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1 Introduction
Abstract interpretation started in the late 70’s in Grenoble, France. At that
time Rod Burstall was visiting the computer science department (IMAG), and
Radhia and I have had numerous conversations (and steak-frites-salade lunches
at the GUC (Grenoble University Club) restaurant) with Rod. I suspect that
Alan Mycroft got news about abstract interpretation far north in Edinburgh,
Scotland, thanks to Rod Burstall supervising his thesis together with Robin
Milner. This led to his first publication [15] in 1980 and his thesis “Abstract
Interpretation and Optimising Transformations for Applicative Programs [16]
in 1982 (his second most cited paper on Google Scholar, not so common for
a thesis). His work originated a lot of research on strictness analysis and more
generally the static analysis of functional programs, a crucial contribution to the
theory, diffusion, and application of abstract interpretation.

Alan Mycroft has had a very productive career with numerous applied and
theoretical achievements in various domains of computer science and so my
overview of his contributions will be restricted to those explicitly connected
to abstract interpretation.

2 Strictness Analysis
The first problem Alan Mycroft solved was to determine statically when a lazy
call by need (or call by name) in a side-effect free, higher-order, functional lan-
guage (where the formal parameter is reevaluated in the context of the call
whenever (or the first time) it is used in the function body) by a more efficient
call by value (where the formal parameter is evaluated at call time and stored in
the context/environment of evaluation of the function body). Because of the ab-
sence of side effects, the only difference is when the evaluation of the parameter
does not terminate and it is never used in the function body/definition so that
call be need/name will terminate while call by value will not, as in let f x = f x
and g y = if true then 0 else y in g (f 0). The two call methods are there-
fore equivalent when the function call evaluated with call by need/name does not
terminates when the evaluation of the parameter does not terminate (assuming
the “observations” of a functional program execution is its final value or non-
termination). Explained in terms of denotational semantics, this is f(⊥) = ⊥,
where ⊥ denotes nontermination, which is the infimum in Scott domain, meaning
that f is strict, hence the term “strictness analysis”.

https://en.wikipedia.org/wiki/Laboratoire_d%27Informatique_de_Grenoble
http://www.guc.asso.fr


2.1 Alan Mycroft’s starting point

The state of the theory of abstract interpretation that Alan Mycroft relied on,
was for reachability/invariant verification/analysis of transition systems ⟨Σ, τ⟩ 1.

The objective is to infer an invariant I ∈ ℘(Σ) over approximating the reach-
able states {σ′ | ∃σ ∈ P . ⟨σ, σ′⟩ ∈ τ∗} ⊆ I from initial states P ∈ ℘(Σ) where
τ∗ ≜

∪
n∈N τn = lfp⊆ T with T ≜ λX . τ0 ∪ τ ◦ X is the reflexive transitive

closure of τ ∈ ℘(Σ × Σ), τ0 is the identity relation on the set of states Σ, and
τn+1 ≜ τn ◦ τ is the relation power. Define post(r)P ≜ {σ′ | ∃σ ∈ P . ⟨σ,
σ′⟩ ∈ r} to be the right-image of the states in P by the relation r on states. We
look for an invariant I such that post(lfp⊆ T ) ⊆ I. The method is explained in
proposition 2 thereafter, proofs are relegated to the appendix.

Proposition 1. Given P ∈ ℘(Σ), we have the Galois connection ⟨℘(Σ × Σ),

⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
λr . post(r)P

γP ⟨℘(Σ), ⊆⟩2.

Proposition 2. For all P ∈ ℘(Σ), we have the following commutation property
λr . post(r)P ◦ T = FP ◦ λr . post(r)P with T (X) ≜ τ0 ∪ τ ◦ X and FP (X) ≜
P ∪ post(τ)X.

By the fixpoint exact abstraction under this commutation condition, if follows
that post(lfp⊆ T ) = lfp⊆ FP , as shown by the following

Proposition 3. if ⟨C, ⪯⟩ and ⟨A, ≼⟩ are CPO’s (every increasing chain has
a lub, including the empty chain, so has an infimum), f ∈ C

c−→ C and f̄ ∈
A

c−→ A are continuous, ⟨C, ⪯⟩ −−−→←−−−α
γ
⟨A, ≼⟩ is a Galois connection, then the

commutation condition α ◦ f = f̄ ◦ α (respectively semi-commutation α ◦ f
.
≼

f̄ ◦ α, pointwise) implies that α(lfp⪯ f) = lfp⪯ f̄ (resp. α(lfp⪯ f) ≼ lfp≼ f̄).

The problem is thus to find an invariant I such that lfp⊆ FP ⊆ I. It is essen-
tial to remark that the computation ordering used for the fixpoint lfp⊆ FP and
the logical ordering in lfp⊆ FP ⊆ I to over approximate the reachable states are
the same so that the above fixpoint approximate abstraction under the semi-
commutation condition is directly applicable

Therefore, by proposition 3, using a Galois connection ⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A,

⩽⟩, the problem can be reduced to the computation of an abstract invariant
lfp⩽ α ◦ FP ◦ γ such that lfp⊆ FP ⊆ γ(lfp⩽ α ◦ FP ◦ γ), as desired.

Using a semi-commuting over approximation F̄P such that α ◦ F̄P

.
⩽ FP ◦ α

is also feasible since then lfp⊆ FP ⊆ γ(lfp⩽ F̄P ), by proposition 3.

1 Alan and his followers refer to “flowchart abstract interpretation” whereas in my
thesis and POPL79, I had moved from flowcharts to transition systems for concise-
ness.

2 ⟨C, ⪯⟩ −−−→←−−−α
γ
⟨A, ≼⟩ denotes the fact that ⟨C, ⪯⟩ and ⟨A, ≼⟩ are posets, α ∈ C −→ A,

γ ∈ A −→ C, and ∀x ∈ C, y ∈ A . α(x) ≼ y ⇔ x ⪯ γ(y).



2.2 Alan Mycroft’s pioneer strictness analysis

Alan Mycroft formulates strictness analysis by first defining the denotational
semantics of the (recursive) function as a fixpoint lfp⊑ F ∈ D⊥

c−→ D⊥ where
the domain D⊥ is a CPO ⟨D⊥, ⊑, ⊥, ⊔⟩ with ordering ⊑ and the functional
F ∈ (D⊥

c−→ D⊥)
c−→ (D⊥

c−→ D⊥) is continuous. (F is defined on pages 38/39
of his thesis by structural induction on the functional programs he considers. As
stated in [16, page 54], ⊑ is taken to be Scott ordering ⊥ ⊑ ⊥ ⊏ x ⊑ x, x ∈ D
on the flat domain D⊥ = D ∪ {⊥}, ⊥ ̸∈ D).

The collecting semantics of a function with denotational semantics f ∈
D⊥

c−→ D⊥ is post(f)P ≜ {f(x) | x ∈ P} where P ∈ ℘(D⊥) is a set of
possible values of the parameter (including ⊥ in case of non termination) and
post(f)P provides the possible results of the function for these parameters. Since
the considered functions are total and determinitic, the image of a singleton is a
singleton. Moreover, post preserves arbitrary joins so that the collecting seman-
tics post(f) belongs to ℘(D⊥)

1∪−→ ℘(D⊥) defined as

℘(D⊥)
1∪−→ ℘(D⊥) ≜ {ϕ ∈ ℘(D⊥) −→ ℘(D⊥) | ∀x ∈ D⊥ . |ϕ({x})| = 1 ∧

∀X ∈ ℘(℘(D⊥)) . post(f)
∪

P∈X P =
∪

P∈X post(f)P}

as well as to post(f) ∈ ℘(D⊥) \ {∅}
1∪−→ ℘(D⊥) \ {∅} since post(f)X = ∅ if and

only if X = ∅.

Proposition 4. We have the Galois connection ⟨D⊥ −→ D⊥, ⊑̇⟩ −−−−−→←−−−−−
post
γ̂

⟨℘(D⊥) \ {∅}
1∪−→ ℘(D⊥) \ {∅},

.

⊑̂⟩ where γ̂(ϕ) ≜ λx . let {y} = ϕ({x}) in y

and ⊑̂ is Egli-Milner ordering X ⊑̂ Y ≜ (∀x ∈ X . ∃y ∈ Y . x ⊑ y ∧ ∀y ∈ Y .

∃x ∈ X . x ⊑ y) and
.

⊑̂ is its pointwise extension.

In order to characterize post(lfp⊑ F ) as a fixpoint, we consider the commu-
tation condition

Proposition 5. post ◦ F = F̂ ◦ post with F̂ (ϕ)P ≜ post(F (γ̂(ϕ)))P .

By propositions 4, 5, and 3, we have

post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂ (1)

(where F̂ is defined by the equations on top of page 42 of Alan’s thesis).
On page 53, Mycroft defines α♯(S) ≜ LS = {⊥} ¿ 0 : 1 M and α♭(S) ≜ L⊥ ∈

S ¿ 0 : 1 M so that

Proposition 6. Let B ≜ {0, 1} and ≤ be logical implication. Then ⟨℘(D⊥)\{∅},

⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ and ⟨℘(D⊥), ⊆⟩ −−−→←−−−
α♭

γ♭

⟨B, ≤⟩ with γ♯(b) = L b = 0 ¿ {⊥} : D⊥ M,
γ♭(b) = L b = 1 ¿ D : D⊥ M, and 0 < 1.



Observe that ⟨℘(D⊥) \ {⊑̂}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ does not hold since e.g. for

Scott ordering, we have α♯(S) ≤ 1 but not S ⊑̂ γ♯(1) = D⊥ since for S ⊂ D
and y ∈ D \ S ⊆ D⊥ we don’t have ∃x ∈ S . x ⊑ y since for Scott ordering
the only possibility is x = y ̸∈ S. So proposition 3 is not applicable to express
α♯(post(lfp

.
⊑ F ) = α♯(lfp

.
⊑̂ F̂ )) as a fixpoint. This is the main difficulty Alan

Mycroft had to solve with the theory of abstract interpretation, as available as
the time. The required generalization of proposition 3 is the following

Proposition 7. Let ⟨C, ⊥, ⊑, ⊔⟩ be a concrete CPO for the computational
ordering ⊑ and f ∈ C

c−→ C be continuous. Let ⟨C, ≤⟩ be a poset for the
approximation ordering ≤.

Let ⟨A, ⊥♯, ⊑♯, ⊔♯⟩ be an abstract CPO and f ♯ ∈ A
c−→ A be continuous.

Let ⟨C, ≤⟩ −−−→←−−−α
γ
⟨A, ⊑♯⟩ be an abstraction such that

⊥ ≤ γ(⊥♯) (2)
∀x ∈ C, y ∈ A . (x ≤ γ(y))⇒ (f(x) ≤ γ(f ♯(y)) (3)

for all increasing chains ⟨xi, i ∈ N⟩ for ⊑ and ⟨yi, i ∈ N⟩ for ⊑♯ .

(∀i ∈ N . xi ≤ γ(yi))⇒
⊔
i∈N

xi ≤ γ(
⊔♯

j∈N

yj) (4)

Then lfp⊑ f ≤ γ(lfp⊑♯

f ♯).

Notice that in proposition 7, the computational ordering ⊑ and the approxi-
mation ordering ≤ may differ, whereas in proposition 3 they must be the same.
This solves Alan problem for strictness analysis. Define #–α ♯(f) ≜ α♯ ◦ f ◦ γ♯ and
#–γ ♯(f) ≜ γ♯ ◦ f ◦ α♯ so that

⟨℘(D⊥)
1∪−→ ℘(D⊥),

.
⊆⟩ −−−−→←−−−−

#–α ♯

#–γ ♯

⟨B i−→ B,
.
≤⟩ (5)

where B i−→ B is the set of ≤-increasing Boolean functions. Define F̂ ♯ ≜ #–α ♯ ◦

F̂ ◦ #–γ ♯ so that the hypotheses (2), (3), and (4) of proposition 7 are satisfied with
C = ℘(D⊥)

1∪−→ ℘(D⊥), ⊑ =
.

⊑̂, A = B i−→ B, ⊑♯ =
.
≤, ≤ =

.
⊆, α = #–α ♯, and

γ = #–γ ♯. Proposition 7 applies to F̂ ♯.

Proposition 8. lfp
.
⊑̂ F̂

.
⊆ #–γ ♯(lfp

.
≤ F̂ ♯).

Therefore by (1) and proposition 8, we have post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

.
⊆ #–γ ♯(lfp

.
≤ F̂ ♯).

Since F̂ ♯ operates on a finite domain, f ♯ = lfp
.
≤ F̂ ♯ is computable for any func-

tional program. Assume that f ♯(0) = 0. Then post(lfp
.
⊑ F ){⊥} ⊆ γ♯(0) = {⊥},

proving strictness F (⊥) = ⊥. Mycroft’s strictness analysis method is sound (and
also incomplete by Rice’s theorem).

Alan applies the same approach to the lower abstraction α♭ but this is of lim-
ited applicability since function nontermination be can proved with this abstrac-
tion only when it does not depend upon the values of the parameters. However,



it is anticipating the present-day interest in under approximation verification
and static analysis!

For functions with multiple parameters, Mycroft uses a Cartesian abstraction
in the collecting semantics [16, top of page 42] which is more efficient but less
precise that a relational analysis.

The thesis goes on in chapter 4 to show that call-by-need can be replaced by
call-by-value for strict functions, see also [15].

2.3 The large body of research on strictness analysis in the 1980/90s

Alan Mycroft strictness analysis originated an enormous amount of work on the
subject in the 80’s and early 90’s, see e.g. [1]. Strictness analysis has routinely
found its way in modern compilers for lazy purely functional languages such as
Haskell3.

Although purely Boolean, strictness analysis suffers combinatorial explosions
at higher-orders, although widenings, which have not been much investigated in
this context, might certainly have helped [11].

2.4 Connection between call-by-value and call-by-name

In his thesis, Alan proved that call-by-need strict functions without side effects
can be replaced by call-by-value functions. Nearly 40 years later, he came back to
the subject, establishing a Galois connection between call-by-name and call-by-
value for functions with limited side effects [14,13,12]. The Galois connection is
between pre-ordered programs, where programs can be understood as encoding
their set-based semantics, which established the link with abstract interpreta-
tion.

3 Sharing Analysis

In chapter 5 of his thesis [16], Alan Mycroft considers Lisp-like lists and two
versions of LISP, a pure applicative LISP-A (declarative without side effect)
and destructive LISP-D (with data structure alteration rplaca, rplacd, nconc,
expressed using an explicit deallocation by free). The objective is to analyse
declarative programs and optimize them into destructive ones.

To go into more details of LISP-A (we don’t consider LISP-D and the trans-
formation of LISP-A into LISP-D described in [16, section 5.8] and proved cor-
rect in [16, section 5.9]). Let A be a set of atoms, L be a disjoint set of locations
and V = A ∪ L, with A ∩ L = ∅ be the set of values. Assume that the mem-
ory heap/store is represented by binary directed acyclic graphs (DAGs) H ∈ H
which are sets of nodes/cells ⟨v, vh, vt, f⟩ ∈ H such that v ∈ L is the loca-
tion of the node, vh, vt ∈ V are the respective left/car/head and right/cdr/tail
3 e.g. in the open source compiler and interactive environment GHC

wiki.haskell.org/Performance/Strictness or the strcitness analysis of The He-
lium Compiler for a subset of Haskell.

https://www.haskell.org
https://www.haskell.org/ghc/
https://wiki.haskell.org/Performance/Strictness
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/41247/Thesis-MarcovandeWeerthof-final.pdf?sequence=1&isAllowed=y
https://hackage.haskell.org/package/helium
https://hackage.haskell.org/package/helium


values of the node, and f ∈ B records whether the node has been explicitly
freed. The locations uniquely identify nodes in that if H ∋ ⟨v, vh, vt, f⟩ ̸= ⟨v′,
v′h, v′t, f ′⟩ ∈ H then v ̸= v′. If v ∈ L, we define the head h(v) = vh and
the tail t(v) = vt, this is an error if vh, vt ∈ A or f = true. The locations
allocated in the heap H are L(H) ≜ {v | ⟨v, vh, vt, f⟩ ∈ H}. The roots of
the R(H) graph H have no predecessors R(H) ≜ {v ∈ L(H) | ∀v′, v′′, f . ⟨v′,
v, v′′, f⟩ ̸∈ H ∧ ⟨v′, v′′, v, f⟩ ̸∈ H}. The heap/graph has no cycles, meaning
that if v1 . . . vn ∈ L(H)n, n ⩾ 0 is any sequence of heap locations such that
vi+1 ∈ {h(vi), t(vi)}, i ∈ [1, n], then ∀0 ⩽ i < j ⩽ n . vi ̸= vj . The construction
operation c (cons) is c(vh, vt)H ≜ let v ̸∈ L(H) in H ∪ {⟨v, vh, vt, false⟩} where
vh, vt ∈ A∪ L(H) are atoms or locations of nodes allocated in H. It follows that
h(c(vh, vt)) = vh and t(c(vh, vt)) = vt. The considered language [16, page 154]
is a functional language with a denotation for atoms, primitives including c, h,
t, free, atom (checking for atomicity). The fixpoint denotational semantics of a
function denotation [16, Section 5.12] for LISP-D is a function f taking the value
v ∈ A∪L(H) of the actual parameter and a memory heap H as a parameter and
returning the possibly modified heap H ′ and a returned value v′ ∈ A∪ L(H ′) or
⊥ in case of non termination (so f ∈ L×H→ L ∪ {⊥} ×H).

Alan looks for “an approximation to the set of paths which will actually exist
at run time, but as usual in abstract interpretation (see chapter 2) the paths
we infer will be a superset of those which can occur at run time”. He claims
[16, Section 5.7, page 134] that his abstraction was inspired and generalizes the
isolation classes of Jacob T. Schwarz4, to provide information on “how shared
an object might be”.

Given a heap H ∈ H, v, v′ ∈ L(H), the paths Π(H)⟨v, v′⟩ from v to v′ are

Π(H)⟨v, v′⟩ ≜ {x0 . . . xn ∈ L(H)n | x0 = v ∧ ∀i ∈ [0, n[ . xi+1 ∈ {h(xi), t(xi)} ∧
xn = v′}

Π(H)⟨v, v′⟩ is empty when v or v′ is an atom (including erroneous h and t).
Let O(H) be the set of locations on the heap H reachable from the roots of H
through heads and tails by one path only.

O(H) ≜ {v ∈ A ∪ L(H) ∪ {⊥} | (v ∈ L(H))⇒ (∀v′ ∈ R(H) . |Π(H)⟨v′, v⟩| = 1)}

(where |S| is the cardinality of a set S). ∆h(H)v (respectively ∆t(H)v, ∆(H)v)
is the set of descendants of location v ∈ L(H) in the heap H going exclusively
through heads (resp. through tails only, through heads or tails).

∆h(H)v ≜ {v′ | ∃x0 . . . xn ∈ L(H)n . x0 = v ∧ ∀i ∈ [0, n[ . xi+1 = h(xi) ∧ xn = v′}
∆t(H)v ≜ {v′ | ∃x0 . . . xn ∈ L(H)n . x0 = v ∧ ∀i ∈ [0, n[ . xi+1 = t(xi) ∧ xn = v′}
∆(H)v ≜ {v′ | Π(H)⟨v, v′⟩ ̸= ∅}
4 citing Schwarz, J. Verifying the safe use of destructive operations in applicative

programs. Program Transformations - Proc. of the 3rd Int’l Symp. on Program-
ming, Dunod Informatique, 1978, pp. 395–411, also DAI research report 55, Dept.
of Artificial Intelligence, Edinburgh University, published while Jacob was visiting
Edinburgh.



The abstract domain is the (complete) lattice

A =

ti

onehlst onelist
one

arb

The meaning of the abstract values (called “isolation classes”) is as follows.

– The supremum arb can denote any atom (including error), element on the
heap, or non termination. γ(arb) ≜ {⟨v, H⟩ | H ∈ H ∧ v ∈ A ∪ L(H) ∪ {⊥}}.

– The abstract value one can denote any atom, non termination, or element
on the heap accessible from the roots of the heap by one path only, so, “the
object described [by one] cannot be a shared CONS node” [16, page 138].
γ(one) ≜ {⟨v, H⟩ | H ∈ H ∧ v ∈ O(H)} .

– The abstract value onehlst can denote any atom, non termination, or element
on the heap accessible from the roots of the heap by one path only, and such
that all its descendants by the head h are not accessible from the roots in any
other way. γ(onehlst) ≜ {⟨v, H⟩ | ∀v′ ∈ ∆h(H)v . v′ ∈ O(H)} (this includes
v′ = v).

– The abstract value onelist is similar, but for tails only. So these nodes are
uniquely accessible from the roots of H and so are all their descendants
through tails only. γ(onelist) ≜ {⟨v, H⟩ | ∀v′ ∈ ∆t(H)v . v′ ∈ O(H)}

– The infimum ti denotes any atom, nontermination, or location on the heap
such that all its descendants are accessible form the roots by one path only
(“objects totaly unshared from other objects” [16, page 135]). γ(ti) ≜ {⟨v,
H⟩ | ∀v′ ∈ ∆(H)v . v′ ∈ O(H)}

Observe that γ(onehlst)⊓ γ(onelist) = γ(ti) so we have a Galois connection with
the abstraction of P ∈ ℘(V×H) such that α(P ) ≜

d
{a) ∈ A | P ⊆ γ(a)}. The

abstraction is extended to functions of the collecting semantics f ∈ ℘(V×H) i−→
℘(V× H) by α(f) ≜ α ◦ f ◦ γ. This provides a fixpoint definition of the isolation
class of a function in terms of the isolation classes of its parameters and its
textual definition” [16, page 140], provided variables are handled correctly, as in
[16, section 5.7.5], as roots of the DAG. Since the abstract domain is finite, the
abstraction is computable for each subexpression appearing in a program.

3.1 Static analysis of shared data structures

Alan is one of the early users of abstract interpretation5 for analyzing programs
manipulating shared recursive data structures, a complex problem which, with
parallelism, is still a hot research subject nowadays.
5 following Cousot and Cousot, IFIP FDPC, 1978.



4 Main contributions of Alan Mycroft to Static Program
Analysis

We have already underlined the pioneer work of Alan Mycroft on strictness
analysis in Sect. 2.3 and linked data structure analysis in Sect. 3.1. In this section,
we outline other important contributions to static program analysis (excluding
dynamic analysis).

4.1 Denotational semantics based abstract interpretation
The work of Alan Mycroft [15,16] originated the used of denotational semantics
as a standard semantics, as opposed to operational semantics, for abstract inter-
pretation [20]. “The motivation is that abstract interpretation of denotational
language definitions allows approximation of a wide class of programming lan-
guage properties” [9, section 1.5]. The interest in denotational semantics, which
is an abstract interpretation of operational semantics, later declined since it is
not expressive enough (e.g. for trace or hyper properties) although basic princi-
ples like structural induction on the program syntax have perdured.

4.2 Static Analysis
Alan interest in static program analysis has persisted all along his scientific car-
rier, including for strictness analysis [3], analysis of procedures and functions
[8,19], microcode [17], hardware [27,26], although his concerns in correctness
proofs somewhat faded while concentrating on data flow analysis (in which pro-
grams are represented by graphs6 and analysis algorithms are traditionally pos-
tulated rather than proved sound with respect to a semantics7) [7,6,4]. This
informal approach is nevertheless with some exceptions, mainly without refer-
ence to a formal semantics [24,5,10].

4.3 Completeness in abstract interpretation
Alan Mycroft was one of the first [18] to develop completeness8 in abstract in-
terpretation, a subject that has since proliferated. His example of multiplication
complete for sign analysis but not addition, is provided as introductory exam-
ple in (almost) all papers on the subject! Moreover, [18] introduces predicate
abstraction, somewhat before the standard reference 9. Unfortunately fixpoints
are postponed to later research. The fixpoint abstraction completeness problem
is not yet solved satisfactorily.
6 ironically close to decried “flowchart abstract interpretation”.
7 for example the classical liveness analysis in [6] is wrong since use is a syntactic

over approximation of the semantic notion of use of a variable value, whereas, being
negated, it should be an underapproximation, see Patrick Cousot: Syntactic and
Semantic Soundness of Structural Dataflow Analysis. SAS 2019: 96-117

8 Cousot and Cousot, POPL, 1979
9 Susanne Graf, Hassen Saïdi: Construction of Abstract State Graphs with PVS. CAV

1997: 72-83



4.4 Types and Effects

Alan Mycroft most cited work is on types and type inference [21] and he has also
maintained interest and important contributions on the subject [2,23], including
effect systems [22,25]. Alan certainly understood the close link between types and
abstract interpretation. An example is his thesis “There is an analogy between
the system described here and the ”most general type” inference system used in
a language such as ML [17]”10 [16, page 67]. Another is “Control-flow operators
also provide a link to abstract interpretation [6]. Primitive effectful operations
in the concrete semantics are abstracted to effects in an effect algebra.” [22,
page 18]. Finally in [18], he writes “Mycroft and Jones [10] manage to exhibit
the Hindley-Milner type system as an abstract interpretation of the untyped
�-calculus but the result is much more unwieldly to use than the inference rule
formulation.” (where [10] in this citation is our [19]).

He has certainly been too overwhelmed by new ideas to take time to explore
this connection in more depth.

5 Conclusion

Starting from his PhD thesis [16], we have taken a rapid tour of Alan Mycroft’s
publications related to abstract interpretation, where he played an outstanding
pioneer role and went on to regularly introduce new inspiring ideas in the field.
Personnaly, I would have hoped this he spend more time on the subject since he
one of the few who, beyond theory, have a strong interest in applicability and
practical applications as his other works in other domains do show.
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A Proofs for Section 2 (Strictness Analysis)

Proof (proposition 1).
post(r)P ⊆ Q

⇔ {σ′ | ∃σ . σ ∈ P ∧ ⟨σ, σ′⟩ ∈ r} ⊆ Q Hdef. postI
⇔ ∀σ′ . (∃σ . σ ∈ P ∧ ⟨σ, σ′⟩ ∈ r)⇒ σ′ ∈ Q Hdef. ⊆I
⇔ ∀σ′ . ∀σ . (σ ∈ P ∧ ⟨σ, σ′⟩ ∈ r)⇒ σ′ ∈ Q) Hdef. ⇒I
⇔ ∀σ . ∀σ′ . (⟨σ, σ′⟩ ∈ r)⇒ (σ ∈ P ⇒ σ′ ∈ Q) Hdef. ∀ and ⇒I
⇔ r ⊆ {⟨σ, σ′⟩ | σ ∈ P ⇒ σ′ ∈ Q} Hdef. ⊆I
⇔ r ⊆ γP (Q) Hby defining γP (Q) = (P ×Q) ∪ (Σ \ P )×ΣI
Proof (proposition 2).

λr . post(r)P ◦ T (X)

= post(T (X))P Hdef. function composition ◦I
= post(τ0 ∪ τ ◦ X)P Hdef. T I
= post(τ0)P ∪ post(τ ◦ X)P Hpost preserves arbitrary unionsI
= P ∪ post(τ)(post(X)P ) Hdef. postI
= P ∪ post(τ)(λr . post(r)(X)) Hdef. function applicationI
= FP (λr . post(r)(X)) H with FP (X) ≜ P ∪ post(τ)X I
= FP ◦ λr . post(r)(X) Hdef. function composition ◦I
Proof (proposition 3). Let fn and f̄n, ∈ N be the iterates of f and f̄ from the
infima ⊥ and ⊥̄. In a Galois connection, α preserves existing arbitrary joins in
particular the infimum so α(f0) = α(⊥) = ⊥̄ = f̄0. Assume α(fn) = f̄n by
induction hypothesis. By the commutation condition, α(fn+1) = α(f(fn)) =
f̄(α(fn)) = f̄(f̄n) = f̄n+1. By recurrence, ∀n ∈ N . α(fn) = f̄n. Since f and
f̄ are continuous, they are increasing (isotone/monotone), so their iterates are
increasing, and their limits do exist in the CPO. By continuity α(lfp⪯ f) =
α(

∪
n∈N fn) =

∨
n∈N α(fn) =

∨
n∈N f̄n = lfp≼ f̄ . The proof is similar in the

inequality case.

Proof (proposition 4).
post(f)

.

⊑̂ ϕ

⇔ ∀P ∈ ℘(D⊥) . post(f)P ⊑̂ ϕ(P ) Hpointwise def. of
.

⊑̂I
⇔ ∀P ∈ ℘(D⊥) . {f(x) | x ∈ P} ⊑̂ ϕ(P ) Hdef. postI
⇔ ∀P ∈ ℘(D⊥) . (∀x ∈ {f(x) | x ∈ P} . ∃y ∈ ϕ(P ) . x ⊑ y ∧ ∀y ∈ ϕ(P ) . ∃x ∈
{f(x) | x ∈ P} . x ⊑ y) Hdef. ⊑̂I

⇔ ∀P ∈ ℘(D⊥) . (∀x ∈ P . ∃y ∈ ϕ(P ) . f(x) ⊑ y ∧ ∀y ∈ ϕ(P ) . ∃x ∈ P . f(x) ⊑
y) Hdef. ∈I

⇔ ∀x ∈ D⊥ . f(x) ⊑ let {y} = ϕ({x}) in y



H(⇒) Take P = {x}, x ∈ D⊥, then ∃y ∈ ϕ({x}) . f(x) ⊑ y. By
ϕ ∈ ℘(D⊥)

1∪−→ ℘(D⊥), we have {y} = ϕ({x}) so f(x) ⊑ let {y} =
ϕ({x}) in y.
(⇐) Assume that P ∈ ℘(D⊥) and x ∈ P . Then {y} = ϕ({x}) ⊆∪

z∈P ϕ({z}) = ϕ(
∪

z∈P {z}) = ϕ(P ) proving ∃y ∈ ϕ(P ) . f(x) ⊑ y.
Moreover, take any y ∈ ϕ(P ) = ϕ(

∪
x∈P {x}) =

∪
x∈P ϕ({x}), there

exists x ∈ P such that y ∈ ϕ({x}), that is {y} = ϕ({x}) since ϕ({x}) is
a singleton, proving f(x) ⊑ y by hypothesis.I

⇔ f
.
⊑ λx . let {y} = ϕ({x}) in y Hpointwise def.

.
⊑I

⇔ f
.
⊑ γ̂(ϕ) Hdef. γ̂I

It follows that ⟨D⊥ −→ D⊥, ⊑̇⟩ −−−−−→←−−−−−
post
γ̂

⟨℘(D⊥)
1∪−→ ℘(D⊥),

.

⊑̂⟩ so that by

restriction to the continuous functions, we also have ⟨D⊥
c−→ D⊥, ⊑̇⟩ −−−−−→←−−−−−

post
γ̂

⟨℘(D⊥)
1∪−→ ℘(D⊥),

.

⊑̂⟩. Moreover post(f)X = ∅ if and only if X = ∅ so that
⟨D⊥

c−→ D⊥, ⊑̇⟩ −−−−−→←−−−−−
post
γ̂

⟨℘(D⊥ \ {∅})
1∪−→ ℘(D⊥ \ {∅}),

.

⊑̂⟩.

Proof (proposition 5). Given F ∈ (D⊥ −→ D⊥) −→ (D⊥ −→ D⊥) and f ∈
D⊥ −→ D⊥, we have

post(F (f))P

= post(F (λx . f(x)))P Hdef. λ notationI
= post(F (λx . let {y} = {f(x)} in y))P Hdef. singleton equalityI
= post(F (λx . let {y} = {f(z) | z ∈ {x}} in y))P Hdef. ∈I
= post(F (λx . let {y} = λX . {f(x) | x ∈ X}({x}) in y))P Hdef. applicationI
= post(F (γ̂(λX . {f(x) | x ∈ X})))P Hdef. γ̂I
= post(F (γ̂(post(f))))P Hdef. postI
= F̂ (post(f))P Hdef. F̂ (ϕ)P ≜ post(F (γ̂(ϕ)))P I
Proof (proposition 6). Let S ∈ ℘(D⊥) \ {∅} and b ∈ B.

α♯(S) ≤ b

⇔ LS = {⊥} ¿ 0 : 1 M ≤ b Hdef. α♯I
⇔ LS ⊆ {⊥} ¿ 0 : 1 M ≤ b Hsince S ∈ ℘(D⊥) \ {∅}I
⇔ (b = 0)⇒ (S ⊆ {⊥}) Hby cases 0 or 1 for b with 0 ≤ 0 and 1 ̸≤ 0I
⇔ S ⊆ L b = 0 ¿ {⊥} : D⊥ M HS ⊆ D⊥I
⇔ S ⊆ γ♯(b) Hdef. γ♯I

α♭(S) ≤ b

⇔ L⊥ ∈ S ¿ 0 : 1 M ≤ b Hdef. α♭I
⇔ (b = 0)⇒ (⊥ ∈ S) Hby cases 0 or 1 for b with 0 ≤ 0 and 1 ̸≤ 0I



⇔ (b = 1)⇒ (⊥ ̸∈ S) Hby cases b = 0 or b = 1I
⇔ S ⊆ L b = 1 ¿ D : D⊥ M Hsince S ⊆ D⊥I
⇔ S ⊆ γ♭(b) Hdef. γ♭I
Proof (proposition 7). Let ⟨fn, n ∈ N⟩ be the increasing iterates of f from ⊥
such that lfp⊑ f =

⊔
n∈N fn. Let ⟨f ♯n, n ∈ N⟩ be the increasing iterates of f ♯

from ⊥♯ such that lfp⊑♯

f ♯ =
⊔♯

l∈N
f ♯n. By (2), we have f0 = ⊥ ≤ γ(⊥♯) = γ(f ♯0).

Assume by induction hypothesis that fn ≤ γ(f ♯n). Then by (3), we have fn+1 =

f(fn) ≤ γ(f ♯(f ♯n)) = γ(f ♯n+1
), proving that ∀n ∈ N . fn ≤ γ(f ♯n). By (4), we

have lfp⊑ f =
⊔

n∈N fn ≤ γ(
⊔♯

n∈N
f ♯n) = γ(lfp⊑♯

f ♯).11

Proof (of (5)).
#–α ♯(f)

.
≤ f ♯

⇔ ∀b ∈ B . α♯ ◦ f ◦ γ♯(b) ≤ f ♯(b) Hpointwise def.
.
⊆ and def. #–α ♯I

⇔ ∀b ∈ B . f ◦ γ♯(b) ⊆ γ♯ ◦ f ♯(b) HGalois connection in prop. (6)I
⇔ ∀X ∈ ℘(D⊥) . f(X) ⊆ γ♯ ◦ f ♯ ◦ α♯(X)H(⇐) Take X = γ♯(b) and γ♯ ◦ f ♯(b) ⊆ γ♯ ◦ f ♯ ◦ α♯ ◦ γ♯(b) since α♯ ◦ γ♯

is reductive in ⟨℘(D⊥) \ {∅}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ of prop. 6, and γ♯ and
f ♯(b) hence their composition is reductive.

(⇒) γ♯ ◦ α♯ is expansive in ⟨℘(D⊥) \ {∅}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ of prop.
6, f preserves joins so is increasing, so that taking b = α♯(X) we have
f(X) ⊆ f ◦ γ♯ ◦ α♯(X) ⊆ γ♯ ◦ f ♯(α♯(X)b)I

⇔ ∀X ∈ ℘(D⊥) . f(X) ⊆ #–γ ♯(f ♯)X Hdef. #–γ ♯I
⇔ f

.
⊆ #–γ ♯(f ♯) Hpointwise def.

.
⊆I

Proof (of 8).
⊥ ≤ #–γ ♯(⊥♯)

⇔ λX . {⊥} .
⊆ #–γ ♯(λx . 0) Hdef. ⊥ and ⊥♯I

⇔ ∀X ∈ ℘(D⊥) . {⊥} ⊆ γ♯ ◦ λx . 0 ◦ α♯(X) Hpointwise def. of
.
⊆ and def. #–γ ♯I

⇔ {⊥} ⊆ γ♯(0) Hdef. function composition ◦I
⇔ {⊥} ⊆ {⊥} Hdef. γ♯, which is true, proving (2)I

Let f ∈ ℘(D⊥)
1∪−→ ℘(D⊥), f ♯ ∈ B i−→ B be such that f ≤ #–γ ♯(f ♯). Then

11 We have not used the Galois connection hypothesis which is useful to rephrase the
hypotheses using α. It is also possible to require equality, see Patrick Cousot, Radhia
Cousot: Galois Connection Based Abstract Interpretations for Strictness Analysis
(Invited Paper). Formal Methods in Programming and Their Applications 1993: 98-
127.



F̂ (f)
.
⊆ F̂ ( #–γ ♯(f ♯))Hf ≤ #–γ ♯(f ♯) and the composition F̂ ♯ of increasing functions is increasingI
.
⊆ #–γ ♯( #–α ♯ ◦ F̂ ◦ #–γ ♯(f ♯))Hby the Galois connection ⟨ #–α ♯, #–γ ♯⟩, #–γ ♯ ◦ #–α ♯ is extensiveI
= #–γ ♯(F̂ ♯(f ♯)) Hdef. F̂ ♯ ≜ #–α ♯ ◦ F̂ ◦ #–γ ♯, proving hypothesis (3) of proposition 7I

Let ⟨fi, i ∈ N⟩ be an increasing chain for
.

⊑̂ and ⟨f ♯
i , i ∈ N⟩ be an increasing

chain for
.
≤ such that ∀i ∈ N . fi

.
⊆ #–γ ♯(f ♯

i ). We have
.⊔̂

i∈N

fi
.
⊆ #–γ ♯(

∨̇
j∈N

f ♯
j )

⇔ ∀X ∈ ℘(D⊥) .
⊔̂
i∈N

fi(X) ⊆ #–γ ♯(
∨̇
j∈N

f ♯
j )(X) Hpointwise def.

.

⊑̂ and
.
≤I

Hproving (4)I
⇔ ∀X ∈ ℘(D⊥) .

⊔̂
i∈N

fi(X) ⊆ γ♯ ◦ (
∨̇
j∈N

f ♯
j ) ◦ α♯(X) Hdef. #–γ ♯(f) ≜ γ♯ ◦ f ◦ α♯I

⇔ ∀X ∈ ℘(D⊥) .
⊔̂
i∈N

fi(X) ⊆ γ♯(
∨
j∈N

f ♯
j (α

♯(X))) Hdef. composition ◦I (6)

Since ⟨f ♯
j , j ∈ N⟩ is

.
≤-increasing, ⟨f ♯

j (α
♯(X)), j ∈ N⟩ is ≤-increasing so is either

a sequence of 0s or a sequence of 0s followed by 1s. There are two cases.

If ⟨f ♯
j (α

♯(X)), j ∈ N⟩ is a sequence of 0s then
∨

j∈N f ♯
j (α

♯(X)) = 0. Moreover
the hypothesis ∀i ∈ N . fi

.
⊆ #–γ ♯(f ♯

i ) = γ♯ ◦ f ♯
i

◦ α♯ implies that ∀i ∈ N . fi(X) =

γ♯(f ♯
i (α

♯(X))) = γ♯(0) = {⊥}. ThereforeH(6)I
⇔

⊔̂
i∈N

fi(X) ⊆ γ♯(0) Hcase ⟨f ♯
j (α

♯(X)), j ∈ N⟩ = ⟨0, j ∈ N⟩I
⇔

⊔̂
i∈N

{⊥} ⊆ {⊥} Hdef. γ♯(b) = L b = 0 ¿ {⊥} : D⊥ MI
⇔ {⊥} ⊆ {⊥}Hby def. of the least upper bound

⊔̂
for ⊑̂, proving (4) in this first caseI

Otherwise ⟨f ♯
j (α

♯(X)), j ∈ N⟩ is a sequence of 0s followed by 1s so
∨

j∈N f ♯
j (α

♯(X))

= 1 in (6) and therefore
⊔̂
i∈N

fi(X) ⊆ γ♯(1) = D⊥ since
⊔̂
i∈N

fi(X) ∈ ℘(D⊥) by

def. of the lub in the poset ⟨℘(D⊥), ⊑̂⟩. Again (4) holds in this second case.
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