
Page 1 of 8

10/10/2016

2017-01-0054

Finding all Potential Run-Time Errors and Data Races in Automotive Software

Daniel	Kästner,	Antoine	Miné,	Stephan	Wilhelm,	Xavier	Rival,	André	Schmidt,	Jérôme	Feret,	
Patrick	Cousot,	Christian	Ferdinand	

 Absint Angewandte Informatik GmbH, University Pierre and Marie Curie, Daimler AG, INRIA/ENS, New York University

Abstract

Safety-critical embedded software has to satisfy stringent quality
requirements. All contemporary safety standards require evidence
that no data races and no critical run-time errors occur, such as
invalid pointer accesses, buffer overflows, or arithmetic overflows.
Such errors can cause software crashes, invalidate separation
mechanisms in mixed-criticality software, and are a frequent cause of
errors in concurrent and multi-core applications. The static analyzer
Astrée has been extended to soundly and automatically analyze
concurrent software. This novel extension employs a scalable
abstraction which covers all possible thread interleavings, and reports
all potential run-time errors, data races, deadlocks, and lock/unlock
problems. When the analyzer does not report any alarm, the program
is proven free from those classes of errors. Dedicated support for
ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-
aware analysis. In this article we give an overview of the key
concepts of the concurrency analysis and report on experimental
results obtained on concurrent automotive software. The experiments
confirm that the novel analysis can be successfully applied to real
automotive software projects.

1. Introduction

A failure of a safety-critical system may cause high costs or even
endanger human beings. With the unbroken trend towards growing
software size in embedded systems more and more safety-critical
functionality is implemented in software. Preventing software-
induced system failures becomes an increasingly important task. One
particularly dangerous class of errors are run-time errors which
include faulty pointer manipulations, numerical errors such as
arithmetic overflows and division by zero, data races, and
synchronization errors in concurrent software. Such errors can cause
software crashes, invalidate separation mechanisms in mixed-
criticality software, and are a frequent cause of errors in concurrent
and multi-core applications.

Contemporary safety norms – including DO-178B, DO-178C, IEC-
61508, ISO-26262, and EN-50128 – require to identify potential
hazards and to demonstrate that the software does not violate the
relevant safety goals. In all of them demonstrating the absence of run-
time errors is a verification goal which is mostly formulated
indirectly by addressing run-time errors (e.g., division by zero,
invalid pointer accesses, arithmetic overflows) in general, and

additionally corruption of content, synchronization mechanisms, and
freedom of interference in concurrent execution [1].

Abstract interpretation is a formal methodology for static program
analysis [2]. It supports formal soundness proofs (it can be proven
that no error is missed) and scales to real-life industry applications.
Abstract interpretation-based static analyzers provide full control and
data coverage and allow conclusions to be drawn that are valid for all
program runs with all inputs. Such conclusions may be that no timing
or space constraints are violated, or that run-time errors or data races
are absent: the absence of these errors can be guaranteed [3].
Nowadays, abstract interpretation-based static analyzers that can
detect stack overflows and violations of timing constraints [4] and
that can prove the absence of run-time errors [5], are widely used in
industry. From a methodological point of view, abstract
interpretation-based static analyses can be seen as equivalent to
testing with full data and control coverage. They do not require
access to the physical target hardware, can be easily integrated in
continuous verification frameworks and model-based development
environments [6], and they allow developers to detect run-time errors
as well as timing and space bugs in early product stages.

In the past established semantics-based static analysis tools could not
handle concurrent programs with the same level of soundness,
coverage, and automation as sequential programs. Typically they did
not cover all potential process interleavings, required extensive user
interaction, had limited support for concurrency primitives and failed
to detect all potential concurrency-specific hazards such as data races
[7].

The focus of this article is an extension of the static analyzer Astrée
to soundly and automatically analyze concurrent software. The
extension covers all possible thread interleavings, and soundly
reports all run-time errors, data races, and invalid usage of OS
services such as lock/unlock problems. When the analyzer does not
report any alarm, the program is proven free from those classes of
errors. The novel mechanism enables a fully automatic OS-aware
analysis of ARINC 653, OSEK, and AUTOSAR applications, and
can also be used for the analysis of POSIX threads. We give an
overview of the key concepts of the concurrency analysis and report
on experimental results obtained on concurrent automotive software.
The experiments confirm that the novel analysis can be successfully
applied to real automotive software projects.

Page 2 of 8

10/10/2016

2. Automotive Software Characteristics

During the past years automotive software has evolved to be among
the most complex embedded applications ever developed. High-end
cars feature complex networks of ECUs whose software size is in the
range of several millions of lines of code.

To master the growing complexity various standards have been
developed that regulate different aspects of system development.
OSEK [8] and AUTOSAR [9] provide a standardized software
architecture with standardized interfaces – a key requirement for
inter-operability between different vendors and different components.
However, this genericity comes at the cost of increased software size
and complexity. The predominant programming language for control
applications is C, which is traditionally written by hand, but more and
more constitutes a high-level assembly code for model-based
software development environments. Safety-critical automotive C
code is typically developed according to the MISRA-C coding
guidelines [10, 11] which define a C subset and rules of usage to
minimize the risk of programming errors. The standard ISO-26262
[12] defines the minimal requirements to achieve and demonstrate
functional safety throughout the system and software life cycle.

So on the one hand there is an established and to a certain degree
harmonized infrastructure in place, on the other hand entirely new
challenges rise at a fast pace. Among them are increasing demands
for car-to-car and car-to-infrastructure communication, connectivity,
hybrid and electric driving, and – last but not least –the trend to
highly automated driving [13]. More and more advanced driver
assistance systems are being developed which are triggering a
paradigm shift in automotive system design: the transition from fail-
safe to fail-operational behavior. If automatic systems take over
critical driving functionality they cannot just shut down in case of
failures, they have to continue operating until the car is in a safe state
[14].

A consequence for software development is that it is and will remain
crucial to detect errors as early as possible, as reliably as possible,
and with the lowest possible human effort. The contribution of this
article is to provide automatic means to demonstrate the absence of
run-time errors and data races which belong to a particularly
dangerous class of bugs.

3. Static Run-Time Error Analysis

In the following we will concentrate on the static analyzer Astrée
[15] which signals all potential runtime errors and further critical
program defects [16]. It is sound, i.e., if no errors are signaled, this
means there are no errors from the class of errors under investigation
– the absence of errors has been proved. It reports program defects
caused by unspecified and undefined behaviors according to the C
norm (ISO/IEC 9899:1999 (E)) [17], program defects caused by
invalid concurrent behavior, violations of user-specified
programming guidelines, and computes program properties relevant
for functional safety. Users are notified about:

• integer/floating-point division by zero
• out-of-bounds array indexing
• erroneous pointer manipulation and dereferencing (null,

uninitialized, and dangling pointers)
• data races (read/write or write/write concurrent accesses by

two threads to the same memory location without proper
mutex locking)

• inconsistent locking (lock/unlock problems, deadlocks)
• invalid calls to operating system services (e.g. calls to the

OSEK service TerminateTask() on a task with
unreleased resources)

• integer and floating-point arithmetic overflows
• read accesses to uninitialized variables
• code unreachable under all circumstances
• violations of optional user-defined assertions to prove

additional runtime properties, e.g., to guarantee that output
variables are within the expected value ranges

• violations of coding rules (MISRA C:2004/2012) and code
metric thresholds. The supported code metrics include the
statically computable HIS metrics (HIS 2008), e.g.,
comment density, and cyclomatic complexity.

• non-terminating loops

Floating-point computations are handled precisely and safely by
taking all potential rounding errors into account. Furthermore Astrée
computes data and control flow reports containing a detailed listing
of accesses to global and static variables sorted by functions,
variables, and processes and containing a summary of caller/called
relationships between functions. The analyzer can also report each
potentially shared variable, the list of processes accessing it, and the
types of the accesses (read, write, read/write).

The C99 standard does not fully specify data type sizes, endianness
nor alignment which can vary with different targets or compilers.
Astrée is informed about these target settings by a dedicated
configuration file and takes the specified properties into account.

Workflow

In the following we will use the term alarm to denote a notification
about a potential run-time error. While Astrée finds all potential run-
time errors, it may err on the safe side and produce false alarms. For
industrial use producing the fewest possible number of false alarms is
an important goal. Only with zero alarms the absence of run-time
errors is automatically proven. The design of the analyzer aims at
reaching the zero false alarm objective, which was accomplished for
the first time on large industrial applications at the end of November
2003. For keeping the initial number of false alarms low, a high
analysis precision is mandatory. To achieve high precision Astrée
provides a variety of predefined abstract domains, including the
following ones:

• The interval domain approximates variable values by
intervals.

• The octagon domain [18] covers relations of the form x ± y
≤ c for variables x and y and constants c.

• Floating-point computations are precisely modelled while
keeping track of possible rounding errors.

• The memory domain empowers Astrée to exactly analyze
pointer arithmetic and union manipulations. It also supports
a type-safe analysis of absolute memory addresses.

• The clock domain has been specifically developed for
synchronous control programs and supports relating
variable values to the system clock [19].

• With the filter domain [20] digital filters can be precisely
approximated.

Any remaining alarm has to be manually checked by the developers –
and this manual effort should be as low as possible. Astrée explicitly
supports investigating alarms in order to understand the reasons for

Page 3 of 8

10/10/2016

them to occur. Alarm contexts can be interactively explored, the
computed value ranges of variables can be displayed for each
different context, the call graph is visualized (cf. Figure 2), etc.

Figure 1. Call Graph Visualization (zoomed out).

If there is a true error it has to be fixed. A false alarm can possibly be
eliminated by a suitable parameterization of Astrée: If the error
cannot occur due to certain preconditions which are not known to
Astrée, they can be made available to Astrée via dedicated directives.
These annotations make the side conditions explicit which have to be
satisfied for a correct program execution. If the false alarm is caused
by insufficient analysis precision, steering directives are available
that allow users to locally tune the analysis precision to eliminate the
false alarm.

As an example the __ASTREE_unroll directive can be used to
enforce disambiguating every iteration of one specific loop. The key
feature is that Astrée is fully parametric with respect to the abstract
domains. Abstract domains can be parameterized to tune the
precision of the analysis for individual program constructs or
program points [21]. This means that in one analysis run important
program parts can be analysed very precisely while less relevant parts
can be analysed very quickly – without compromising system safety.

Figure 2. Astrée alarm classification.

All directives can be specified in a formal language AAL [22] and
stored in a dedicated file. An AAL annotation consists of an Astrée
directive and a path specifying the program point to insert the

directive at. The path is specified in a robust way by exploiting the
program's syntactical structure without relying on line number
information. E.g., the annotation

__ASTREE_annotation((main {+1 loop}
 insert before: __ASTREE_unroll((3))));

inserts the directive __ASTREE_unroll((3)) immediately
before the first loop in function main. The AAL language is a
prerequisite for supporting model-based code generators. It makes it
possible to separate the annotations from the source code, so that
when the code is regenerated, all previously generated annotations
from structurally unchanged code parts are still valid, even if the line
numbers change. In cases where there are structural changes of the
code, Astrée provides a mechanism to detect whether annotations are
still placed at the intended location [23].

In the case where some alarms cannot be eliminated by increasing the
analyzer precision they can be classified and commented by using the
__ASTREE_comment directive. This can be done in a convenient
way from the Astrée findings overview: comment directives and
AAL annotation are generated automatically. The available
classifications are uncommented, true, true (high), true (low), true
(not a defect), false or undecided (cf. Figure 3).

Handling Concurrency

Whereas previous Astrée versions have been limited to sequential C
software, Astrée has been extended by a novel low-level concurrent
semantics [24] which provides a scalable abstraction covering all
possible thread interleavings. The interleaving semantics enables
Astrée, in addition to the classes of run-time errors found in
sequential programs, to report data races, i.e., read/write or
write/write concurrent accesses by two threads to the same memory
location without proper mutex locking and lock/unlock problems, i.e.,
inconsistent synchronization. The set of shared variables does not
need to be specified by the user: Astrée assumes that every global
variable can be shared, and discovers which ones are effectively
shared, and on which ones there is a data race. After a data race, the
analysis continues by considering the values stemming from all
interleavings. In addition to the range of each variable at each
program point, Astrée reports the set of effectively shared variables,
together with the set of threads accessing these variables, the kinds of
operations performed (reads or writes), and their range of values.

On sequential programs, Astrée uses a fully flow-sensitive and
context-sensitive analysis. However, concurrent programs feature a
far more complex control structure than sequential ones, which
makes it unpractical to consider a fully flow-sensitive analysis. There
is a combinatorial explosion of the number of interleaved execution
paths and it would be too costly to distinguish the value of a variable
at each combination of thread control locations. To efficiently cover
all potential execution interleavings Astrée analyzes separately each
thread and collects abstract versions of the effects they have on the
shared memory. Threads are reanalyzed iteratively, taking into
account such global effects, until stabilization, at which point a sound
over-approximation of all possible behaviors has been found. This
method is nearly as efficient as a sequential program analysis and still
is highly precise as it maintains flow-sensitivity at the intra-thread
level.

Thread priorities are exploited to reduce the amount of spurious
interleavings considered in the abstraction and to achieve a more

Page 4 of 8

10/10/2016

precise analysis. A dedicated task priority domain also supports
dynamic priorities, e.g., according to the Priority Ceiling Protocol
used in OSEK systems. Astrée includes a built-in notion of mutual
exclusion locks, on top of which actual synchronization mechanisms
offered by operating systems can be modeled (such as POSIX
mutexes or semaphores [25]); program-enforced mutual exclusion is
also exploited by Astrée to reduce spurious interleavings. When these
features are insufficient to match the concurrency semantics of the
analyzed program, Astrée reverts to unrestricted preemption, which
ensures a sound analysis coverage for all concurrency models,
including execution on multi-core processors. In particular, Astrée is
not limited to collaborative threads nor discrete sets of preemption
points.

4. Modelling Operating Systems

Programs to be analyzed are seldom run in isolation; they interact
with an environment. In order to soundly report all run-time errors,
Astrée must take the effect of the environment into account. In the
simplest case the software runs directly on the hardware, in which
case the environment is limited to a set of volatile variables, i.e.,
program variables that can be modified by the environment
concurrently, and for which a range can be provided to Astrée by
formal directives. More often, the program is run on top of an
operating system, which it can access through function calls to a
system library. When analyzing a program using a library, one
possible solution is to include the source code of the library with the
program. This is not always convenient (if the library is complex),
nor possible, if the library source is not available, or not fully written
in C, or ultimately relies on kernel services (e.g., for system
libraries). An alternative is to provide a stub implementation, i.e., to
write, for each library function, a specification of its possible effect
on the program. Astrée provides stub libraries for the ARINC 653
standard, the OSEK/AUTOSAR standards [8, 9], and for POSIX
threads. More details on ARINC 653 and Real-Time POSIX are
available in [26], in the following we are focusing on
OSEK/AUTOSAR.

An OSEK/AUTOSAR program consists of a set of tasks, a set of
interrupts (also called ISRs), a set of timers (also called alarms), and
schedule tables (a data-driven mechanism to activate tasks). Task
scheduling and synchronization is achieved through explicit task
activation and chaining, the use of priorities, orders to disable and
enable interrupts, the use of resource objects (that act as locks), and
events (that act as signals). We provide an OSEK/AUTOSAR library
that handles these mechanisms by mapping them to Astrée low-level
concurrency objects: tasks, ISRs, alarms and schedule tables are
mapped to Astrée threads; resources are mapped to Astrée mutexes;
events are mapped to Astrée signals; moreover, Astrée natively
supports the relevant notions of priorities and offers built-in
primitives to achieve chaining, starting, and stopping. The standard
proposes several conformance classes, with support for increasingly
complex features (such as extended tasks, fully preemptive
scheduling, multiple task activation, etc.). The model proposed in
Astrée supports the most general class, which guarantees that all
programs can be soundly analyzed.

A particularity of OSEK is that system resources, including tasks, are
not created dynamically at program startup; instead they are
hardcoded in the system: a specific tool reads a configuration file in
OIL format describing these resources and generates a dedicated
version of the system to be linked against the application. Astrée
supports a similar workflow. In the preprocessor stage it can read
OIL files and outputs a C file containing a table of the declared

resources, with their attributes (task priority, alarm periodicity, etc.).
The OIL file also assigns actions to be executed when an OSEK
alarm expires, such as activating a given task or event, or calling a
call-back. The preprocessor thus generates specific C functions to
handle the actions associated to OSEK alarms. A fixed set of
application-independent stubs, comprising 3 Klines of C with Astrée
directives, implements the 31 OSEK entry points. The fixed stub also
contains a main analysis entry point that creates Astrée threads and
mutexes according to the generated tables and enters parallel
execution mode. Finally, it contains synthetic entry-points for Astrée
threads handling OSEK alarms, whose purpose is to call, at non-
deterministic intervals, the functions generated by the preprocessor to
implement the actions associated to OSEK alarms.

Combining the C sources of the OSEK application, the fixed OSEK
stub provided with Astrée, and the C file automatically generated
from the OIL file, we get a stand-alone application, without any
undefined symbol, that can be analyzed with Astrée and models
faithfully the execution of the application in an OSEK environment.
This workflow enables a high level of automation with minimal
configuration when analyzing OSEK applications.

5. Practical Experience

In this section we will summarize practical experience with two real-
life automotive projects. The projects have been selected to cover a
wide range of typical automotive use cases: modular analysis vs.
analysis of fully integrated ECU, hand code vs. automatically
generated code, OSEK system vs. AUTOSAR system. In both cases
early development versions have been used still exhibiting known
issues to be able to ascertain that they are indeed detected by the
analyzer. We did not insert Astrée directives to eliminate false
alarms; all results are obtained with default settings. Furthermore we
also did not insert bug fixes, i.e., the results correspond to those
obtained in an initial analysis run. All experiments were run on a PC
with an Intel Core i7-6700K (4.00GHz) processor with 64GB RAM
under openSUSE Leap 42.1. Below we will shortly describe the
applications, then give an overview of the analysis results and discuss
the most important findings.

5.1 Project 1: Brake Control Unit

The first real-life application is a brake control unit for trucks. The
analysis project does not cover the full ECU software, it consists of
three application components: two control components and one logic
component. One of the control components has been manually
written, the other two components have been automatically generated
by dSPACE TargetLink. The project consists of two tasks comprising
177.608 lines of preprocessed C code (without blank lines and
without comments). The project is configured by an .OIL file
automatically processed by Astrée. Astrée detects four data races, i.e.
shared variables concurrently accessed by both tasks without proper
synchronization. In total there are 1041 global variables among which
14 are shared between the two tasks. In addition, Astrée reports 776
code location with potential run-time errors, two data flow anomalies
(non-terminating loops in the two task functions). The alarms about
potential run-time errors are distributed among the following
categories1:

1 Note that the number of alarms about run-time errors is 797 since
there are some locations with multiple alarms. Examples are out-of-

Page 5 of 8

10/10/2016

Table 1: Alarm distribution for Brake Control Unit

Alarm Category Number of Alarms

Invalid usage of pointers and arrays
 Overflow upon dereference
 Out-of-bound array access
 Dereference of mis-aligned pointer

17

Division of modulo by zero
 Integer division by zero
 Floating-point division by zero

57

Invalid ranges and overflows 609

Invalid shift argument 8

Uninitialized variables 10

Invalid function calls
 Stub invocation
 Incompatible function parameter types

96

The analysis takes 56 min with full precision and activated task
priority domain, and consumes 725 MB RAM. It reaches 78% of the
code which is expected since some inputs needed to trigger the
remaining code have been considered invariant. 94 alarms from the
sub-category Stub invocation are due to calls to functions whose
definition is not contained in the sources under analysis. Since they
implement reads from the environment they can be safely handled by
stubs automatically generated by Astrée which assume that all
potential values of the corresponding data type can be returned.

Astrée reports an alarm of the category Invalid concurrent behavior
for each variable access contributing to a data race. The number of
such alarms can be high, but they help users to distinguish between
correct accesses and accesses contributing to a race. In the project
there are 6 such alarms which all belong to the sub-category
read/write data race. All of them were confirmed to be justified, there
were no false alarms about data races. Figure 3 shows a screenshot of
the alarm overview of Astrée which includes charts of the distribution
of alarms per C function and per alarm category.

Figure 3: Astrée alarm overview for Brake Control Unit

bounds array accesses which typically cause two alarms, one about
the invalid index value, one about the overflow upon dereference.

The sophistication of Astrée’s task interleaving analysis can be
illustrated in the following case where Astrée can prove that there is
no data race. To improve readability we use artificial function and
variable names.

M is an array of short integers whose size is 16 bit on the target
platform. It is read and written in task T2, and written in task T1. All
read and writes are protected by critical sections, except for the reads
occurring in a function fr which is called in task T2. If M was of
type int, then there would be a data race, but it is an array, and it
turns out that in different contexts different parts of the array are
written or read. Function fr in task T2 only reads the array at
positions 16 to 43, and 68 to 79. Since it is an array of type short
int[], that corresponds to the offsets 32 to 87, and 136 to 159.

The only functions writing to M and which are called in task T1 are
f8 and f16. The argument of these calls is always a constant. For
f8, it can be 244, 245, 246 or 247. For f16 it can only be 248.

Function f8(x) writes to ((char*) M)[ord[x]], where the
offset to access M is contained in another array ord, so M is written at
offset ord[x] (note that it is the offset, and not the position, because
M is cast to a pointer to char before dereferencing). Since Astrée
precisely tracks the values of the arrays involved, it knows that the
only possible value for ord[244] is 1, ord[245] is 22,
ord[246] is 23, and ord[247] is 0. None of these offsets is in
[32,87] or [136,159].

Function f16(x) writes to M[ord[x]], so M is written at position
ord[x], and ord[248] is 2, which is not in the set of positions
[16,43] or [68,79].

In consequence no write in task T1 is at an offset that is read without
protection in task T2, so there is no data race. Important features to
show this include Astrée’s flow-sensitive and field-sensitive analysis,
its byte-level memory model, and the precise tracking of numeric
pointer offsets.

5.2 Tank Control Unit

The second project is an automotive tank control unit developed in
AUTOSAR 3.2. The code under analysis includes the entire ECU
code, including the full AUTOSAR stack. It performs advanced
functions like filling level detection, fuel temperature measurement,
valve control, etc. The application code has mostly been generated by
TargetLink but also contains manually written components. The non-
AUTOSAR basic software, e.g., the Complex Device Drivers, also
have been manually written. The software under analysis consists of
2.854.057 lines of preprocessed C code (without blank lines and
without comments). There are 11 tasks, 13 ISRs, 2 counters and 9
alarms. Again the project is configured by an .OIL file automatically
processed by Astrée.

In the following, we will present the results of three analysis
configurations: In the first one, we do not take task priorities into
account, but rather assume any possible preemption scenario. In the
second one we replace the Dem and NVM AUTOSAR components
by stub implementations which over-approximate their potential
impact on the global program state. In the third one we take task
priorities into account and also exploit the fact that the execution is
staged, i.e. that there are separate stages where different sets of tasks
are active (cf. below).

Page 6 of 8

10/10/2016

5.2.1 Priority-Insensitive Analysis

In this project there 2179 global/static variables among which 1329
are shared global variables. Astrée reports 1657 code locations with
potential run-time errors, 12 data flow anomalies (11 non-terminating
loops in task functions and one busy waiting loop), and 1142 data
races. The alarms about potential run-time errors are distributed
among the following categories:

Table 2: Alarm distribution for Tank Control Unit (priority-insensitive
analysis)

Alarm Category Number of Alarms

Invalid usage of pointers and arrays
 Use of dangling pointer
 Overflow upon dereference
 Out-of-bound array access
 Dereference of mis-aligned pointer
 Dereference of null or invalid pointer
 Pointer to null or invalid function
 Invalid pointer comparison
 Arithmetics on invalid pointers

1349

Division of modulo by zero
 Integer division by zero

14

Invalid ranges and overflows 836

Invalid shift argument 9

Uninitialized variables 35

Invalid function calls
 Stub invocation
 Incompatible function parameter types
 Incompatible function return type
 Function call with wrong number of arguments
 Recursive function call

65

The analysis takes 17 hours, 5min, and consumes 48.9 GB RAM. It
reaches 78% of the code. The 29 alarms from the sub-category Stub
invocation are mostly calls to assembly functions whose effect does
not have to be considered.

As described above Astrée reports an alarm of the category Invalid
concurrent behavior for each variable access contributing to a data
race. In total for the 1142 variables subject to data races, there are
12.731 such alarms, 8839 alarms from the sub-category Read/write
data race, and 3886 Write/write data race alarms. In addition there
are 6 alarms from the sub-category Invalid usage of OS service. In
one case, the end of a task was reached before encountering
TerminateTask or ChainTask, three cases are related to
inconsistent resource usage, the two others are caused by stub
functions conservatively returning too large value ranges.

5.2.2 Priority-Insensitive Analysis with AUTOSAR Stubs

Astrée provides detailed timing statistics keeping track of how much
time is spent in analyzing each C-function. The timing information
for the analysis configuration of Sec. 5.2.1 shows that considerable
time is spent in the Dem and NvM AUTOSAR components. Therefore
we extended the AUTOSAR OS stub library outlined in Section 4 by
stub versions of the Dem and NvM components which conservatively
over-approximate their effect on the global program state.

With this modification the analysis time is reduced by ~70% to 5h 14
min, the maximal memory consumption to 18.4 GB. The analysis
reaches 75% of the code and the results essentially correspond to

those of the original configuration without alarms and data races
reported for the Dem and NvM components.

Table 3: Alarm distribution for Tank Control Unit (priority-insensitive
analysis with AUTOSAR stubs)

Alarm Category Number of Alarms

Invalid usage of pointers and arrays
 Overflow upon dereference
 Out-of-bound array access
 Dereference of mis-aligned pointer
 Dereference of null or invalid pointer
 Pointer to null or invalid function
 Arithmetics on invalid pointers

922

Division of modulo by zero
 Integer division by zero

14

Invalid ranges and overflows 698

Invalid shift argument 8

Uninitialized variables 20

Invalid function calls
 Stub invocation
 Incompatible function parameter types
 Function call with wrong number of arguments
 Recursive function call

56

In total there are 1301 code locations with potential run-time errors,
and again 12 data flow anomalies (11 non-terminating loops in task
functions and one busy waiting loop). The analyzer reports 1983
global variables, among which 1184 variables are detected as shared
and 1044 are reported to be subject to data races.

There are two main reasons for the lower number of alarms compared
to the results of Sec. 5.2.1: First, the source files containing the
implementation of the Dem and NvM components have been removed
from the analysis since the stubs are used instead of the full
implementation. In consequence the alarms reported from those files
in the original configuration of Sec. 5.2.1 are missing in the new
configuration. Second, some other source files also contain
functionality normally called from the Dem/NvM components which
is not reachable in the new configuration and, in consequence, does
not trigger alarms. Both reasons accounts for most of the differences
in the findings.

The key observation is that for the remainder of the application
replacing the Dem/NvM components by stubs only has negligible
influence on the findings reported. Therefore unless the Dem/NvM
components themselves are in the focus of the analysis using the
stubbed version leads to comparable results, but with significantly
reduced analysis time and memory consumption. This contributes to
faster turnaround times and higher analysis efficiency.

5.2.3 Priority-Sensitive Analysis with AUTOSAR Stubs

Not taking into account task priorities provides a sound result but
causes spurious preemption scenarios which can lead to false alarms.
Therefore in the third configuration we activate Astrée’s priority
domain such that task priorities and their dynamic changes according
to the Priority Ceiling Protocol are taken into account.

Furthermore, the application is structured in a way that EEPROM
data are set up once by the highest-priority task and all other tasks
only issue read accesses to them. The scheduling makes sure that this
initialization task is activated in the startup phase and is not

Page 7 of 8

10/10/2016

interrupted by other tasks. In the default configuration from Sec.
5.2.1 Astrée conservatively assumes that all tasks run at the same
time, therefore accesses from the initialization tasks interfere with the
accesses from other tasks which results in many spurious data races.

Such situations can be handled by Astrée by assigning tasks to
separate execution stages such that at each execution stage different
sets of tasks (or ISRs) are active. Task preemptions between tasks
from different execution stages cannot occur. In the first phase only
one process runs which performs basic initializations and ends with a
call to StartOS. After that the parallel phase starts with the
activation of the interrupt service routines (ISRs): first a dedicated
initialization task runs in parallel with the ISRs. It ends with a call to
Rte_Start which activates all tasks and alarms. In the next stage
a second initialization task runs at maximal priority until it ends,
again in parallel with the ISRs. In the third stage all remaining
periodic and asynchronous tasks, ISRs and alarms are executed in
parallel.

The analysis takes 16 hours and 24 minutes, and reaches 75% of the
code with a maximal memory consumption of 42.7GB. Compared to
the configuration of Sec. 5.2.2 the number of data races is reduced by
more than 80% from 1184 to 215, mainly since there are no more
spurious interferences between the initialization tasks and the
periodic and asynchronous tasks.

Astrée reports 1208 code locations with potential run-time errors, and
the same 12 data flow anomalies as in the previous configurations.
The alarms about potential run-time errors are distributed among the
following categories:

Table 4: Alarm distribution for Tank Control Unit (priority-sensitive analysis
with AUTOSAR stubs)

Alarm Category Number of Alarms

Invalid usage of pointers and arrays
 Overflow upon dereference
 Out-of-bound array access
 Dereference of mis-aligned pointer
 Dereference of null or invalid pointer
 Pointer to null or invalid function
 Arithmetics on invalid pointers

872

Division of modulo by zero
 Integer division by zero

13

Invalid ranges and overflows 639

Invalid shift argument 8

Uninitialized variables 20

Invalid function calls
 Stub invocation
 Incompatible function parameter types
 Function call with wrong number of arguments
 Recursive function call

50

The overall reduction of alarms is a consequence of the lower number
of data races, since task interferences due to data races often lead to
run-time errors.

Conclusion

All current safety norms require safety-critical software to be free of
run-time errors and data races. The rising predominance of
concurrent software architectures puts classic validation methods,

such as testing or code reviews to their limits, because they can
hardly cope with the non-deterministic nature of concurrent
programs, the huge number of interleavings, and the difficulty to
cover all potential execution scenarios. We have given an overview
of Astrée, a well-tried static analysis verification tool based on
abstract interpretation, and its recent extension to the sound analysis
of concurrent C programs which efficiently covers all possible task
interleavings and reports all potential run-time errors, deadlocks, and
data races. We have shown how Astrée can support programs for
various operating systems and concurrency libraries including the
OSEK/AUTOSAR standards which are widely used in the
automotive domain. Our experimental results show that Astrée is able
to report run-time errors and data races in realistic OS configurations
with high precision and feasible analysis time. In summary Astrée
can be successfully applied to real-life automotive industry projects
and can efficiently produce precise results.

References

1. AbsInt GmbH. Safety Manual for aiT, Astrée, StackAnalyzer,
2015.
2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or
approximation of fixpoints. In Proc. of POPL’77, pages 238–252.
ACM Press, 1977.
3. D. Kästner. Applying Abstract Interpretation to Demonstrate
Functional Safety. In J.-L. Boulanger, editor, Formal Methods
Applied to Industrial Complex Systems. ISTE/Wiley, London, UK,
2014.
4. Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu,
Guillaume Borios, and Reinhold Heckmann. Computing the worst
case execution time of an avionics program by abstract interpretation.
In Proceedings of the 5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 21–24, 2005.
5. D. Delmas and J. Souyris. ASTRÉE: from Research to Industry.
In Proc. 14th International Static Analysis Symposium (SAS2007),
number 4634 in LNCS, pages 437–451, 2007.
6. D. Kästner, C. Rustemeier, U. Kiffmeier, D. Fleischer, S. Nenova,
R. Heckmann, M. Schlickling, and C. Ferdinand. Model-Driven Code
Generation and Analysis. In SAE World Congress 2014. SAE
International, 2014.
7. A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner,
S. Wilhelm, and C. Ferdinand. Taking Static Analysis to the Next
Level: Proving the Absence of Run-Time Errors and Data Races with
Astrée. Embedded Real Time Software and Systems Congress ERTS 2.
8. OSEK/VDX Operating System. Version 2.2.3, 2005.
9. AUTOSAR (AUTomotive Open System ARchitecture). http://-
www.autosar.org.
10. MISRA-C:2004 Guidelines for the use of the C language in
critical systems, Oct. 2004.
11. MISRA-C:2012 Guidelines for the use of the C language in
critical systems, Mar. 2013.
12. ISO 26262. Road vehicles – Functional safety, 2011.
13. GI/SafeTRANS/VDA. Automotive Roadmap Embedded
Systems – Eingebettete Systeme in der Automobilindustrie. Roadmap
2015 – 2030, September 2015.
14. R. Debouk, B. Czerny, and J. d’Ambrosio. Safety Strategy for
Autonomous Systems. International Systems Safety Society
Conference, August 2011.
15. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A.
Miné, D. Monniaux, and X. Rival. A Static Analyzer for Large
Safety-Critical Software. In Proc. of PLDI’03, pages 196–207. ACM
Press, June 7–14 2003.

Page 8 of 8

10/10/2016

16. A. Mine, L. Mauborgne, X. Rival, J. Feret, P. Cousot,
D. Kästner, S. Wilhelm, and C. Ferdinand. Taking Static Analysis to
the Next Level: Proving the Absence of Run-Time Errors and Data
Races with Astrée. Embedded Real Time Software and Systems
Congress ERTS 2.
17. JTC1/SC22. Programming languages – C, 16 Dec. 1999.
18. A. Miné. The Octagon Abstract Domain. Higher-Order and
Symbolic Computation, 19(1):31–100, 2006.
19. Patrick Cousot, Radhia Cousot, Jérôme Feret, Antoine Miné,
Laurent Mauborgne, David Monniaux, and Xavier Rival. Varieties of
Static Analyzers: A Comparison with ASTRÉE. In First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering, TASE 2007, pages 3–20. IEEE Computer Society, 2007.
20. Jérôme Feret. Static analysis of digital filters. In Proc. of
ESOP’04, volume 2986 of LNCS, pages 33–48. Springer, 2004.
21. L. Mauborgne and X. Rival. Trace Partitioning in Abstract
Interpretation Based Static Analyzers. In 14th European Symposium
on Programming ESOP’05, number 3444 in LNCS, pages 5–20,
2005.
22. AbsInt. The Static Analyzer – User Documentation for AAL
Annotations, 2015.
23. Daniel Kästner and Jan Pohland. Program Analysis on Evolving
Software. In Matthieu Roy, editor, CARS 2015 - Critical Automotive
applications: Robustness & Safety, Paris, France, September 2015.
24. A. Miné. Static analysis of run-time errors in embedded real-time
parallel C programs. Logical Methods in Computer Science (LMCS),
8(26):63, Mar. 2012.
25. IEEE Computer Society and The Open Group. Portable operating
system interface (POSIX) – Application program interface (API)
amendment 2: Threads extension (C language). Technical report,
ANSI/IEEE Std. 1003.1c-1995, 1995.
26. A. Miné and D. Delmas. Towards an Industrial Use of Sound
Static Analysis for the Verification of Concurrent Embedded
Avionics Software. In Proc. of the 15th International Conference on
Embedded Software (EMSOFT’15), pages 65–74. IEEE CS Press,
Oct. 2015.

