, x is positive in the
loop.

4. Sign abstraction, informally

The abstraction is that you do not (always) need to know the absolute value of
the arguments to know the sign of the result of an operation. This is sometimes
precise (for example for the multiplication) but can be imprecise (for example
the sign of the sum of a positive and a negative is unknown when ignoring the
absolute value of the arguments). This is nevertheless useful in practice if you
know what to do when you don’t know the sign. For example, a compiler will
not suppress the lower bound check when accessing an array with an index not
known to be positive. Moreover, it is always possible to refine the abstraction to
get more precise results. For example Brahmagupta states [4, page 151]

[If] a smaller [positive] is to be subtracted from a larger positive, [the result] is
positive; [if] a smaller negative from a larger negative, [the result] is negative;
[if] a larger [negative or positive is to be subtracted] from a smaller [positive or
negative, the algebraic sign of] their difference is reversed—negative [becomes]
positive and positive negative. …

Knowing an interval of the possible values is more precise than just knowing the
sign. Static interval analysis was introduced in [8,1].

Out objective is to formalize abstract interpretations of arithmetic expressions
(like the rule of signs) and to show how the abstraction can be formally calculated
out of the semantics of arithmetic expressions.

5. Syntax of expressions

Let us consider the language of expressions.

x, y, . . . ∈ V variables (V not empty)
A ∈ A ::= 1 | x | A1 - A2 arithmetic expressions
B ∈ B ::= A1 < A2 | B1 nand B2 boolean expressions
E ∈ E ::= A | B expressions

https://en.wikipedia.org/wiki/Brahmagupta

12 Patrick Cousot / A Formal Introduction to Abstract Interpretation

This context-free grammar [9] specifies sets of program syntactic entities, the set
V of variables, A of arithmetic expressions, B of boolean expressions, and E of
either arithmetic or boolean expressions. The mathematical variables x, y, A, B,
and E denote arbitrary elements of these sets.

There syntax is defined by grammar rules such as A ::= 1 | x | A1 - A2
specifying that an arithmetic expression A is either the constant 1, a variable
x ∈ V, or the difference A1 - A2 of two arithmetic expressions A1 and A2. The set
V of variables is left unspecified (usually it is an identifier starting with a letter
followed by 0 or more letters or digits or special symbols like “_”).

This grammar is ambiguous since 1 - 1 - 1 can either be understood as (1 -
1) - 1 or 1 - (1 - 1). We choose the first alternative so the binary operator is
left-associative. In boolean expressions, nand is left-associative and the arithmetic
operators have priority over boolean operators (so 1-1<1-1-1 is ((1-1)<((1-1)-1))
i.e. false ff).

6. Structural definitions

Structural definitions are generalizations of recursive definitions on naturals. As-
sume that we want to define a total function f ∈ E → S from the domain E to
the codomain S, where S is a set. A structural definition is a recursive definition
of the form

• f(1) and f(x) are defined to be constants (so f(1) ≜ c1 and f(x) ≜ cx where
c1, cx ∈ S)2;

• f(A1 - A2) and f(A1 < A2) are functions of f(A1) and f(A2) (so f(A1 - A2) ≜
F-(f(A1), f(A2))), f(A1 < A2) ≜ F<(f(A1), f(A2));

• f(B1 nand B2) ≜ Fnand(f(B1), f(B2)) where F-, F<, Fnand ∈ S × S → S.

For example vars ∈ E → ℘(V), the (possibly empty) set of variables varsJEK ∈
℘(V) occurring in expression E ∈ E, is well-defined as

varsJ1K ≜ ∅
varsJxK ≜ {x}

varsJA1 - A2K ≜ varsJA1K ∪ varsJA2K
varsJA1 < A2K ≜ varsJA1K ∪ varsJA2K

varsJB1 nand B2K ≜ varsJB1K ∪ varsJB2K
Structural definitions are the basis of denotational semantics introduced by Dana
Scott and Christopher Strachey [10] (and called compositional in this context).

2≜ is “is defined as”.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 13

7. Environments

In order to formally define the value of any expression e.g. 1-1-1 = −1, we need
to know the value of variables occurring in expressions e.g. x - 1 is 2 when x = 3,
x - 1 is 42 when x = 43, etc. We cannot enumerate the infinitely many cases …,
x = −1, x = 0, x = 1, …. So we use an environment ρ ∈ Ev where Ev ≜ V → Z
that is a function ρ mapping a variable x to its value ρ(x) in the set Z of all
mathematical integers. By reasoning on the function ρ we can handle infinitely
many cases at once. For example, in environment ρ, the value of x - 1 is ρ(x)− 1
where ρ(x) is the value of variable x, 1 is the mathematical integer one and − is
the mathematical difference.

8. Structural semantics of expressions

Given an environment ρ ∈ Ev ≜ V → Z mapping variables x ∈ V to their value
ρ(x) ∈ Z, the value AJAKρ ∈ Z of an arithmetic expression A ∈ A and BJBKρ ∈ B
of a boolean expression B ∈ B is structurally defined as follows.

AJ1Kρ ≜ 1 (1)

AJxKρ ≜ ρ(x)

AJA1 - A2Kρ ≜ AJA1Kρ−AJA2Kρ
BJA1 < A2Kρ ≜ AJA1Kρ < AJA2Kρ

BJB1 nand B2Kρ ≜ BJB1Kρ ↑ BJB2Kρ
SJEK ≜ AJEK when E ∈ A

SJEK ≜ BJEK when E ∈ B

1, x, -, <, nand, A, and B are syntactic objects e.g. strings of characters. 1, ρ,
−, <, and ↑ are mathematical objects. The recursive definition is structural i.e.
by induction on the syntax of expressions E (either arithmetic A or boolean B).
The semantics of complex expressions AJAK or BJBK is defined in function of
the semantics of simpler expressions until reaching basic cases AJ1Kρ ≜ 1 and
AJxKρ ≜ ρ(x) for which the value is constant. The “not and” or “nand” boolean
operator ↑ is defined by the following truth table

a tt tt ff ff

b tt ff tt ff

a ↑ b ff tt tt tt

All other logical operators (negation ¬, implication⇒, conjunction ∨, disjunction
∧) can be defined in terms of ↑.

The functions A and B are total functions meaning that they are well-defined
for all their arguments i.e. ∀B ∈ B . BJBK ∈ (V → Z) → B and similarly for
arithmetic expressions. The well-definedness property is therefore P = {B ∈ B |
BJBK ∈ (V→ Z)→ B}). It’s proof is by structural induction.

14 Patrick Cousot / A Formal Introduction to Abstract Interpretation

9. Proofs by structural induction

Proofs by structural induction are well suited for proving properties of structural
definitions.

Proofs by structural induction generalize proofs by recurrence. To prove that
a property P holds for all expressions E ∈ E, we prove that the property holds for
the basic cases 1 and x. Then assuming that the property holds for A1 and A2, we
prove that it holds for A1 - A2 and A1 < A2. Moreover, assuming the property holds
for boolean expressions B1 and B2, we prove that it also holds for B1 nand B2. We
conclude that E ⊆ P .

10. Properties

10.1. Properties are sets

Properties (e.g. “to be an even integer”, “to be an odd natural”) can be understood
as the set of mathematical objects that have this property (e.g. 2Z ≜ {x ∈ Z |
∃k ∈ Z . x = 2k} and 2N + 1 = {x ∈ N | ∃k ∈ N . x = 2k + 1}). So if P is a
property then x ∈ P means x has property P while x ̸∈ P means x does not have
property P . For example 42 ∈ 2Z but 43 ̸∈ 2Z while the factorial ! is well-defined
for naturals but not integers so that ! ∈ N→ N and ! ̸∈ Z→ Z.

10.2. Implication, weaker and stronger properties

When considering properties as sets, logical implication is subset inclusion ⊆. For
example “to be greater that 42 implies to be positive” is {x ∈ Z | x > 42} ⊆
{x ∈ Z | x ⩾ 0}. If P ⊆ Q then P is said to be stronger/more precise than Q
and Q is said to be weaker/less precise that P . Stronger/more precise properties
are satisfied by less elements while weaker/less precise properties are satisfied by
more elements. False ff i.e. ∅ is the strongest property while true tt i.e. Z is the
weakest property of integers.

11. Semantic properties of expressions

By expression property we might mean a property of the syntax of the expression
(such has A has 42 signs - more precisely A belongs to the set of expressions with
42 signs -). This is software metrics and metrology [11], of little interest to us.

Instead an expression property will be understood as a semantic property
that is a property of the semantics of expressions.

The semantics AJAK of an expression A maps environments ρ ∈ V → Z to a
values in Z, AJAK ∈ (V → Z) → Z. Following Section 10, a semantic property of
an expression is a set of possible semantics hence belongs to ℘((V→ Z)→ Z). If
P ∈ ℘((V → Z) → Z) is a semantic property, then AJAK ∈ P means that “A has
property P”.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 15

Example 1 P = {b | ∀ρ ∈ V→ Z . b(ρ) = tt} ∪ {b | ∀ρ ∈ V→ Z . b(ρ) = ff} is the
semantic property of a boolean expression “to always evaluate to tt” or “to always
evaluate to ff”. For example x ∗ x+1 > 0 and x ∗ x < 0 have this property but not
x ∗ x > 0 since x ∗ x > 0 is sometimes true (when |ρ(x)| > 0) and sometimes false
(when |ρ(x)| = 0). So BJx ∗ x+ 1 > 0K ∈ P while BJx ∗ x > 0K ̸∈ P . �
Notice that semantic properties P of expressions are just a particular case of
property of expressions i.e. the property {E ∈ E | SJEK ∈ P}.

12. Collecting semantics of expressions

The collecting semantics of expressions is the strongest property of an expression.

CJAK ≜ {AJAK} ∈ ℘((V→ Z)→ Z) (2)

Arithmetic expression A is said to have semantic property P ∈ ℘((V → Z) → Z)
if and only if AJAK ∈ P or equivalently CJAK ⊆ P so that CJAK is the strongest
property of A. The idea of collecting semantics was introduced in [1] (under the
qualifier “static semantics”) as a basis for proving the soundness of static analyzes.

The fact that (AJAK ∈ P) ⇔ (CJAK ⊆ P) may suggest that the concept
of collecting semantics is of poor interest. However, x ∈ S ⇔ {x} ⊆ S is the
basic idea for abstracting set theory into order/lattice theory [12] (which has the
equivalent of ⊆ but not of ∈).

Similarly, the collecting semantics of boolean expressions is

CJBK ≜ {BJBK} ∈ ℘((V→ Z)→ B)

Again the collecting semantics CJEK of expressions E is just a particular case of
property of expressions i.e. the property {E′ ∈ E | SJE′K ∈ CJEK} i.e. all expressions
E′ that have the same semantics as E.

13. Proving semantic properties of expressions by structural induction

Semantic properties can be proved by structural induction on expressions. For
basic cases the proof is CJ1K ⊆ P and CJxK ⊆ P . Assuming CJA1K ⊆ P and
CJA2K ⊆ P , we prove CJA1 - A2K ⊆ P and CJA1 < A2K ⊆ P . Assuming CJB1K ⊆ P
and CJB2K ⊆ P , we prove that for CJB1 nand B2K ⊆ P . By structural induction, we
conclude that E ⊆ {E ∈ E | CJEK ⊆ P} i.e. ∀E ∈ E . CJEK ⊆ P .

By structural induction on expressions, we have (we use Church’s lambda
notation λ x · e for the anonymous function mapping x to the value of expression
e for x [13] and λ x∈S · e to mean that the parameter x must belong to the set
S)

CJ1K = {λ ρ∈ (V→ Z) · 1}
CJxK = {λ ρ∈ (V→ Z) · ρ(x)}

16 Patrick Cousot / A Formal Introduction to Abstract Interpretation

CJA1 - A2K = {λ ρ∈ (V→ Z) · f1(ρ)− f2(ρ) | f1 ∈ CJA1K ∧ f2 ∈ CJA2K}
CJA1 < A2K = {λ ρ∈ (V→ Z) · f1(ρ) < f2(ρ) | f1 ∈ CJA1K ∧ f2 ∈ CJA2K}

CJB1 nand B2K = {λ ρ∈ (V→ Z) · f1(ρ) ↑ f2(ρ) | f1 ∈ CJB1K ∧ f2 ∈ CJB2K} �
For example CJx - xK = {λ ρ∈ (V→ Z) · 0}.

14. Abstract sign properties

We let P± ≜ {⊥±, <0,=0, >0,⩽0, ̸=0,⩾0,⊤±} be the set of signs where <0 is
“strictly negative”, ⩾0 is “positive or zero”, etc., =0 is “equal to zero”, ̸=0 is
“different from zero” (i.e. “strictly negative or strictly positive”). ⊤± (top) is
“unknown sign” (i.e. tt that is “negative, zero, or positive”), ⊥± (bottom) is
“no sign” (i.e. ff that is “neither negative, zero, nor positive”) be the abstract
properties of the sign abstract domain P±. For example, the sign of x at point ℓ

of the conditional if (0==1) ℓx=1; is ⊥± since that point is unreachable.
The sign minus operation -± ∈ P± × P± → P± defines the sign s1 -± s2 of

x - y when x has sign s1 and y has sign s2.

s1 -± s2

s2
⊥± <0 =0 >0 ⩽0 ̸=0 ⩾0 ⊤±

s1 ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥±

<0 ⊥± ⊤± <0 <0 ⊤± ⊤± <0 ⊤±
=0 ⊥± >0 =0 <0 ⩾0 ̸=0 ⩽0 ⊤±
>0 ⊥± >0 >0 ⊤± >0 ⊤± ⊤± ⊤±
⩽0 ⊥± ⊤± ⩽0 <0 ⊤± ⊤± ⩽0 ⊤±
̸=0 ⊥± ⊤± ̸=0 ⊤± ⊤± ⊤± ⊤± ⊤±
⩾0 ⊥± >0 ⩾0 ⊤± ⩾0 ⊤± ⊤± ⊤±
⊤± ⊥± ⊤± ⊤± ⊤± ⊤± ⊤± ⊤± ⊤±

The sign operator -± is imprecise for difference (−). In contrast, the sign operator
for multiplication of mathematical integers (×) is exact i.e. the sign of the result
is exactly known from the sign of the parameters. The above sign minus operation
-± is incorrect with machine integers because of overflows as found e.g. in the
int abs(int x) { return (x<0) ? -x : x; } method in Java™ returning a wrong
value for Integer.Min_VALUE.

15. Structural sign semantics of expressions

The sign of an expression depends upon the sign of its free variables. We represent
the sign of variables by a sign environment ±

ρ ∈ V → P± such that ±
ρ(x) is the

sign of variable x.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 17

The sign semantics S±JAK±
ρ of an arithmetic expression A is the sign of the

expression value when evaluated with variables which sign is given by the sign
environment ±

ρ. For example, if ±
ρ(x) = >0 and ±

ρ(y) = ⩽0 then S±Jx - yK±
ρ = >0.

The structural sign semantics S±JAK ∈ (V → P±) → P± may be defined as
follows.

S±J1K±
ρ = >0

S±JxK±
ρ =

±
ρ(x)

S±JA1 - A2K±
ρ = (S±JA1K±

ρ) -± (S±JA2K±
ρ)

To be more precise, if any of the variables has sign ⊥±, meaning “the expression
is never evaluated” then the result is ⊥±, meaning “no result is ever returned”.
We say that signs are ⊥±-strict and define ↓± to enforce it3.

↓±[±ρ]s ≜ (∃y ∈ V .
±
ρ(y) = ⊥± ? ⊥± : s)

S±J1K±
ρ = ↓±[±ρ](>0) (3)

S±JxK±
ρ = ↓±[±ρ](±

ρ(x))

S±JA1 - A2K±
ρ = (S±JA1K±

ρ) -± (S±JA2K±
ρ)

By structural induction on A, if ∃x ∈ V .
±
ρ(x) = ⊥± then S±JAK±

ρ = ⊥±.

16. Soundness

We would like to prove that the sign semantics S±JAK of an arithmetic expression
A is a weaker property than the collecting semantics CJAK. But S±JAK ∈ (V →
P±) → P± while CJAK ∈ ℘((V → Z) → Z) and the concrete semantic properties
in ℘((V → Z) → Z) are hardly comparable to the abstract sign properties in
(V→ P±)→ P±.

The solution if to express abstract properties in (V→ P±)→ P± as a concrete
property in ℘((V → Z) → Z). For that purpose we will define a concretization
function γ̈± ∈ ((V → P±) → P±) → (℘((V → Z) → Z)) mapping an abstract
property to an “equivalent” concrete property.

Then the concrete semantics implies the abstract semantics up to concretiza-
tion in that for all arithmetic expressions A,

CJAK ⊆ γ̈±(S±JAK).
17. Sign concretization

We define the sign concretization function γ̈± in several steps.

3The conditional expression is (tt ? a : b) = a and (ff ? a : b) = b.

18 Patrick Cousot / A Formal Introduction to Abstract Interpretation

1. First we consider signs (in P±) as properties of integers (in ℘(Z)).

γ±(⊥±) ≜ ∅ γ±(⩽0) ≜ {z ∈ Z | z ⩽ 0} (4)

γ±(<0) ≜ {z ∈ Z | z < 0} γ±(̸=0) ≜ {z ∈ Z | z ̸= 0}

γ±(=0) ≜ {0} γ±(⩾0) ≜ {z ∈ Z | z ⩾ 0}

γ±(>0) ≜ {z ∈ Z | z > 0} γ±(⊤±) ≜ Z

2. Then we consider sign environments ±
ρ ∈ V→ P± as properties of environments

(in ℘(V→ Z)). ±
ρ is the abstract property of all concrete environments ρ such

that for all variables x, the sign of ρ(x) is ±
ρ(x).

γ̇±(
±
ρ) ≜ {ρ ∈ V→ Z | ∀x ∈ V . ρ(x) ∈ γ±(

±
ρ(x))} (5)

Observe that if ±
ρ(x) = ⊥± for some x ∈ V then γ±(

±
ρ(x)) = ∅ so ∀x ∈ V .

ρ(x) ∈ γ±(
±
ρ(x)) is false proving that γ̇±(

±
ρ) = ∅. So the abstraction of false

(∅ ∈ ℘(V → Z)) is any abstract environment ±
ρ with at least one variable x

such that ±
ρ(x) = ⊥±.

3. Finally the concretization of abstract properties P ∈ (V → P±) → P± is the
concrete property γ̈±(P) ∈ ℘((V→ Z)→ Z) defined as

γ̈±(P) ≜ {S ∈ (V→ Z)→ Z | ∀±
ρ ∈ V→ P± . ∀ρ ∈ γ̇±(

±
ρ) . S(ρ) ∈ γ±(P (

±
ρ))} (6)

i.e. A has abstract property P , that is AJAK ∈ γ̈±(P), if and only if for all
environments ρ with signs ±

ρ, the value AJAKρ of arithmetic expression A has
sign P (

±
ρ).

This is sound in that for all A ∈ A, CJAK ⊆ γ̈±(S±JAK).
Observe that in Section 2, the concretization of signs is defined as γ(pos) =

{z ∈ Z | z ⩾ 0} and γ(neg) = {z ∈ Z | z < 0}. A sound definition of the rule of
signs for multiplication × with this interpretation of the rule of sign would have
been pos× neg = pos, neg i.e. ⊤±.

18. Sign lattice

Sign properties P± ≜ {γ±(s) | s ∈ P±} of integers can be partially ordered by
⊆ (i.e. implication) as represented by the Hasse diagram below where the nodes
are the elements of P± and there is a bottom-up arrow from P ∈ P± to P ′ ∈ P±

when P ⊊ P ′ and no Q ∈ P± such that P ⊊ Q ⊊ P ′. So P ⊆ Q if and only if
there is a path from P to Q in the Hasse diagram.

The abstract signs P± are an isomorphic representation of P± as shown on
the right, where the isomorphism is γ± ∈ P± → P±.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 19

∅

{z | z < 0} {0} {z | z > 0}

{z | z ⩽ 0} {z | z ̸= 0} {z | z ⩾ 0}

Z

P± =

⊥±

<0 =0 >0

⩽0 ̸=0 ⩾0

⊤±

P± =

Therefore, the abstract sign properties are partially ordered by ⊑± defined by
s ⊑± s′ if and only if γ±(s) ⊆ γ±(s′). An algorithm for the inclusion ⊑± on P±

easily follows from this formal definition by case analysis.

Remark 1 Observe that -± is increasing in each of its parameters i.e. if s1 ⊑± s′1
then s1 -± s2 ⊑± s′1 -± s2 and s2 ⊑± s′2 then s1 -± s2 ⊑± s1 -± s′2 so that if s1 ⊑± s′1
and s2 ⊑± s′2 then s1 -± s2 ⊑± s′1 -± s′2. �

19. Sign abstraction, formally

An integer property like 2N + 1 (odd naturals) can be over-approximated in P±

by sign properties {z ∈ Z | z > 0}, {z ∈ Z | z ⩾ 0}, and Z. The best over-
approximation of 2N + 1 in P± is {z ∈ Z | z > 0} since it is sound (in that
2N + 1 ⊆ {z ∈ Z | z > 0}) and the most precise/strongest (in that {z ∈ Z | z >
0} ⊆ {z ∈ Z | z ⩾ 0} ⊆ Z).

More generally, the best over-approximation of any integer property P ∈ ℘(Z)
in P± is given by the abstraction function

α±(P) ≜ (P ⊆ ∅ ? ⊥± (7)
| P ⊆ {z | z < 0} ? <0

| P ⊆ {0} ? =0

| P ⊆ {z | z > 0} ? >0

| P ⊆ {z | z ⩽ 0} ? ⩽0

| P ⊆ {z | z ̸= 0} ? ̸=0

| P ⊆ {z | z ⩾ 0} ? ⩾0

: ⊤±)

α±(P) is the best over-approximation of P ∈ ℘(Z) in P± since

• P ⊆ γ±(α±(P)) i.e. α±(P) is an over-approximation/sound abstraction of P ;
• if P ∈ P± and P ⊆ γ±(P) then α±(P) ⊑± P i.e. α±(P) is more precise than

any other over-approximation/sound abstraction of P .

We have

20 Patrick Cousot / A Formal Introduction to Abstract Interpretation

s1 -± s2 = α±({x− y | x ∈ γ±(s1) ∧ y ∈ γ±(s2)}). (8)

We can use the soundness requirement (8) as a definition of s1 -± s2 ≜ α±({x−y |
x ∈ γ±(s1)∧y ∈ γ±(s2)}) to design -± by calculus. We have to consider all possible
cases for s1 and s2. We show three cases ⊤± -± ⊥± = ⊥±, <0 -± ⩾0 = <0, and
⩾0 -± ⩾0 = ⊤±.

α±({x− y | x ∈ γ±(⊤±) ∧ y ∈ γ±(⊥±)})
= α±({x− y | x ∈ Z ∧ y ∈ ∅}) Hdef. γ±I
= α±(∅) = ⊥± Hdef. α±I

α±({x− y | x ∈ γ±(<0) ∧ y ∈ γ±(⩾0)})
= α±({x− y | x < 0 ∧ y ⩾ 0}) Hdef. γ±I
= α±({x | x < 0}) = <0 Hdef. α±I

α±({x− y | x ∈ γ±(⩾0) ∧ y ∈ γ±(⩾0)})
= α±({x− y | x ⩾ 0 ∧ y ⩾ 0}) Hdef. γ±I
= α±(Z) = ⊤± Hdef. α±I
The calculations can be formally certified by a proof verifier [14,15].

One can also consider all cases s ∈ P± for s1 -± s2 for given s1, s2 when
needed, using a theorem prover to make the proof that {x− y | x ∈ γ±(s1) ∧ y ∈
γ±(s2)} ⊆ γ±(s), and returning ⊤± when the proof fails (e.g. times out). Among
all possible answers s for which the theorem prover could make the proof, the
⊑±-minimal one is chosen, if any. Otherwise, an arbitrary ⊑±-minimal one has to
be selected. This is called predicate abstraction [16].

The finite join ⊔± on P± is defined such that ⊔±{si | i ∈ ∆} ≜ α±(
∪
{γ±(si) |

i ∈ ∆}). It follows that s⊔± s′ = {a | a ∈ {<0,=0, >0} ∧ (a ⊑± s ∨ a ⊑± s′)}
which directly yields an algorithm for computing ⊔± on P±.

19.1. Abstraction of environment properties

The best abstraction of an environment property P ∈ ℘(V→ Z) is

α̇±(P) ≜ λ x∈V · α±({ρ(x) | ρ ∈ P}) (9)

i.e. for each variable x it is the sign of the set of values ρ(x) in all environments
ρ satisfying P .

Observe that α̇±(P) ≜ ⊥̇± ≜λ x∈V · ⊥± while if ±
ρ(x) = ⊥± then γ̇±(

±
ρ) = ∅

so ∅ ∈ ℘(V→ Z) has several possible abstractions in P± but ⊥̇± is the pointwise
⊑̇±-smallest of them.

19.2. Abstraction of semantic properties

The best abstraction of a semantic property P ∈ ℘((V→ Z)→ Z) is

α̈±(P) ≜ λ
±
ρ ∈V→ P± · α±({S(ρ) | S ∈ P ∧ ρ ∈ γ̇±(

±
ρ)}) (10)

Patrick Cousot / A Formal Introduction to Abstract Interpretation 21

i.e. given a sign environment ±
ρ, α̈±(P)

±
ρ is the sign of the possible results S(ρ) of

the semantics S ∈ P with property P for all environments ρ with sign ±
ρ.

20. Characteristic property of abstraction/concretization

The abstraction/concretization functions ⟨α±, γ±⟩ are closely related in that for
all P ∈ ℘(Z) and P ∈ P±, they satisfy

α±(P) ⊑± P ⇔ P ⊆ γ±(P)

Proof 1 By definition (4) of γ± and (7) of α±, we observe that

• γ± is increasing i.e. if s ⊑± s′ then γ±(s) ⊆ γ±(s′);
• α± is increasing i.e. if P ⊆ P ′ then α±(P) ⊑± α±(P ′); (11)
• if α±(P) = s then P ⊆ γ±(s) so γ± ◦ α± is extensive i.e. P ⊆ γ± ◦

α±(P);
(12)

• by case analysis, if P = γ±(s) then α±(P) = s so α± ◦ γ± is the identity
hence reductive i.e. α± ◦ γ±(s) ⊑± s since ⊑± is reflexive.

(13)

It follows that
α±(P) ⊑± P

⇒ γ± ◦ α±(P) ⊆ γ±(P) Hγ± is increasing and def. function composition ◦I
⇒ P ⊆ γ±(P) Hγ± ◦ α± is extensive and ⊆ transitiveI
⇒ α±(P) ⊑± α± ◦ γ±(P) Hα± is increasing and def. function composition ◦I
⇒ α±(P) ⊑± P Hα± ◦ γ± is reductive and def. function composition ◦I ��
Similar results hold for ⟨α̇±, γ̇±⟩, and ⟨α̈±, γ̈±⟩, see (14).

21. Galois connection

The abstraction/concretization functions ⟨α±, γ±⟩ satisfy ∀P ∈ ℘(Z) . ∀P ∈ P± .
α±(P) ⊑± P ⇔ P ⊆ γ±(P), which is the definition of a Galois connection, which
we write ⟨℘(Z), ⊆⟩ −−−−→←−−−−

α±

γ±
⟨P±, ⊑±⟩.

More generally,

Definition 1 (Galois connection) a Galois connection ⟨P, ⊑⟩ −−−→←−−−α
γ
⟨P, ⊑⟩ is such

that the concrete domain ⟨P, ⊑⟩ and the abstract domain ⟨P, ⊑⟩ are partial orders,
α ∈ P→ P is the abstraction function, γ ∈ P → P is the concretization function,
and ∀P ∈ P . ∀P ∈ P . α(P) ⊑ P ⇔ P ⊑ γ(P). �

22 Patrick Cousot / A Formal Introduction to Abstract Interpretation

For example

⟨℘(V→ Z), ⊆⟩ −−−−→←−−−−
α̇±

γ̇±
⟨V→ P±, ⊑̇±⟩ (14)

⟨℘((V→ Z)→ Z), ⊆⟩ −−−−→←−−−−
α̈±

γ̈±
⟨(V→ P±)→ P±, ⊑̇±⟩.

Proof 2 For all P ∈ ℘(V→ Z) and ±
ρ ∈ V→ P±, we have

α̇±(P) ⊑̇±
±
ρ

⇔ ∀x ∈ V . α̇±(P)x ⊑±
±
ρ(x) Hpointwise def. of ⊑̇±I

⇔ ∀x ∈ V . α±({ρ(x) | ρ ∈ P}) ⊑±
±
ρ(x) Hdef. (9) of α̇±I

⇔ ∀x ∈ V . {ρ(x) | ρ ∈ P} ⊆ γ±(
±
ρ(x)) H⟨℘(Z), ⊆⟩ −−−−→←−−−−

α±

γ±
⟨P±, ⊑±⟩I

⇔ ∀x ∈ V . ∀ρ ∈ P . ρ(x) ∈ γ±(
±
ρ(x)) Hdef. ∈I

⇔ ∀ρ ∈ P . ∀x ∈ V . ρ(x) ∈ γ±(
±
ρ(x)) Hdef. ∀I

⇔ P ⊆ {ρ ∈ V→ Z | ∀x ∈ V . ρ(x) ∈ γ±(
±
ρ(x))} Hdef. ⊆I

⇔ P ⊆ γ̇±(
±
ρ) Hdef. (5) of γ̇±, proving ⟨℘(V→ Z), ⊆⟩ −−−−→←−−−−

α̇±

γ̇±
⟨V→ P±, ⊑̇±⟩I

For all P ∈ ℘((V→ Z)→ Z) and P ∈ (V→ P±)→ P±, we have
α̈±(P) ⊑̇± P

⇔ ∀±
ρ ∈ V→ P± . α̈±(P)

±
ρ ⊑± P (

±
ρ) Hpointwise def. of ⊑̇±I

⇔ ∀±
ρ ∈ V→ P± . α±({S(ρ) | S ∈ P ∧ ρ ∈ γ̇±(

±
ρ)}) ⊑± P (

±
ρ) Hdef. (10) of α̈±I

⇔ ∀±
ρ ∈ V→ P± . {S(ρ) | S ∈ P ∧ ρ ∈ γ̇±(

±
ρ)} ⊆ γ±(P (

±
ρ))H⟨℘(Z), ⊆⟩ −−−−→←−−−−

α±

γ±
⟨P±, ⊑±⟩I

⇔ ∀±
ρ ∈ V→ P± . ∀S ∈ P . ∀ρ ∈ γ̇±(

±
ρ) . S(ρ) ∈ γ±(P (

±
ρ)) Hdef. ⊆I

⇔ ∀S ∈ P . ∀±
ρ ∈ V→ P± . ∀ρ ∈ γ̇±(

±
ρ) . S(ρ) ∈ γ±(P (

±
ρ)) Hdef. ∀I

⇔ ∀S ∈ P . S ∈ γ̈±(P) Hdef. ∈ and (6) of γ̈±I
⇔ P ⊆ γ̈±(P)Hdef. ⊆, proving ⟨℘((V→ Z)→ Z), ⊆⟩ −−−−→←−−−−

α̈±

γ̈±
⟨(V→ P±)→ P±, ⊑̇±⟩.I �

22. Calculational design of the sign semantics of expressions

The soundness requirement in Section 17 is that ∀A ∈ A . CJAK ⊆ γ̈±(S±JAK). By
the Galois connection of (14), this is equivalent to α̈±(CJAK) ⊑̇± S±JAK. There-
fore the sign semantics is a sign abstraction of the collecting semantics. It fol-
lows that we can design S±JAK by calculus, calculating α̈±(CJAK) using ⊑̇±-over-
approximation to avoid all computations made in the concrete domain.

• We first consider the case when ∃x ∈ V .
±
ρ(x) = ⊥± so that γ̇±(

±
ρ) = ∅.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 23

α̈±(CJAK)±
ρ

= α±({S(ρ) | S ∈ CJAK ∧ ρ ∈ γ̇±(
±
ρ)}) Hdef. (10) of α̈±I

= α±({AJAK(ρ) | ρ ∈ γ̇±(
±
ρ)}) Hdef. (2) of CJAKI

= α±(∅) H∃x ∈ V .
±
ρ(x) = ⊥± so that γ̇±(

±
ρ) = ∅I

= ⊥± Hdef. (7) of α±I
≜ S±JAK±

ρHin accordance with (3) such that, ∃x ∈ V .
±
ρ(x) = ⊥± implies

S±JAK±
ρ = ⊥±.I

• Then we consider the case when ∀x ∈ V .
±
ρ(x) ̸= ⊥± so that γ̇±(

±
ρ) ̸= ∅.

We proceed by structural induction on A.
For the basic case of a constant 1, we just apply the definitions.
α̈±(CJ1K)±

ρ

= α±({S(ρ) | S ∈ CJ1K ∧ ρ ∈ γ̇±(
±
ρ)}) Hdef. (10) of α̈±I

= α±({AJ1K(ρ) | ρ ∈ γ̇±(
±
ρ)}) Hdef. (2) of CJ1KI

= α±({1}) Hγ̇±(
±
ρ) is not empty and def. (1) of AJ1KI

= >0 Hdef. (7) of α±I
≜ S±J1K±

ρ Hin accordance with (3) when ∀y ∈ V .
±
ρ(y) ̸= ⊥±I

For the basic case of a variable x, we apply the definitions and then
simplify.
α̈±(CJxK)±

ρ

= α±({S(ρ) | S ∈ CJxK ∧ ρ ∈ γ̇±(
±
ρ)}) Hdef. (10) of α̈±I

= α±({AJxK(ρ) | ρ ∈ γ̇±(
±
ρ)}) Hdef. (2) of CJxKI

= α±({ρ(x) | ρ ∈ γ̇±(
±
ρ)}) Hdef. (1) of AJxKI

= α±({ρ(x) | ∀y ∈ V . ρ(y) ∈ γ±(
±
ρ(y))}) Hdef. (5) of γ̇±I

= α±({ρ(x) | ρ(x) ∈ γ±(
±
ρ(x))})Hsince γ±(

±
ρ(y)) is not empty so for y ̸= x, ρ(y) can be chosen

arbitrarily to satisfy ρ(y) ∈ γ±(
±
ρ(y))I

= α±({x | x ∈ γ±(
±
ρ(x))}) Hletting x = ρ(x)I

= α±(γ±(
±
ρ(x))) Hsince S = {x | z ∈ S} for any set SI

= ±
ρ(x) Hby (13), α± ◦ γ± is the identityI

≜ S±JxK±
ρ Hin accordance with (3) when ∀y ∈ V .

±
ρ(y) ̸= ⊥±I

For the inductive case of A1 - A2, we assume, by structural induction
hypothesis, that α̈±(CJA1K) ⊑̇± S±JA1K and α̈±(CJA2K) ⊑̇± S±JA2K
α̈±(CJA1 - A2K)±

ρ

24 Patrick Cousot / A Formal Introduction to Abstract Interpretation

= α±({S(ρ) | S ∈ CJA1 - A2K ∧ ρ ∈ γ̇±(
±
ρ)}) Hdef. (10) of α̈±I

= α±({AJA1 - A2K(ρ) | ρ ∈ γ̇±(
±
ρ)}) Hdef. (2) of CJA1 - A2KI

= α±({AJA1K(ρ)−AJA2K(ρ) | ρ ∈ γ̇±(
±
ρ)}) Hdef. (1) of AI

⊑±α±({x − y | x ∈ {AJA1K(ρ′) | ρ′ ∈ γ̇±(
±
ρ)} ∧ y ∈ {AJA2K(ρ′′) | ρ′′ ∈

γ̇±(
±
ρ)}}H{f(ρ)−g(ρ) | ρ ∈ R} ⊆ {x−y | x ∈ {f(ρ′) | ρ′ ∈ R}∧y ∈ {g(ρ′′) |
ρ′′ ∈ R}} and α± is increasing by (11).

This over-approximation allows for A1 and A2 to be evaluated
in the concrete with different environments ρ′ and ρ′′ with the
same sign of variables but possibly different values of variables.
This accounts for the fact that the rule of signs does not take re-
lationships between values of variables into account. For example
the sign of x - x is not =0 in general.I

⊑±α±({x−y | x ∈ γ±(α±({AJA1K(ρ) | ρ ∈ γ̇±(
±
ρ)})∧y ∈ γ±(α±({AJA2K(ρ) |

ρ ∈ γ̇±(
±
ρ)})})H{x−y | x ∈ P∧y ∈ Q} ⊆ {x−y | x ∈ γ±(α±(P))∧y ∈ γ±(α±(Q))}

since γ± ◦ α± is extensive by (12) and α± is increasing by (11).
This over-approximation allows for the evaluation of the sign

to be performed in the abstract with -± instead of the concrete.I
= α±({AJA1K(ρ) | ρ ∈ γ̇±(

±
ρ)}) -± α±({AJA2K(ρ) | ρ ∈ γ̇±(

±
ρ)})Hs1 -± s2 = α±({x− y | x ∈ γ±(s1) ∧ y ∈ γ±(s2)}) by (8)I

= α±({S(ρ) | S ∈ CJA1K ∧ ρ ∈ γ̇±(
±
ρ)}) -± α±({S(ρ) | S ∈ CJA2K ∧ ρ ∈

γ̇±(
±
ρ)}) Hdef. (2) of CJKI

= α̈±(CJA1K)±
ρ -± α̈±(CJA2K)±

ρ Hdef. (10) of α̈±I
= α̈±(CJA1K)±

ρ -± α̈±(CJA2K)±
ρ Hdef. (10) of α̈±I

⊑± (S±JA1K±
ρ) -± (S±JA2K±

ρ)Hinduction hypothesis and -± is increasing in both parameters by
Remark 1I

≜ S±JA1 - A2K±
ρ Hin accordance with (3) when ∀y ∈ V .

±
ρ(y) ̸= ⊥±I �

23. Calculational design of abstract interpretations

This concludes our formal design of the rule of signs for arithmetic expressions.

• We first define the semantics AJAK of arithmetic expressions A in (1);
• The strongest property of the semantics of arithmetic expressions A is their

collecting semantics CJAK in (2);
• Among the semantic properties ℘((V→ Z)→ Z) of arithmetic expressions,

we select a subset of properties of interest i.e. the sign properties and choose
a computer representation, as defined by the abstraction function α̈± in
(10), which is the lower adjoint of the Galois connection (14);

• The rule of sign S±JAK is then formally derived by calculational design
in Section 22 by over-approximating the best abstraction α̈±(CJAK) of the
collecting semantics CJAK.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 25

It follows that S±JAK is sound by construction.

24. Classical finitary abstractions

Other elementary examples are the parity analysis (which is correct with machine
integers), [17] constancy analysis based on the lattice

⊥

· · · −2 −1 0 1 2 · · ·

⊤

such that γ(⊥) = ∅, γ(i) = {i}, i ∈ Z, and γ(⊤) = Z.

25. Classical infinitary abstractions

As noticed by Brahmagupta, the sign analysis is not expressive enough to exactly
determine the sign of expressions knowing the sign of its free variables. As shown
by [18], interval analysis [8,1] will provide the desired answer. Interval analysis is
based in the following lattice.

⊥i = ∅

· · · [−3,−3] [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] [3, 3] · · ·

· · · · · · [−3,−2] [−2,−1] [−1, 0] [0, 1] [1, 2] [2, 3] · · · · · ·

[−∞,−3] · · · [−3,−1] [−2, 0] [−1, 1] [0, 2] [1, 3] · · · [3,∞]

[−∞,−2] · · · [−3, 0] [−2, 1] [−1, 2] [0, 3] · · · [2,∞]

[−∞,−1] · · · [−3, 1] [−2, 2] [−1, 3] · · · [1,∞]

[−∞, 0] · · · [−3, 2] [−2, 3] · · · [0,∞]

[−∞, 1] · · · [−3, 3] · · · [−1,∞]

· · · · · · · · · · · ·

[−∞,∞]

Because the lattice has infinite strictly increasing chains, the induction illustrated
in Section 3 must be mechanized. This is the objective of widening and narrowing
operators [8,1,19], see [20,21] for an introduction.

https://en.wikipedia.org/wiki/Brahmagupta

26 Patrick Cousot / A Formal Introduction to Abstract Interpretation

26. Conclusion

We have ilustrated the basics of abstract interpretation by defining the semantics
of expressions, their properties, a proof method, and a sign analysis.

Instead of designing the rule of sign empirically and then proving its sound-
ness, we used the soundness requirement as a guideline for designing the abstract
sign semantics by calculus.

This sign analysis discovers an abstract property of an arithmetic expression
by computing in the abstract only. This may involve some loss of precision, which
was the case for the sign analysis.

The sign semantics is finite so it is an easily implementable static analysis.
For infinite abstract domains, widening and narrowing operators are necessary.

References

[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

[2] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In POPL, pages 269–282. ACM Press, 1979.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log. Comput.,
2(4):511–547, 1992.

[4] Kim Plofker. Mathematics in India. Princeton University Press, 2007.
[5] Peter Naur. The design of the GIER ALGOL compiler. BIT Numerical Mathematics,

3:124–140 and 145–166, June 1963.
[6] Peter Naur. Checking of operand types in ALGOL compilers. BIT Numerical Mathemat-

ics, 5:151–163, September 1965.
[7] Michel Sintzoff. Calculating properties of programs by valuations on specific models. In

Proceedings of ACM Conference on Proving Assertions About Programs, pages 203–207.
ACM, 1972.

[8] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of pro-
grams. In Proceedings of the Second International Symposium on Programming, pages
106–130. Dunod, Paris, France, 1976.

[9] Noam Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956.

[10] Dana S. Scott and Christopher Strachey. Towards a mathematical semantics for computer
languages. Technical report PRG-6, Oxford University Computer Laboratory, August
1971.

[11] International Organization for Standardization. Iso/iec 19761: Software engineering –
cosmic: a functional size measurement method. March 2011.

[12] Garrett Birkhoff. Lattice Theory. American Mathematical Society, Colloquium publica-
tions, Volume XXV, third edition edition, 1973.

[13] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics.
Series 2., 33(2):346––366, 1932.

[14] David Cachera and David Pichardie. Programmation d’un interpréteur abstrait certifié
en logique constructive. Technique et Science Informatiques, 30(4):381–408, 2011.

[15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In POPL, pages 247–259. ACM, 2015.

[16] Susanne Graf and Hassen Saïdi. Verifying invariants using theorem proving. In CAV,
volume 1102 of Lecture Notes in Computer Science, pages 196–207. Springer, 1996.

[17] Gary A. Kildall. A unified approach to global program optimization. In POPL, pages
194–206. ACM Press, 1973.

Patrick Cousot / A Formal Introduction to Abstract Interpretation 27

[18] Roberto Giacobazzi and Francesco Ranzato. Completeness in abstract interpretation: A
domain perspective. In AMAST, volume 1349 of Lecture Notes in Computer Science,
pages 231–245. Springer, 1997.

[19] Patrick Cousot. Abstracting induction by extrapolation and interpolation. In VMCAI,
volume 8931 of Lecture Notes in Computer Science, pages 19–42. Springer, 2015.

[20] P. Cousot and R. Cousot. A gentle introduction to formal verification of computer systems
by abstract interpretation, pages 1–29. NATO Science Series III: Computer and Systems
Sciences. IOS Press, 2010.

[21] Patrick Cousot. The calculational design of a generic abstract interpreter. In M. Broy and
R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F. IOS Press,
Amsterdam, 1999.

The author(s) of this publication is/are solely responsible for its content. This
publication does not reflect the opinion of the publisher. The publisher cannot be held
liable for any loss or damage that may occur because of this publication.

