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Abstract 

Safety-critical embedded software has to satisfy stringent quality 
requirements. All contemporary safety standards require evidence 
that no data races and no critical run-time errors occur, such as 
invalid pointer accesses, buffer overflows, or arithmetic overflows. 
Such errors can cause software crashes, invalidate separation 
mechanisms in mixed-criticality software, and are a frequent cause of 
errors in concurrent and multi-core applications. The static analyzer 
Astrée has been extended to soundly and automatically analyze 
concurrent software. This novel extension employs a scalable 
abstraction which covers all possible thread interleavings, and reports 
all potential run-time errors, data races, deadlocks, and lock/unlock 
problems. When the analyzer does not report any alarm, the program 
is proven free from those classes of errors. Dedicated support for 
ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-
aware analysis. In this article we give an overview of the key 
concepts of the concurrency analysis and report on experimental 
results obtained on concurrent automotive software. The experiments 
confirm that the novel analysis can be successfully applied to real 
automotive software projects.  

1. Introduction 

A failure of a safety-critical system may cause high costs or even 
endanger human beings. With the unbroken trend towards growing 
software size in embedded systems more and more safety-critical 
functionality is implemented in software. Preventing software-
induced system failures becomes an increasingly important task. One 
particularly dangerous class of errors are run-time errors which 
include faulty pointer manipulations, numerical errors such as 
arithmetic overflows and division by zero, data races, and 
synchronization errors in concurrent software. Such errors can cause 
software crashes, invalidate separation mechanisms in mixed-
criticality software, and are a frequent cause of errors in concurrent 
and multi-core applications. 

Contemporary safety norms – including DO-178B, DO-178C, IEC-
61508, ISO-26262, and EN-50128 – require to identify potential 
hazards and to demonstrate that the software does not violate the 
relevant safety goals. In all of them demonstrating the absence of run-
time errors is a verification goal which is mostly formulated 
indirectly by addressing run-time errors (e.g., division by zero, 
invalid pointer accesses, arithmetic overflows) in general, and 

additionally corruption of content, synchronization mechanisms, and 
freedom of interference in concurrent execution [1].  

Abstract interpretation is a formal methodology for static program 
analysis [2]. It supports formal soundness proofs (it can be proven 
that no error is missed) and scales to real-life industry applications. 
Abstract interpretation-based static analyzers provide full control and 
data coverage and allow conclusions to be drawn that are valid for all 
program runs with all inputs. Such conclusions may be that no timing 
or space constraints are violated, or that run-time errors or data races 
are absent: the absence of these errors can be guaranteed [3]. 
Nowadays, abstract interpretation-based static analyzers that can 
detect stack overflows and violations of timing constraints [4] and 
that can prove the absence of run-time errors [5], are widely used in 
industry. From a methodological point of view, abstract 
interpretation-based static analyses can be seen as equivalent to 
testing with full data and control coverage. They do not require 
access to the physical target hardware, can be easily integrated in 
continuous verification frameworks and model-based development 
environments [6], and they allow developers to detect run-time errors 
as well as timing and space bugs in early product stages.  

In the past established semantics-based static analysis tools could not 
handle concurrent programs with the same level of soundness, 
coverage, and automation as sequential programs. Typically they did 
not cover all potential process interleavings, required extensive user 
interaction, had limited support for concurrency primitives and failed 
to detect all potential concurrency-specific hazards such as data races 
[7]. 

The focus of this article is an extension of the static analyzer Astrée 
to soundly and automatically analyze concurrent software. The 
extension covers all possible thread interleavings, and soundly 
reports all run-time errors, data races, and invalid usage of OS 
services such as lock/unlock problems. When the analyzer does not 
report any alarm, the program is proven free from those classes of 
errors. The novel mechanism enables a fully automatic OS-aware 
analysis of ARINC 653, OSEK, and AUTOSAR applications, and 
can also be used for the analysis of POSIX threads. We give an 
overview of the key concepts of the concurrency analysis and report 
on experimental results obtained on concurrent automotive software. 
The experiments confirm that the novel analysis can be successfully 
applied to real automotive software projects. 
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2. Automotive Software Characteristics 

During the past years automotive software has evolved to be among 
the most complex embedded applications ever developed. High-end 
cars feature complex networks of ECUs whose software size is in the 
range of several millions of lines of code.  

To master the growing complexity various standards have been 
developed that regulate different aspects of system development. 
OSEK [8] and AUTOSAR [9] provide a standardized software 
architecture with standardized interfaces – a key requirement for 
inter-operability between different vendors and different components. 
However, this genericity comes at the cost of increased software size 
and complexity. The predominant programming language for control 
applications is C, which is traditionally written by hand, but more and 
more constitutes a high-level assembly code for model-based 
software development environments. Safety-critical automotive C 
code is typically developed according to the MISRA-C coding 
guidelines [10, 11] which define a C subset and rules of usage to 
minimize the risk of programming errors. The standard ISO-26262 
[12] defines the minimal requirements to achieve and demonstrate 
functional safety throughout the system and software life cycle.  

So on the one hand there is an established and to a certain degree 
harmonized infrastructure in place, on the other hand entirely new 
challenges rise at a fast pace. Among them are increasing demands 
for car-to-car and car-to-infrastructure communication, connectivity, 
hybrid and electric driving, and – last but not least –the trend to 
highly automated driving [13]. More and more advanced driver 
assistance systems are being developed which are triggering a 
paradigm shift in automotive system design: the transition from fail-
safe to fail-operational behavior. If automatic systems take over 
critical driving functionality they cannot just shut down in case of 
failures, they have to continue operating until the car is in a safe state 
[14].  

A consequence for software development is that it is and will remain 
crucial to detect errors as early as possible, as reliably as possible, 
and with the lowest possible human effort. The contribution of this 
article is to provide automatic means to demonstrate the absence of 
run-time errors and data races which belong to a particularly 
dangerous class of bugs. 

3. Static Run-Time Error Analysis 

In the following we will concentrate on the static analyzer Astrée 
[15] which signals all potential runtime errors and further critical 
program defects [16]. It is sound, i.e., if no errors are signaled, this 
means there are no errors from the class of errors under investigation 
– the absence of errors has been proved. It reports program defects 
caused by unspecified and undefined behaviors according to the C 
norm (ISO/IEC 9899:1999 (E)) [17], program defects caused by 
invalid concurrent behavior, violations of user-specified 
programming guidelines, and computes program properties relevant 
for functional safety. Users are notified about: 

• integer/floating-point division by zero  
• out-of-bounds array indexing 
• erroneous pointer manipulation and dereferencing (null, 

uninitialized, and dangling pointers) 
• data races (read/write or write/write concurrent accesses by 

two threads to the same memory location without proper 
mutex locking) 

• inconsistent locking (lock/unlock problems, deadlocks) 
• invalid calls to operating system services (e.g. calls to the 

OSEK service TerminateTask() on a task with 
unreleased resources) 

• integer and floating-point arithmetic overflows 
• read accesses to uninitialized variables 
• code unreachable under all circumstances 
• violations of optional user-defined assertions to prove 

additional runtime properties, e.g., to guarantee that output 
variables are within the expected value ranges 

• violations of coding rules (MISRA C:2004/2012) and code 
metric thresholds. The supported code metrics include the 
statically computable HIS metrics (HIS 2008), e.g., 
comment density, and cyclomatic complexity. 

• non-terminating loops 

Floating-point computations are handled precisely and safely by 
taking all potential rounding errors into account. Furthermore Astrée 
computes data and control flow reports containing a detailed listing 
of accesses to global and static variables sorted by functions, 
variables, and processes and containing a summary of caller/called 
relationships between functions. The analyzer can also report each 
potentially shared variable, the list of processes accessing it, and the 
types of the accesses (read, write, read/write). 

The C99 standard does not fully specify data type sizes, endianness 
nor alignment which can vary with different targets or compilers. 
Astrée is informed about these target settings by a dedicated 
configuration file and takes the specified properties into account. 

Workflow 

In the following we will use the term alarm to denote a notification 
about a potential run-time error. While Astrée finds all potential run-
time errors, it may err on the safe side and produce false alarms. For 
industrial use producing the fewest possible number of false alarms is 
an important goal. Only with zero alarms the absence of run-time 
errors is automatically proven. The design of the analyzer aims at 
reaching the zero false alarm objective, which was accomplished for 
the first time on large industrial applications at the end of November 
2003. For keeping the initial number of false alarms low, a high 
analysis precision is mandatory. To achieve high precision Astrée 
provides a variety of predefined abstract domains, including the 
following ones: 

• The interval domain approximates variable values by 
intervals. 

• The octagon domain [18] covers relations of the form x ± y 
≤ c for variables x and y and constants c. 

• Floating-point computations are precisely modelled while 
keeping track of possible rounding errors. 

• The memory domain empowers Astrée to exactly analyze 
pointer arithmetic and union manipulations. It also supports 
a type-safe analysis of absolute memory addresses. 

• The clock domain has been specifically developed for 
synchronous control programs and supports relating 
variable values to the system clock [19]. 

• With the filter domain [20] digital filters can be precisely 
approximated. 

Any remaining alarm has to be manually checked by the developers – 
and this manual effort should be as low as possible. Astrée explicitly 
supports investigating alarms in order to understand the reasons for 
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them to occur. Alarm contexts can be interactively explored, the 
computed value ranges of variables can be displayed for each 
different context, the call graph is visualized (cf. Figure 2), etc. 

 

Figure 1. Call Graph Visualization (zoomed out). 

If there is a true error it has to be fixed. A false alarm can possibly be 
eliminated by a suitable parameterization of Astrée: If the error 
cannot occur due to certain preconditions which are not known to 
Astrée, they can be made available to Astrée via dedicated directives. 
These annotations make the side conditions explicit which have to be 
satisfied for a correct program execution. If the false alarm is caused 
by insufficient analysis precision, steering directives are available 
that allow users to locally tune the analysis precision to eliminate the 
false alarm. 

As an example the __ASTREE_unroll directive can be used to 
enforce disambiguating every iteration of one specific loop. The key 
feature is that Astrée is fully parametric with respect to the abstract 
domains. Abstract domains can be parameterized to tune the 
precision of the analysis for individual program constructs or 
program points [21]. This means that in one analysis run important 
program parts can be analysed very precisely while less relevant parts 
can be analysed very quickly – without compromising system safety. 

 

Figure 2. Astrée alarm classification.  

All directives can be specified in a formal language AAL [22] and 
stored in a dedicated file. An AAL annotation consists of an Astrée 
directive and a path specifying the program point to insert the 

directive at. The path is specified in a robust way by exploiting the 
program's syntactical structure without relying on line number 
information. E.g., the annotation 

__ASTREE_annotation(( main {+1 loop} 
  insert before: __ASTREE_unroll((3)) )); 

inserts the directive __ASTREE_unroll((3)) immediately 
before the first loop in function main. The AAL language is a 
prerequisite for supporting model-based code generators. It makes it 
possible to separate the annotations from the source code, so that 
when the code is regenerated, all previously generated annotations 
from structurally unchanged code parts are still valid, even if the line 
numbers change. In cases where there are structural changes of the 
code, Astrée provides a mechanism to detect whether annotations are 
still placed at the intended location [23]. 

In the case where some alarms cannot be eliminated by increasing the 
analyzer precision they can be classified and commented by using the 
__ASTREE_comment directive. This can be done in a convenient 
way from the Astrée findings overview: comment directives and 
AAL annotation are generated automatically. The available 
classifications are uncommented, true, true (high), true (low), true 
(not a defect), false or undecided (cf. Figure 3). 

Handling Concurrency 

Whereas previous Astrée versions have been limited to sequential C 
software, Astrée has been extended by a novel low-level concurrent 
semantics [24] which provides a scalable abstraction covering all 
possible thread interleavings. The interleaving semantics enables 
Astrée, in addition to the classes of run-time errors found in 
sequential programs, to report data races, i.e., read/write or 
write/write concurrent accesses by two threads to the same memory 
location without proper mutex locking and lock/unlock problems, i.e., 
inconsistent synchronization. The set of shared variables does not 
need to be specified by the user: Astrée assumes that every global 
variable can be shared, and discovers which ones are effectively 
shared, and on which ones there is a data race. After a data race, the 
analysis continues by considering the values stemming from all 
interleavings. In addition to the range of each variable at each 
program point, Astrée reports the set of effectively shared variables, 
together with the set of threads accessing these variables, the kinds of 
operations performed (reads or writes), and their range of values. 

On sequential programs, Astrée uses a fully flow-sensitive and 
context-sensitive analysis. However, concurrent programs feature a 
far more complex control structure than sequential ones, which 
makes it unpractical to consider a fully flow-sensitive analysis. There 
is a combinatorial explosion of the number of interleaved execution 
paths and it would be too costly to distinguish the value of a variable 
at each combination of thread control locations. To efficiently cover 
all potential execution interleavings Astrée analyzes separately each 
thread and collects abstract versions of the effects they have on the 
shared memory. Threads are reanalyzed iteratively, taking into 
account such global effects, until stabilization, at which point a sound 
over-approximation of all possible behaviors has been found. This 
method is nearly as efficient as a sequential program analysis and still 
is highly precise as it maintains flow-sensitivity at the intra-thread 
level. 

Thread priorities are exploited to reduce the amount of spurious 
interleavings considered in the abstraction and to achieve a more 
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precise analysis. A dedicated task priority domain also supports 
dynamic priorities, e.g., according to the Priority Ceiling Protocol 
used in OSEK systems. Astrée includes a built-in notion of mutual 
exclusion locks, on top of which actual synchronization mechanisms 
offered by operating systems can be modeled (such as POSIX 
mutexes or semaphores [25]); program-enforced mutual exclusion is 
also exploited by Astrée to reduce spurious interleavings. When these 
features are insufficient to match the concurrency semantics of the 
analyzed program, Astrée reverts to unrestricted preemption, which 
ensures a sound analysis coverage for all concurrency models, 
including execution on multi-core processors. In particular, Astrée is 
not limited to collaborative threads nor discrete sets of preemption 
points. 

4. Modelling Operating Systems 

Programs to be analyzed are seldom run in isolation; they interact 
with an environment. In order to soundly report all run-time errors, 
Astrée must take the effect of the environment into account. In the 
simplest case the software runs directly on the hardware, in which 
case the environment is limited to a set of volatile variables, i.e., 
program variables that can be modified by the environment 
concurrently, and for which a range can be provided to Astrée by 
formal directives. More often, the program is run on top of an 
operating system, which it can access through function calls to a 
system library. When analyzing a program using a library, one 
possible solution is to include the source code of the library with the 
program. This is not always convenient (if the library is complex), 
nor possible, if the library source is not available, or not fully written 
in C, or ultimately relies on kernel services (e.g., for system 
libraries). An alternative is to provide a stub implementation, i.e., to 
write, for each library function, a specification of its possible effect 
on the program. Astrée provides stub libraries for the ARINC 653 
standard, the OSEK/AUTOSAR standards [8, 9], and for POSIX 
threads. More details on ARINC 653 and Real-Time POSIX are 
available in [26], in the following we are focusing on 
OSEK/AUTOSAR. 

An OSEK/AUTOSAR program consists of a set of tasks, a set of 
interrupts (also called ISRs), a set of timers (also called alarms), and 
schedule tables (a data-driven mechanism to activate tasks). Task 
scheduling and synchronization is achieved through explicit task 
activation and chaining, the use of priorities, orders to disable and 
enable interrupts, the use of resource objects (that act as locks), and 
events (that act as signals). We provide an OSEK/AUTOSAR library 
that handles these mechanisms by mapping them to Astrée low-level 
concurrency objects: tasks, ISRs, alarms and schedule tables are 
mapped to Astrée threads; resources are mapped to Astrée mutexes; 
events are mapped to Astrée signals; moreover, Astrée natively 
supports the relevant notions of priorities and offers built-in 
primitives to achieve chaining, starting, and stopping. The standard 
proposes several conformance classes, with support for increasingly 
complex features (such as extended tasks, fully preemptive 
scheduling, multiple task activation, etc.). The model proposed in 
Astrée supports the most general class, which guarantees that all 
programs can be soundly analyzed.  

A particularity of OSEK is that system resources, including tasks, are 
not created dynamically at program startup; instead they are 
hardcoded in the system: a specific tool reads a configuration file in 
OIL format describing these resources and generates a dedicated 
version of the system to be linked against the application. Astrée 
supports a similar workflow. In the preprocessor stage it can read 
OIL files and outputs a C file containing a table of the declared 

resources, with their attributes (task priority, alarm periodicity, etc.). 
The OIL file also assigns actions to be executed when an OSEK 
alarm expires, such as activating a given task or event, or calling a 
call-back. The preprocessor thus generates specific C functions to 
handle the actions associated to OSEK alarms. A fixed set of 
application-independent stubs, comprising 3 Klines of C with Astrée 
directives, implements the 31 OSEK entry points. The fixed stub also 
contains a main analysis entry point that creates Astrée threads and 
mutexes according to the generated tables and enters parallel 
execution mode. Finally, it contains synthetic entry-points for Astrée 
threads handling OSEK alarms, whose purpose is to call, at non-
deterministic intervals, the functions generated by the preprocessor to 
implement the actions associated to OSEK alarms. 

Combining the C sources of the OSEK application, the fixed OSEK 
stub provided with Astrée, and the C file automatically generated 
from the OIL file, we get a stand-alone application, without any 
undefined symbol, that can be analyzed with Astrée and models 
faithfully the execution of the application in an OSEK environment. 
This workflow enables a high level of automation with minimal 
configuration when analyzing OSEK applications. 

5. Practical Experience 

In this section we will summarize practical experience with two real-
life automotive projects. The projects have been selected to cover a 
wide range of typical automotive use cases: modular analysis vs. 
analysis of fully integrated ECU, hand code vs. automatically 
generated code, OSEK system vs. AUTOSAR system. In both cases 
early development versions have been used still exhibiting known 
issues to be able to ascertain that they are indeed detected by the 
analyzer. We did not insert Astrée directives to eliminate false 
alarms; all results are obtained with default settings. Furthermore we 
also did not insert bug fixes, i.e., the results correspond to those 
obtained in an initial analysis run. All experiments were run on a PC 
with an Intel Core i7-6700K (4.00GHz) processor with 64GB RAM 
under openSUSE Leap 42.1. Below we will shortly describe the 
applications, then give an overview of the analysis results and discuss 
the most important findings. 

5.1 Project 1: Brake Control Unit 

The first real-life application is a brake control unit for trucks. The 
analysis project does not cover the full ECU software, it consists of 
three application components: two control components and one logic 
component. One of the control components has been manually 
written, the other two components have been automatically generated 
by dSPACE TargetLink. The project consists of two tasks comprising 
177.608 lines of preprocessed C code (without blank lines and 
without comments). The project is configured by an .OIL file 
automatically processed by Astrée. Astrée detects four data races, i.e. 
shared variables concurrently accessed by both tasks without proper 
synchronization. In total there are 1041 global variables among which 
14 are shared between the two tasks. In addition, Astrée reports 776 
code location with potential run-time errors, two data flow anomalies 
(non-terminating loops in the two task functions). The alarms about 
potential run-time errors are distributed among the following 
categories1: 

 

1 Note that the number of alarms about run-time errors is 797 since 
there are some locations with multiple alarms. Examples are out-of-
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Table 1: Alarm distribution for Brake Control Unit 

Alarm Category Number of Alarms 

Invalid usage of pointers and arrays 
  Overflow upon dereference 
  Out-of-bound array access 
  Dereference of mis-aligned pointer 

17 
 
 

Division of modulo by zero 
  Integer division by zero 
  Floating-point division by zero 

57 
 

Invalid ranges and overflows 609 

Invalid shift argument 8 

Uninitialized variables 10 

Invalid function calls 
  Stub invocation 
  Incompatible function parameter types 

96 
 
 

 

The analysis takes 56 min with full precision and activated task 
priority domain, and consumes 725 MB RAM. It reaches 78% of the 
code which is expected since some inputs needed to trigger the 
remaining code have been considered invariant. 94 alarms from the 
sub-category Stub invocation are due to calls to functions whose 
definition is not contained in the sources under analysis. Since they 
implement reads from the environment they can be safely handled by 
stubs automatically generated by Astrée which assume that all 
potential values of the corresponding data type can be returned. 

Astrée reports an alarm of the category Invalid concurrent behavior 
for each variable access contributing to a data race. The number of 
such alarms can be high, but they help users to distinguish between 
correct accesses and accesses contributing to a race. In the project 
there are 6 such alarms which all belong to the sub-category 
read/write data race. All of them were confirmed to be justified, there 
were no false alarms about data races. Figure 3 shows a screenshot of 
the alarm overview of Astrée which includes charts of the distribution 
of alarms per C function and per alarm category. 

 

Figure 3: Astrée alarm overview for Brake Control Unit 

 

bounds array accesses which typically cause two alarms, one about 
the invalid index value, one about the overflow upon dereference. 

The sophistication of Astrée’s task interleaving analysis can be 
illustrated in the following case where Astrée can prove that there is 
no data race. To improve readability we use artificial function and 
variable names.  

M is an array of short integers whose size is 16 bit on the target 
platform. It is read and written in task T2, and written in task T1. All 
read and writes are protected by critical sections, except for the reads 
occurring in a function fr which is called in task T2. If M was of 
type int, then there would be a data race, but it is an array, and it 
turns out that in different contexts different parts of the array are 
written or read. Function fr in task T2 only reads the array at 
positions 16 to 43, and 68 to 79. Since it is an array of type short 
int[], that corresponds to the offsets 32 to 87, and 136 to 159. 

The only functions writing to M and which are called in task T1 are 
f8 and f16. The argument of these calls is always a constant. For 
f8, it can be 244, 245, 246 or 247. For f16 it can only be 248.  

Function f8(x) writes to ((char*) M)[ord[x]], where the 
offset to access M is contained in another array ord, so M is written at 
offset ord[x] (note that it is the offset, and not the position, because 
M is cast to a pointer to char before dereferencing). Since Astrée 
precisely tracks the values of the arrays involved, it knows that the 
only possible value for ord[244] is 1, ord[245] is 22, 
ord[246] is 23, and ord[247] is 0. None of these offsets is in 
[32,87] or [136,159]. 

Function f16(x) writes to M[ord[x]], so M is written at position 
ord[x], and ord[248] is 2, which is not in the set of positions 
[16,43] or [68,79]. 

In consequence no write in task T1 is at an offset that is read without 
protection in task T2, so there is no data race. Important features to 
show this include Astrée’s flow-sensitive and field-sensitive analysis, 
its byte-level memory model, and the precise tracking of numeric 
pointer offsets.  

5.2 Tank Control Unit 

The second project is an automotive tank control unit developed in 
AUTOSAR 3.2. The code under analysis includes the entire ECU 
code, including the full AUTOSAR stack. It performs advanced 
functions like filling level detection, fuel temperature measurement, 
valve control, etc. The application code has mostly been generated by 
TargetLink but also contains manually written components. The non-
AUTOSAR basic software, e.g., the Complex Device Drivers, also 
have been manually written. The software under analysis consists of 
2.854.057 lines of preprocessed C code (without blank lines and 
without comments). There are 11 tasks, 13 ISRs, 2 counters and 9 
alarms. Again the project is configured by an .OIL file automatically 
processed by Astrée.  

In the following, we will present the results of three analysis 
configurations: In the first one, we do not take task priorities into 
account, but rather assume any possible preemption scenario. In the 
second one we replace the Dem and NVM AUTOSAR components 
by stub implementations which over-approximate their potential 
impact on the global program state. In the third one we take task 
priorities into account and also exploit the fact that the execution is 
staged, i.e. that there are separate stages where different sets of tasks 
are active (cf. below). 
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5.2.1 Priority-Insensitive Analysis 

In this project there 2179 global/static variables among which 1329 
are shared global variables. Astrée reports 1657 code locations with 
potential run-time errors, 12 data flow anomalies (11 non-terminating 
loops in task functions and one busy waiting loop), and 1142 data 
races. The alarms about potential run-time errors are distributed 
among the following categories: 

Table 2: Alarm distribution for Tank Control Unit (priority-insensitive 
analysis) 

Alarm Category Number of Alarms 

Invalid usage of pointers and arrays 
  Use of dangling pointer 
  Overflow upon dereference 
  Out-of-bound array access 
  Dereference of mis-aligned pointer 
  Dereference of null or invalid pointer 
  Pointer to null or invalid function 
  Invalid pointer comparison 
  Arithmetics on invalid pointers 

1349 
 
 
 
 
 
 
 

Division of modulo by zero 
  Integer division by zero 

14 
 

Invalid ranges and overflows 836 

Invalid shift argument 9 

Uninitialized variables 35 

Invalid function calls 
  Stub invocation 
  Incompatible function parameter types 
  Incompatible function return type 
  Function call with wrong number of arguments 
  Recursive function call 

65 
 
 
 
 

 

The analysis takes 17 hours, 5min, and consumes 48.9 GB RAM. It 
reaches 78% of the code. The 29 alarms from the sub-category Stub 
invocation are mostly calls to assembly functions whose effect does 
not have to be considered. 

As described above Astrée reports an alarm of the category Invalid 
concurrent behavior for each variable access contributing to a data 
race. In total for the 1142 variables subject to data races, there are 
12.731 such alarms, 8839 alarms from the sub-category Read/write 
data race, and 3886 Write/write data race alarms. In addition there 
are 6 alarms from the sub-category Invalid usage of OS service. In 
one case, the end of a task was reached before encountering 
TerminateTask or ChainTask, three cases are related to 
inconsistent resource usage, the two others are caused by stub 
functions conservatively returning too large value ranges.  

5.2.2 Priority-Insensitive Analysis with AUTOSAR Stubs 

Astrée provides detailed timing statistics keeping track of how much 
time is spent in analyzing each C-function. The timing information 
for the analysis configuration of Sec. 5.2.1 shows that considerable 
time is spent in the Dem and NvM AUTOSAR components. Therefore 
we extended the AUTOSAR OS stub library outlined in Section 4 by 
stub versions of the Dem and NvM components which conservatively 
over-approximate their effect on the global program state.  

With this modification the analysis time is reduced by ~70% to 5h 14 
min, the maximal memory consumption to 18.4 GB. The analysis 
reaches 75% of the code and the results essentially correspond to 

those of the original configuration without alarms and data races 
reported for the Dem and NvM components.  

Table 3: Alarm distribution for Tank Control Unit (priority-insensitive 
analysis with AUTOSAR stubs) 

Alarm Category Number of Alarms 

Invalid usage of pointers and arrays 
  Overflow upon dereference 
  Out-of-bound array access 
  Dereference of mis-aligned pointer 
  Dereference of null or invalid pointer 
  Pointer to null or invalid function 
  Arithmetics on invalid pointers 

922 
 
 
 
 
 
 
 

Division of modulo by zero 
  Integer division by zero 

14 
 

Invalid ranges and overflows 698 

Invalid shift argument 8 

Uninitialized variables 20 

Invalid function calls 
  Stub invocation 
  Incompatible function parameter types 
  Function call with wrong number of arguments 
  Recursive function call 

56 
 
 
 
 

 

In total there are 1301 code locations with potential run-time errors, 
and again 12 data flow anomalies (11 non-terminating loops in task 
functions and one busy waiting loop). The analyzer reports 1983 
global variables, among which 1184 variables are detected as shared 
and 1044 are reported to be subject to data races.  

There are two main reasons for the lower number of alarms compared 
to the results of Sec. 5.2.1: First, the source files containing the 
implementation of the Dem and NvM components have been removed 
from the analysis since the stubs are used instead of the full 
implementation. In consequence the alarms reported from those files 
in the original configuration of Sec. 5.2.1 are missing in the new 
configuration. Second, some other source files also contain 
functionality normally called from the Dem/NvM components which 
is not reachable in the new configuration and, in consequence, does 
not trigger alarms. Both reasons accounts for most of the differences 
in the findings.  

The key observation is that for the remainder of the application 
replacing the Dem/NvM components by stubs only has negligible 
influence on the findings reported. Therefore unless the Dem/NvM 
components themselves are in the focus of the analysis using the 
stubbed version leads to comparable results, but with significantly 
reduced analysis time and memory consumption. This contributes to 
faster turnaround times and higher analysis efficiency.  

5.2.3 Priority-Sensitive Analysis with AUTOSAR Stubs 

Not taking into account task priorities provides a sound result but 
causes spurious preemption scenarios which can lead to false alarms. 
Therefore in the third configuration we activate Astrée’s priority 
domain such that task priorities and their dynamic changes according 
to the Priority Ceiling Protocol are taken into account.  

Furthermore, the application is structured in a way that EEPROM 
data are set up once by the highest-priority task and all other tasks 
only issue read accesses to them. The scheduling makes sure that this 
initialization task is activated in the startup phase and is not 
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interrupted by other tasks. In the default configuration from Sec. 
5.2.1 Astrée conservatively assumes that all tasks run at the same 
time, therefore accesses from the initialization tasks interfere with the 
accesses from other tasks which results in many spurious data races.  

Such situations can be handled by Astrée by assigning tasks to 
separate execution stages such that at each execution stage different 
sets of tasks (or ISRs) are active. Task preemptions between tasks 
from different execution stages cannot occur. In the first phase only 
one process runs which performs basic initializations and ends with a 
call to StartOS. After that the parallel phase starts with the 
activation of the interrupt service routines (ISRs): first a dedicated 
initialization task runs in parallel with the ISRs. It ends with a call to 
Rte_Start which activates all tasks and alarms. In the next stage 
a second initialization task runs at maximal priority until it ends, 
again in parallel with the ISRs. In the third stage all remaining 
periodic and asynchronous tasks, ISRs and alarms are executed in 
parallel. 

The analysis takes 16 hours and 24 minutes, and reaches 75% of the 
code with a maximal memory consumption of 42.7GB. Compared to 
the configuration of Sec. 5.2.2 the number of data races is reduced by 
more than 80% from 1184 to 215, mainly since there are no more 
spurious interferences between the initialization tasks and the 
periodic and asynchronous tasks.  

Astrée reports 1208 code locations with potential run-time errors, and 
the same 12 data flow anomalies as in the previous configurations. 
The alarms about potential run-time errors are distributed among the 
following categories: 

Table 4: Alarm distribution for Tank Control Unit (priority-sensitive analysis 
with AUTOSAR stubs) 

Alarm Category Number of Alarms 

Invalid usage of pointers and arrays 
  Overflow upon dereference 
  Out-of-bound array access 
  Dereference of mis-aligned pointer 
  Dereference of null or invalid pointer 
  Pointer to null or invalid function 
  Arithmetics on invalid pointers 

872 
 
 
 
 
 
 
 

Division of modulo by zero 
  Integer division by zero 

13 
 

Invalid ranges and overflows 639 

Invalid shift argument 8 

Uninitialized variables 20 

Invalid function calls 
  Stub invocation 
  Incompatible function parameter types 
  Function call with wrong number of arguments 
  Recursive function call 

50 
 
 
 
 

 

The overall reduction of alarms is a consequence of the lower number 
of data races, since task interferences due to data races often lead to 
run-time errors. 

Conclusion 

All current safety norms require safety-critical software to be free of 
run-time errors and data races. The rising predominance of 
concurrent software architectures puts classic validation methods, 

such as testing or code reviews to their limits, because they can 
hardly cope with the non-deterministic nature of concurrent 
programs, the huge number of interleavings, and the difficulty to 
cover all potential execution scenarios. We have given an overview 
of Astrée, a well-tried static analysis verification tool based on 
abstract interpretation, and its recent extension to the sound analysis 
of concurrent C programs which efficiently covers all possible task 
interleavings and reports all potential run-time errors, deadlocks, and 
data races. We have shown how Astrée can support programs for 
various operating systems and concurrency libraries including the 
OSEK/AUTOSAR standards which are widely used in the 
automotive domain. Our experimental results show that Astrée is able 
to report run-time errors and data races in realistic OS configurations 
with high precision and feasible analysis time. In summary Astrée 
can be successfully applied to real-life automotive industry projects 
and can efficiently produce precise results. 
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