
SOS 2007 Preliminary Version

Bi-inductive Structural Semantics

(Extended Abstract)

Patrick Cousot
1

Département d'informatique, École normale supérieure, 45 rue d'Ulm,
75230 Paris cedex 05, France

Radhia Cousot
2

CNRS & École polytechnique, 91128 Palaiseau cedex, France

Abstract

We propose a simple order-theoretic generalization of set-theoretic inductive de�nitions. This general-
ization covers inductive, co-inductive and bi-inductive de�nitions and is preserved by abstraction. This
allows the structural operational semantics to describe simultaneously the �nite/terminating and in�-
nite/diverging behaviors of programs. This is illustrated on the structural bi�nitary small/big-step
trace/relational/operational semantics of the call-by-value λ-calculus.

Keywords: �xpoint de�nition, inductive de�nition, co-inductive de�nition, bi-inductive de�nition,
structural operational semantics, SOS, trace semantics, relational semantics, small-step semantics, big-step
semantics, divergence semantics, abstraction.

1 Introduction

The connection between the use of �xpoints in denotational semantics [17] and the

use of rule-based inductive de�nitions in axiomatic semantics [10] and structural

operational semantics (SOS) [19,20,21] can be made by a generalization of inductive

de�nitions [1] to include co-inductive de�nitions [8]. It is then possible to generalize

natural semantics describing �nite input/output behaviors [12] so as to also include

in�nite behaviors [7]. This is necessary since the de�nition of the in�nite behaviors

cannot be derived from the �nite big-step SOS behaviors.

Example 1.1 Let us consider the choice operator E1 | E2 where the evaluation of

E1 either terminates (returning the value a, written E1 =⇒ a) or does not terminate

1 oi @ . rC. ur nk eo ss tc fP ta , www.enseignement.polytechnique.fr/profs/informatique/Radhia.Cousot/
2 rip qusi o fntdh .eya uo. lo ech@C tRa , www.di.ens.fr/�cousot/

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

P. Cousot & R. Cousot

(written E1 =⇒ ⊥). Similarly, the big-step semantics of E2 is E2 =⇒ b for a terminat-

ing evaluation returning b or E2 =⇒ ⊥ for non-termination. Let us consider several

possible semantics for the choice operator:

• Nondeterministic: an internal choice is made initially to evaluate E1 or to evaluate

E2;

• Parallel: evaluate E1 and E2 concurrently, with an unspeci�ed scheduling, and

return the �rst available result a or b;

• Mixed left-to-right: evaluate E1 and then either return its result a or evaluate E2

and return its result b;

• Mixed right-to-left: evaluate E2 and then either return its result b or evaluate E1

and return its result a;

• Eager: evaluate both E1 and E2 and return either results if both terminate.

The corresponding �nite big-step behaviors, as described in natural semantics [12],

are all de�ned as follows:

a | b =⇒ a a | b =⇒ b .

But for the case ⊥ | ⊥ =⇒ ⊥, the in�nite behaviors are all di�erent:

Non-deter- Parallel Mixed left- Mixed right- Eager

ministic to-right to-left

⊥ | b =⇒ b ⊥ | b =⇒ b ⊥ | b =⇒ b

⊥ | b =⇒ ⊥ ⊥ | b =⇒ ⊥ ⊥ | b =⇒ ⊥ ⊥ | b =⇒ ⊥

a | ⊥ =⇒ a a | ⊥ =⇒ a a | ⊥ =⇒ a

a | ⊥ =⇒ ⊥ a | ⊥ =⇒ ⊥ a | ⊥ =⇒ ⊥ a | ⊥ =⇒ ⊥

Since the natural semantics de�nes the �nite behaviors but not the diverging behav-

iors, an interpretation of the big-step evaluation rules as Horn clauses implemented

in Prolog [2,9] will have its diverging behaviors determined by the implementation

(e.g. Prolog interpreter with left-to-right evaluation). 2

The paper develops and illustrates the use of "bi-inductive" de�nitions in opera-

tional semantics which enable both �nitary and in�nitary behaviors to be described

simultaneously [7,8].

The general methodology consists in extending Hilbert proof systems [1] by re-

placing the powerset 〈℘(U), ⊆〉 of the universe U by a partial order 〈D, v〉. Beyond
the classical inductive de�nitions 〈℘(U), ⊆〉, this extension includes the co-inductive

de�nitions 〈℘(U), ⊇〉 and bi-inductive de�nitions mixing inductive and co-inductive

de�nitions [7,8]. This extension also copes with compositional structural de�nitions

as found in denotational semantics or SOS. This is illustrated by de�nitions of the

semantics of the call-by-value λ-calculus.

We introduce an original big-step trace semantics that gives operational meaning

to both convergent and divergent behaviors of programs. The compositional struc-

tural de�nition mixes induction for �nite behaviors and co-induction for in�nite

2

P. Cousot & R. Cousot

behaviors while avoiding duplication of rules between the two cases. This big-step

trace semantics excludes erroneous behaviors that go wrong. The other semantics

are then systematically derived by abstraction.

The big-step trace semantics is �rst abstracted to a relational semantics and

then to the standard big-step or natural semantics. These abstraction are sound

and complete in that the big-step trace and relational semantics describe the same

converging or diverging behaviors while the big-step trace and natural semantics

describe the same �nite behaviors. The big-step trace semantics is then abstracted

into a small-step semantics, by collecting transitions along traces. This abstraction

is sound but incomplete in that the traces generated by the small-step semantics

describes convergent, divergent, but also erroneous behaviors of programs. This

shows that trace-based operational semantics can be much more informative that

small-step operational semantics.

2 Bi-inductive structural de�nitions and their abstrac-

tion

2.1 Structural order-theoretic inductive de�nitions

We introduce di�erent forms of structural order-theoretic inductive de�nitions and

prove their equivalence.

We formalize the syntax of a language L as a binary relation ≺ on L to be

understood as the �strict syntactic subcomponent� relation on L. 〈L, ≺〉 is therefore
a well-founded set, ≺ is irre�exive (inducing the re�exive 4), and ≺ has �nite left

images ∀` ∈ L : |{`′ ∈ L | `′ ≺ `}| ∈ N (|S| is the cardinality of set S, N is the set

of natural numbers). Hence we can write ` ::= `1, . . . , `n for the tuple of elements∏
`′≺` `

′ = `1, . . . , `n such that {`1, . . . , `n} = {`′ ∈ L | `′ ≺ `}.
For example, for the language L of lambda terms a, b, . . . ::= x | λ x . a | a b, we

can de�ne a ≺ λ x . a, a ≺ a b and b ≺ a b so a b ::= a, b. In case no structural i.e.

syntax-directed reasoning is needed, L can be chosen as a singleton and ≺ as false.

For each �syntactic component� ` ∈ L, we consider a semantic domain 〈D`, v`,
⊥`, t`〉 which is assumed to be a directed complete partial order (dcpo).

For each �syntactic component� ` ∈ L, we consider variables X`, Y`, . . . ranging

over the semantic domain D`. We drop the subscript ` when the corresponding

semantic domain is clear from the context (e.g. the semantic domain is the same for

all �syntactic components� i.e. ∀` ∈ L : D` = D).
For each �syntactic component� ` ∈ L, we let ∆` be indexed sequences (totally

ordered sets). We write
∏
i∈∆`

xi when considering the sequence 〈xi, i ∈ ∆`〉 ∈
∆` 7→ S of elements of a set S as a vector of

∏
i∈∆`

S.

For each element i ∈ ∆` of the sequence, we consider transformers F i` ∈ D` ×
D`1 . . .×D`n 7−→ D` where n = |{`′ ∈ L | `′ ≺ `}| and {`1, . . . , `n} = {`′ ∈ L | `′ ≺ `}.
When n = 0, we have F i` ∈ D` 7−→ D`.

The transformers are assumed to be v`-monotone in their �rst parameter, that

is ∀i ∈ ∆`, `1, . . . , `n ≺ `, X,Y ∈ D`, X1 ∈ D`1 , . . . , Xn ∈ D`n : X v` Y =⇒
F i` (X,X1, . . . , Xn) v` F i` (Y,X1, . . . , Xn).

For each �syntactic component� ` ∈ L, the join g̀ ∈ (∆` 7−→ D`) 7−→ D` is

3

P. Cousot & R. Cousot

assumed to be componentwise v`-monotone (∀〈Xi, i ∈ ∆`〉 : ∀〈Yi, i ∈ ∆`〉 : (∀i ∈
∆` : Xi v` Yi) =⇒

j
`
(
∏
i∈∆`

Xi) v`
j
`
(
∏
i∈∆`

Yi)). The join operator is used to gather

alternatives in formal de�nitions. For brevity, we write g̀(
∏
i∈∆`

Xi) =
j
`

i∈∆`

Xi, leaving

implicit the fact that the Xi should be considered in the total order given by the

sequence ∆`.

Most often, the order of presentation of these alternatives in the formal de�nition

is not signi�cant. In this case, ∆` is just a set and the join may often be de�ned

in term of a binary join g̀ ∈ (D` ×D`) 7−→ D`, which is assumed to be associative,

commutative, and v`-monotone, as g̀(
∏
i∈∆`

Xi) ,
j
`

i∈∆`

Xi. The binary join may be

di�erent form the least upper bound (lub) t` of the semantic domain D`.
A �xpoint de�nition has the form

∀` ∈ L : Sf J`K = lfp
v` λX .

j
`

i∈∆`

F i` (X,
∏
`′≺`
Sf J`′K)

where lfp
v

is the partially de�ned v-least �xpoint operator on a poset 〈P, v〉. To
emphasize structural composition, we also let {`1, . . . , `n} = {`′ ∈ L | `′ ≺ `} and
write

∀` ∈ L : Sf J` ::= `1, . . . , `nK = lfp
v` λX .

j
`

i∈∆`

F i` (X,Sf J`1K, . . . ,Sf J`nK) .

Lemma 2.1 ∀` ∈ L : Sf J`K is well de�ned.

De�nitions needing no �xpoint or join can withal be encompassed as �xpoints

such as
j
`

i∈∆`

F i` (Sf J`1K, . . . ,Sf J`nK) = lfp
v` λX .

j
`

i∈∆`

F i` (Sf J`1K, . . . ,Sf J`nK) or with-

out join F i` (Sf J`1K, . . . ,Sf J`nK) = lfp
v` λX .

j
`

i′∈{i}

F i
′
` (Sf J`1K, . . . ,Sf J`nK).

An equational de�nition has the form:

〈SeJ`K, ` ∈ L〉 is the componentwise v`-least 〈X`, ` ∈ L〉 satisfying the system of

equations 
X` =

j
`

i∈∆`

F i` (X`,
∏
`′≺`X`′)

` ∈ L .

A constraint-based de�nition has the form:

〈SeJ`K, ` ∈ L〉 is the componentwise v`-least 〈X`, ` ∈ L〉 satisfying the system of

constraints (inequations) 
j
`

i∈∆`

F i` (X`,
∏
`′≺`X`′) v` X`

` ∈ L .

4

P. Cousot & R. Cousot

A rule-based de�nition is a sequence of rules of the form

X`

F i` (X`,
∏
`′≺`
SrJ`′K)

v` ` ∈ L, i ∈ ∆`

where the premise and conclusion are elements of the 〈D`, v`〉 cpo. When under-

standing the rule in logical form (where the premise is a statement that is assumed

to be true and from which a conclusion can be drawn), the following form might be

preferred.

X` v` SrJ`K

F i` (X`,
∏
`′≺`
SrJ`′K) v` SrJ`K

v` ` ∈ L, X` ∈ D`, i ∈ ∆`

If F i` does not depend upon the premise X`, it is an axiom. In such presentations,

the join g̀ of the alternatives is left implicit 3 . To make it explicit, we rewrite such

de�nitions in the form

X` v` SrJ`K
j
`

i∈∆`

F i` (X`,
∏
`′≺`
SrJ`′K) v` SrJ`K

v` ` ∈ L, X` ∈ D` .(1)

The formal de�nition of the join makes explicit whether the order of presentation

of the rules does matter, or not. When it doesn't, the join can be de�ned using a

binary associative and commutative join. This binary join can even be left implicit

and, by associativity and commutativity, the rules can be given in any order. This

will be the case for our examples.

A D ∈ D` is provable if and only if it has a proof that is a trans�nite sequence 4

D0, . . . , Dλ of elements of D` such that D0 = ⊥`, Dλ = D and for all 0 < δ 6 λ, Dδ

v`
j
`

i∈∆`

F i` (
⊔

`
β<δ

Dβ,
∏
`′≺`
SrJ`′K).

The meaning of a rule-based de�nition (1) is

SrJ`K ,
⊔

`
{D ∈ D` | D is provable} .

The above order-theoretic inductive de�nitions are all equivalent:

Theorem 2.2 ∀` ∈ L : SJ`K , Sf J`K = SeJ`K = ScJ`K = SrJ`K.

This generalization of [1] could also include a game-theoretic version. The closure-

condition version [1] is also easy to adapt.

3 This is the case in classical Hilbert's formal systems.
4 In the classical case [1], the �xpoint operator is continuous whence proofs are �nite.

5

P. Cousot & R. Cousot

Example 2.3 The classical inductive de�nition [1] of the subset S of a universe U by

rules
{
Pi
ci

∣∣∣ i ∈ I} where Pi ⊆ U and ci ∈ U , i ∈ I can be written
X ⊆ S

{ci | Pi ⊆ X} ⊆ S
⊆,

i ∈ I or
Pi ⊆ X, X ⊆ S

ci ∈ S
⊆, i ∈ I that is

Pi ⊆ S

ci ∈ S
⊆, i ∈ I for short. So 〈L, 4〉 , 〈•, =〉,

〈D•, v•, ⊥•, t•〉 , 〈℘(U), ⊆, ∅, ∪〉, ∆• , I, F i• ∈ ℘(U) 7→ ℘(U) is F i•(X) , {ci |
Pi ⊆ X} and

j
• ,

⋃
thus de�ning S = lfp

⊆
λX . {ci | i ∈ I ∧ Pi ⊆ X}. 2

2.2 Bi-semantic domains

To account for terminating/�nite and diverging/in�nite program behaviors, we con-

sider bi-semantic domains consisting, for each ` ∈ L, of a �nitary semantic do-

main (of �nite program behaviors) 〈D+
` , v

+
` , ⊥

+
` ,
⊔

+
`
〉 and a in�nitary semantic

codomain (of in�nite program behaviors) 〈D−` , v
−
` , ⊥

−
` ,
⊔
−
`
〉 which are assumed to

be dcpos [17] (respectively complete lattices). They are combined into a bi-semantic

domain (of bi�nite program behaviors) D` thanks to a projection π+
` ∈ D` 7→ D

+
` ,

a coprojection π−` ∈ D` 7→ D−` , and a constructor π` ∈ D+
` × D

−
` 7→ D`

satisfying ∀x ∈ D+
` , y ∈ D

−
` : π+

` (π`(x, y)) = x and π−` (π`(x, y)) = y while

∀X ∈ D : π`(π+
` (X), π−` (X)) = X. Examples are the Cartesian product, disjoint

union or union of disjoint sets. The bi-semantic domain 〈D`, v`, ⊥`, t`〉 is then

a dcpo (respectively a complete lattice) by de�ning X+ , π+
` (X), X− , π−` (X),

X v` Y , (X+ v+
` Y

+) ∧ (X− v−` Y
−), and

⊔
`

i∈I
Xi , π`(

⊔
+
`

i∈I
X+
i ,
⊔
−
`

i∈I
X−i).

2.3 Abstraction

We consider a simple form of abstraction based on a continuous abstraction function

α [6], which includes the particular case of a Galois connection [5] (denoted 〈P,
4〉 −−−→←−−−α

γ
〈Q, v〉, or 〈P, 4〉 −−−→−→←−−−−

α

γ
〈Q, v〉 when α is onto, where 〈P, 4〉 and 〈Q, v〉

are posets, and ∀x ∈ P : ∀y ∈ Q : α(x) v y ⇐⇒ x 4 γ(y)).
For all ` ∈ L, we let 〈D`, v`, ⊥`, t`〉 be dcpos, F

i
` ∈ D` ×D`1 . . .×D`n 7−→ D`

i ∈ ∆` be monotone in their �rst parameter, and de�ne the abstract semantics Sf J`K
in one of the equivalent forms of Th. 2.2.

If α` ∈ D` 7−→ D`, we say that the abstract semantics 〈SJ`K, ` ∈ L〉 is sound with

respect to the concrete semantics 〈SJ`K, ` ∈ L〉 if and only if ∀` ∈ L : α`(SJ`K) v`
SJ`K. If is complete whenever ∀` ∈ L : SJ`K v` α`(SJ`K).

3 Structural order-theoretic inductive de�nitions of the

semantics of the call-by-value λ-calculus

The syntax of the λ-calculus with constants is

x, y, z, . . . ∈ X variables

c ∈ C constants (X ∩ C = ∅)

c ::= 0 | 1 | . . .

6

P. Cousot & R. Cousot

v ∈ V values

v ::= c | λ x . a

e ∈ E errors

e ::= c a | e a

a, a′, a1, . . . , b, , . . . ∈ T terms

a ::= x | v | a a′

We write a[x← b] for the capture-avoiding substitution of b for all free occurrences

of x within a. We let FV(a) be the free variables of a. We de�ne the call-by-value

semantics of closed terms (without free variables) T , {a ∈ T | FV(a) = ∅}.
The application (λ x . a v) of a function λ x . a to a value v is evaluated by sub-

stitution a[x ← v] of the actual parameter v for the formal parameter x in the

function body a. This cannot be understood as induction on the program syntax

since a[x← v] is not in general a strict syntactic subcomponent of (λ x . a v). Hence
the various semantics below cannot be de�ned by structural induction of the syntax

of λ-expressions. So the framework of Sect. 2.1 is instantiated with L = {•} and ≺
is de�ned to be false on L which prevents the use of structural induction on program

syntax. For brevity we omit the void syntactic component • writing e.g. F for F J•K,
D for D•, ∆ for ∆•, etc.

We introduce a maximal trace semantics describing terminating and diverging

computations. The trace semantics is then abstracted into a relational [20] and then

an operational semantics [15]. Each semantics can be de�ned using small steps or

big steps of computation. Each semantics can be de�ned in �xpoint or rule-based

form.

Semantics Fixpoint de�nition Rule-based de�nition

big-step small-step big-step small-step

Trace ~S lfp
v ~F lfp

v ~f Z=⇒ Z⇒⇒

Relational
ñ
S lfp

v ñ
F lfp

v ñ
f =⇒ ⇒⇒

Operational S lfp
⊆
f = gfp

⊆
f −A .

4 Big-step maximal trace semantics of the call-by-value

λ-calculus

We let T? (resp. T+, Tω, T∝ and T∞) be the set of �nite (resp. nonempty �nite,

in�nite, �nite or in�nite, and nonempty �nite or in�nite) sequences of terms where ε

is the empty sequence ε •σ = σ •ε = σ. We let |σ| ∈ N∪{ω} be the length of σ ∈ T∝.
|ε| = 0. If σ ∈ T+ then |σ| > 0 and σ = σ0 • σ1 • . . . • σ|σ|−1. If σ ∈ Tω then |σ| = ω

and σ = σ0 • . . . •σn • Given S, T ∈ ℘(T∞), we de�ne S+ , S ∩T+, Sω , S ∩Tω
and S v T , S+ ⊆ T+ ∧ Sω ⊇ Tω, so that the trace domain 〈℘(T∞), v, Tω, T+,

t, u〉 is a complete lattice. For a ∈ T and σ ∈ T∞, we de�ne a@σ to be σ′ ∈ T∞
such that ∀i < |σ| : σ′i = a σi and similarly σ@a is σ′ such that ∀i < |σ| : σ′i = σi a.

7

P. Cousot & R. Cousot

4.1 Fixpoint big-step maximal trace semantics

The bi�nitary trace semantics ~S ∈ ℘(T∞) of the closed call-by-value λ-calculus T
can be speci�ed in �xpoint form

~S , lfp
v ~F

where the set of traces transformer ~F ∈ ℘(T∞) 7→ ℘(T∞) describes big steps of

computation

~F (S) , {v ∈ T∞ | v ∈ V} ∪ (a)

{(λ x . a) v • a[x← v] • σ | v ∈ V ∧ a[x← v] • σ ∈ S} ∪ (b)

{σ@b | σ ∈ Sω} ∪ (c)

{(σ@b) • (v b) • σ′ | σ 6= ε ∧ σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S} ∪ (d)

{a@σ | a ∈ V ∧ σ ∈ Sω} ∪ (e)

{(a@σ) • (a v) • σ′ | a, v ∈ V ∧ σ 6= ε ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S} . (f)

The de�nition of ~F has (a) for termination, (b) for call-by-value β-reduction, (c)

and (d) for left reduction under applications and (e) and (f) for right reduction

under applications, corresponding to left-to-right evaluation. (b), (d) and (f) cope

both with terminating and diverging traces. In the framework of Sect. 2.1, we have

∆• , {a, b, c, d, e, f} where ~F i•(S), i ∈ ∆• is de�ned by equation (i). The join

operator is chosen in binary form as g• , ∪.
We observe that (S+ , S ∩ T+, Sω , S ∩ Tω so S+ ∩ Sω = ∅)

~S = ~S+ ∪ ~Sω

~S+ = ~F (~S+) = lfp
⊆ ~F+ where ~F+(S) , ~F (S+)

~Sω = (~F (~S+ ∪ ~Sω))ω = gfp
⊆ ~Fω where ~Fω(S) , (~F (~S+ ∪ Sω))ω .

(2)

The bi�nitary trace semantics ~S is su�x-closed in that

∀σ ∈ T∞ : a • σ ∈ ~S =⇒ σ ∈ ~S .

The bi�nitary trace semantics ~S is total in that it excludes intermediate or result

errors

∀a ∈ T :6 ∃σ, σ′ ∈ T∝, e ∈ E : a • σ • e • σ′ ∈ ~S .

The �nite maximal traces are blocking in that the result of a �nite computation is

always a �nal value

∀σ ∈ T∞ ∪ {ε} : σ • b ∈ ~S+ =⇒ b ∈ V .

8

P. Cousot & R. Cousot

4.2 Rule-based big-step maximal trace semantics

The maximal trace semantics ~S can also be de�ned as follows

v ∈ ~S, v ∈ V
a[x← v] • σ ∈ ~S

(λ x . a) v • a[x← v] • σ ∈ ~S
v, v ∈ V

σ ∈ ~Sω

σ@b ∈ ~S
v

σ • v ∈ ~S+, (v b) • σ′ ∈ ~S

(σ@b) • (v b) • σ′ ∈ ~S
v, v ∈ V

σ ∈ ~Sω

a@σ ∈ ~S
v, a ∈ V

σ • v ∈ ~S+, (a v) • σ′ ∈ ~S

(a@σ) • (a v) • σ′ ∈ ~S
v, v, a ∈ V .

De�ning ~SJaK , {a • σ | a • σ ∈ ~S}, ~S+JaK , {a • σ | a • σ ∈ ~S+}, and ~SωJaK , {a • σ |
a • σ ∈ ~Sω}, we can also write for brevity

v ∈ ~SJvK, v ∈ V
σ ∈ ~SJa[x← v]K

(λ x . a) v • σ ∈ ~SJ(λ x . a) vK
v, v ∈ V

σ ∈ ~SωJaK

σ@b ∈ ~SJa bK
v

σ • v ∈ ~S+JaK, σ′ ∈ ~SJv bK

(σ@b) • σ′ ∈ ~SJa bK
v, v ∈ V

σ ∈ ~SωJbK

a@σ ∈ ~SJa bK
v, a ∈ V

σ • v ∈ ~S+JbK, σ′ ∈ ~SJa vK

(a@σ) • σ′ ∈ ~SJa bK
v, a, v ∈ V .

Observe that the inductive de�nition of ~SJaK should neither be understood as a

structural induction on a (since a[x ← v] 6≺ (λ x . a) v) nor as action induction

[16] (because of in�nite traces). The de�nition could be split in inductive rules for

termination and co-inductive rules for divergence, as shown in (2), but the above

bi-inductive de�nition avoids the duplication of common rules. De�ning a Z=⇒ σ ,
σ ∈ ~SJaK, we can also write

v Z=⇒ v, v ∈ V
a[x← v] Z=⇒ σ

(λ x . a) v Z=⇒ (λ x . a) v • σ

v, v ∈ V

a Z=⇒ σ

a b Z=⇒ σ@b

v, σ ∈ Tω
a Z=⇒ σ • v, v b Z=⇒ σ′

a b Z=⇒ (σ@b) • σ′
v, v ∈ V, σ ∈ T+

b Z=⇒ σ

a b Z=⇒ a@σ
v, a ∈ V, σ ∈ Tω

b Z=⇒ σ • v, a v Z=⇒ σ′

a b Z=⇒ (a@σ) • σ′
v, a, v ∈ V, σ ∈ T+ .

9

P. Cousot & R. Cousot

5 Abstraction of the big-step trace semantics into the

big-step relational semantics of the call-by-value λ-
calculus

The relational abstraction of sets of traces is

α ∈ ℘(T∞) 7→ ℘(T× (T ∪ {⊥}))(3)

α(S) , {〈σ0, σn−1〉 | σ ∈ S ∧ |σ| = n} ∪ {〈σ0, ⊥〉 | σ ∈ S ∧ |σ| = ω}

γ ∈ ℘(T× (T ∪ {⊥})) 7→ ℘(T∞)

γ(T) , {σ ∈ T∞ | (|σ| = n ∧ 〈σ0, σn−1〉 ∈ T) ∨ (|σ| = ω ∧ 〈σ0, ⊥〉 ∈ T)}

so that

〈℘(T∞), ⊆〉 −−−→−→←−−−−
α

γ
〈℘(T× (T ∪ {⊥})), ⊆〉 .

The bi�nitary relational semantics
ñ
S , α(~S) ∈ ℘(T× (T∪{⊥})) is the relational

abstraction of the trace semantics mapping an expression to its �nal value or ⊥ in

case of divergence.

5.1 Fixpoint big-step bi�nitary relational semantics

The bi�nitary relational semantics
ñ
S , α(~S) = α(lfp

v ~F) can be de�ned in �xpoint

form as lfp
v ñ
F where the big-step transformer

ñ
F ∈ ℘(T× (T∪ {⊥})) 7→ ℘(T× (T∪

{⊥})) is
ñ
F (T) , {〈v, v〉 | v ∈ V} ∪

{〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x← v], r〉 ∈ T} ∪

{〈(a b), ⊥〉 | 〈a, ⊥〉 ∈ T} ∪

{〈(a b), r〉 | 〈a, v〉 ∈ T+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ T} ∪

{〈(a b), ⊥〉 | a ∈ V ∧ 〈b, ⊥〉 ∈ T} ∪

{〈(a b), r〉 | a, v ∈ V ∧ 〈b, v〉 ∈ T+ ∧ 〈(a v), r〉 ∈ T} .

Theorem 5.1 We have α(~F (S)) =
ñ
F (α(S)) and so

ñ
S , α(~S) = α(lfp

v ~F) =
lfp
v ñ
F .

5.2 Rule-based big-step bi�nitary relational semantics

The big-step bi�nitary relational semantics =⇒ is de�ned as a =⇒ r , 〈a, r〉 ∈ α(~SJaK)
where a ∈ T and r ∈ T ∪ {⊥}. It is

v =⇒ v, v ∈ V
a[x← v] =⇒ r

(λ x . a) v =⇒ r

v, v ∈ V, r ∈ V ∪ {⊥}

10

P. Cousot & R. Cousot

a =⇒ ⊥

a b =⇒ ⊥
v

a =⇒ v, v b =⇒ r

a b =⇒ r

v, v ∈ V, r ∈ V ∪ {⊥}

b =⇒ ⊥

a b =⇒ ⊥
v, a ∈ V

b =⇒ v, a v =⇒ r

a b =⇒ r

v, a ∈ V, v ∈ V, r ∈ V ∪ {⊥} .

Again this should neither be understood as a structural induction (since a[x← v] 6≺
(λ x . a) v) nor as action induction (because of in�nite behaviors). The abstraction

α(T) , T ∩ (T × T) yields the classical natural semantics [12] (where all rules

with ⊥ are eliminated and v becomes ⊆ in the remaining ones). The abstraction

α(T) , T ∩ (T× {⊥}) yields the divergence semantics (keeping only the rules with

⊥, v is ⊇, and a =⇒ ⊥ is written a
∞=⇒ in [15]).

Observe that both the maximal trace semantics of Sec. 4.1 and the above bi�ni-

tary relational semantics of Sec. 5 de�ne the semantics of a term that �goes wrong�

as empty.

The above big-step bi�nitary relational semantics =⇒ is equivalent but not iden-

tical to the standard big-step semantics which bi�nitary generalization would be

v =⇒ v, v ∈ V
a =⇒ λ x . c, b =⇒ v′, c[x← v′] =⇒ r

a b =⇒ r

v, v, v′ ∈ V,
r ∈ V ∪ {⊥}

a =⇒ ⊥

a b =⇒ ⊥
v

a =⇒ v, b =⇒ ⊥

a b =⇒ ⊥
v, v ∈ V

We have chosen to break evaluations of applications in smaller chunks instead so

as to enforce evaluation of the function before that of the arguments and to make

explicit the reduction step in the trace semantics.

6 Abstraction of the big-step trace semantics into the

small-step operational semantics of the call-by-value

λ-calculus

The one-step reduction semantics abstracts the trace semantics by collecting all

transitions along any trace.

The small-step abstraction of traces is

αs ∈ ℘(T∞) 7→ ℘(T× T)

αs(S) , {〈σi, σi+1〉 | σ ∈ S ∧ 0 6 i ∧ i+ 1 < |σ|} .

Since the bi�nitary trace semantics is su�x-closed, we can also use

α ∈ ℘(T∞) 7→ ℘(T× T)

α(S) , {〈σ0, σ1〉 | σ ∈ S ∧ |σ| > 1}

11

P. Cousot & R. Cousot

so that we have αs(S) = α(S) whenever S is su�x-closed. By de�ning ℘(T∞) to be

the set of su�x-closed and blocking subsets of T∞ and γ(τ) to be the set of maximal

traces generated by the transition relation τ ∈ ℘(T× T) that is

γ+(τ) , {σ ∈ T+ | ∀i < |σ| : 〈σi, σi+1〉 ∈ τ ∧ ∀a ∈ T : 〈σ<|σ|−1, a〉 6∈ τ}

γω(τ) , {σ ∈ Tω | ∀i ∈ N : 〈σi, σi+1〉 ∈ τ}

γ(τ) , γ+(τ) ∪ γω(τ) ,

we have

〈℘(T∞), ⊆〉 −−−→−→←−−−−
α

γ
〈℘((T \ V)× T), ⊆〉 .

6.1 Small-step operational semantics

The small-step operational semantics or transition semantics S is de�ned by α-

overapproximation αs(~S) = α(~S) of the bi�nitary trace semantics ~S.

S , lfp
⊆
f(4)

f(τ) , {〈(λ x . a) v, a[x← v]〉} ∪ {〈a0 b, a1 b〉 | 〈a0, a1〉 ∈ τ} ∪

{〈v b0, v b1〉 | 〈b0, b1〉 ∈ τ} .

The rule-based presentation of (4) has a call-by-value β-reduction axiom plus two

context rules for reducing under applications, corresponding to left-to-right evalua-

tion [20]. a −A b stands for 〈a, b〉 ∈ S.

((λ x . a) v) −A a[x← v]
a0 −A a1

a0 b −A a1 b

⊆
b0 −A b1

v b0 −A v b1

⊆ .

The inductive de�nition of S can also be understood as co-inductive since lfp
⊆
f =

gfp
⊆
f .

We have α ◦ ~F ◦ γ ⊆̇ f . Indeed α ◦ ~F ◦ γ ̇ f since a single transition

cannot anticipate whether the future computation can �go wrong�. For example

((λ x . x 0) 0) −A (0 0) ∈ f ◦ f(∅) while ((λ x . x 0) 0) −A (0 0) 6∈ α ◦ ~F ◦ γ ◦

α ◦ ~F ◦ γ(∅) since there is no trace of the form σ • ((λ x . x 0) 0) • (0 0) • σ′ in
~F ◦ γ ◦ α ◦ ~F ◦ γ(∅). It follows that the small-step operational semantics or

transition semantics S is sound but incomplete in that the set γ(S) of maximal

traces generated by the transition relation S includes the bi�nitary trace semantics
~S plus spurious traces for computations that can �go wrong� that is terminate with

a runtime error e ∈ E.

7 Small-step maximal trace semantics of the call-by-

value λ-calculus

The small-step maximal trace semantics
∞−A of a transition relation −A is de�ned

as

12

P. Cousot & R. Cousot

nX−A , {σ ∈ T+ | |σ| = n > 0 ∧ ∀i : 0 6 i < n− 1 : σi −A σi+1} partial traces

n−A , {σ ∈ nX−A | σn−1 ∈ V} maximal execution traces of length n

+−A ,
⋃
n>0

n−A maximal �nite execution traces

ω−A , {σ ∈ Tω | ∀i ∈ N : σi −A σi+1} in�nite execution traces

∞−A , +−A ∪ ω−A maximal �nite and diverging execution traces.

7.1 Fixpoint small-step maximal trace semantics

To express the small-step maximal trace semantics
∞−A in �xpoint form, let us de�ne

the junction ; of set of traces as

S ; T , Sω ∪ {σ0 • . . . • σ|σ|−2 • σ
′ | σ ∈ S+ ∧ σ|σ|−1 = σ′0 ∧ σ′ ∈ T} ,

and the small-step set of traces transformer ~f ∈ ℘(T∞) 7→ ℘(T∞)

~f(T) , {v ∈ T∞ | v ∈ V} ∪ 2X−A ; T(5)

describing small steps of computation. We have

∞−A = lfp
v ~f .

The big-step and small-step trace semantics are the same

~S = ∞−A .

7.2 Rule-based small-step maximal trace semantics

The maximal trace semantics ~S = ∞−A = lfp
v ~f where ~f is de�ned by (5) can be

de�ned inductively with small-steps as

v ∈ ~S, v ∈ V
a −A b, b • σ ∈ ~S

a • b • σ ∈ ~S
v

that is, writing a Z⇒⇒ σ for σ ∈ ~S and σ0 = a

v Z⇒⇒ v, v ∈ V
a −A b, b Z⇒⇒ σ

a Z⇒⇒ a • σ

v

8 Small-step bi�nitary relational semantics of the call-

by-value λ-calculus

The bi�nitary relational semantics was de�ned as
ñ
S , α(~S) (where α is the relational

abstraction of sets of traces (3)) and given in big-step form in Sec. 5. It can be

13

P. Cousot & R. Cousot

given in small-step form by abstraction of the small-step bi�nitary maximal trace

semantics of Sec. 7.1.

8.1 Fixpoint small-step bi�nitary relational semantics

The bi�nitary relational semantics
ñ
S , α(~S) = α(lfp

v ~f) can be de�ned in �xpoint

form as lfp
v ñ
f where the small-step transformer

ñ
f ∈ ℘(T× (T∪{⊥})) 7→ ℘(T× (T∪

{⊥})) is

ñ
f (R) , {〈v, v〉 | v ∈ V} ∪

{〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x← v], r〉 ∈ R} ∪

{〈a0 b, r〉 | a0 −A a1 ∧ 〈a1 b, r〉 ∈ R} ∪

{〈v b0, r〉 | b0 −A b1 ∧ 〈v b1, r〉 ∈ R} .

8.2 Rule-based small-step bi�nitary relational semantics

The bi�nitary rule-base form is (a⇒⇒ b stands for 〈a, b〉 ∈
ñ
S and r ∈ V ∪ {⊥})

v⇒⇒ v, v ∈ V
a −A b, b⇒⇒ r

a⇒⇒ r

v

9 Conclusion

Divergence/nonterminating behaviors are needed in static program analysis [18] or

typing [3,15]. Such divergence information is part of the classical order-theoretic

�xpoint denotational semantics [17] but not explicit in small-step/abstract-machine-

based operational semantics [19,20,21] and absent of big-step/natural operational

semantics [12]. A standard approach is therefore to generate an execution trace se-

mantics from a (labelled) transition system/small-step operational semantics, using

either an order-theoretic [4] or metric [23] �xpoint de�nition or else a categorical

de�nition as a �nal coalgebra for a behaviour functor (modeling the transition re-

lation) up to a weak bisimulation [11,14,22] or using an equational de�nition for

recursion in an order-enriched category [13]. However, execution traces are not al-

ways at an appropriate level of abstraction. Finite and in�nite behaviors can be both

handled by SOS when extended to bi-inductive structural bi�nitary small/big-step

trace/relational/operational semantics. Sound (and sometimes complete) abstrac-

tions are essential to establish this hierarchy of semantics [4]. This should satisfy

the need for formal �nite and in�nite semantics, at various levels of abstraction

and using various equivalent presentations (�xpoints, equational, constraints and

inference rules) needed in static program analysis.

Acknowledgements

We thank the anonymous referees for their helpful comments and suggestions.

14

P. Cousot & R. Cousot

References

[1] P. Aczel. An introduction to inductive de�nitions. In J. Barwise, editor, Handbook of Mathematical
Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages 739�782. Elsevier,
1977.

[2] I. Attali, J. Chazarain, and S. Gilette. Incremental evaluation of natural semantics speci�cations. In M.
Bruynooghe and M. Wirsing, editors, Proc. 4th Int. Symp. PLILP '92, Leuven, BE, 26�28 Aug. 1992,
LNCS 631, pages 87�99. Springer, 1992.

[3] P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL, pages 316�331, Paris, FR,
Jan. 1997. ACM Press.

[4] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theoret. Comput. Sci., 277(1�2):47�103, 2002.

[5] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269�282, San Antonio, TX, 1979. ACM Press.

[6] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511�547, Aug.
1992.

[7] P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract interpretation. In 19th POPL,
pages 83�94, Albuquerque, NM, US, 1992. ACM Press.

[8] P. Cousot and R. Cousot. Compositional and inductive semantic de�nitions in �xpoint, equational,
constraint, closure-condition, rule-based and game-theoretic form, invited paper. In P. Wolper, editor,
Proc. 7th Int. Conf. CAV '95, Liège, BE, LNCS 939, pages 293�308. Springer, 3�5 Jul. 1995.

[9] Th. Despeyroux. TYPOL: a formalism to implement natural semantics. Tech. rep.RT-0094, INRIA
Sophia Antipolis, Mar. 1988.

[10] C.A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12(10):576�580, Oct.
1969.

[11] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin, 62:222�269,
1997.

[12] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming of Future Generation
Computers, pages 237�258. Elsevier, 1988.

[13] B. Klin. Adding recursive constructs to bialgebraic semantics. J. Logic and Alg. Prog., 60-61:259�286,
Jul. -Dec. 2004.

[14] B. Klin. Bialgebraic methods in structural operational semantics. ENTCS, 175(1):33�43, May 2007.

[15] X. Leroy. Coinductive big-step operational semantics. In P. Sestoft, editor, Proc. 15th ESOP '2006,
Vienna, AT, LNCS 3924, pages 54�68. Springer, 27�28 Mar. 2006.

[16] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor,
Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, chapter 19,
pages 1201�1242. Elsevier, 1990.

[17] P.D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Formal Models and Semantics,
volume B of Handbook of Theoretical Computer Science, chapter 11, pages 575�631. Elsevier, 1990.

[18] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value. In B. Robinet,
editor, Proc. 4th Int. Symp. on Programming, Paris, FR, 22�24 Apr. 1980, LNCS 83, pages 270�281.
Springer, 1980.

[19] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus
University, DK, Sep. 1981.

[20] G.D. Plotkin. The origins of structural operational semantics. J. Logic and Alg. Prog., 60�61:3�15, Jul.
-Dec. 2004.

[21] G.D. Plotkin. A structural approach to operational semantics. J. Logic and Alg. Prog., 60�61:17�139,
Jul. -Dec. 2004.

[22] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc. 12th LICS '1997,
pages 280�291, Warsaw, PL, 29 June � 2 Jul. 1997. IEEE Comp. Soc. Press.

[23] F. van Breugel. An introduction to metric semantics: operational and denotational models for
programming and speci�cation languages. Theoret. Comput. Sci., 258:1�98, ¥ 2001.

15

