FIXED POINT APPROACH T0 THE

APPROXIMATE SEMAHTIC ANALYSIS OF PROGRAMS

Patrick Cousot”™ and Radhia Cousot™
Université Scientifigue et Madicale de Grenoble
(Jure 1977)

Parts of sections 2 and 4 are based on a paper presented at the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, Calif., January 1977 [13], section 7 is based
on a paper presented at the ACM Conference on Language Design for Reliable Software, Raleigh,
North~Carolina, March 1977 [14], and parts of sections 2 and 6 are based on a paper presented
at the SIGACT-SIGPLAN Symposium on Artificial Intelligence & Programming Languages,Rochester,
New-York, August 1977 [16].

~This work was supported in part by (*) CNRS, Laboratoire Associé n®7 and ATP D3119 and in
part by (+%) IRIA under grant SESORI-T6160.

Authors'address : Mathématiques Appligquées Informatigue, Laboratoire Associé au CNRS n°7,
Université Scientifique et M&dicale, B.P.53, 38041 Grenoble-Cedex, France.

N

ral model foo static amal-

Abstract : Abstract interpretation constitutes a mathemet
ysis of programs. The information to be gainhered atout nrograms are motialed in o
complete lattice. According to the semantics of the utilized languagze, olementary
instructions can be interpreted by order-preserving functions. This psrmits a sya-
tem of recursive equations.to be associated with any particular program. The deter-

- mination of properties of that program then consists in solving the corresponding
fixed point eguations. For continucus equations the exact solution can be construc-
ted iteratively by Jacobi's successive aporoximations, but in practice any chactic
iteration method is shown to fit.

Standard arguments on decidability show that convergence of successive iterates
may happen not to be %uaranteed. Mathematical technicues are reviewed to cope with
the determination of undecidable properties of programs. In particular, we intro-
duce structural and more generally computational approximation methods which can al-
ways be used in practice to mechanically discover a correct approximation of the
exact but unreachable sclution to the eguations.

Abstract interpretation of programs orovides a unified approach to apparently
unrelated program analysis techniques. It is shown to be powerful enough to tackle
with theoretical as well as practical problems such as denotational semantics of
programs, proofs of partial correctness, proofs of termination, symbolic execution,
analysis of program performance, type verification or discovery, global data flow
analysis, finite or infinite state program analysis.

Key Nords and Phrases : abstract interpretations, static analysis, lattice, system
of equations, fixed points construction, fixed points approximation, chaotic itera-
tive methods, program semantics, logical enalysis, correctness, termination, symbol-
ic execution, performance analysis, type discovery, finite or infinite state pro-
gram analysis, global data flow analysis.

CR Categories : 3.66, 4.0, 4.12, 4.13, 4.2, 4.42, 5.24, 5.30, 5.7

1. INTRODUCTION

In recent yéars considerable effort has been devoted to the development of rational tech-
nigues for conducting analysis of programs. The general term analysis of programs covers a
wide variety of domains and specific techniques. Semantic analysis attemots to soecify the
"meaning”® of a program, (see e.g. [54]), logical analysis is used either to verify the pro-
gram with respect to a specification or to prove that the program contains an error {see e.g.
[32]), compile time analysis includes technigues such as type verification or type discovery
which are used to check weak properties of programs (see e.g.[14]) or glcbal data flow analy-
sis preceeding program optimization (see e.g.[62]), performance analysis tries to anticipate
the running time of programs (see e.g.[64]).

In spite of the apparent diversity of these multifarious domains we have had for a
long time the feeling that very similar technigues were used and thought that a common model
would high-light the underlying unity and provides some insight in each of these specializad
and somewhat artificielly disjoint research areas.

This paper deals with abstract interpretation a mathematical model for static analysis
of programs. The information to be gathered about programs are modeled in a complete lattice.
According to the semantics of the utilized language elementary instructions can be interpre-
ted by order-preserving functions. This permits a system of recursive equations to be assocciat-
ed with any particular program. The determipation of properties of that program then consists
in solving the corresponding fixed point equations. Under continuity hypothesis the exact so-
lutien can be constructed iteratively by Jacobi's successive approximations but this result
is generalized and we show that in practice any chaotic iteration method would fit. Standard
arguments on decidability show that the iterates may happen not to converge toward the desired
solution in a finite number of steps. Therefore mathematical teohniqueé must be reviewed to
cope with the determination of undecidable properties of programs. The classical methods are

formal resolution of the equations and utilization of mathematical induction. However this

carnct lead to completely mecr o oo toonm s s - T L AVEU S I BT AP

raily computational approvimation meciods whlch oo L .. B TS U A AT S IR NP B!

discovery of a correct approximation o *he exast v T il T lnIion Taonwr @nsahd
Clearly, parts of this fixed pnint.an : SronTaETs haua Coan sl

or implicitly suggested in the litieratu: 3 AR ARG N i c B

[611, [62], L6851, [56]). Howovar the criginality of cu- work Lo by osyednasics ohe varioos oo-

proaches and to enliarge them in crder to be able to Looile wion Shmorstic a3 o woll s

U
¢

tical problems.
In Section 2 we introduce the mathzmeticel modzi Lsed 19 abutract intsro-olating -F 10—

grams. It is illustrated by a very simplz and intuitive

performance analysis of programs, the intention is to randsr Voanal
ysis straightforward. Section 4 copes with the practical problew of &
properties of programs. The remaining secticons point cul the wide @sne2 of apniicabiiity o thz

model. We describe the application of abstract interpraztaiion of proar

mantics (Section 5], logical enalysis of orogrems (Section 8), corpile-tims anzlvsis (Seoticrp
7). Implication of this work and the necessary further researches zre discusszd in tha conolu-

sion (Section 8).

2. THE MATHEMATICAL MODEL USED IN ABSTRACT INTERPRETATION OF PROGRAMS

2.1 THE COMPLETE LATTICE OF PROPERTIES

Example : Let us introduce the abstract interpretaticn of programs by means of a very intui-
tive and trivial example. Suppose we are interested in discovering the sign of the integer va-

riable x in the (non-terminating) program
x:=1; while true do x:=x+1 od;

Roughly speaking, program analysis requires the determination for each program point i of an)
invariant property Pi known to hold each time control reaches i during execution, independently

of the path teken to reach the program point i. Let us introduce notations for these properties:

we denote by + the fact that x is positive, by * that x is negative, and by i the fact that x

is an integer whose sign is unknown. We denote by 1 the fact that x is not initialized. The

set L = {1,%, %, i} of properties is ordered by the partial ordering relation ¢ defined by the

following Hasse diagram :

e
|

L

For instance +c+ since the assertion that x is a positive integer is less unprecise than the

assertion that x is simply an integer. End of Example.

The set L of properties is a complete semilattice with partial ordering t and least upper
bound or join of two elements LI. We also assume that L has an infimuwn denoted L. (The defini-

tions and mathematical properties of these notions can be found in many places, for examole [5]).

Cemg L Zs o Gndp-semilittice with intimum, it is a complete lattice ([51,Ch.V,§3). We
will respestively derote ny L ML ITthe join of a set of elements, greatest lower bound (or
meot] of two elements, and meet -of a set of elements of L. Since L is a complete lattice it
nas a suprermst denuted by T .

We will use the fact that L is a complete lattice in the formal reasoning whereas for the

practical asolications we will need only to implement the operations U and e.

Evample : Tne partial ordering £ has bsen defined by : lsicicicici and 1ectci where t is the
T ; g
supremumn otherwisz dencted by T. This implies that the join of two properties is defined by

"y

Wiber, Hi=k, HJE=i, flu-+, etc. End of Example.

2.2 SYSTEM OF EQUATIONS ASSOCIATED WITH A PROGRAM

s

Excmple : Let us further essociate inveriants Py, P,, P, with various points {1}, {2} and {3}

of the programn
x:=1 {1}; while true do {2} x:=x+1 {3} od;

The value of P, P,, Py may be i, +, * or 1 depending on the dynamic properties of x at the
respective proegrem points {1}, {2} or {3}.
Accordiny to the semantics of usual programming languages we know that :
- x is positive at progrem point {1} since it is equal to 1. Therefore : Py=+.
- the sign of x at point {2} may be P, when coming from point {1} or P; when coming from {3}.
Therefore : P,=P, 1JP,.
- finally suppose the sign of x is P,, then the sign of x+1 is P, 8 +, where the operator

® is defined by the rules of signs :

;&J;:;
lwd o= i
i@+ o= %
1m+ =1

Hence the sign P4 of x after the assignment x:i=x+1 is PZEI¥. Therefore : P,=P, 8 +.

Notice that our simple reasoning permits to establish a system of three relations between

the three invariants PI. Pz, P3 :
P, =+
P, = P UP,
Py = P84

Since Py, P,, Ps need not satisfy any other constraint, any solution to the system of equations:

X, = *
Xy = X UXy
Xy = X, 84

would be an acceptable candidate for the invariants. End of Example.

According to the semantics of the utilized programming language, the assertion Pi associa-
ted with program point {i} is a function ?i of the assertions Pl,..., Pn associated with the
various points {4},..., {n} of the program. Therefore the desired properties P;,..., Pn must
be one of the solutions to a system of mutually recursive equations with n variables of the
farm

X, = FI(XI,...,XH) LT »

X2 F (XysenenX) -
n n

N

ehbreviates oy a fxs! woint equuiion X=F(X) wnare X is the vactor XyseeanX >,

2.3 EXISTENCE OF A LEAST SOLUTION TO THE SYSTEM OF EQUATICONS

EBxample : Sclutions to the system of eduations

[X, =+ = £1(X1.%5.X35)

SXZ = X UXy = Fo(Xy),X5,X5)

(Xy = X, @4 = Fa (X1, X,,X4)

exist, and in general are not unigue
Xy = § Xy =+
(a) | X, = + (b)} X, = 4
Xy = 4 Xy = &

However, a best solution (a) exists since + is a more precise result than £. Since +ci, (a)

is the least solution to the system of equations. End of Example.

HYPOTHESIS 2.3.1 The set L of properties <s assumed to be a complete lattice (&, 1, 7,U,MLILID.

LEMMA 2.3.2 The set L 4s a complete lattice.

The direct product Ln is the set of all sequences <X1""’Xn> with n elements belonging to L.
Since L is a complete lattice, it is easy to prove that the "componentwise” defimition of £
Lo T Un' ﬂn' Un’ Hn make L" a complete lattice ([5],Ch.V,§1). As usual we have

{<X1....,Xn> E Ypseea,Y >} <=> {{x;5 v;), ¥iel1,n]}

<x1""'xn>un<Y1""’Yn> = <X1UY1,...,XnUYn>

etc.

We drop the subscript n in the notations Ehr Lpyrees when unambiguously available from context.

BEFINITION 2.3.3 A function ¢ :0~D' on the poset (D,<) to the poset (D',c) Zs order-pre-

serving (synonymously, monotone or isotone) Zf and only if : {¥(x,y)eD?, (x<y) => (Q(x) = Wy}

Note that when D and D' ere join semi-lattices this definition is equivalent to

{¥{x,y)eD?, (P(xIUPy)) € ®lxUy)}

HYPOTHESIS 2.3.4 The functions fi» iel1,n] are assumed to be monotone functions on the
poset (Ln.En] to the poset (L,S).

LEMMA 2.3.5 The function F on the complete lattice \." to itself is monotone.

This is a direct consequence of the hypothesis that the Fi are monotone. The main conse-
quence of the lemma 2.3.5 is that F has fixed points, that is there exists some Pel” such
that P=F(P}. In general the number of fixed points of F is infinite. Fortunately there exists
a unigue. least fixed potnt P of F such that P=F(P) and if Q=F(Q) then Pe_ 0. The least fixed

point P of F is chosen to be the solution to the system of equations X=F(X].

THEOREM 2.3.6 Any monotone map @ of a complete lattice L (c,i,7..0MLILID into ttself has a
least fixed point lfp(¢) defined by : Lfp(®) = OD{xel]@(x)ex}.

Proof : ([51,Lh.V, dual of Th.11). Let S be the set of elements xel such that @(x)zx. Since
L is/complete the greatest lower bound [IS of S exists. Let us denote [IS by a. Since T is the
supremum of L, ®(T)ET hence S is not empty. Since @ is monotone and ac x for all xeS,
$lale@(xlex for all xeS ; hence ®(a)cllS-a. It follows, since © is monotone, that
@{p(al)lc ¢(a) , whence Cp_[a)eS.

But this implies ao wl(a) since a=I1S.We comulule that a i5 o fivsg soirt af o et

b be enother fixed noint of @, since @lol=h, beS. Hence ad[S Zmrlies o«

a is the unique leest fixed point of ®. &nd of Proof.

The above theorem is due to Knaster{([40]). In addition Tarski([60]) proves that the sst
of fixed points of ¢ is a complete lattice. This theorem parmits the existence of a sclution
to the system of eguations to be discussed. However it is rot constructive, and additional hy-

pothesis are necessary to provide an algorithmic definition of Lfp(F3.

2.4 CONSTRUCTION OF THE LEAST SOLUTION TO THE SYSTEM OF EQUATIONS BY SUCCESSIVE APPROXIMATIONS

Example : The least solution to the system of equations

XI = 4
Xy = XILJX3
Xy = X,B4%

can be automatically constructed by successive approximations, as follows :

First approximation

o _
X{ =1
X3 =1
0o
Xy =1

The second epproximation is obtained by replacing Xy, X,., X, bythe values obtained at the first

approximation 1n the right hand side of the system of equations. We get

l _I
R
xy = x3uxd = 1uL =2
[X3 = x}®+ = 1@+ =4
Third approximation
2 _
r-)(1 = 4
X7 = XiUx} = duL =4
_xi:x;ai =1@i =
Fourth approximation
FX::;
X3 = XZux3 = fyr =4
[X} = x2mi = i@t =&
At last iteration recognizes that no change occurs in the values of X1a X, and X4
FX’;z;
x; = xiL}xg = ¥]E =4
[X5 =x;@i =+i@+ =4

so that we have obtained the least solution to the equations.
This is certainly a toilsome but at least systematic and simply automatizable way to
prove that x is positive in the program : x:=1 {1} while true do {2} x:=x+1 {3} od ;

End of Example.
DEFINITION 2.4.1 A map ¢:0+D' of a complete lattice (D,c,l|) into the complete lattice

(0',£7,U') Zs called upper-semi-continuous (in short continuous) if whenever X={x1,x2,...,xn,..J
where XeD and x| X, & .. EX € ... then @IX) = [I'{p(x) |xex}.

Note that a continuous map is monotone. Conversely a monotone map ¢ is Histributive over finite
" chains since xty implies @IxUy)=@(x)UP(y). This is not true in general for infinite chains

unless when ¢ is continubus.

e

(This notion of continuity corresponds to the topological definition, see for example [15] or
[531). .

HYPOTHESIS 2.4.2 The functions Fi:Ln—>L. iel1.,n] are assumed to be continuous.
LEMMA 2.4.3 The function F on the complete lattice L' to itself ©s continuous.

This is a direct outcome of the hypothesis of continuity in the -Fi. The main conseguence
of this lemma 2.4.3. is that the least fixed point of F can be defined as the limit of a se-

quence of successive approximations. :
THEOREM 2.4.4 Every continuous function ¢ on the complete iattice L(g, L, T, LILID o ;
itself has a least fixed point given by the formula : Lfp(@) = U{Cpk(a)[KZD} where acl is such ‘
that acola) and ac lfp(9) and (pk is the k-fold composition of @ with itself.

Proof : Since L is a complete lattice p=LI{¢" (a)|k20} exists.

2.4.4.1 - p is a fixed point of @
Since atc @(a) and ¢ is monotone, we can prove by recurrence on k that CPk[a) sw"‘”(al holds
for all k. Hence by transitivity, a=¢%(a) g Cpk(a) for all k1. Therefore p=H{CpK(aJ|KzD}=
U{cpk(a)lkz1}=U{cpk~“[a)|k20}=q,z(U{CPk(a]|k20}] since @ is continuous. Then p=%(p). i

2.4.4.2 - p is the least fixed point of ¢]
Theorem 2.3.6. proves the existence of a least fixed point Zfp(§) of &. Since acslfp(¢) and
¢ 1s monotone we can prove by induction on k that Cpk(a] =lfp(¥). This proves that
H{Cpkta] | k=0} Elfp(¢) hence p E1fp(¥). Moreover by definition of a least fixed point
Lfpl®) £ p, hence we conclude by antisymmetry that p=lfp(¢). End of Proof.

This theorem was suggested by Tarski with the hypothesis that % is distributive under
countable joins, ([60], p.305). It is also comparable with Kleene's first recursion theorem for
functional equations over integer functions, [39]. Following Scott[53], it has been proved by
numerous authors with "a” trivially chosen to be the infimum "1* of L. i
Notice that thé least fixed point of ¢ is the limit [U{cpk(a]IKZO}) of a sequence x=a,
x1=cp(x°)...., xk+1=q;(xk).... of successive approximations. This sequence forms an increasing
chain, that is to say x%ex!ce ...ExKE The iteration process eventually converges after
w steps if x"=x""1 (in which case xm=pr(FJ]. On the contrary it diverges when the seguence
of successive approximations is an infinite strictly increasing chain. Therefore, one of the

hypothesis which may insure convergence of this iterative method is that L satisfies the

following ascending chain condition.

DEFINITION 2.4.5 A partly ordered set P satisfies the éscending (or descending) chain condi-
tion <f and only <f all strictly ascending (descending) chains in P are finite.

Example : The lattice L={%,+,,1} is finite, hence it satisfies the ascending and descending
chain conditions ([5LCh.VITI.%LEx.6(a)).Since L is a lattice with infimum satisfying the ascen-
ding chain condition, it is a complete lattice ([5)1Ch.VIII.NLEx.1(a)). The equations associated
with any particular program are obtained by composition of monotone elementary functions, hence
the {i are monotone. The elementary functions (constant +,U,®) are shown to be monotane by

»
case analysis.

. = 3 RN L . ces : . .
Since F is monotore and L7 satisfies the ascending chain condition, it is5 continuous. The
least fixed point of ¥ has been computed by succrssive approxiiations starting from the infimum
3 R ; . -~ . n
<1,1,1> of L°. This iteration process necessarily converges for any program (any F) since L

satisfies the ascending chain condition, ([51,Ch.VIII.1,Ex.4). End of Example.

2.5 CONSTRUCTION OF THE LEAST FIXED POINT OF F BY CHAOTIC ITERATIONS

We have solved the fixed point equation X=F(X} by Jacobi's method of successive approxi-
XK+1=F[XK). (k=0,1,2,...) which can be detailed as

kK Kk K
= X X)) (KE0,1,2,000)

mations

1
Xt
1i=1,2,«+.,0

In practice the Gauss-Seidel's iterative method

kel k ok k
XET = X e X
ORI SOt N XK x5
S R -1+ 'n
X e T XY R
n n 1 n=-1 n

which consists in continually reinjecting in the computations the last results of the computa-

tions themselves would reduce the memory congestion and accelerate the convergence.

Example : Solving the system of eguations

X, =+
Xy = X UX,
Xy = X, @+

using Gauss-Seldel's method we get

First approximation :

'xf =1
Xy =1
| X3 =1

Second approximation :
—Xi=;.
Xy = XTux] = UL =¥
_X;=X§ﬂ1 = +@4+ = 4

A last iteration proves stabilization :
X
X2 = XZyX} = Ut =+ =x}
[X3 = xImt = i@+ =+ =X

The iterates converge after 3 steps instead of 5. End of Example.

In general Robert[[SO]) shows that Gauss-Seidel’s methods is not algorithmicly more re-
liable than Jacobi's successive approximations method. This means that without sufficient hy-
pothesis on F Jacobi’'s method may converge although the Gauss-Seidel one cycles. The contrary
is also true, that is Gauss-Seidel's method may converge although Jacobi's iteraticns endless

s
cycle. Fortunately this phenomenon is impossible when F is continuous.

We will now show that any chaotic iteration method converges to the least fixed point of
»
F. Otherwise stated this signifies that one can arbitrarily determine at each step which are
the components of the system of eguations which will evolve and in what order {as long as no

component is forgotten indefinitely].

DEFINITION 2.5.1 Let 1 be ¢ subaat Of {’;, . _,j}, Ve Aaonnta Py F Fhw [n—> [_n o by
v N - - SR

L7

FJ[Xl , ...,Xn]=<Y1 R I where ¥iel1,n] we lime

Yy o= Ti(xl,...,xn) 7f ieJ

Y, = X, if ié]
1 1 ©

{As before we will go on denoting F{1) by F}.

DEFINITION 2.5.2 An ascending sequence of chaotic iterations eorres sponding to the operator
F and starting with a given vector X° such that X'c F(X") and X' Lfp(F) Zs a sequence XK.
k=0,1,... of vectors of L" defined recursively by : XK—FJ [XK_IJ where Jy» k=0,1, is a
sequence of subsets of {1,....n} such that no component zs fopgotten indefinitely that is :

{3m>0[{ (¥ie(1,n]), (¥k20), (38cLO,ml) ! ied®41).

Jote : The choice JK={1,...,n}, ¥k corresponds to Jacobi's iterative method, whereas the choice

JK={[k modulo n)+1},¥k corresponds to Gauss-Seidel's iterative method. End of Note.

[oed
THEOREM 2.5.3 The limit kI_IUXk of any ascending sequence of chaotic <terations

x%,.. Xk X Y. s equal to the least fiwed point Lfp(F) of F.

LEMMA 2.5.3.1 {vk20, x* e X' & F(x*) & 1pp(F))

Proof : Let us first remark that whenever Xt F(X)E Lfp(F) we have ¥Je{1,...,n}, X FJ(X)EF(X)
€ Ifp(F). Indeed Vie[1,n], Xis fi(X] therefore if ieJ then Xis *Fi(X)=F(X]i=FJ(X]i otherwise
Xi=F [X] C‘F (x).

Since by hypothesis x° cFx° e Ifp{F) this 1mplles x°cE o(X 1=x e F(x?) c pr[F). For the

inductlon step let us assume that X* ICXKC F(X]'= Lfp(F) *FOI" some k>0. If 1eJ*7 then
X;‘.-F (X]:'F (x"]':ZfP[FJ since x*7! e lfp(F} and) is monotone. Otherwise ill;Jk—1 and

X;—XK 1c-F (XK e pr(F) by induction hypothesm so that X :F (X)c:+‘ (X Je pr[F) by mone-
tony. In both cases we have viel1,n], X CF (X JCpr(F] therefor‘e XKC F[X Je lfp(F) proving

that x*gxk*! - kX e Py e Lpp (P, End of Proof.

LEMMA 2.5.3.2 {3qel0,m] | (vk20), (F(x®yexK*9))

Proof : The proof is by reductio ad absurdum. Let us suppose that {¥qe[O,m], 3k=0 | E(F[XKJE
x**9)}. This is equivalent to {¥aelO,mJ, 3k20 | (X**IeF(x*)) or (F(xX) not comparable with
Xk+q)}. Suppose that V¥gelO,ml, 3k=0 such that F(XK) is not comparable with Xk+q. This must be
true for g=0 which contradicts lemma 2.5.3.1. Suppose now that V¥qe[O,m], 3k=0 such that

x%*9c¢ F(xX), that is by definition of the strict inequality we have X**%g F(x®) and X¥*%er(x").
This implies that for some component iel1,n] X;+qc Fi[Xk], while for the other components the

inequality is not necessarily strict. By definition of chaotic iterations {3Im>0 I {vi, Vk,

32e[0,mL | 1eJk 2}} therefore XE el f.(XK+2]. But lemma 2.5. 3 1 implies by transitivity that
1
X CXK 2 thus by monotony f, (X]Cfl[xk 2] which 1lelE’5 f (X J_ K+Q'+ . Choosing g=2+1 we have

by hypothesis 3k such that XI; qCF (X } and also f [X]EX whlch is impossible. This contra-

diction proves the truth of lemma 2.5.3.2. End of Proof.
—

[es]
Proof of Theorem 2.5.3 : Let us first prove that kgE] K e F(U X). According to lemma
K

K
2.5.3.1 we have ¥k20, X EF[XK). Since Il is monotone we get c l:UDF(X J. The sequence

(XS]

ot chaotic iteracians is an inors asing chain [lemma 2 .’ .1) and F is continuous, hence
cmY ; ou ‘L-\\ S . [s51
thF(h\)=F(gljx J hence by trarsitivity %U” g F(H x“). Let us row prove that rLKQDXK)
‘-‘!_\v . . SRS .) =
= QJDX’. Accordging to lemma 2.5.3.2, 3Juy:l0,mJ such tﬂ?L vk=20, F(XR]L-XK+Q. Hence by monotony

o« oY <
II Fix® g k O K+q Kgq Xk =QAJXK since QU X EIXK d (lemma 2. 5 3.1). By continuity of F we

deduce F(kUﬂX je 1¥]xk, he noe by ant1°5mmetry we conclude F(H xk)= HOXk
Also lemna 2.5.3.1 1mplles H X g Ifp(F)=Lfp(F) and by unlqueness of the least fixed point
of F we conclude II X' prfF] End of Proof.

Theorem 2.5.3 imposes to take Ifp(F) to be the join ngxk of all terms of the chactic

iteration sequence. In practice we can overcome this difficulty thanks to the following result :

THEGREM 2.5.4 Let m be the maximum mumber of steps which ave necessary for any component to
evolve in chaotic iterations. There exists an ordinal k of eardinality less or equal to that
of L" such that {Yizkm, Lfp(F)= X,

LEMMA 2.5.4.1 Let k,R20 such that k=% then {(pr(F)zx'““lgz;(pr(Fsz 1} o= {xmexdmy

Proof : We prove that ka=le implies pr[F]=ka for k<f (since the case k>{ is symmetric]).

According to lemma 2.5.3.1 and 2.5.3.2 we have kac F[ka]EXm+mEXm=ka proving that

th=F[XKm] and since ka e lfp(F} we have X -ij(F] End of Proof.

Proof of Theorem 2.5.4. The proof that {3k|(k<l™ and (22km => pr(F)=X9"J} is by reductio ad
absurdum. Indeed, suppose that {V¥k, (k>L") or (&zkm gﬂg_lfp(Flzxz)}. Let a be the least ordinal
of cardinality strictly greater than L". Yk<a we must have (Rzkm égg_lfp(Fllel. that is
pr(F):ka when choosing 2 to be km. Let us define wea-*Ln by (k)= ka. vk, ,k,ea such that
ky#k, (with eventually (k,=a) exclusive or (k,=a)} we have (Ifp(F)=X 1m) or (pr(F)zx 2™y hence
lemma 2.5.4.1 implies that Xk sz m proving that ¢ is a one to one correspondence of a into
Lo, Therefore o is of cardinality less or equal to that of L" which is the desired contradic-

tion. End of Proof.

Notes : (i) These theorems can be extended to asynchronous iterations as defined in [4]. (ii)
When the iterating order which is used to solve the equations corresponds tothe program control
graph the successive approximations can be intuitively comprehended as a symbolic execution of
the program. This was the way iterative methods were first understood (e.g. [12], [36], [511,
{561, [65]). (iii) The guestion of optimal order of iteraticn has not yet received a conceptual
answer. (e.g. [2], (331, [591). End of Notes.

2.6 TYPOLOGY OF ABSTRACT INTERPRETATIONS

2.6.1 DUAL ABSTRACT INTERPRETATIONS

By the Duality Principle ([5], p.3), we can replace all occurrences of (g, 1, T, U, N,
I, ascending, least fixzed point(lfp)) respectively by (=, v, +, M, U, 00,1, descending, grea-
test fized point(gfp)) to get dual results. These dual results are never stated explicitly but

are always implicit for all statements in this paper.

2.6.2 FORWARD AND BACKWARD SYSTEMS OF EQUATIONS

We defined the invariant Pi at point i as a function Fi[Pl,....Pn] of the invariants asso-

ciated with each of the program points {1},...,{n}. Two particular cases are of special practi-

cal importence. In szwwrd equaticns each invariant Pi is only function of the invariants asso-

ciated witn ths progrem points {j} which precede {i} in the contral flow (e.g. [181),

woereas in surkward equlionsg each invariant Pi is only a function of the invariants associated
with the program points {k} which follow {i} in the control +low (e.g. live expressions at pa-
ragraph 7.1). The mized case where each invariant Pi is a function of the invariants associated
with the program points which either precede or follew {i} in the control flow is also widely

used (e.g. [61]).

2.7 DISCUSSION ON ALTERNATE MATHEMATICAL MODELS

Arbitrary posets are not in general complete lattices. Other well-known fixed point theo-
rems might be used in such a case {(cf. [1], [28] etc.). Other convenient algebras permit cons-
tructive definitions of fixed points to be given {c¢f. chain complete partly ordered sets, com-
plete ordered F-magna [4773, [11], initial continuous algebras [20]). However we choose to use
the complete lattice model because it is well-known. Moreover any poset can be made a complete

lattice by known systematie methods (cf. [42]).

3. APPLICATION TO PERFORMANCE ANALYSIS OF PROGRAMS

This example of application is presented first, since it allows the mathematicael model

which is used to be understood by analogy with numerical analysis techniques.

3.1 ASSOCTIATING A SYSTEM OF EQUATIONS WITH A PROGRAM

The performance of a progrem may be analyzed by counting the number of times each step of
the program is executed.
We will model the program by a connected directed graph with a single entry arc and whose

nodes are junction, branch or separation (test) points.

Suppose we are given for each test o in the program the probability pla) that this test
will be true after being evaluated. It may be very difficult to obtain an exact expression of
these probabilities in terms of known properties of the input, for example internal tests may
depend on computed quantities having no simple relation to the input. A major simplification is
to consider tests as Markov processes, i.e. the probability is constant and independent of
prior history. Furthermore we assume these probabilities to be "given®” (e.g. as determined by
measurements).

We wish to determine the expected frequency Xi of traversing each arc i in the program
during a single execution of the whole program. The expected frequencies are given by the so-
lution to a system of equations generated from the program by application of Kirchhoff's first

law of conservation of flow

o

X, =1

X2 = X1+X3

Xy = X, .n{Q) - ’
Xy = Xz.{1-plal)

12

3.2 THE COMPLLETL LATTICE OF FREQUENCIES

Freguencies are zero or pasitive reals R* ordered by the natural ordering < (z). The
least upper bound operaticn U is the maximum max, and the gfeatest lower bound operation [1 is
the mimimum min operation. The infimum 1 of the poset R is equal to D=ﬂ£ﬁ{i[ieﬂ?+}. Notice
that RY is conditionally complete ([5]1, Ch.V, §3) but not complete since the expression
MAX{i]ieIR+} is not defined. However we can make R~ into a complete lattice R* by adjoining
a supremum 7 denoted « and defined by m=j@§{i|i€IR+}. Now, EQ*(S,O,w.mngmiﬂ,ﬂéﬁ,ﬂzﬂj is a

complete lattice.

3.3 SOLVING THE SYSTEM OF EQUATIONS

Let us simplify the system of eguations by elimination of the variables X1 and X, (and
supposing that the value of p{a) is given by a constant expression pJ).
X, = 1+X,.p
X, = X,.(1-p)
Since X, depends only on itself we can first solve the subsystem X2=1+X2.p. (i.e. X2=F(X2)
where F(X)=1+X.p].
It is obvious that the solutions to this equation in R" are 1/(41-p} and «~. However going

on with this example provides an intuitive application of theorems 2.3.6 and 2.5.4.

3.3.1 EXISTENCE OF SOLUTIONS
Theorem 2.3.6 requires F to be order-preserving which is obvious since p20.

Note : The proof that F is monotcone need not be done for every particular program. In general
it is possible to show that the isotony (as well as continuity) of F is a direct conseguence

of the syntactic method which is utilized to built the system of equations. End of Note.

Theorem 2.3.6 then states that the extreme fixed points of F are

Lfp(F) = MIN{XeR™|(1+X.p)sX}
= g_I_f\J_{x[M/M_—pJJSXSm}
= 1/{1-p)
Bually :

gfptF) = MAX{XeR" |X<(1+X.p)}
= MAX({X|0<xX<(1/(1-p))} u{=}

o

These results are easily understood by the following geometric interpretation

FIX) & X
1+X.p gfp(F]'*w
2
“1fp(F)
1
0 701-p) 17p =X
(1+X.pl2X i (1+X.p)sX -

13

3.2.2 CONSTRUCTIMN OF THE X THEME SOLUTLONS

Note that the previous cefinition of the fixed points was not constructive, whereas theo-
rem 2.4.5 provides an algmrithm&c construction by sucecessive approximations.
The map F is cleerly continuous since it is infinitely distributive that is for any ar-
bitrary indexing set A we have :
T MAX L, [deadp = MAX{ 14X, .plien]
- The descending appraximation sequence leads to the maximal fixed point :
X0 = e

Xt = F(X%) = 1+op = o

= X0
- The ascending approximation sequence leads to the minimal fixed paeint
x° =0
x! = F(x%) = 2+0.p = 1
X2 = F(x}) = 1+1.p = 1+p
X3 = F(X?) = 1+(1+p)+p = 1+p+p>
-é. k-1 k-1

X' = F(X } = 1+p+p2e...ep

The limit of the ascending approximation sequence is an infinite series, the sum of which is
Lfp(F)=1/(1-p].

- The classical geometric interpretstion is the following :
FIX), X
1+X.p
™.
| ™ Lfp(F)

1 -

0 » X

Approximation Sequence i 1/{1-p)

4. COPING WITH INFINITE APPROXIMATION SEQUENCES

When an approximation sequence is infinite, it is impossible to use an iterative resolution
method to compute its limit that is the exact solution to the system of equations. In fact the
problem of mechanically computing the least solution SeLn of the equations X=F(X]) is in general
undecidable, [28]. This does not rulg.cut finding algorithms for compufing S=1fp(F) for parti-
cular F and L. Further, it is fundamental to note that an approximation of the exact least so-

lutions to mechanically unsolvable systems of equations can always be automatically computed [13].

We can roughly clascify the methods for coping with infinite approximstion sequences s

follows

4.1 DIRECT RESOLUTION METHODS

4.1.1 FORMAL RESOLUTION

When F and L possess the necessary algebraic properties the system of equations X=F(X)

may be solved formally by eliminations and simplifications.

Example : The linear equations obtained in the "performance analysis of programs” may be solved
by formal substitutions, successively applying simplification rules until obtaining equations
whose solution is known. This is the method commonly used when solving eguations by hand. This
formal resolution process is in general presented as a sequence of reductions of the program

graph by elementary transformations (e.g. [35])

=> => => F'"
Fi Fe
Farf! o (P Fip(@/Uimptad) _ fF F gE
F,=F'+F, F,=F" Fr=Fm

The method is applicable only when considering aporopriate applications (using algebras allowirg
the above formal manipulations) and eppropriate programs which permit a simple simplification

algorithm (i.e. the program flow graph must be "reducible”). End of Example.

4.1.2 SYSTEM OF DIFFERENCE EQUATIONS

k .
Let s%,s8!,...5,... be the sequence of successive approximations converging to the solu-

) ¥ K
tion S to the system of equations X=F(X}. This sequence 1s defined recursively by SK+ =F(S").

K+

1 K
Knowing s, the system of difference equations S =F(Sk] may possibly be sclved to get S as

a function S of kK, SK=S(K]. The solution S to the eqguations is then 1lim S(kJ.
k>

Example : The linear equations obtained in the "performance analysis of programs” may be expres-
sed as difference equations ([641) which may be automatically solved, [10]. For example the
equation X=1+X.p has a solution X(«]) defined by

sx(Ul =0

{ X(k+1) = 14X(K).p
These siﬁple difference equations have the solution : X(K)=(1+pkl/(1-p] and lim pk=D when

ko
0<p<1 in which case X(«)=1/(1-p), otherwise p=1 and then X(®)=». End of Example.

4.2 VERIFICATION OF PROPERTIES OF THE SOLUTION

Generally some properties of programs may be proved to hold without full knowledge of the
sollition S to the system of equations X=F(X). It suffices to prove that some property P(S)
holds for S. Since the solution S to the system of equations is defined as the limit of an ap-

k+1=F[Xk),... one can prove P(S) using Scott’'s induction

proximation sequence 3%, s'=F(s%),...,s
rule

From {P(S°) and {{{¥X) P(X)} =>{P(F(X))}}} infer P(S).

-3

o

o

P L. N L, s] S e ~ n . .
{Fosall thot 5 must be chessn such that 302 F(SY) 4n S0 E lfp(F) so that %=1 is a convenient

n

chuice. Alsu P must be an "admissible” predicate (see e.g. [43])) remaining true when passing
to the limit. Rigorously we should apply the second principle of transfinite dinduction, {51.

Other induction principles ((61,[17],145],etc.) canbe derived from Scott's induction rule, [631.

4.3 CONSTRUCTION OF APPRCXIMATE SOLUTIONS

Genrrally, the above methods are not fully automatizable since it is undecidable to sol-
ve the system of equations. However, it is always possible to mechanically compute an approxi-
mation of the exact solution. The approximate solution will provide usefultif not perfect in-

formation.

Example : The application of therulesof signs to programs provides an approximate analysis of
these progra&ns. For example, the system of equations corresponding to the program

x:=1; {1} while true do {2} x:=x-2 {3} od;

is
Xx =t X, =3
X, = XX, the least solution of which is : X, = £
x3 =X2E)l Xazi-

The fact that x is negative at program point {3} is not captured because of the rule : +@+=i
A more careful analysis taking account of the absolute value of x would be necessary to disco-

ver this fact. For example, we might have used the following equations over predicates

Py = {x=1) P1 = {x=1)
P2 = P1 or P3 the solution of which is : P2 = (xe{~2k+1|k20})
Py = {3x'|P,(x") and (x=x'-2]} P, = (xe{-2k-1]k20})

However the approximation sequence the limit of which is the above solution is infinite. There-
fore we can consider that the application of the rule of signs is a way of approximating the
exact domain of x. The approximation is correct, since finding that the sign of x at point {3}
is + corresponds to the predicate (-®<x<+®) which is implied by (xe{-Zk-1|K20}], so that none
of the possible states of x at point {3} during execution have been left out. On the contrary,
some impossible states su;h as x=5 have been predicted by the rule of signs, but this is preci-
sely where the approximation took place.

Notice that the same idea of approximation is essential in other abstract interpretations
such as casting out of nines in arithmetic, parity checks in hardware, dimensional analysis in
physics... : these techniques permit automatic verification of sufficient (but in general not

necessary} conditions of the truth or falsehood of a property,[561. End of Example.

DEFINITION 4.3.0.1 A property Pe(lL,g) is said to correctly approximate a property PelL if and
only if PeP.

THEOREM 4.3.0.2 Any post-fixed point X of F, that is such that F(X) £X correctly approximates
lfp(Fi.

Proof : According to theorem 2.3.8 Ifp(F) = H{YgLn]F(Y] €Y}. But since F(X) X, X belongs to
the set {YeL"|F(Y) Y} so that it is greater than the greatest lower bound of this set, hence
lfp(F)eX. End of Proof.

It is always possible to mechanzcally compute a post-fixed point of F. The proof is that

it suffices to take the-supremum of L™ but this choice is of no practical interest.

W2 vow Totraduce Cload-point appeosimation cotnods which izad to more accurate results.

Since the sconz L of concretie propertics generally contains infinite and complex objects,
it may be wise to choose a more simple space L of abstract properties which is a simplified
image of L., Then the systern of equations X=F(X) on L” can be modelled in L" by an apnroximate
systan of eguations X=F(X). The idea is that L and F can be chasen simple enough to allaw an

easy computaticon of a correct aporoximation of Lfp(F).

Let us tirst ostablish the correspondence between the abstract properties L and the con-
crete properties L by a conersitization function T which gives the concrete form of any abstract

predicate.

HYPOTHESIS 4.3.0.3 (a) - Lig, L, 7.WLTLILIY) Zs a complete lattice,
(b) -

L(E)1s a partly ordered set,
(e) -~ T:L»L <s monotone.

L
The correspondencs between F and F is established by

HYPOTHESIS 4.3.0.4 (a) - F:L"™» U™ <s monotone, Fil »L"
(b) - ¥xel ", FIIx)el(F(X)).

As usual we "componentwise” extend T to " by the definition F(<Xl,...,Xn>) =<F[X1],....Hxn)z
r

Therefore the distinction between T:L+L and T:L">L" is made by context.

4.3.1 STRUCTURAL APPROXIMATION

When the system of equations X=F(X) can be solved, the following schema is of practical

interest
L: XsF(X) --- Resolution--+ 1fp(F)
1 T
Approcimation T(Zfp(F))
ul
L: X=F(X) ... Existence ._» Lfp(F) ?

The solution Ifp(F) of the equations X=F{X)exists but cannot be mechanically computed.
However an approximate system of equations X=F (X) may be associated with any F and solved. The
following theorem ensures that Ifp(F)eT(ILfp(F)) so that the concrete form T'(1fp(F)) of the

abstract solution pr[Fd correctly approximates the inaccessible concrete solution Zfp(FJ.

THEOREM 4.3.1.1 If L 7s a complete lattice and ¥ is monotone then {Lfp(F)eT(Lfp(F1)}.

Proof : The existence of Ifp(F) and Lfp(F) is stated by theorem 2.3.5. Applying hypothesis
4.3.0.4.b for X=Lfp{F) we get F(T(Ifp(FM e T(F(Ifp(FN) = T(Lfp(F)). Since T'(Ifp(F)) is a post-
Fixed-point of F, theorem 4.3.0.2 implies that Lfp(F) € T(Ifp(F})). End of Proof.

Example : The automatic analysis of the program :
{1} x:=0; {2} while x<n do {3} x:=x+2 {4} od; {5}
can be done by characterizing the set of states <x,n> at each program point. Therefore we have

to solve the equations

= {<Q,a>} (x is uninitialized, the initial state of n is &)

-

= {<0,n> | <x,n>eP; }

N
‘
3

{<x,n>e(P,uP,) | (xsn)}

L 0V T T©
"

s = {<x+#2,n> | <x,n>ePy}

ps = {otm>e(PyuP,) | (x>n)}

Procertiss are sets of coioles <x,n> wh=tae x and n ace integers oo 2qual to O

mn

the uninitializred value. Hernce the set L o7 croperties is the powsrasai of {<X,ﬁ>§k,h£[EU{Q})L
it is a complete lattice for ordering ¢ (set inclusion) and join v (set union).

The right hand side of equations are functions of the form :
F(PLP,) = {§X) | (Xe(PuP,)) and U(X)].
Supposing [(ﬁg;P;]ggg_(%g Py)3 we have ((Xe(P uP,)) and P(X]} implies ((Xe(PJUP})] and Y(X)],
so that {X](Xe(Plulelfggiv[X]} c {X|(X€(P;UP§])§Hliw(X]}- Since @(X]) is always defined (by
taking the convention that @+2=0 and no overflow can occur) this implies f(P;.P,)cf{P}.P}] s0
that the function f is monotone.

The systen of eguations has a least solution, which can be computed by successive appro-
ximations starting from the initial approximation Py =P,=P3=P,=Ps=¢. In fact the development
of this approximation sequence is almost identical to program execution, which in practice

cannot be considered as a static analysis of the program.

= If we are interested in initialization problems, we can represent the set of states by

the abstract lattice :

<7,T>

<T7,0> <T,i>

<i,q> <Q,i>

<l,1>

the meaning of which is given by the concretization function
M(<t,1>) = 8
T(<x,m>) ={<x,n> | xey(x) and ney(n)}

where y(2)={Q}, y(i}=I , y(r)=Hu{R} and T 1is the set of integers.

Taking the point of view that tests have no influence on initialization (that is it is not
defined whether a test involving an uninitialized variable will be true or false at execution)
the system of abstract equations is

P, = <R.1i> (n is initialized on program entry)

P, = <i,P;.n>

Py = P,UR,
P, = <Py.x@1, P,.n>
Ps = PUP,

-

This system can be solved by successive approximations starting from initial approximation
Pl =Py =P =Pl =P)=<1,1>. The solution is : P, =<Q,1>, P,=P =P, =P =<i,i>.
Notice that the problem of determining which variables of a program ark initialized is undeci-
dable, so that the answer which is given toc this problem is either "yes”, "no", "this program
point is unreachable during execution”, or finally "we don't know !”. These answers correspond

respectively to the values i, 2,1 and T.

(o]

= It we are interested in determining the sice oFf intuger variables we can use the. latti-

ce L=2%, where £ is rdofinad by the following Hassa diagram

14

!
1
]
o

The meaning 1s the following

Tex,n>) = {<x,n>| xey(X) and ney(M}
where y(1)={Q}, y(-)={q,-1,-2,...}, vo1={o.0}, y(+1={Q.1.2....}, v(2)}={Q,0,-1,-2,...}.
y(+1={2,0,1,2,...}, y{#)=Tu{Q}. Note that the results on the signs of variebles will always
be conditional to a correct initialization.
The system of abstract eguations is

Py = <1,0>

P, = <0,P;.n>

P; = PUP,

P3 = x-less-than-or-equal-to-n(P4}
P, = <P3.x@+, P3.n>

Ps = n-less-than-x(P;)

It takes account of the tests, and the functions x-less-than-or-equal-to-n and

n-less-than-x.can be determined by case analysis, using hypothesis 4.3.0.4.b
{<x,n> | <x,n>eT(<X,7>) and (n<x)} ¢ T(n-less-than-x(<X,7>)).
Hence if n-less-than-x{(<x,n>}=<x’',n'>, then X' and 7' can be chosen to be the least elements
of ¥ such that
¥x,n 1 {xey(x]and ney(M and (n<x)} = {xey(x') and ney(n’ 1}
For example, we get : n-less-than-x(<#,->) = <i,->
n-less-than-x(<i,+>) = <+,%>

n-less-than-x(<=,#>) = <=, ->

i

A
-
~
-

v

n-less-than-x(<-,+>)
etc.
The system of equations can be solved by successive approximations starting from the ini-

tial approximation P°=P°=P°=PW=P°=P§=L. The result depends on the initial value ael. We get
1 72773 M3 Ny

a L+ o - + : i
Py <i,0> <1,0> <l,-> <l,+> <i,=> <1,%>
P, <0,0> <Qd,0> <0, -> <Q,+> <0, > . <0,4+>
P, <i, o> <0,0> <l,L> <i,+> <0,0> <i,4>
P, <i,0> <+,0> <1,1> <i,+> <+,0> <, >
P <+,0> <+,0> <0, -> <4, 4> <+, > <k, i>

~ One can oiso imagine zarity defermination whichh uses the abstract lattice L = €2, where :
T
£ = even odd
1

The meaninz of these ahbstract properties is determined by :
I(<x,m>) = {<x,n> | xey(x) and ney(n)}
where Y(L1)={0}, vleven)={0}u{...-2,0,2,...}, ylodd)={Q}u{...-3,-1,1,3, ...}, y(1)={QuI.

The corresponding abstract system of eguations is

P1 = <) ,0>

P2 = <§ven,Pl.n>

Py = P,UP,

P“ = <P, .x@even, P, .n>
Pg = P,UP,

Note that the test (x<n) brings no informaticn on the parity of x and n. Because of the parity

rule "even® even=even”, the least solution is

Py =<1,0>, P,=Py=P,=Ps=<even,o>

= A fairly classical case of program analysis and optimization occurs when constant compu-
tations are evaluated at compile time. For a program using m variables the lattice of abstract

~ _=m
properties is L = £ where

g = eseee -4 -3 -2 -1 [1 2 3 N .-...

The meaning is given by
F<x,n>) = {<x,n> | xey(x) and ney(nl}

where y(11={Q}, y(i)={1i.Q} for any integer i and y(7)=Iy {Q}. The system of eguations is
Pl = <1,0>
P, = <1,Pp.n>

P3 = qupu
Py, = <Py . x82, F’s.n>
Py = P,UP,

The union L] of the lattice L is defined by (TUx=xL] T=T, ¥xeg), (LU X=X 15X, ¥xel).

(i3 = if i=3 then i else 7 fi, ¥i,JeX). The abstract addition operator @ is defined by
(1@x=x@1i=L, ¥xel), (TEx=x® 1=T, ¥xe(L-{1})), (im j=i+j, ¥i,jeI). Notice that % is infinite
but satisfies the ascending chain condition (definition 2.4.5.) so that any ascending sequence
of chaotic iterations is guaranteed to converge. The solution to the above equations

Py =<1,0>, P,=<1,0>, P3=P,=Ps=<T,0> proves that n is constant egual to its initial value o.

It is interesting to note that the determinaticn of the constant computations in a program is

undecidable so that the above interpretation is necessarily approximate. For example, the

e g

e o

e e o AR § S T A g

application of this interpretetior to the Foliowling skeletal program

(vi=1, w:=2, x:=3, y:=3, z:=0);

while ... do)
(We=2%v, yi=y+1, z:=z-v);
(vi=w-v, x:1=y+z); -

od;

would determine that v and w are constants equal to 1 and 2 whereas x would not be found to be

constant. End of Example.

Note : In practice, one particular interpretation of the program is considered to be its se-
mantics. Then structural approximation provides a framework to prove that (more abstract) in-
terpretations are correct with respect to this semantics. Also, hypothesis 4.3.0.4 is not veri-
fied for each particular program, but instead is shown to be a direct consequence of the syn-
tactic process used to construct the system of equations for each particular progran. Then, a

proof that hypothesis 4.3.0.3 and 4.3.0.4 hold for any program ensures correctness. End of Note.

4.3.2 COMPUTATIONAL APPROXIMATION

The idea of structural approximation is generalized by computational approximation. The
space of properties L is modeled by a simplified abstract space U, so that the equations X=F (X}
in L can be reformulated by X=F(X) in L. Computational approximation then consists in computing
a post-fixed-point S of F. Thus hypothesis 4.3.0.3.c and 4.3.0.4.b imply F(I(3)) e T(S) so that
according to theorem 4.3.0.2 Ifp(Flg I'(S) and therefore T'(3) correctly approximates the exact
but unreachable Ifp(F). Note that structural approximation is a particular case where §?pr[F).
The point is that the computation of a post-fixed-point of F does not require L to be a complete
lattice neither F to be continucus not even monotone.

We now introduce a post-fixed-point computation method. A post-fixed-point pfpl(Fj of F
can be computed by successive approximations as the limit of an ascending strenghened sequence
for a strenghening operator +F. Then we show how a post-fixed-point pfpl(F) of F can possibly

" be improved to get a better approximation F(pszffj) of Zfp(F). For that purpcse, one uses a
truncated descending sequence for an auxiliary operator +F. The initial term in the truncated
descending sequence is ppr(F) and the 1limit of the sequence is pfpz(F]. The auxiliary functions

4F and +F are used in place of F to ensure convergence. The schema is the following

T. ToB(T) oo Ascending Strenghened ___ =y ____ Descending Truncated ____ =
L XTF(XJ Sequence for +F > pfpy (F) Sequence for VF = pfp,(F)
Approximation r r ;
|
N <
Ls X=F(X) ---=-omommmmmmee Existence --~-----======-- » Ifp(F) ?

HYPOTHESIS 4.3.2.1 Let +F:L =L "and 5°L" be such that : ¥k=0,
(a) - <f {SK=+T:k(S°]ﬂ_r_l_c£ (Fs") 2559} vhen
{(s"E 4F(sMrand (Frs™) 2 4F (s} .
(b) - any strictly ascending chain of the form S°, +F(S%),..., +FR(S%),... is finite.

DEFINITION 4.3.2.2 An ascending strengthened sequence with initial term S° {s recursively
defined by : {s"™ =4F1s*) 2fF not (Fisy25M)3,

THECHN 4.3.2.5 i aseending strengthenad secuence is finite ; its Limit pfo, (F) is such

tagt pr[F)EsTijpI(F]).

Proof : Let m be the (eventually infinite) length of the ascending strengthened sequence. By

-2 we know that ¥kem we have not d;(SK] ESK) and SK=¢FR[S°]. Hence by hypothe-
U Now not [F[SK] ESK) either implies that SkEF[SK) in which case

K = SKH

detinition 4.3.2
. Ko =K
is 4.3.2.1.a S E 4F(8])=§
, or else F[SKJ and SK are not comparable. But
[

F(SK)§ {F[Sk) implies by transitivity S

1 — o
again SK=Sk+ is impossible since otherwise we would have F(SK)E +F(SKJ=SK+1=S

K o— +1 s s
E:SK » the ascending strengthened sequence form a strictly ascending chain,

Since ¥k<m, S
according to hyncthesis 4.2.2.1.b it must be finite.

By definition 4.3.2.2 the last term Sm=pfp1(Fj of this sequence of successive approxima-
tions is such that FTpfpl(?J]Egdbltfd, hence T'(pfp, (F)) correctly approximates IZfp(F).

End of Proof.

Note : Suppose L satisfies the ascending chain condition and F is monotone, then one can cheose
4F to be F and S°® such that S° £F(S%) in which case the ascending strengthened sequence is
merely the seguence of successive approximations 2.4.4. Hypothesis 4.3.2.1.b is then equiva-

lent to continuity. End of Note.

Example : The analysis of the program
{1} x:=0; {2} while x<n do {3} x:=x+2 {4} od; {5}
can be done using an abstract space of properties L=22, where 2 is the following infinite lat-

tice of integer intervals

i
H
i
!
i
i
i
'
i
i
i

|
n

In order to make { a complete lattice if suffices to allow infinite interval bounds -« and +eo.
The interpretation is : I'(<x,n>) = {<x,n>] xey(x) and ney(n)} where y(1)={Q} and

y([a,b]) = {i] asisb}u{Q}.

The system of eguations is

P, = <L.la,B]>

P, = <[0,0], Pl.n>

Py = P,UP, = <P,.x(P,.x, P,.n{jP, .n> .
Py = <P§ x[T(-w,ub(P§.n)], F20(P}.x),+x=]1TTP} .n>

P, = <P3.x+[2,2], P,.n>

Ps = <PJ.xM[2(P].n)+1,+0], [-o,ub(P].x)-11[TP].n>

These covaticons use s unieon 5} snrnersection i e ub, &l‘f'j; definee o Intavrvals my e
la,0lule,d] = [ninla,cl,maxin,d))

(a,bl1[c,d] = if max(a,c) < minlb,d) then [max(a,c),minib,d)] ielse & fi
blla,b))=a ; ub(la,bl)=b

[a,bl+[c,d] = [a+c,b+d]

The only non obvious equaticns are P3 and P, taking account of the test x<n. Suppose
asx<b and c<n<d. If x<n is true, then necessarily x<d so that xe({a,b]f1[-,d]) and similarly
a<n so that ne(fe,dIM [a,+0]). Alike, if x>n is true then necessarily c<x so that
xe([a,bliM{c+1,+»]) and also b>n so that nellc,d]f [-w,b-1]).

The initiel interval lo,B] of n may be given by an input predicate such as a formatted in-
put, or by & type declaration nela,B] which has toc be run-time checked when the initial value
of n is read. A major simplification such as in PASCAL[438], consists in authorizing only mani-
fest constants for bounds declaration, afterwards this will avoid symbolic computations. We will
for example take G=-%, B=1000.

The least solution (for ordering {{a,bl&lc,d]} <==> {c<ashsd}) to these equations is

P, = <1,[-»,1000]>

P, = <[0,01,[-»~,10001>
Py = <[0,10023,[-»,10001>
Py = <[0,1000],(0,10001>
P, = <[2,10021,[0,10001>
P¢ = <[0,1002],{ =, 10001>

L

It is obvious that L being an infinite lattice iterative methods are not guaranteed to
discover this least solution in a finite number of steps. Consider for example the approxima-
tion sequence for solving the equation x = [1,1JU (x+[1,11). It is an infinite sequence the
first terms of which are 1, {1,171, [1,21, (1,3],... and the limit of which is [1,-=].

Since a compiler must not enter an endless cycle, it must approximate the limits of poten-
tially infinite approximation sequences. For that purpose one can use heuristics which induce
an approximation of the expected 1imit from the first few terms of the sequence. The simplest
heuristic which can be used with intervals is probably the following : if a bound of an inter-
val is not constant take it to be infinite.

To put in practice this heuristic, let us introduce the wideni@gv of intervals. The empty
interval 1 is the null element of v, and otherwise
La,blv(c,d] = [if c<a then - else a fi, if d>b then +w else b fi]

The strengthened system of eguations P=4+F(P) is obtained by modification of equation Pj
(corresponding to a loop head)

P; = <PJ.x ¥ (Py.xUP,.x), P{.nV (Py.nJP,.n)

Note that 4F is not monotone since for example ([0,11E(0,4]) and ([0,21E[0,3]) does not
imply that [0.13V[0.2]=[0,+~] is less than or equal to [0,4]1v[0,3]=[0,4]. Hypothesis 4.3.2.1.a
is clearly satisfied since ([a,blU[c,d]} € ([a.b]V[c.dl).

The ascending strengthened sequence is now :

Initislization

-

vt o e s

23

Step 1

RS]

1w <r,[-=,10000>
Py = <[0,01,P! .n>
= <[0,07,[~,10001>
Pt o= <pr®.x v (P, xTPD.x), P°.nv (PL.nijPl.nl>
= <1V ([0.03yL), 1v({[-»,10007yeL)>
= <1v[0,0], 1V {[-»,10007>
= <[0,0],{-=,1000]>
PLo« <Pyt X T, ub (P on)], 2Py x),+]fTPyY on>
= <[0,0]0[-«,1000]1, [0,*]f1[-,10007>
= <[0,01.{0,10003> :
Pt = <P;.x+[2,2], P;.n>
= <[2,23,00,10007>
PL = <PlxTTgb(Pyt n)e, 4], [-o,ub(Pyl .x])-1111P* on>
= <[0,017][-w0,+2], [-,1][][-=,10003>
| = <[0,00,(~,-10>
Since QgE((Pi[]Pé]EFQI] we have to go on step 2
[#2 = <[0,0].0-,10001>
P2 = <(0,00v ([0,0003[2,2]), [-=,1000]v ([-~,1000]0U[0,1000])>
= <[0,+=],[-=,1000]>
P2 = <[0,+](1[-=,1000], [0,+=]M1N-=,10001>
= <[0,40001,[0,10001>
P2 = <[2,1002],70,1000]>
P2 = <[0,+®]1[-w,+], [-=, += JT] (-, 1000]>
L = <[0,+=],[-~,1000]>
Notice that we have found pfp, (F) since F(P)E P because of ((PZUP3IE P§2) that is

i

«[0,10027,{-<,1000]> E <[0,+=]},[-»,1000]>. The approximate solution is therefore :
[P, = < & ,{-=,1000]3>

P, = <[0,0] ,E-<,1000]>

Py = <[0,+=] ,[-%,10001>

P, = <[0,10001,[0,1000]>

Py = <[2,1002],10,10001>

Py = <[0,+o] ,[-,1000]>

-

Termination is always guaranteed since widenings take place at least once along each cycle in
the graph of dependence of the system of equations and forbid infinite strictly increasing

chains by passing to infinite bounds [12]. End of Example.

In case F is monotone the limit pfp1[?] of the ascending strengthened sequence can be
chosen to be the initial term of a descending approximation seguence. In fact Ffpfpgﬁjlépjpl(F]
and Ifp(Fl g F(pfpl[FjJ imply Ifp(Flg F(Ek(pfpl(ﬁdn c F(pfpl[Fj]. ¥k>=0. Therefore if the limit
pfnggl =g{32 Fk(pfpl[ﬁj] exists, it is a better approximation of Zfp(F} than pfpl[F) (as soon
as pfp, (F) is not a fixed point of F).

Again when this descending sequence is infinite or in practice slowly converging we can
approximate its limit. Note however that dualizing the ascending strengthened sequence would
not be convenient, since it would lead to a lower approximation of Lfp(F) whereas an upper
approximation is desired. We must have pr(F]EITpfpz(E]]'since we want to take account of all

states which can occur during any program execution,

HYPOTHESIS 4.3.2.4 - :0L 1" 4s moactone,
= let +F:L™L" be such that :
. ¥Sel", {F(S)ES} => {F(S)E+F(S)ES}
» every strictly descending chain of the form S%L". 4F(S°),..., #?k(SOL
«e. L8 finite.

DEFINITION 4.3.2.5 A truncated descending sequence with tnitial term S% L such tha+
Lfp(FIET(F(S°)) and F(SY)ES® is recursively defined by : s*"' =iF1s®) 157 s"4F(s") ang
sRaFs).
THEOREM 4.3.2.6 A truncated descending sequence is finite, its limit pfpz(?J 18 such that
Ufp(FYeT(pfp, (F1).

Proof : Let p+1 be the (eventually infinite) length of the truncated descending sequence.
Assuming p20, we prove by recurrence on k that :
Fs® ™) g5 2 5 and 1) e T (5%, ¥kep

Basis : Since F(S®)ES° and S°#F(S%) we have F(S®) £3°. Hence hypothesis 4.3.2.4 implies
F(S)E+F(s%) £ s°, moreover S°#4F(S%) so that by definition 4.3.2.5 wa have F(S%)EVF(s?)
=s! £5°, Besides, Lfp(F)ET(F(S°))eT(S') by monotony of T.

Induction hypothesis : Let us suppose that ¥k<p we have :

Fs® M EshEs®™ and 1ppFr e (s
we prove this is also true for k+1. Since F is monotone we have by transitivity ?TSK) g Sk and
since k<p definition 4.3.2.5 implies F(Sk]ﬁsk. Hence F[SKJEZSK. According to hypothesis 4.3.2.4
Fish) §+?(SK]§SK. but again since k<p we have WE(s®y sk and E[Sk) EH?(SKPSK” zs". Now
Lfp(F) EITSK] thus Ifp(F) e FII(S®)) since F is order-preserving. Hypothesis 4.3.0.4.b then
implies that Ifp(F} EF[F[SK]) thus pr(F)EIYSK+1) by monotony of I' and transitivity.

Finally by recurrence on k, the truncated descending sequence is a strictly descending
chain. Then hypothesis 4.3.2.4 implies that p is finite. Moreover for k=p we have
1fp(F) sr(spl=r[pfp2(Fn. End of Proof.

Example : The truncated descending sequence can be defined by taking +F=F and imposing.an ar-
bitrary upper bound on its length. However it is better to stop the iteration process when the
approximation is found to be precise enough. For example, we can try eliminating infinite bounds
of intervals using a truncated descending sequence and stop iterating when no more infinite
bound can be eliminated.

For that purpose let us introduce the narrowing A of intervals. The empty interval 3 is
the null element of A, and ctherwise [a,b]A fc,d] = [if a=-® then c else mig(é,c] fi, if b=+
then d else max(b,d) fiJ.

The system of equations P=F(P) is modified into 5?¢?Tsdby modification of equation P}
(corresponding to a loop head)

N =<@.xA(PfxEP“m],%HHA(anGPwnb
The truncated descending sequence is initialized with pfpliF]

Initialization :

PJ = <i1,[-=,1000]>

Py = <[0,01,[-»,1000]>

PP = <[0,+0],[-,1000]> .
R’ = <[0,10001,00,1000]>

PY = <[2,10021,00,10001>

Pg = <[0,+=],[-=,1000]>

Step 1
[Pl = <1,[-~,1000]>
Pl = <[0,07,[-»,1000]> .
Rrl= <Py®uxa (PLaxUP] o), PO una (P.nllP).n)>
= <[0,+] A ([0,0102,10023), {-»,100074A ([-»,1000]1 [0,1000]3)>
= <[0,+»} A [0,1002], [-»,1000]4 [-«,1000]>
= <[0,1002],[-,1000]>
Pl = <Al xT[~o,ub(Pyt.n) T, [&b_(Pi'l_X],+@5]ﬁp;1_n>
= <[0,1002]71 [-,1000], [0, +=][1[-»,1000]>
= <[0,1000],00,1000]>
pl - <F;.x+[2,2]. P;.n>
= <[2,10021,{0,1000]>
Py = <Pl .xTT[80(P;Y in)+1,+], [~w,ub(P;!.x)-1171P31 0>
= <[0,1002]1 [-, +], [-=,1001]1M [-=,1000]>
= <[0,1002],[-*,1000]>

e

Now it is easy to verify that Pi[]P;=P? so that F(P)=P, the truncated decreasing sequence has
converged to a fixed point of F. It happens that it is the least fixed point of F but in gene-
ral this is not necessarily the case. It is important to note that because of the undecidable

problems compilers are faced with, the approximation of infinite iterations is valid but fun-

damentally incomplete. However, it should be clear that this incompléteness is acceptable to

compilers which never need full knowledge of the properties of the programs. End of Example.

4.4 VERIFICATION OF THE CORRECTNESS OF AN EXACT OR APPROXIMATE SOLUTION

Finally, when the solution S to the equations X=F(X) cannot be automatically computed, it

may be provided by the programmer. Yet, S must be verified to be correct.

4.4.1 VERIFICATION OF THE CORRECTNESS OF THE EXACT SOLUTION

The least fixed point S of F must be provided by giving the value S(k) of the general
term Sk of the ascending approximation seqguence S°,...,Sk..... According to 4.2 the problem
is then to verify that 3i20 such that {(S(i)gF(S(i)) and (S(i)e Ifp(F))} and ¥k=i,

S(k+1)=F(S{k)}. The solution S to the eguations is obtained by passing to the limit S=1im(S{k)).
- k >0

Note that according to theorem 2.5.4 the above verification rule can be extended to pe-

riodic chaotic iterations, when the period length is bounded.

4.4.2 VERIFICATION OF THE CORRECTNESS OF APPROXIMATE SOLUTIONS

In practice it may be impossible for the programmer to guess the exact solution S, al-
though he may be able to provide an approximate solution S. The problem is to verify that
SES in spite of the fact that S is unknown. But according to theorem 4.3.0.2, it is sufficient

to verify that F(S) 5. This verification rule was called fixed point induction by Park[48].

5. APPLICATION TO THE DENOTATIONAL SEMANTICS OF PROGRAMMING LANGUAGES

Mathematical or denetaticnal semantics was introduced by Scott and Strachey ([521,[541)

and further developed by several authors. The complete details and a guide to the literature
- L 2

may be found in [53]. -

28

5.1 FUNCTIONS

Suppose that eaech program variable takes its values in a domain D including some special

value § which is the value of uninitialized variables.

If the program has n variables, we shall consider the state space Dn, and denote
n

']
D ZDnU{i.T}. 6" is made a complete lattice using the ordering & 0 defined by

vy hvs i n
i , 1= ,Xe ,Xe ,TE , 7, ¥XeD .
D

D b D D

The semantics of a program P is the partial function FP:Dn+Dr\ computed by that program.
Therefore if the initial values of the program variables are X, their final values will be
FP(Yb) after execution of the program.

As usual a partial function F:Dn-~>Dn is considered to be a total function F:Dn+Dn’ such
that F(X)= Lwhenever F[Y] is undefined for XeD". Moreover we naturally extend F to Dn’+Dn'
defining F(1L)=1 and FlT)=T.

by

L] — |l
Let us now define an ordering ¢ for functions in p" »D" by : {FeG} <=> {VXeDn s

F(X) & n,G[Yﬁ} and let |J be the corresponding least upper bound operation.
D

In order to visualize these operations, consider a "projection” of Dn on the real open

interval 10,1[. Teke 1=0 and T=1. The "projection” of the ordering € _, on [0,1] is not the
usual < since any two distinct points of Dn are not comparable. o
An example of comparable functions F and G would be
b F (X) b G(X)
T T
’I
,l
’
FeG 4
’I
1 - { —
> X 1 >
T T X
An example of union of (non-comparable) functions F and G would be
A FIX) 4 G(X) 4 FUGKX)
T T T
A Y
| <
3 ol P
\ D .
A Q)
\‘ I. .'
\ ‘e
1 X 1 J L SNy L ! -X
T T T

5.2 FUNCTIONAL EQUATIONS

“Let us now define the syntactic mechanism which permits associating a system of equations

with any sequential program.

Go to statements and labels : Let L be a constant label ...{Fj};L:{F}.:. which can be reached

sequentially or by unconditional jump statements {Fi} go to L;. The function computed after

the label L is F= I ~ F

Wy K where pred(L) denotes the set of program points going to L
kepred(L

z7

iy e e b L . by Jiar e
S20uaT T Ll Oy b FIS IR

Assignment siatzments e consider naraliel zssiznnents X«F{X)] of n values F(X) to n varia-

0

bles. The suznantics of {Fl} X< F{X) {FZ} is given by F,=FoF, using functional composition denc-

ted by o.

Conditional stoiements : The semantics of {F} if °{X) then {Ft}...glse{Ff}...fi is defined by

thﬁllP]oF and FF:[I

not PloF.
D . —n n' n'
We denote by 1 the identlty Function, tnot is 1(X)=4., ¥XeD& . If F:0" 5D i5 a function and
1
© a predicate (P:0" +{fruz,false}l), we denote by [F|P) the restriction of the function F to
- —_— ’ — J—
the subset o7 D” satisfying the predicate P, therefore : VXeDm , (FIP)(X) = if P(X] then

F(X) else) fi.

Let us now quote scme usaful propsrties of the functional operations o {composition]),

U (union) and] (restrictionl. We define n' o b0 be the constant function which result
is always the infimum of D? . As before weDno%é][F}°=l and (F]n*l:Fo(F]n.
L, ,ofF = For , = 1, ,
0" »o" " 0" p"sp”
L n¢ﬁ =FULn, ar = F
0 -D D »D

[F]true] = F

(Flfalse) =L
D =D

(GIP)o(F|Q) = (GoF|PoF and Q)

(G|P)oF = (GoF |PoF)
Go(F|@) = (GoF|Q)
Fol 1 G,) = I (FeG,)
° iea 1 iel 1

5.3 EXAMPLE OF THE SEMANTICS OF WHILE LOOPS

A while loop such as : while P(X) QQ_Y+F(Y] od ; over the set of variables X is a syntac-
tic denotation of the program schema :
{0} 1oop: {1} if P(X) then {2} X«F(X) {3} go to loop; fi; {4}

Its semantics is given by the least fixed point of the system of equations

Fo = 1
Fi = FolF

Fo = (1P)oF,

F3 = F0F2

F, = (1] not P)oF,

The least fixed point is the limit of the ascending approximation sequence (theorem 2.4.4)
also called Kleene's sequence in this particular application. However accarding to theorem

2.5.3 we can use the Gauss-Seidel transform of Kleene's sequence

Initialization
F;=J.n, ,, 1 =0..4
B p" »p"
Step-T :
Fy = 1
1 1 0
Fi = FgUFY = 11 , =1 L R
3 Dn'#Dn .
1 1
Fz = (1|P)oF} = (1|R)or = (1]P)

) S —) -
FLowrarl s Foluley - (ilP)

(1} not P]of'1 = {1l notPlot = (1] not P

T
£
i

Te2

FZ2 = FLUF = W (FlP)

2= (1|PYeFE = (LRI (AU (FPY) = ((1]PYo) L C(1|PIolF|P))

(UPIU (F|F and PoF)

F2 = FoF7 = Fol(1|PIU(F|Pand PoF)) = (F|P)LI ((F)?|P and PoF)

Fi = (1] not PIoF? = (1| not PYe(1L (F|P)) = ((1] not PJel) U ((1] not P)o(F|P})
= (1] pot PY U (F|P and not PoF)

i
N
I

[

By finding these first few approximations we are led to the formulas :

Step j
Fg =1
. -1 k-1
F) = ek |0 Po(F)T)
k=0 i=0
-1

J k 5
Fd= 1 cm® | Ao pecmrh

K=U i-0
j-1 Kk .
B o= o e eomr
k=0 i=0
P B
F) = 1 (R canD potFYY and not PotF)¥)
| k=0 10

These may then be praoved to be correct using mathematical induction (4.4.1)
- It is first easy to verify that the above formulas are correct for j=0,1 and 2 with the

usual convertions that LIAFl 0 o and AND P =true hold when the indexing set A is empty.
D" »p Teh
- Replacing the unknowns in the right hand side of the equations by the hypothetical va-

lues ofstep j we get at step j+1

Fg+1 -
. . 31 K 3 k' -1
B = e uR s wCm e apeetmty s I ocr® | Avo PotFy 1))
k=0 i=0 k=1 1=0
(3+1)-1 k-1
= I ((F)"| AND Po(F1)
k=0 i=0
5ot 01 3 k-1 3 k=1
Fo = (PR = (1fPYel 11 ((F) |AND PolF11)) = U (1P)e((F) { AND Po(F) 1)
k=0 10 k 0 i=0
3 ‘ . k-1 (3+13-1 ok i
= I (W(F)" | Po(F)"ard (AND Po Pt = T m R | AND Po(F) ™)
k=0 1-0 k=0 1-0
3 k i k .
= Fer)™T = Fol (PN D P tFI) = I (Fot(FI®| AN Potry)
k=0 i=0 k=0 i=0
(3+1)-1 K .
= Tu R aoeemh
k=0 i=0
J+1 MR 3 K k-1
Fy' = (1 not P)oF; - Gl ot Yol 11 (R AND PocFI)
k=0 i=0
3 k=1 3 k=1
= I (1] not P)o((F)]AND Po(F)T) = I (1s(F) [(not Po(F1 ") and { AND Po (F) o))
k=0 i=0 k=0 i=0
(3+1)-1 k-1
= "0 (A |@ND PetF)) and (ot PotF)F))
i k=0 i=0

25

1

e ogeners. fa2prm oof the (Gauss-Seidal transform of] Kleene's soyuence given at step j has i

¢

szen proved tu be correct by r=currerce on j. The limit of Kleene's sequence is obtained when

[1—

j>®™, sg that tno funct%gn computed by the while- lOuD schema is : E

LimF} - I ((F) l(/WD Po(F)1) and (not Po (F15)) |
oo k=0 i=0 3

5.4 APPLICATION TO A PROGRAM FOR COMPUTING Lval
Let us consider the following program (taken in [44]) : ;

<X,y,z> + <0,1,1>
while y<a do
UKL YL Z> <« <K,y rze2, 742>
od;

B

It computes ths integer sguare root LV/a) of a natural integer "a" using the arithmetic property:

YreT, 1+3+...+(2n-1)=n?. The semantics of this program is the function : R=whileol where

Hl<x,y,z>) = <0,1,1>

w k-1
while = I ((F) I(A“JDPo(F)) and (not Po(F) k1)
k=0 i=0

with Pl<x,y,z>) = (y<a) and F{<x V,Z>) = <x+1,y+2+2, z+2> We have
R = whileon = (II [[F]KI(A\IDPO[F]) and (not Pel(F) Mo

k=0 i=0
o k-1
= II ((F) I(A'\JDPo[F)) and (not Po (F) SIET
k=0 i=0
o k-1
= O ((F) oul(ANoPo(F) N and (not Po(F) Kouy)
k=0 i=0

Let us compute (F]nou for n20 : A
(F)%u=1ou=y=<0,1,1>. Induction hypothesis : [F]Jou = <3,(j+1)%,23+1>. Then
(F13 ol = <341,05+102429+142,299142> = <3+1,((3+1)+1)2,2(J+1) +1>. By recurrence
(F]nou = <n,(n+112,2n+1>. ¥n>0 and also Po(F]nou = {(n+1)%sa).

Substituting in R we get

k-1
= 0 2 PRY) 2
R = II (<k,(k+1)%,2k+1>|(AND(i+1)? <a) and not ((k+1}%< a])
k=0 i=0
Simplifying using the arithmetic property
k-1 k o »
(AND[1+1) <a} <==> (ANDi°< a) <=> [k“<a)
i=0 © i=1
We obtain : R = II (<k,(k+1)2,2k+1>|k2ca<(k+1)?}.
k=0
Note that the predicate k2sa<(k+1)2 is true only for a unique value LvVa] of k, therefore R sim-
plifies to
R = (I _ (<k,(k+1)%,2k+1>|false)) U (<LVal, (LYal+1)2,20/a1+1> [true)
k#LVa]
= (U _1 VU (<W/al, (LV/al+1)2,21/a1+1>)

k#v/a) 0" »0"
<tVal,(LYal+1)?%,2tV/al+1>

- 1

which is the expected result of the program.

30

5.5 REMARKS

Remark 1 : <implicit or explicit semaniics of commanis.
There are two ways of expressing the semantics of the while command : while P(X) QE_X;F[ij od;
1. "statie" or implicit definition : The function computed by the while command is the term
F, (@) of the least solution <F, (»),F,(®)> to the functional equations

Fy = W ((F|PIoFy)

F, = (1] not P)oF,

2. "dynamie® or explicit definition : The functicn computed by the while command is :

® K K- s ‘
I ((F)"](ANDPo(F)™) and (not Po(F) ™))
k=0 i=0

The question of which of the two (equivalent) definitions is the most useful for expres-
sing the semantics of while commands is a polemical one ([18], [24]). However both approaches
are complementary and have their equivalent in mechanical sciences which express their laws
in two equivalent ways : a dynamic law expressing that a quantity is function of the time
(e.g. force F=m.dv/dt} and a static law expressing the conservation of some quantity (e.g. con-

servation of the momentum m.v).

Remark 2 : forward and backward equations.

As noted in paragraph 2.6.2 backward equations can be used instead of forward ones. A backward
system of equations may be obtained by the backward rules of MacCarthy[41]. The semantics of
an assignment statement {F1} X«F(X) {F,} is given by F, = FaeF. The backward rule for a condi-
tional statement {f}if P(X) then {F }... else (Feboon fi: is F = (F [PYU (F |not P). Finally
an unconditional jump {Fi} go to L; to a constant label L:{F}... leads to Fi=F. Applying these
backward rules to the while loop schema

{®}100p: {F}if P(X) then {F,}X«F(X) {Fs}’ go to loop; fi; {Fu}

we get :
® =Ff
F, =F
F, = (F,|PYU(F, | not P)
Fp = F, oF
Fy =1

which simplifies in : @ = (®oF|PIU (1] notP).

This functional @(X) = if P(X) then @ (F(X)) fi is often used for the sementics of the while
loop (e.g. [44]1). The solution to this backward functional qf"= ﬁ [(FK)ICEEEiPO(F]i)EEE
(EEEPO(F)KJJ is the same as the one of the forward equations. k=0 1=0

" Preference for forward or backward equations is generally a matter of taste, [181].

6. APPLICATION TO LOGICAL ANALYSIS OF PROGRAMS

Logical analysis of programs ([1871,0271) consists in establishing the logical invariant
assertions corresponding to the program which next can be used to verify the program with res-

pect to a specification or to prove that the program contains an error.

6.1 LOGICAL PREDICATES

In this interpretation abstract properties will be logical first order predicates P(X,X)
over the set X of program variables and the set X of initial values of these program variables.

X and X are the free variables in the predicate P.

}
W
i
i

The wssertion Piix,ij associated with 8 peint 1 of the program can be thought of as des-
cribing the values X which the program variables will take at program point i during an execu-
tion sterting with an initial state X of the program variebles.

The set of predicates P(X,X) form.a complete lattice (g,t,T,U,MLILIN by choosing respec-

tively (==>,false,trus,or,and,0R,AND] .

6.2 SYSTEM OF LOGICAL FORWARD EQUATIONS

We use the denotation {P(X,X3} S {Q(X,X)}to mean that for every X, X, if P(X,X) holds prior
to execution of the statement S then Q[X,?ﬁ is the strongest post—conditioﬁ such that the sta-
tement S faultless executes and properly terminates leaving the program variables in a final
state satisfying Q.

Accerding to the deductive semantics of programming languages ([181,£181,[271)the following

rules serve to associate a system of equations with any sequential program

Program entry point : {(xi=vi],i=1..m}. The respective initial values of the variables x;,...,

X, are the symbols VisesesVoe The vy may eventually be Q denoting the uninitialized value.

Assfgnment statements : {P} 1:=E {31i'|P(i+i') and (1=E(i«i'))} -; we denote by al{x<«y) the copy
of a in which each occurrence of the variable x is replaced by the variable y. The above rule
must be enriched if one wants to take account of the fact that the evaluation of E may fail.
Test statements : {P} if Q then {Pand Q}... else {Pand (notQ)} ... fi;
Go to statements and labels : L:{ OR P.l...

iepred(L)
Note : Suppose that the meaning of sach statement S is given by an operational semantics : a
state transition function TS defines for each input state (X,X} the output state TS(X,YE resul -
ting from execution of the statement S. The deductive semantics constitutes a structural appro-
ximation of the operational semantics, the concretization function I being ['(P) = {(X,YﬁlP(X.iﬁ}.
According to hypothesis 4.3.0.4.b the rule {PI}S {PD} that is Pg=
showing that for any PI we have TS(F(PI)J < F[DS(PI)]. However this validation is too liberal

DS[PI] must be validated by

since it does not require-the deductive semantics to be equivalent to the operational semantics.
More precisely in order for termination of programs to be provable with the formalism of the
deductive semantics, one must also show that the operational semantics 1s a structural approxi-
mation of the deductive semantics. The concretization of a set of states 0 is the characteris-
tic predicate ' '(0) of this set, that is {xeo} <==>T ! (0)}(x). The state transition function Tg
is validated with respect to the rule {PI} S{ngthat is Py=Dg(P;) by showing that for any set

of states g we have DS(F—I(O)] => F_I[TS(O]). Finally equivalence of these semantics implies
{VPI,Tsprtpll)=F(DS(PI))} or {VG.DS(F“f01)<==> F’lthto)]}. End of Note.

We will illustrate the above rules for the very simple program {over the integers
¥ =muinh

{rP1}
while xzy do
{P2}
- X1=X=Y;
{P,}
od;
{r,}

. fig.6.2.a

Rewritting this program segment with branch and test primitives, and applying the logical for-

ward rules we get a system of equations which can be simplified as follows

sl

i

T U U
w
1

1

L¥S]
a)

{x=x,} and (y=y,]

{P, or £, 1 and (xzy}

{3x el ! P, (x')gj(x;x'—y]}
(P, or Py) and (x<y)

6.3 OPTIMAL INVARIANTS

According to theorem 2.3 .6 the system of equations fig.B.2.b of the form P=F(P] has a

least solution P™PF (least for ordering £, that is =>,). Since P®' is the infimum of the

complete lattice of fixed points of F we have {VPIP F(P)},

Dpt—>F‘. Therefore we call PODJt

the set of optimal invariants since they imply any other sclution to the system of equations.

The optimal invariants F’Opt are the limit of any chaotic transform of the ascending appro-

ximation sequence starting from the infimum false :

Initialization :

[°: -
i
Step 1 :
-

Pl =

1 2
Pl =

false, i=1..4

(x=x,4) and (y=y,)

(P! or B”) and (x2y) = (P] or false) and (x2y)} = (x=x,) and (y=y,) and (x,2y]
{3x'|PL(x') and (x=x'-y]} = HX"(onyo)ﬂj_(X'=Xo)irlq(y=yo)§ﬂﬂ(x:x"y3}
(xg2y,) and (x=x -y) and {y=y,]

(P} or P}) and (x<y) = (x=x,) and (y=y4) and (x,4<y,)

(x=x,) and (y=y,)

((x,2y,) and (x=x,] and (y=y, 1) or ((xozyol in_d_[xo—yOZyo)ﬂg(Fxo—yo] and (y=yo))
{(xg2y,) and (x=x4-y,) and (y=y4)) or ([xg2y,) irg_(xo—yOZyu]gg_cl[x=xo-2yo)§ﬂ(y=y0])
((xg4<y,) and (x=x,) and (y=y }) or ((xozyol_am(xo-yo<y0]§£(x=xo-y°] and (y=y,))

By computing the first terms of the approximation sequence we seek to discover the general

term Pi of the approximation sequence. We have found

(x=x,) and (y=y,)

i1 j

BR (AND(x,-Kky,2y,) and (x=xy-jy,} and (y=y,)]
j=0 k=0

-1
R (AND

DH—

AND(xg-kyg2yel) and (x=xp-(J+1)y,] and (y=yql}

e G
_.\ O|
2. 7

k=0
-1
D

(N (xo-kyOZyol and (xq-3yo<y,) and (x=x,-jyy) and {y=y,))

lO

0

[N
]
7

It is easy to verify that Pland P? are of the above form. According to 4.4.1, supposing

i

P* to be correct and substituting in the equations we must show that we obtain P

[pitt
pit

in

(x=x4) and (y=y,])

[F‘Ilﬂand x2y) or (P; and xzy)

{(xy2y,) and (x=x,) and (y=yy)}

ar

i1 3
{OR (AND(xq-Ky,2y,) and (x=x,-(J+1)y,) and (y=y,])) and (xzy)}
j=0 k=0 »
= {{xy2y,) and (x=x) and (y= voll
or
i 3
{OR(AND(x, -kyy2y,) and (x=x4-3'y,) and (y=y 1)}
j'=1 k=0

s e g

33

i J :
= OR (AND(xg-kys2yq) and (x=x,-jy,) and (y=vyJ] ;
j=D k=0 i
P;+1 = {3x’|P2+1(x’]and {x=x"-y)} ‘ |
i j . : :
= QBIBX'|AND[XO~Ky02y0]and (x’=xg-Jyg) and lysyg)and (x=x'-y)}
j=0 k=0 1
i : a
= OR (AND(xo-kygzy,) and (x=x,-(j+1ly) and {y=y,1) :
j=0 k=0 §
Pi+1 = (P}+1 and (x<y]]5§l[P: and (x<y)) ;
= { (x=x4) and (y=y) and (x,<y)}
or
i-1 J
{OR (AND(xg-kyo2y,) and (x=x,-(j+1)y,) and (y=y,) and (x<y)}
j=0 k=0
i 31 .
= OR (AND(xy-kyg2y,e) and (x4-3y,<y,) and (x=x -jy,J and (y=y,]) ;
! j=0 k=0 !

Since now we have proved the general form P(i) of the ithterﬁlofthe approximation sequence

to be correct, the optimal invariants are obtained by : PDDt=lim P1 which directly results in

>
the optimal invariants
- opt
P, = (x=x4) and (y=y,)
opt _ © 3 .)
P, = OR {(AND(xg-kyq2yy) and (x=xg-jy,) and (y=yq)}
j=0 k=0
POPE . R (\ j =
s = OR (AND(xg-kygzygl) and (x=xy-(3+1)y,) and (y=yq)]
j=0 k=0 .
opt © I
H'p = OR (AND(xy-kyg2yy) and (xg-Jyg<yol andx=x4-jyy) and (y=y 3] ;
L 3=0 k=0 . fig.5.3.a

Note : It is remarkable that the approximation sequence really describes the execution of the
'program. P1 describes the state of variables after k cycles in the loop for any k less than
or equal to i. Yet in general the approximation sequence is a means of computation which dif-
fers from usual execution since all possible program paths are followed in parallel and the
paths are initiated from all program points (and not only from program entry points). Later

on we will show that this corresponds to symbolic execution. End of. Note.

6.4 PROOF OF TOTAL CORRECTNESS

The system of equations is generated directly from the program text according to the rules
of the deductive semantics of the language. Therefore the optimal invariants are independant
of any user provided input/output specification and reflect what is actually happening during
the computation, as opposed to what is supposed to be happening.

Suppose now that the intended behaviour of the program T is specified by means of an in-
put specification ®(X) and an output specification Y(X,X). The intention is that for any ini-
tial values X of the program variables satisfying the input specification Q(Y], the program
terminates with final values Y of the variables satisfying ¥(Y,X).

The verification of correctness of a program T for input/output specifications ® and ¥
then consists in constructing the system of assertion equations P=F(P) of 7, and finding its
optimal solution POpt, and next in.pfoving that for every input X sucH that ®(X) is true,

there exists a haltpoint h, there exist output values Y of the variables such that

(€3]
I

Ph (Vli)éigiiPﬁpt[le3 s=> P(Y,X)). This requires that the program terminates at some hals-
point h with a state Y of the program veriables satisfying the cutput specification Y. In for-
mulas (adapted from [32]1) we must prove

(O], 30,37 | PEPE(T.5) and (Y. 50}
(Note that it is absolutely necessary that p° t=pr(F] since the optimal invariant ngt is the
only invariant which describes the exact domain of the values Y of the variables which occur

at 1 during execution of the program with input X].

Example : suppose that one wants to prove that for any input value (x,5y¥,) satisfying the in-
put specification ®(xg.y,) = {(xolefigi(yOZU)} the program of fig.6.2.a terminates with cut-
put specification Y(x,y,x,.yy) = {EXEUJEggi(yzﬂlgigi(x<y]}. Given the set of optimal invariants
of fig.6.3.a we must prove

{(onlx >0), [VyolyOZOJ,B(x.y)| Popt(x YiXgs¥el and Yix,y,xq,y4l1
After tr1v1al simplifications this consists in proving that (xy2 03 and (y4,20) implies

{33>D|AND[XO-Ky0>y0]and (xg-3Yo<Yo) and (x(20) and (y,20)}
k=0

We know from arithmetic that ¥x 420, ¥y>0, Jq, 3r such that Xo-ay,=r and O<r<y,. Choosing j=q

in the above formula it remains to prove : AND(x oKy >y°J
k=0
But xo2qy, then for any k satisfying g>k>0 we have gx(k+1) thus qy°2[k+1]yo and by transitivi-

ty x02(k+1Jy0 we complete the proof of termination and correctness when (xozol, [y°>0).
However in the remaining case x,20, ¥o=0 the program is obviously incorrect since we cen-
not have ((x,<0) and (x,20)}. For the same reason Papt(x.y.xo,O] is always false when {x,20)

hence the program must enter an infinite loop for such input values. End of Example.

6.5 APPROXIMATE INVARIANTS, SYSTEMS OF INEQUALITIES AND PROOFS OF PARTIAL CORRECTNESS

Most program proving methods use inequalities of the form : Pi<==Fi(Pl,...,PnJ, i=1..n
whereas we used the equations : Pi=fi(P1....,Pn], i=1..n.

For example, instead of {i>0} i:=i+2 {i>2} one can legally write a less precise assertion
such as {i>0} i:=1+2 {i>1} since the strongest post-condition resulting from the pre-condition
{1>0} is {i>2} which implies {i>1},

This reasoning is justified by theorem 4.3.0.2 since any set of approximate invariants P
solution to the system of inequalities P <=F(P) correctly approximates the set POpt of optimal

invariants that is POpt

=>P. More precisely a program 7 is partially correct with respect to
#(X) and $(X,X) if for every input X such that (X} is true, whenever the program terminates at
some haltpoint h with some final value Y of the variables X (that is {3h, 3Y|P0pt(Y X1}) the
output specification must be true (that is {Phpt[Y X)=>w(Y X)}H. In order to guarantee that for
these particular h and Y the optimal Php (Y.,X) implies w[Y,X) it suffices to find some set P of
approximate invariants such that {Vh,VV,Ph(VZYU = P(¥,X}} since we know that

Opt[Y %) =P (7.5},

{vh,vY,pP
Finally, the program 7 is partially correct with respect to ® and ¥ if and only if
{(Ip|P<=F(P)), (¥X|O(X)), ¥n, WY, (P, (Y.X) => (Y, X))}

which7is the condition given in [32].

Example : Suppose we want to prove the partial correctness of the program of fig.6.2.a with res-
pect to the input specification ®(xg.yq) = {(XDZD]and (yOZO]} and the otitput specification
Yix,yaxg,y9) = {y>x20},

)
(3]

Choosling the loop invariant P, to be : P, ={x2y)and (y=y0) and propagating in the equaticns

S iszJEi[{(y*yol
PQ =-[x<y]321£y=y0]gﬂg[{x=x0]9£[x20)]

It is easy to verify that {[PléglPa)Eugl(xzy)} =P,, so that P, is a correct approximate

loop invariant. Finally we have {V(xo,y0],©(xo,y0)§£EiP“(x,y,xo,yo)}=¢1b[x,y.x0,y°] so that

the program is proved to be partislly correct (although it does not terminate for y=0).

The verification of progrom partial correctness has been shown to be amenable to mecha-
nization (see a.o. [371). Since the automatic discovery of optimal invarients is an unsolvable
problem the progranmer must provide inductive approximate invariants which cut the loops in
the program, that is provide the invariants which recursively depend on themselves in the equa-
tions. This in fact provides the entire solution to the inegualities since a simple propaga-
tion in the equations permits the remaining invariants to be deduced.

Thus proving partial correctness of programs consists in verifying that an approximate so-
lution to the system of logical equations corresponding to the program is correct. Next the
solution is used to prove thes output specification when assuming the input specification.

End of Exanple.

Note : Let T be a program for which the corresponding system of equations is P=F(P). The ter-
mination condition with respect to an input specification ¢ was given at paragraph 6.4 as
((VYTQ[Y]].3h,i7}PEpt[7;§j}. But according to theorem 2.3.6 P°pt=ﬁﬂnglF(P)==sP} and the termi-
nation condition becomes

{evx|eeXy, In, 37 | M{Phﬁ,fnmmmw}}

= {(vP|Pp <= F(P)), (¥X|0(X)), In, IV | PhtV.Yl}

which is the termination condition of Katz and Manna [32].

However they observed that this last condition is not utilizable in practice since it isv
expressed in terms of every possible set of approximate invariants satisfying the system of

inequalities F<= F(P) which admits infinitely many solutions. This fact is not surprising at

all since this condition is based on theorem 2.3.6 which is not constructive. End of Note.

6.6 SYMBOLIC EXECUTION

Symbolic execution is & widely used program analysis technigue (e.g. [7], [8]. [21], [22],
[311, [381, [55], {571, [67]1). In light of the fixed point approach to analysisof programs we

show that symbolic execution may be used to compute the set of optimal invariants.

6.6.1 SYMBOLIC CONTEXTS

The invariant associated with a program point i can be expressed in the normal form

OR '3 - - i
Pi = EEEFH where each pj is of the form [Qjand (x1_E1j) and...and (xm Emj]]. Each pj describes
a program path which may lead to the program point i. For each program path pj an assertion Dj
states the condition which had to be satisfied in order for that path to be executed. At point

i on that path the value of the program variable x,_ (k=1..m)} is given by EKj . E ., is a formal

k kJj

exp?gssion depending on the formal symbols VeV which represent the arbitrary initial va-

lues of the variables xl,...,xm on program entry. No X, Can appear as a free variable neither
in QJ nor in the EK" Changing the notations we will call Pi a symbalic context and rewrite

i h ={p.|jeA i =<Q., R >.
1t in the shape P, {pJIJe } with Py QJ EIJ Em

L6.2 SYUTEM OF SYif20U IC FORWARD ILUATIONS ?

(o)}

— ! . .
Let P={<Qj,hlj,..., >3 2} 52 a symbolic context, E(xl,...,xm] be an expression depen-

ding on the program varlableq xl....,xm and B[xl,...xm) be a boolean expression. We denote by i
P(xk<-5(x1,...,xmll the assignient of the symbolic value of E in context P to the variable Xy
that is {<Qj’Eli""’E[E R S I JE >ljeb}. The same way P and B(x »+eesx) will denote

1] YRR

the context {<Q,and 8(E .,....E),E .,...,E .>|jeA}.
2 conte { QJ nd B(. mJJ 13 mj [Je

The system of equations corresponding o the program segment

{r,}
loop {P1} if xzy then

{Pz} x:=xt;:—

{Ps} go to loop;

£ |

{P“} _ fig.6.6.2.a ‘
would be

Py = {<true,x .y >}

P, =P, LP,

P, = P, and (xzy)

Py = Pz(x+(x-y]]

P, = Plggg_[x<y) fig.6.6.2.b

The equations can be justified with respect to the rules of paragraph 6.2. For example, the
OR
i i i i = = cen =E
output predicate ﬂ] corresponding to the input predicate F’I jzﬁ(Qjand (x1 Exj] and and [xm 1mn

ft 1 .= i = ’ ’ =F ' . .
after the assignment statement x, : E(xl,...,xm] is PD {3x IPI[XK“X) and (xK _{xl,...,x ,...xmn}

K

Since xK is not a free variable in Q or any Ekj’ we have :

G 5—3—(0 and(x,=E j) and ...and {x'= kjléﬂg-"'EEEl(xm=EijEEE1[xk=E[x1'""x"""xm]]]'

Eliminating the free variables in E we get

OR
Po-jzz—(mj and (xl-EljJ and ... and (xK—E(Elj,...,Ekj,....Emj)] and ... and (xm—Emj]). :
Therefore using the denotations of symbolic contexts we have the rule for assignment : i

{r} Xy :=E(x seven X) {P(x +E(x e X 13}. The other rules can be justified in the same way. In
partlcular the operatlon L descrlbes the union PUQ of two symbolic contexts P= {p seeesP } and
Q= {q seeesdg } that is the set {p seeesPL ,q LRI } where superfluous equivalent program paths

are eliminated whereas inac09551ble paths (the path condition of which is false) are removed.

6.6.3 SYMBOLIC EXECUTION TREE

Computing the Gauss-Seidel's transform of the ascending approximation sequence, we get as
in paragraph 6.3
Initialization
[P3=P:=P2=P:=P£ =g

—

tepl

pt = {<true,x ,y >}
—==""9""0
P! = PLUuP® = {<true,x ,y >}
0o 3 oo
1 1
Pl = P and (x2y) = {<(x 2y),x ,y >}
1a d (xz2y { 0 Yo% Y,

1 1
pt = p 43¢ - = 1< > P VAR V2
2[x Xy} { (xo yo] Xo yu yo }

Pl = Pland (x<y) = {<{x <y),x ,y >}
1§L*- e { 0 yo] ><o yo

fig.6.6.3.a
Step2
P2 = {<true,x ,y >}
0 I] 0
P2 = {<true,x ,y >, <(x 2y },x -y ,y)>
=2 XY, o0 0 VoY }
P2 = {<{x 2y),x ,y >, <{x 2 d -y J2v 1.x -y L,y >
" { (x 2y Y% .y (xo yOJ_egl__[(xo y,) yol XYY, }

P2 = {< > WX o=y L,y >, < > d - > sX T2y L,y >
2= <tx 2y dax oYy >0 <Ok 2y) and (0x -y D2y 0. <2y Ly o)

P2 = {<(x <y),x ,y >, <(x 2y Jand ((x -y J<y },x -y ,y >
f<t o Yo %0 0o Yo BN AN Y IS X Y Yy !
sa that at iteration 2 we have built the following symbolic execution tree ([22])

<true,x ,y >
— 0" "0

<true,x ,y >
— 0 "0

<(x 2y J, Ly > <(x <y),X ,y >
[x° yo) xo Y, [xo yo] X0 Yy

<fx 2 -y ,y >
(Xo yo]'xo Yo' Yo

<Ix 2y 1,X -y ,y >
(xo yo] X0 Yo' Y

< > - - < > - < - >
[xo yolggg((xo yO]Zyol.xo Yor¥e> (x0 ynggg[[xo yol yol,x0 Yo' Y,

<(x 2y land ((x -y)2y),x -2y ,y >
) yo — o Yo yo] XYY,

We have represented the symbolic context Pi associated with program point i by the set of
paths associated with each of the nodes labelled i in the above execution tree. Equivalently
we could have represented the symbolic context associated with program point i by the maximal
subtree (of the above symbolic tree) the leaves of which are labelled i. Then the union U of
symbolic contexts performed at junction program points would be the merging of symbolic execu-
tion trees.

It is clear that the computation of the next terms in the approximation seguence would
cause the symbolic execution tree to grow. Without particular hypothesis on x, and y, this
process would converge to the optimal invariants in infinitely many steps. The varicus mathema-
tical techniques for dealing with infinite approximation sequences reviewed at paragraph 4 can
be used to cope with infinite execution trees. The verification of the correctness of the opti-
mal invariants (4.4.1) and the verification of the correctness of approximate invariants have
been illustrated at paragraphs 6.3 and 6.5 respectively. We now illustrate the technique 4.2
and next 4.1.2.

38

f.6.% VERIFICATION OF PROPERTIE:S OF OPTIMAL SYMBOLIC CONTEXTS

Let us prove the trivial fact that assartion {[VklﬂSks(xo-x)/y)[xozkyl} holds at
noint {3} of tihe program given at fig.s.6.2.a. According to Scott's induction (4.2) the basis
PF(L)) and the induction step {(¥X) (PUXII=>{P(F(X))} imply P(Ifp(F}). Therefore the proof

is the following
1
3

Basis : After step 1 P° is squal to {<Ex02yo),xo—y0,yo>} so that trivially [VK‘1SKS1] we have

X zky.
0
Induction step : e assume that at step & the symbolic context P% is equal to {<pi.xi,yi>!ieD}
with the incduction hypothesis that for any i of O we have {(Vk|1sks[x°-xi]/yi),(XOZKyi]}.
The eguations of fig.6.6.2.t allow the computation of P§+1 :
P% = {<p.,x,,y.>|ieD}
i771771
PR L et - (<t >,< >]1eD}
= L = ue,x , s XY 1
! 0 3 2B Y Pyrxyr¥y7ite
2+ L+1
P =P ard{xzyl= {<(x = X L,y >,< > LX..v.>l1d
2) vl= { (x, yO] X oY, (py and (x,2y))ux .y, | ieD}
PP L BE ey = (<) (p. and (x,2y,)) >| 1€}
= LT = < 2 » - ’ >,< : L2V, 2 Y. Y. i
3 2 y Xo yo x0 yo yo plan X:2Ys Xy7Y5 yl ie

We nust now prove that the hypothesis holds for all paths of P%*l. This is trivial for the path

<(xy2y)x -y »y, 7. Otherwise we have to prove {(VKI1SKS(x°-xi]/yi+1].[XOZKyiJ}-
According to the induction hypothesis, this condition is true for 15ks[x0—xi)/yi. Finally for

k=(xo—xi]/yi+1 the path condition xizyi implies xozkyi.

This approach is implicitly used in the technigue of "cut-trees” of Hantler and King [22].

Indeed the induction step can be understood as consisting in reasoning on the cut tree for {3}.

cut{3}
< >
o { PysXysYy IieD}

< >,< >
(1) { true,x .,y > <Pya%ysYy |1en}

{<(x°2y°],xo,yo>.
<p, end [xizyi),xi.yi>|isD} (2) () {<(x°<y°).xo,y0>.

< < >|4
{<(xogy°]’xo_y°'yo>' (py and [xi yi).xi,yi | ien}

<p; and (x;2y,) .xi-yi.yi>| ied} (35)

6.6.5 DISCOVERY OF OPTIMAL SYMBOLIC CONTEXTS

The technique of the difference equations (4.1.2) permits the optimal invariants to be

discovered ; the least fixed point of X=F({X) is obtained by solving the difference equations

st=F(1) and SR+1=F(SQ], that is by expressing s% as a function f(8) of 4. Then pr(F]iJi%,ffll'

The first iteration of the Gauss-Seidel’s transform of the ascending approximation
sequence (fig.6.6.3.a) leads to the basis for the difference eguations : Pi={<true.xo,yo>}.
Then we establish a recurrence relationship between Pf+1 and Pf using the equations

fig.6.6.2.b

L
Py = i
! {<Di‘£.xi,2.yi,2>]1€D(l]}
Pt - {< d(<] i
2 Py g 30d Oy o=y doxy ge¥y, g |10

o= 1< and [x < RS —v. v, o >haentony = Alev
I R T FUE R EE N S PUP RS PR 1)
whers Bl<py oox; ooy 213D = {B0<h; ey vy @2 12200} ang

< = _
BU<Py go%q,07Ya,07) T Py, 3nd Uy oSy o TaXy 0Ty 0¥y >

P%+1=P0LJZ[P%) since P is constant and PQ=A(P%).
0 3

Hence the recurrence relaticns defining P are
1

pl =P
1 0

P - e RceY
1 [1

Using the property that K is distributive over U, the soclution to these regular equations is
2-1

PL- IR (P) = {8%P)] i=0.. 8-}

It remains now to determine the multivalued function A. This is dane using the fact that
A' is defined recursively by AT =psat and A° is the identity function. We have : AO(POJ =
i i+l
< > =< >, =<p., X, Y. > = <p. SyL)LXLTYL, YLD =
true,x ,y p ,xo,yo Let A (Po) PysXaYy then A [PO) pland [xl yll X, 7Y50 Yy
<pi+ ,X ’y

These recurrence relations may be solved directly, yielding [y.=y), (x.=x -iy } and since
0 0

p°=E£gg_and Pis, 7Py and {(x —1y)<y } we have Py —?Ng {({x -1y]<y) and therefore
Pf - {Ai(Po)|i=D..5L-1} {<AND((x -3y,)5y x =iy LY, >|1 0..2-1}.
j =0
lThus the optimal solution to equationsfig.5.5.2.b. is given by P opt %nn F"Q =
{<AND((X —jy)<y). x —iy y > 11>D} The other symbolic contexts are obtalned by a straight-
fo%ward propagatlon ofthls value in the equations fig.6.6.2.b and we get the optimal invariants

of fig.6.3.a.

The above approach is implicitely used in {81, [21], in the "algorithmic approach” of
Katz & Manna [32], etc. The main advantage of the use of symbolic execution and difference
equations is that they lead to the optimal invariants. However for more compléx programs.the
resolution of the difference equations is often difficult and can be a problem of considerable

intellectual depth.

7. APPLICATION TO COMPILE-TIME VERIFICATION OR DISCOVERY OF PROGRAM PROPERTIES

Traditionally compilers do not necessitate intervention of programmers during the compila-
tion of programs so that compile-time analysis of programs must be entirely automatic. However
since compilers happen to seek for not decidable properties of programs the approximation tech-
nigues 4.3.1 and 4.3.2 play a central role. These approximation technigues have been designed
s0 that (at least but not necessarily at the most) all states which may occur during execution
are discovered. For example the fact that an integer variable x can only take the values 0 and
11 may be correctly approximated by O<x<255. However it should be clear that this incomplete
analysis is correct and acceptable to compilers which never need full knowledge of the proper-

ties of the compiled programs.

7.1 APPLICATION TO GLOBAL DATA FLOW ANALYSIS

Global data flow analysis techniques (see references in [62]) are used for analyzing com-
puter programs for the purpose of code optimization. One such problem is that of determining

which variables arelive (i.e. which variables will be used again) at any given point in the

rrocram (03470,

Assuming that a program has been represented byrits flow graph a path in this graph is
said to be definition clear with respect to X, or X-clear, if there is no assignment to X in
any node on that path. A variable X is IZve at point p in the flow graph if there exists an
X-clear path from p to a use of X. Thus X is live at p if its value at p may be used before it
is redefined.

Let live{b) be the set of all variables which are live on entry to node b. The global sets
live(b) can be defined in terms of two sets which contain strictly local information. Given a
node b in the flow graph EEE(b] is the set o? variables X such that there is an X-clear path
fran the entry of b to a use of X within b. Let Elﬁﬂﬂfb) be the set of variables X for which
the path through the node b is definition-clear with respect to X. Now there is an X-clear path
from the entry of b to a use of X if and only if there exists such a path to a use within b or
there exists an X-definition clear path through b to a successor of b and there to a use.Hence
the set livelbl) is defined by the backward eguation

live(b) = use(®) U |J (clear(b) Nlive(x)) fig.7.1.a
xesucc{b)

For an exit node e which has no successors and contains no command we have live(e)=#. The least
solutions (with respect to set inclusion <) to the systems of equations are preferred. (Consi-
der for exemple a program such as begin x:=1; while...do...od; y:=x; end where x and y do not
appear in the loop. The smallest solution will only consider x to be live in the loop whereas
greater solutions might alsoc consider that y is live in the loop).

There are two classical techniques for solving the eguations. The Cocke-Allen interval
analysis (typified by [31,[81) is a graphical formulation for an algorithm to formally sclve
the equations (see 4.1.1). It is applicable only to a limited class of recursive equations
{corresponding to "reducible” programs} and to a limited class of lattices. More generally the
equations can be solved by iterative methods (typified by Hecht & Ullman[23]) which proceed by
successive approximations (see 2.5.3). The utilized lattices are usually finite or satisfy the
chain condition (2.4.5) so that convergence is guaranteed.

Let us solve the live-equations for the following irreducible flow graph with two varia-
bles o and B :)

() uselo) = & clear(o) = ¢

O use(1) = {B} clear1) = {a,B}
(2) use(2) = @ clear(2) = {a,B}
G) use(3) = ¥ clear(3) = {a,B}
() use(s) = {a} clear(s) = {a}
® lives) - @

Solving iteratively with Gauss-Seidel's policy would require 20 applications of eguation
fig.7.1.a plus 5 more applications to prove stabilization. However for the particular prablem
of live variables an optimal epproximation seguence exists ([23,[33]). For example initializing
li!é[b] by used(b) and applying the equation fig.7.1.a in the order b=1,2,3,4,3,2,1,0 we

obtain :

41
1iverad :
Steps 2 o 1 2 3 4 s 4 ’
Initialization » {8 ¢ ¢ o} @ H
1 {8} - :
2 {8}
3 {8} i
4 {a}
5 {a, B} ?
6 fa,8) 5
7 {a,B} !
8 %

Therefore 8 applications of the equation fig.7.1.a are strictly necessary (instead of 20} and
no supplementary applications are needed to prove that the iteration process has converged

(instead of 5).

7.2 APPLICATION TO FINITE-INFINITE STATE ANALYSIS OF PROGRAMS

An analysis of programs usually performed by compilers is type determination. Compile-
time type verification consists in verifying that the declarations of the program are respected
in_the instructions. Otherwise stated the programmer provides an exact or approximate solution
to a system of type equations by means of declarations and the compiler simply verifies the
correctness of this solution (4.4). On the contrary some programming languages have no declara-
tions whereas in others the global declarations are not always sufficient for local type check-
ing {see [141) so that type discovery is necessary. Most modern programming languages permit
programs using a potentially infinite number of types so that approximation is necessary (see
e.g. (4.3.2), [15]1, [61]). Compile time analyses conmnected to type checking are control of
correct access to data structures (561, finite state program testing [25], elimination of unne-

cessary copying operations in set languages [517], etc.

A classical example where global declarations are not sufficient for local type checking
is the one of static correctness check of access to records via pointers. One must distinguish
between nil and non-nil pointers. The global declarations must be locally refined by the compi-

ler according to the following schema

pointer

nil <:::::> non-nil

1

Consider the simple problem of finding the Kth value in a linked linear list L

val next
e I e P S T
c

A tentative solution may be the Follé@ing :

42

1w then moron £
a3 S
[
wiile k=1 o
. K o= K=1; .
= if Cenil then error fi;
{2} C := C1.next;
4
{5} ods

Taking account of the fact that L may be an empty list at line {1} and that the function

"next” delivers a nil or non-nil pointer the system of type equations is the following

C, = pointer
c, =Cc,uc,

€, = C,Mnon-nil
€, = pointer

Cs = C,UC,

The least solution shows that C,=non-nil so that the access to a record via C at line 3 is
correct. Yet C.=pointer at line 5, and from this diagnosis the programmer should be able to dis-

cover that he has forgotten the case of a list of length k-1.

A problem which is frequently met when compiling programs involving pointers is that of
determining whether two pointer variables may or not point directly or indirectly to the same
record. To answer that question the compiler may analyze the program and locally partition the
pointer variables into disjoint collections ([141,(30]). A collection is a set of pointer varia-
bles which may possibly point directly or indirectly to the same record. On the contrary two
pointers belonging to disjoint collections cannot designate the same object. The two collections

of the following example :
\ W X Y z

. Y

GIDME T O

will be denoted by /V,W/X,Y,Z/. Note that collection /X,Y,Z/ is not minimal but /X,Y/Z/ is cor-
rectly approximated by /X,Y,Z/. B

Let S1 and S2 be two sets of collections., The union SILJS2 is a set of collections
/Cl/"'/Ck/ such that XeCi and YeCi if and only if there exists a finite sequence T0=X,T1,...,
TP=Y of pointer variables such that for any element j of [1,r] there exists a collection C be-
longing to S1 or 82 such that Tj_leC and TjeC. For example /A,B,C/D,E/ U /F,A,G/H/ =
/A,B,C,F,;G/D,E/H/ since if on one hand A may point to a record referenced by B and C, and on the
other hand, A may point te a record referenced by F and G, it is clear that A,B,C,F and G may
peint to the same record. Let us also define the extraction of a variable X from a set of collec-
£10nS S = /C/eea/X WX seriXananX /0i/C) by EXLS) = TNV, 7 S SETPE SV Y

Let us now examine the association of a system of equations with any particular program.
After-the instructions "X:=nil” or "X:=Y" where Y is known to be nil or "if X=nil then ..." or
"new(X}" it is known that X will point to no record at all or will be the only pointer to the
newly allocated record. Thus we have isolated a collection {(empty or copsisting of a single

record). The output set of collecticns S, corresponding to the input set of collections Si is

therefore SO=E(X,SiJ. More generally, with an input set of collections Si’ a pointer assignment

33

o
such 4w hirextloubonaxn o= Yhipexto., tonext” wrisre the selector parts ore optional may cause
X ang Y tn Qndirectly point to a conmon record. Hence they have to be put in the same collec-
ticn. The output predicete will be SO=SIL}/X,Y/. Note that the above assignment performs a pro-
fouru modification in the structure referenced by X and Y. This modification may cause a col-
lecticn to be broken into two disjoint‘sub—collections. However since the internal orgaenization
of collections is not known it is impossible to cbserve the effect of this deep modification,
except in the obvicus cases "X:=Y" or "X :=Y%.next...t.next” which will cause X to be discon-
nected from its collection and be connected tc a record of the collection of Y. When X and Y

are nct the same variable, the output set of collections S, will be related to the input set

0
of collections SI by SD=§[X,SI]LJ/X,Y/.

lLet us now consider an example which consists in copying a linked linear list
val next
o

Ip
- 1
I e IR EI= Sty
L, 1] - Eﬂij 7&1
A) 4
L

P
the following procedure is supposed to do the job

procedure copy (L;:list; varl, :list);
var Py ,P,,L:1ist;

begin
E?% Pys=ty; Lyei=nil; L:=nil;
{2} while P;#nil do
{3} new(P,J); P,*.val:=P *.val; P,*.next:=nil;
{4} if L=nil then
{5} L2:=P2}
{5} else
(7} Lt next:=P,;
{8} £is
{g} L:=P2; Pl :=P1*.next;
{10} ods
end;

According to our abstract interpretation of the basic constructs of the language we can

now establish the corresponding system of egquations

/ S, = ell.ell,,e(P,S)U/P L /)
S, = S, Us,
s, = €(P,,S,) _
s, = £(L.5,)
) Sg = elL,,sJU/L,,P,/
S =8
s 3
S, =S U/,P/
7 6 2
S, = s,Us,
Sg = €(L,S,)U/L,P,/
s, =glP ,5 US)
1o — 1 1 9

For equations 2 and 6 the fact that P1zﬂii or Lznil gives no information on collections. In
equation 3 the assigmment of nen-pointer values "P2¢.va1:=Plf.val” and a deep modification
”Pzt}next:=£ggf in the structure pointed to by P, are ignored. For equation 9 notice that the
statement ”P1:=P1f.next" leaves Pl in the same collection.

The system of equations can be solved by successive approximations since the number of
collections constructed on a finite set of pointer variables is finite'. Simce we want the col-
lections to be as refined as possible we compute the least solution starting from the infimum

/LI/LZ/PI/P2/L/' For the entry condition Sy in the procedure we start with the most

disadvantarcous initisal situation where on the ore and the naranaters /S, S and an the other
; R

hand the local variables /Pl’Pz’L/ are supposed to be in the same collectian.

Initialization : -
-~ .0
S0 = /Ll'Lz/P1'Pz'L/

0 _ . _
i Si = /Lx/Lz/Px/Pz/L/' i=1..10
Step 1
- 1
5, = §jL,§jL2,§jPl,/LI,LZ/PI,PZ,L/]LJ/PI,LI/)J = elL,ell,, /L L, /P /P, L/LU /P LL /)

= e(Le(l,, /L ,L,.P /P, L/)) = /L P /L, /P /LY

S, = /P /LIPS UL L IR P I = L P IR LY

s, = &P, /L WP /L /P /LYY = /LLP L P LY

S, = E(L,/L P /L /P /LY = /L P /L /P LY

S = E(L,u /L WP /L, /P, /LAY U/, LR,/ = /L P /L, P /LY

Sg = /L P /L, /P, /LY

S; = /L LPL/L /P /LS U /LLP,/ = /L P/, /P, LY

Sg = /LysPy /Ly Py /L U AL WP /L, /P, L = /LR /L, P, L
1Sy = E(LL/L P /L,LPL LAY U LR,/ = /L P I/L,LP L/

Cycling in the while-loop until the invariants Sl.....S9 have stabilized we go on step 2 :
(S = /Ly Py /L /P /L UL LPL/LLP LY = L LR LR

S3 = £(P,,/L P /L,P, L) = /L LP /L, L/P,/

S3 = elL,/L P /L LL/P /) = /L P IR LY

sz = (L, /L WP/L /P /LY U /LR /= L WP /L P LY

Sg = /L,.P /L,.L/P,/

S = /Ly P /L, LR,/ L ILLP,/ = /L P /L, LLP,/

Sy = /LysP /Ly Py /L U L P /Ly, P, L = L P, P, L

85 = E(LL/L WP /L, P, L) U /LLP,/ = /L ,P/L,,P,.L/

.Sm = (P, /LI’PI/Lz/pz/L/ u /Ll‘Pl/Lz’Pz'L/] = /Ll/Pl/Lz'Pz'L/

The iterates have stabilized and the main result is that although L1 and L2 may share
records on entry of the procedure "copy” (S,=/L,.L,/P, ,P,,L/) it is guaranteed that this is not
the case on exit of'the procedure (Sm=/L1/P1/L2.P2.L/]. The local collections may be used by
compilers in several ways. An optimizing compiler will be able to limit the number of objects
which are supposed to have been modified by side-effects when assigning to objects designated
by pointers (which is useful in register allecation}. The compiler may insert a call to the
garbage collector in the code when no variable in a collection is live (i.e. all variables in
the collection are not used before being ‘assigned to). Alsc run-time tests may be inserted
before a statement "dispose(X)” to verify that no live variable in the collection of X may

access the record referenced by X which will be returned to the free storage.

8. CONCLUSION

Numerous methods have been used for determining properties of programs and we think that
our fixed point approach in the semantic analysis of programs provides a convenient framework
for expressing the deep unity underlying apparently unrelated techniques such as denotational
semantics, logical analysis of programs, program performance prediction, data flow analysis,
extended type discovery, etc. By fixed point approach in the semantic analysis of programs

we refer to the whole of techniques for determining program properties which take as starting

i
(9]

point the fact that these properties can be Jefined as tht loust =saluti . 0o g syLoom OF 2gua-
tions which is associated with the program by approximeting the formal semantic Jevinition of

this program.

In our presentation we have basically considered the semantic analysis of sequential
programs. We also have to consider the problems of applying this approach to less restricted
programming languages where the concepts of "program point” and "identifier" are more complex.
Nested scopes and recursion are treated in [15] but more complicated language features must be

studied such as for example procedures as parameters or jumps out of procedures.

The general problem of finding an algorithm to solve the eguations associated with any
sequential program is undecidable. In practice the solution to these equations can be approxi-
mated and we presented fixed point approximation algorithms. Considerable progress can be made
with regard to efficiency of these computation methods and mainly with regard to the precise-
ness of the approximation. Bycomparison with numerical equations it is clear that the problem
of approximate resolution of fixed point equationslin infinite lattices has not been studied

in depth and is a promising research area.

Program optimization and data flow analysis is one area where fixed point computation
algorithms have been intensively developed. However these algorithms are often expressed in
graphical terms and devoted to specific applications where lattices are of finite length., It
is certainly interesting to forget the specific applications and express these data flow anal-
ysis algorithms as fixed point computation methods. Also it is clear that the ability to

consider arbitrary lattices would enlarge the scope of data flow analysis techniques.

The area of compiler writing and compiler correctness is one natural application. In com-
pilers the phases of syntax analysis and verification of context conditions have been suitably
formalized by context-free grammars and attribute grammars. The well-known advantages of these
formalisms are their understandability coming from their declarative aspect as well as the
fact that they automatically lead to constructive algorithms. One find again the same advan-
tages in our fixed point formalization of the subsequent phase of compile-time analysis of
programs. The specification of the abstract space of approximate properties and the definition
of the rules for associating a system of equations with a program have a descriptive or decla-
rative aspect. (At that time compiler correctness can be established by proving the validity
of these rules with respect to the semantics of the language). The constructive aspect follows
from the existence of fixed point generation or approximation algorithms. (Note also that
.attribute grammars associate a system of fixed point equations with a syntactic tree whereas

we associate a system of equations with a control graphl.

Finally in the area of logical analysis of programs where one has to deal with undecidable
problems the notion of approximation is unvoidably essential. One can imagine to design a wide
spectrum of approximate properties or approximation heuristics to cope with analysis of usual
programs. However it is clear that some specific programs will need peculiar analyses which
cannet be foreseen in advance. Hence it is essential to design languages allowing the user to
define and eventually guide such analyses. The present research on aEstract data types seems

to be the first steps in that direction.

Acknowledgements : We were very lucky to have Mrs. F. Blanc and Mrs. C. Puech do the typing

for us.

REFERENCES

10.

1.

12,

13.

14.

15.

18.

17.

18

13.

20.

27

22,

Abian, %. and Brown, 4.8. A theorem on partially ordered sets with applicetions to fixed
point thecrems. Caonad, J. Math, 13(1881), 78-82.

Aho, A.V., and Ullman, J.D. Node listings for reducible flow graphs. Proc. 7th Annual ACM
Symp. on Theory of Computing, May 1875, 177-185,

Allen, F.E. A basis for program optimization. Proc. IFIP Cong. 71, Vol. 1, North-Holland
Pub. Co., Amsterdam, 1871, 385-390.

Baudet, G. Asynchronous iterative methods for multiprocessors. Res. Rep., Computer Sci.
Dept., Carnegie Mellon U., Nov. 1876,

Birkhoff, G., Lattice Theory, AMS Coll. Pub., XXV, 3rd ed., Providence, R.I., 1967.

Burstall, R.M. Proving properties of programs by structural induction. Computer Journal,
Vol. 12, 1988, 41-48.

Burstell, R.M. Program proving as hand simulation with a little induction. Proc. IFIP Cong.
74, Software, North-Holland, Pub. Co., Amsterdam, 1974, 308-312.

Cheatham, T.E., and Townley, J.A. Symbolic evaluation of programs : a look at loop analysis
Proc. of the 1975 ACM Symp. on Symbolic and Algebraic Computation, Aug. 1976.

Cocke, J. Global common subexpression elimination. SIGPLAN Notices §, 7{(July 1370), 20-24.

Cohen, J., and Katcoff, J. Symbolic solution of finite difference equations, R.R., Physics
Dept., Brendeis U., Waltham Mass., July 1976.

Courcelle, B., and Nivat, M. Algebraic families of interpretations. Proc. 17th Symp. on
Foundations of Computer Sci., Houston, Oct. 1976.

Cousot, P., and Cousot, R. Static determipation of dynamic properties of programs. Proc.
2nd Int. Symp. on Programming, B. Robinet (Ed.), Dunod, Paris, April 1976. [Also in MOHL
Bulletin, No.5, P. Cousot (Ed.), IRIA, Rocquencourt, France, (Sept. 1976}, 27-52].

Cousot, P., and Cousot, R. Abstract interpretation : a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Conf. Rec. of the
4th ACM Symp. on Principles of Programming Languages, Los Angeles, Calif., Jen. 1977,
238-252.

Cousot, P., and Cousot, R. Static determination of dynamic properties of generalized type
unions. ACM. Conf. on Language Design for Reliable Software, Raleigh, North Carolina,
March 1977. SIGPLAN Notices 12, 3(March 1977), 77-84.

Cousot, P., and Cousot, R. Static determination of dynamic properties of recursive proce-
dures. IFIP W.G.2.2. Working Conf. on Formal Description of Programming Concepts,
St. Andrews, New Brunswick, Canada, Aug. 1977.

Cousot, P., and Cousot, R. Automatic synthesis of optimal invariant assertions :
mathematical foundations. Proc. of the ACM Symposium on Artificial Intelligence &
Programming Languages, Rochester, New York, Aug. 1877.

De Bakker, J.W., and Scott, D. A theory of programs. Unpublished Notes, IBM Seminar,
Vienna, 1968.

Dijkstra, E.W. 4 diseipline of programming. Prentice-Hall, Englewood Cliffs, N.J., 1978.

Floyd, R.W. Assigning meaning to programs. Proc. Symp. in Appl. Math., Vol. 18,
J.T. Schwartz (Ed.), Amer. Math. Soc., Providence, R.I., 1967, 19-32.

Epguen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B. Initial algebra semantics and
continuous algebras. JACM 24, 1(Jan. 1977},

Grief, I., and Waldinger, R.J. A more mechanical approach to program verification. Proc.
1st Int. Symp. on Programming, B. Robinet (Ed.). Lecture Notes in Bomputer Sci., Springer-
Verlag, Berlin, April 1874, 1038-118.

Hantler, S.L., and King, J.C. An introduction to proving the correctness of programs.
Computing Surveys 8, 3(Sept. 1876), 331-353,

27«

28,

30.

31.

32.

33.

34.

35,

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

48.

47.

48.

Jaznt, MLS., ard Ullman, 1.0, Analysis ot 2 sirple 2@ ithm for global flow problems.
s : ~f Lha ACM Symp. on Piinciplss of Programn . Langueges, Boston, Mass., Oct.1973,
P -

;o contribetion to ths yrogramming caliculus. Tech. Rep.

i Croup, U. of Torentu, Nov. 1976,

son, P. Finite state modelling in program development. Proce Int. Conf. on Reliable
re, bLos Angeles, Calif,, April 1875, 221-227.

checock, Po, end Park, D. Induction rules and prcofs of termination. Proc. IRIA Symp.
utomata, Leanguzges and Programming, North-Holland Pub. Co., July 1872, 225-251.

Hoare, C.A.R. An axiomatic basis of computer programming. Comm. ACM 12, 10(0Oct. 1868},
576

. HOft, H., and H3FE, M. Some fixed point theorems for partially ordered sets. Canad. J.

Matn. 28, 5(1876), 982-997,

Kam, J.B., and Ullman, J.D. Morctone data flow analysis frameworks. Adcta Informatica 7,
1977, 305-317.

Karr, M. Gathering information about programs. Mass. Computer Associates, Inc., CA-7507-
1411, July, 1875.

Karr, M. Affine relationships among variables of a program. Adeta Informatica 6, 1976,
133-151.

Katz, S., and Manna, Z. Logical analysis of programs. Comm. ACM 19, 4(April 1976), 188-206.

Kennedy, K. Node listings applied to datas flow analysis. Conf. Rec. of the 2nd ACM Symp.
on Principles of Programming Languages, FPalo Alte, Calif., Jan. 1975, 10-21.

Kennedy, K. A comparison of two algorithms for global data flow analysis. SIAM J. Computing
5, 1(March 1976}, 158-180,

Kennedy, K., and Zucconi, L. Applications of a graph grammar for program control flow
analysis. Conf. Record. of the 4th ACM Symp. on Principles of Programming Languages, LOs
Angeles, Calif., Jan. 41877, 72-85.

Kildall, G.A. A unified approach to global program optimization. Conf. Rec. of the ACM
Symp. on Principles of Programming Languages, Boston, Mass., Oct. 1873, 184-206.

King, J. A program verifier. Ph.D. Th., Dept. of Computer Sc., Carnegie-Mellon U.,
Pittsburgh, Pa., 1989.

King, J.C. Symbolic execution and program testing. Comm. ACM 19, 7(July 13976), 385-394.

Kleene, S.C. Introduction to Metamathematiecs. North-Holland Pub. Co., Amsterdam, 1852,
348-348.

Knaster, B. Un théoréme sur les fonctions d'ensembles, Ann. Soe. Polon. Math, 6(1928),
133-134.

MacCarthy, J. A basis for a mathematical theory of computation. Computer Programming and
Formal Systems, Braffort and Hirshberg (Eds.}, North-Holland, Amsterdam, 1863, 33-68.

MacNeille, H.M. Partially ordered sets. Trans. Amer. Math. Soc. 42, (1937}, 416-480.
Manmna, Z. Mathematical Theory of Computation. Mc Graw-Hill, New York, 1874,

Manna, Z., Ness, S. and Vuillemin, J. Inductive methods for proving properties of programs.
Comm, ACM 16, 8(Aug. 1873}, 481-502.

Morris, J.H. Another recursion induction principle. Comm. ACM 14, 5(May 1971), 351-354.

S

Naur, P. Checking of operand types in ALGOL compilers. BIT 5, (1868), 151-183.

Nivat, M. On the interpretation of recursive program schemes. Symppsia Mathematica, Vol. XV
Instituto Nazionale di Alta Mathematica, Italy, 1875, 255-281.

Park, D. Fixpoint induction and proofs of program properties. Machine Intelligence &,
B. Meltzer and D. Michie (Eds.), Edinburgh U. Press, 1969, 53-78.

32

55.

56

57 .

58 .

59.

60 .

61,

BZE

53!

64 .

65.

66 .

B7ﬂ

PAGLAL . widrth, ™. The progremming longuage PATCAL, Acta injormatica 7, (1871}, 35-83.

Robert, ©. 3ur la transformzticn Je Gauss-Scidel. Séminaire d'Analyse Numérique, No. 255,
latheématigues Appliguées, U,S.M.G., Grenchle, Oct. 1978.

hwa
1

(S
ACH

rtz, J.T. Automatic data structure choice in a language of very high level. Comm,
8, 42(Dec. 1975}, 722-728.

Scott, D. Outline of a mathsmatical theory of computation. Proc. of the 4th Ann. Princeton
Conf, ©n Information Sciences and Systems, Princeton, 1570, 189-178.

Scott, D. Dats types as lattices. STAM J. Computing 5, 3(Sept. 1976), 522-587.

Scott, D., and Strachey, C. Towards a mathematical semantics for computer languages. Proc.
Symp. on Computers and Automata, Polytechnic Inst, of Brooklyn, Vel. 21, 1871, 18-46.

SELECT. Beyer, R.S., Elspas, B., and Levitt, K.N. SELECT - A formal system for testing and
debugging programs by symbolic execution. Proc. Int. Conf. on Reliable Software, Los
Angeles, Calif., April 1975, 234-245,

Sintzoff, M. Calculating properties of progrems by valuations on specific models. Proc.,
ACM Conf. on Proving Assertions sbout Programs. SIGPLAN Notices 7, 1(1972), 203-207.

Sintzoff, M. Vérification d'assertions pour des fonctions utilisables comme valeurs et
affectant des verisbles extérisures. Proc. Int. Symp. on Proving and Improving Programs,

Arc et Senans, France, July 1875, 11-27.

Sintzoff, M. Iterative methods for the generation of successful programs.
M.B.L.E. Research Lab., Brusssls, 13877.

Tarjan, R.E. Iterative algorithms for glohal flow analysis. Tech. Rep. CS 76-545, Comp.
Sc. Dept., Stanford U., Feb. 1876.

Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math.
5, (1955), 285-309.

Tennenbaum, A. Type determination for very high level languages. NSG-3, Courant Inst. of
Math. Sci., New-York U., Oct. 1974.

Ullman, J.D. Data flow analysis. Proc. 2nd USA-Japan Computer Conf., Montvale, N.J.,
AFIPS Press, 1975.

Vuillemin, J. Proof techniques for recursive programs. STAN-CS-73-393, Computer Science
Dept., Stanford W., Oct. 1973.

Wegbrelt, B. Mechanical program analysis. Comm. ACM 18, 9(Sept. 1975), 528-539.

Wegbreit, B. Property extraction in well-founded property sets. I.E.E.E. Trans. on Soft.
Eng., Vol. SE-1, No 3, (Sept. 1975), 270-285.

Wegbreit, B. Verifying program performance. JACM 23, 4(0Oct. 1978}, 691-693.

Yonezawa, A. Symbolic-evaluation as an aid to program synthesis. Working paper 124,
Artificial Intelligence Lab., Mass. Inst. of Technology, April 1876.

