
Theoretical Computer Science 120 (1993) 123-155

Elsevier
123

“A la Burstall” intermittent
assertions induction principles
for proving inevitability
properties of programs

P. Cousot

CNRS U.R.A. 1327, LIENS, Ecole Normale SupPrieure. 45 Rue d’Ulm, F-75230 Paris Cedev 05,
France

R. Cousot
CNRS U.R.A. 1439. LIX, Ecole Poi_vtechnique. F-91128 Palaiseau Cedex. France

Communicated by R. Mimer

Received January 1984

Revised January 1991

Cousot, P. and R. Cousot, “A la Burstall” intermittent assertions induction principles for proving

inevitability properties of programs, Theoretical Computer Science 120 (1993) 123-15.5.

We formalize Burstall’s (1974) intermittent assertions method (initially conceived for proving total

correctness of sequential programs) and generalize it to handle inevitability proofs for nondetermin-

istic transition systems, hence (in particular) parallel programs.

Programs are modeled by transition systems, program executions by sets of complete traces and

program properties by inevitability properties of transition systems (generalizing total correctness of

programs). It follows that the study is independent of any particular programming language.

The basic proof principle that we derive from Burstall’s and Manna and Waldinger’s (1978)

description of the intermittent assertions method is shown to be sound. It is also semantically

complete under a condition on execution traces and inevitable properties. This condition is satisfied

when considering inevitability properties such as total correctness or properties involving unary

assertions on states. However, we conjecture that (even for deterministic programs) the basic proof

principle is not complete when considering arbitrary binary inevitability properties (which relate

state values at different “time instants”).
This conjecture leads us to a generalization of Burstall’s intermittent assertions method using

transfinite induction (to handle unbounded nondeterminism) and using auxiliary or ghost variables

in the limited form of ternary intermittent assertions (which can relate state values on program entry

and at two other different “time instants”).

Correspondence to: P. Cousot, CNRS U.R.A. 1327, LIENS, Ecole Normale Suptrieure, 45 Rue d’Ulm.

F-75230 Paris Cedex 05. France.

0304-3975/93/$06.00 c 1993-Elsevier Science Publishers B.V. All rights reserved

124 P. Cousot, R. Cousot

From this generalized proof principle we derive a series of induction principles so as to broaden

the allowable forms of proofs. Also we obtain more abstract and hence better understood formaliz-

ations of Burstall’s method.

All proof principles are sound and semantically complete (essentially, as noticed by Manna and

Waldinger, because Burstall’s method can be used to express “a la Floyd” proofs). However. we

prove a stronger semantic completeness result in the sense that the propositions and lemmas

involved in “a la Burstall” inevitability proofs can be chosen freely (at least under necessary and

sufficient conditions that we specify accurately).

1. Introduction

We formalize Burstall’s intermittent assertions method [3] initially conceived for

proving total correctness of sequential programs and generalize it to handle inevitabil-

ity properties of nondeterministic and parallel programs.

Programs are modeled by transition systems (Section 2) and program executions by

sets of complete traces (Section 3) so that the study is independent of any particular

programming language. We consider inevitability properties of programs such as

total correctness, accessibility of a critical section, liveness of processes which must

eventually progress, responsiveness to a request, etc. (Section 4).

In Section 5 we derive from examples in [3, lo] a basic proof principle which is

a very concise formulation of Burstall’s intermittent assertions method. The method is

shown to be sound. Using transfinite (instead of finite) induction to handle unbounded

nondeterminism, the basic induction principle is shown to be semantically complete

under a sufficient (but not necessary) condition on execution traces and inevitable

properties. This condition holds in particular when considering total correctness of

programs as in [3]. It is also satisfied for unary inevitable properties which depend

only upon final states (a restriction considered by Pnueli [1 11, Apt and Delporte [l]

and Manna and Pnueli [9]).

When using unary inevitable properties, relationships between initial and final

values of program variables can only be expressed by assigning initial values to

auxiliary variables incorporated into states. The use of auxiliary variables has the

disadvantage that the program has to be transformed. More importantly, the use of

auxiliary variables is in a sense too flexible: one can relate any intermediate states

during a computation and even store entire computations. Such a free use of auxiliary

variables is not in the spirit of [3, lo], where lemmas are always of the form “if

sometime 4(X,, X,)AX~=-Y~A...AX,=X, at / then sometime $(x~,...,x,,

x1, X,) at I”’ (where X1, X,) are the program variables and x1, . . . ,x, their

respective symbolic values at program point I). This is captured in our basic induction

principle using binary inevitable properties (better than by imposing adequate restric-

tions on the use of auxiliary variables that would depend upon the syntax of

programs). However, we conjecture that even for deterministic programs there are

inevitable properties for which the use of binary assertions is not semantically

complete.

Intermittent assertions induction principles 125

This conjecture leads us in Section 6 to a generalization of Burstall’s intermittent

assertions method using transfinite induction (to handle unbounded nondeterminism)

and ternary intermittent assertions (thus allowing for lemmas of the more general

form“ifsometime~(~, ,..., x,,X, ,..., X,)~X,=x,~~~~~X,=x,atIthensometime

$4X 1 ,..., x,,xl ,..., x,,X1 ,..., X,) at I”‘, where XI,?&I (resp. x1,x.)

denote the values of the program variables XI, .., X, on program entry (resp. at

program point /). This generalized induction principle is then proved to be sound and

semantically complete.

In Section 7 we derive a series of induction principles which are successive general-

izations of the above proof principle. This broadens the range of application

of the method [for example, when using infinite well-ordered sets of intermittent

assertions (which can be given finite presentations by means of auxiliary termination

variables) Burstall’s method can be extended so as to incorporate Floyd’s method

[7]]. Moreover, the consideration of more and more abstract formalizations

should lead to a better understanding of Burstall’s method (for example, it is

shown that hand-simulation and induction upon the data can be understood in

a unified manner and reduced to computational induction in a form essentially

more expressive than Floyd’s method [7]). The successive generalizations introduce

more flexibility to write proofs but no additional proof power, since all considered

proof principles are shown to be sound and semantically complete and hence

equivalent.

The completeness argument consists in showing that “a la Floyd” proofs can be

reformulated using “a la Burstall” proofs (i.e. computational induction can be reduced

to induction upon the data). However, this argument is not fully satisfactory because

the style of the allowable proofs is fixed. Users of Burstall’s method need a stronger

completeness result since they want to know if the lemmas that they are going to use in

their proofs can always be chosen freely. A positive answer is given in Section 8 (with

the necessary and sufficient condition that each lemma involves a property which is

inevitable for the program but also relatively to the other lemmas which are used in its

proof).

2. Programs as transition systems

The operational semantics of a programming language associates a transition

system (S, t, 4) with each program of the language:

0 S is a non-empty set of states,

l te(S x S+{ tt, ff }) is a transition relation, understood as a function from pairs of

states into truth values (tt is true and ff is false). t(s, s’) means that starting in state

s and executing one program step can put the program into next state s’. A program

is deterministic when a state may have none or one successor state. It is nondeter-

ministic if a state s may have several different next states s’,

l d~(S+{tt, ff)) characterizes initial states.

126 P. Cousot, R. Cousot

Example 2.1. Burstall [3] introduced the “intermittent assertions method” using

examples. The first one was the following program, which computes 2” when n 3 0:

Start: P := 1;

Loop: if N>O then begin P:=2xP; N:=N-1;

got0 Loop

end;

Finish:

Program states are of the form (c,n,p) where the control state c is a program

label and the memory state associates integer values n,p~Z with the program

variables N, P:
l S = {Start, Loop, Finish) x Z x Z.

Execution should begin at program point “Start” with a positive initial value n

for N and an arbitrary value p for P. Therefore,

0 $=A(c,n,p).[c=Start r\n>O].

The program is total and deterministic (all but the final states have a single

successor state):

0 t((c,n,p),(c’,n’,p’))=[(c=Startr\c’=Loop~n’=n~p’=l)

v(c=LoopAn>OAc’=LoopAn’=n-1 r\p’=2xp)

v(c=Loopr\n<Or\c’=Finishr\n’=nr,p’=p)].

3. Program executions as complete traces

Executions of a program (S, t, 4) will be modeled as a set C(S, t, 4) of sequences of

states called complete execution traces. A sequence p =popl pz . in Z(S, r, 4) (where

pi is short for p(i)), represents an execution that starts in state p,,, performs the first

program step to reach program state pl, performs the next program step to reach

program state p2, etc. Since execution must start in some initial state po, this sequence

cannot be empty. When execution does not terminate, this sequence is infinite. A finite

sequence p. . ..pn ends with a blocking state p,, which has no possible successor state.

Therefore traces represent complete executions (as opposed to their prefixes which

represent executions still in progress).

More formally,

l o is the set of natural numbers;

l 0 is the empty set (also written 0) or zero;

l ifn~oandn#Othennwilldenote{O,...,n-l}(sothatm~nisequivalenttom<~);

l if E is a set then Ewx={y~E: y#x} and 115 is the cardinality of E;

. BE(S--t{ttff}),
p = is. [VS’ES.~ t(s, s’)] characterizes blocking states;

Intermittent assertions induction principles 127

0 C”(S,t,+)=& empty traces, are not considered;

0 C”(S,t,f$)=(pE(n+S): ~(po)AVi~(n-l).t(pi,Pi+l)AP(p,_,)}: finite complete

traces of length n > 0;

0 Z”(S,t,c$)={pE(w+S): ~(po)AVi~w.t(pi,pi+l)}: infinite traces;

l WJ&=U,,, C”(S, t, 4) u C” (S, t, 4): complete traces.

Example 3.1. A complete trace for the program in Example 2.1 with N = 3 and P = p _
as starting condition would be

(Start, 3, p) (Loop, 3,1> (Loop, 2,2) (Loop, L4)

(Loop, 0,8) (Finish, 0,8).

4. Inevitability properties of programs

A property $ is inevitable for a program if any program execution eventually leads

to a state satisfying $. Termination, total correctness or absence of individual

starvation of parallel processes are examples of inevitability properties of programs.

More formally, $E(S x S+{ tt, ff }) is inevitable for (S, t, 4) if and only if

where Dam(p) is the domain of function (or relation) p, Rng(p) its range and

Fld(p)=Dom(p)uRng(p) its field.

Extending Dijkstra’s definitions of weak and strong termination [6], we say that

$E(S x S+{tC ff>) is strongly inevitable for (S, t, 4) if and only if

VS~S.3k~o.Vp~C(S,t,~).[(po=s)~(3i~k.~(pO,pi))].

In other words, inevitability is strong when the number i of program steps necessary

for reaching the “final” state pi is bounded by an integer k depending only on the

“initial” state po.

ljE(S x S+{tt, ff}) . IS weakly inevitable for (S, t, C$I) if and only if t,G is inevitable for

(S, t, 4) but not strongly.

Example 4.1. The program in Example 2.1 computes P = 2” when the initial value n of

N is positive. This total correctness property can be expressed formally by the

statement that

$=A((c,n,p),(c’,n’,p’)).[c’=Finishr\p’=2”]

is inevitable. Termination is strong since traces have n+ 3 states when initially

N=n>O.

Program properties are expressed using sets (or their characteristic functions) and

not formal languages. This is because we want to get rid of those incompleteness

problems which are due to the inconvenient choice of assertion languages which are

not expressive enough in order to describe these sets.

5. The basic induction principle underlying Burstall’s intermittent assertions method

In this section we work out a basic induction principle which is a very concise

formulation of Burstall’s method. In the next section we shall relax a number of

restrictions which cause incompleteness problems and derive more abstract and

general induction principles which generalize Burstall’s method.

The best way to convince the reader that our basic induction principle indeed

corresponds to Burstall’s method would be to derive it from an already existing

formalization of the method. Since no such existing formalization is general enough

and widely accepted, the best we can do is to start from Burstall’s proof of the

program in Example 2.1 [3] using Manna and Waldinger’s notations [lo]. The

treatment of Burstall’s other examples is similar but would be too long to be included

here.

5. I. Prouing inevitability properties of programs

The total correctness of the program in Example 2.1 is specified by the following

proposition:

l if sometime n >, 0 A N = n at Start then sometime P = 2” at Finish.

The proof of this proposition involves the following lemma:

l ifsometimen~Or\N=nr\P=patLoopthensometimeN=Or\P=px2”atLoop.

Burstall observed that in the above statements n and p are mathematical variables

whereas N and P are not since their meaning depends on context. The use of both

mathematical and program variables in the same statement might be confusing (for

example, from N = n and N = 0 we cannot conclude that n = 0 in the above lemma).

This confusion can be avoided if we get rid of program variables using different

mathematical variables to denote values of program variables at different “time

instants”. For example, the lemma could be written as follows:

l if sometime n 20 at Loop then sometime n’ = 0 A p’ =p x 2” at Loop.

This means:

“For all n, if rz 30 holds and execution of the program is started at label Loop with

program variables N and P having values II and p then control will eventually pass

through Loop with some values n’ and p’ of the program variables N and P such

that n’ = 0 A p’ = p x 2” is satisfied”.

Therefore the lemma simply asserts that

8,=i~((c,n,p),(c’,rz’,p’)).[c’=Loop~n’=O~p’=px2”)

Intermittent assertions induction principles 129

is inevitable for (S, t, co), where

&~=;1(C,n,p).[c=LoopAn30].

Similarly, the proposition asserts the inevitability of

f3,=I_((c,n,p),(c’,n’,p’)).[c’=Finishr\p’=2”]

for (S, t, .sl), where

More generally, for proving that Ic/ is inevitable for (S, t, 4), Burstall’s method

consists in discovering auxiliary properties { 0+(S2+{tt, ff}): l~/i} and correspond-

ing initial conditions {c,~(S+{tt, ff 1): l~,4) (such that I.~E~.[E~=c#I A~?,=I,!J]) which

are all shown to be inevitable:

Only a finite number, 1 A 1, of lemmas should be used.

Remark. Since Burstall [3] considered only deterministic and total programs, the

statement

if sometime P(n, p) at L then sometime Q(n, p, n’, p’) at L’

can also be understood as

3s~C(S,t,&).3i~Dom(s).B(so,Si),

where

All results in the present paper can very easily be adapted to this existential

interpretation. However, we have chosen to develop the universal interpretation

because it is more suitable for total correctness (and more generally inevitability

properties) of nondeterministic programs with depth search execution, [S] hence

parallel programs.

5.2. An example of proof

Now that we have obtained an abstract formalization of programs and inevitable

properties of programs, let us come back to the example in order to capture the

essence of Burstall’s proof method.

The proof of proposition 8r is the following.

130 P. Cousot. R. Cousot

Assume:

sometime N >, 0 A N = n at Start

then by hand simulation:

sometime N>Or\ N=nr\P=l at Loop

then using lemma 8,:

sometime N = 0 A P = 2” at Loop

then by hand simulation:

sometime P=2” at Finish

Q.E.D.

The proof of lemma B0 is by induction on n as follows:

Assume:

sometime N>OAN=nAP=p at Loop

either N<O and Q.E.D.

or N > 0 and then by hand simulation:

sometime N>~AN=~-~AP=PX~~~ Loop

then using lemma B,, as induction hypothesis for n- 1

(such that n > n - 13 0):

sometime N = 0 A P = p x 2” at Loop

Q.E.D.

f13J

f12J

illJ

rlOJ

(021

(OlJ

(OOJ

5.3. Intermittent assertions

In [3], a proof of a lemma o1 is a nonempty finite sequence [;I, I:, I? of

intermittent assertions derived from one another by hand simulation or application of

lemmas.

For example, the proof of proposition (!I1 involved the discovery of the following

intermittent assertions:

If=jb((c,n,p),(c’,n’,p’)).[c’=Startr\n’>Or\n’=n],

I:=~((c,n,p),(c’,n’,p’)).[c’=LoopAn’~Or\n’=n/\p’=l],

whereas the proof of lemma o0 involves the discovery of

I~=3.((c,n,p),(c’,n’,p’)).[c’=Loopr\n’30r\n’=nr\p’=p],

Z~=R((c,n,p),(c’,n’,p’)).[r’=Loopr\n’>Or\n’=n-1 Ap’=pX2],

I~=A((c,n,p),(c’,n’,p’)).[c’=Loopr\n’=Or\p’=px2”].

Intermittent assertions induction principles 131

Remark 1. The intermittent assertions involved in the proof need not be different, as

shown by the following counterexample, which is a valid proof of proposition 8, for

all finite k 3 1:

:

sometime N 30 A N =n at Start (premise)

sometime N > 0 A N = n A P = 1 at Loop (hand-simulation)

k times
sometime N =0 A P= 2” at Loop (lemma)

.

sometime N = 0 A P = 2” at Loop (lemma)

sometime P=2” at Finish (conclusion).

Remark 2. According to Burstall [3], “ [sometime P at L J says that there exists

a state during the execution which is at L and has property P”. Stated otherwise, all

intermittent assertions 1: involved in the inevitability proof of lemma 8i should be

inevitable for (S, t, cl). This interpretation of intermittent assertions is inconsistent.

For example I h never holds during execution when initially N = 0. More generally,

Burstall treats tests by case analysis [3], so that the intermittent assertions involved in

each case might not be inevitable for those initial states not corresponding to the

considered case. We shall choose another interpretation of intermittent assertions so

that case analysis causes no problem since only the disjunction of the intermittent

assertions corresponding to all cases will have to be inevitable for all initial states.

5.4. Verljication conditions

In a valid proof of inevitability of & for (S, t,El), intermittent assertions

I y’, , I:, Zp are derived from one another according to rules (for computing the effect

of an assignment or test, for using a lemma, etc.). Burstall’s informal rules [3] can be

understood as verification conditions that must be satisfied by the intermittent

assertions. These verification conditions are now expressed formally.

5.4.1. Premises

All proofs in [3] start with the assumption of the premises sl of the proposition or

lemma 8, which is proved. Stated otherwise, 1;’ should hold when the current state s’ is

an initial state s:

vS,S’ES.([El(S)AS’=S]~z;‘(S,S’))

or, more simply,

vsES.(&i(S) * Il’(s,s)).

For instance, the proof of proposition 8i starts with the check that

\J(c,n,P)ES.(&1((c,n,P))~l:((c,n,p),(c,n,p)))

132 P. Cousot, R. Cousot

(where c=Start and n 20 or else s1 is false so that the verification condition is

obviously true), whereas for lemma B0 we have

vJ(c,n,p)ES.(&O(c,n,p))=>l~((c,n,p),(c,n,p)))

(where c = Loop, n 30 in the nonevident case).

5.4.2. Hand simulation

Assume that the proof of proposition 8, worked forward until reaching intermittent

assertion If which is not the last one. The next step in the proof can be taken by hand

simulation.

For total deterministic programs, Burstall’s rules for computing the effect of an

assignment or test [3] check that the current state s’ satisfying 1f has a successor state

s” satisfying some intermittent assertion Z{ which has to be taken into consideration

later in the proof so that j < i:

[lf(s,s’)~t(s’,s”)] *Slj<i.Ij(s,s”).

For example, in the proof of proposition 8,) assignment P:= 1 leads from r 13 J to

f 12 J and corresponds to the following verification condition:

C~~((c,n,p),(c’,n’,p’))~~((c’,n’,p’),(c”,n”,p”)l

where c’ = Start, n’ 20, n’ = n or the condition is obviously verified. The test N ~0

leads from r 11 J to f 10 J and corresponds to the verification condition

where c’=Loop, n’>O, p’=2”, c”=Finish, n”=n’, p”=p’).

In the proof of lemma Q,,, the loop body leads from CO2 J to TO1 J (In accordance

with the operational semantics of the program in Example 2.1, the loop body should

be treated as an atomic action.) The corresponding verification condition is

wherec’=Loop,n’=n,p’=p,n’>O,c”=Loop,n”=n’-l,p”=2xp’orthecondition

is trivially satisfied.

Such verification conditions are not sufficient when nondeterminism is involved

since it must also be proved that no blocking state is reachable. Hence, hand

simulation should ensure the existence of at least one successor state:

Intermittent assertions induction principles 133

and check that all possible successor states satisfy some intermittent assertion

considered later:

5.4.3. Using lemmas in the proof of propositions

In the proof of proposition 8,) intermittent assertion f 11 J is derived from f 12 J

using lemma oO. It must first be checked that all current states s’ satisfying r 11 J also

satisfy the premises a,, of lemma do. Then, by applying the lemma it must be proved

that all successors s” of s’ by tIO satisfy r 12 J . The corresponding verification

conditions are the following:

where in the nonbanal case c’= Loop, n’>O, n’=n, p’= 1, cl’= Loop, n”=O,
p”=p’ x 2”‘.

More generally, the verification condition corresponding to the use of a lemma in

the proof of a proposition is (temporarily)

Vs,s’ES.[lf(s,s’)~(3/‘E/1.[&I~(s’)AVs”~S.[~I,(s’,s”)~ ilj<i.I{(s,s")]])].

Observe that (contrary to the case of hand simulation) the test that current states s’

satisfy the premises cl, of lemma &, ensures the existence of at least one successor s” to

s’ (unless improbably &, is the identity lemma, i.e. Q,,(s’, s”) => (s’ = s”)). This is

because lemma BIS is separately proved to be inevitable for C(S, t, Ed,).

Apropos of the use of lemmas, notice that Burstall relies upon the mathematical

culture of his readers and does not take the trouble to state elementary logical rules

such as “proofs of lemmas and propositions should not be circular” [3]. Yet such rules

have to be captured in the formalization of Burstall’s method. A simple way consists in

partially ordering the set n of lemmas by a well-founded ordering CK such that 1 ‘oc 1

is understood as “the inevitability proof of &, does not depend upon the assumption

that 611 is inevitable”. The (permanent) verification condition corresponding to the use

of a lemma in the proof of a proposition is now the following:

vs,S’ES.[zf(S,S’)~(31’E/1.[l’~IA&I~(S’)AvS”ES.[e,‘(S’,S”)

* 3 j<i.Z~(s,s")]])].

Moreover, since the set n is finite and cx is well-founded we can always (up to

a rank function) choose /1 as a set of positive numbers and K as the corresponding

natural ordering <.

134 P. Cousot, R. Cousot

5.4.4. A little induction

Burstall proves lemmas using various forms of the principle of mathematical

induction [3] which are all equivalent to the following:

For example, in the proof of lemma do, intermittent assertion (00 J is derived from

assertion (01 J using lemma (I0 as induction hypothesis. This is valid because

I~((c,n,p),<c’,n’,p’))~C&O((c’,n’,p’))~n’<nl.

Then, by induction hypothesis, we derive intermittent assertion 1: such that

where c’=Loop, n’>O, n’=n-1, p’=px2, c”=Loop, n”=O,p”=p’x2”‘.

This verification condition is specific of the example considered but, in general,

Burstall specifies that the induction is on the data [3]. Since the above principle of

mathematical induction applies to natural numbers, induction on data involves a map

f0 from the data into natural numbers. For example,

where

Since proofs of different lemmas are usually different, different maps 1; may have to

be used, hence f~(A+(S+o)). We infer from the example that the verification

condition for the use of a lemma as induction hypothesis in the proof of this lemma

should be of the form

=s 3j<iJ;(s,s”)])].

5.4.5. Conclusion

Starting from the premises E, of a lemma, a proof of this lemma ends when some

intermittent assertion If has been derived which implies the conclusion 8, of the

lemma:

V’s,S’ES.[Zf(S,S’) * 0,(&S’)].

For instance, the proof of proposition 81 ends with.

Intermittent assertions induction principles 135

where c’ = Finish, p’ = 2” in the nontrivial case, whereas the proof of lemma o0 ends

either with

where c’=Loop, n’=O, n’=n, p’=p,

or with

I~((c,n,p),(c’,n’,p’)) ~eO((c,n,P),(c’,n’,P’)),

where c’=Loop, n’=O, p’=p x 2”.

Finally, observe that in a proof all intermediate intermittent assertions should be

processed (either by hand simulation or by using a lemma (in the proof of a proposi-

tion or as induction hypothesis)) or imply the conclusion.

5.5. The basic induction principle formalizing Burstall’s intermittent assertions method

We can now sum up what we have learned from the example.

For proving

vP~C(S,t,~).3i~Dom(P).~(P~,Pi)~

Burstall’s method consists in proving the following:

[3AEw,EE(A+(S+(tt, ff})), B+l+(S2+{tt, ff}))&(A+(S+C0)),

iE(A-+o).

(37cEn.[En=~Aen=~]) A

(Vl~~.311~(nl+l~(S2~{tt,ff})).

(0)

Vi<n,, s,s’ES.

(P) C&I(S) * r;l(s, s)l A

[lf(s,s’)*

(HS) (3s”~S.t(s’,s”)r\Vs”~S.[t(s’,s”)~3j<i.Z~(s,s”)]) v

(LI) (~~‘E~.[((~‘</)V(~‘=IA~;(S’)<~;(S)))AE,,(S’)AVS”ES.(B,,(S’,S”)

* 3 j<i.Z!(s,s”))]) v

(C) ws, s’)l)l.

(1)

5.6. Soundness and completeness issues about Burstall’s method

The question of soundness and completeness of Burstall’s method has already been

tackled partially. Representing programs by transition relations, the nondeterminism

136 P. Cousot, R. Cousot

of which is bounded, and giving a temporal interpretation of the intermittent

assertions method, Pnueli proved the soundness and semantic completeness of a

version of Burstall’s method [l 11. Similar arithmetical soundness and completeness

results were obtained by Apt and Delporte for sequential deterministic structured

programs [l]. Completeness results also follow informally from Manna and

Waldinger’s remark that the intermittent assertions method can be used to express

conventional “a la Floyd” partial correctness and termination proofs that use the

well-founded set approach [lo], a method which is known to be semantically

complete.

However, the exact scope of the above results should be interpreted very cautiously

since these proofs only deal with the case of unary intermittent assertions (i.e. which

assert a property of states, such as “if sometime P(s) at L then sometime Q(s’) at L’ “)

whereas Burstall’s method and induction principle (1) make use of binary intermittent

assertions (i.e. which relate states, such as “if sometime P(s) at L then sometime

Q(s,s’) at L’“). It is often argued that both approaches are equivalent because the

effect of binary assertions can be obtained using auxiliary variables and unary

assertions. Indeed, initial or intermediate values of program variables can be stored

into auxiliary variables the value of which is part of the state. In fact, the use of

auxiliary variables and unary assertions is more powerful than the use of binary

assertions as in (1). This is because using auxiliary variables one can express relation-

ships between values of the variables at any two different moments in the course of the

computation (and even store entire execution traces into history variables). This is not

possible with binary assertions since, for example, only the main proposition (and not

all lemmas) can depend upon the initial values of the program variables in induction

principle (1). However, the use of binary assertions appears to be much more

disciplined because the question of when auxiliary variables do have to be introduced

is solved once for all.

Our understanding with respect to soundness and completeness of induction

principle (1) can be described as follows.

5.6.1. Soundness

Theorem 5.1 (soundness). (1) = (0)

Proof. We introduce in Section 6 the induction principle (2) an obvious generaliz-

ation of (1) (so that (1) = (2)) and prove that (2) a(O). 0

5.6.2. Conjectures about semantic incompleteness

Although induction principle (1) only allows to use ranges of natural numbers, it

can be used to prove termination of weakly but not strongly terminating programs.

We show this using the following example (taken from [6, p. 3561):

Intermittent assertions induction principles 137

Example 5.2. In general, the program (X and Y being natural constants),

x, y:=x, Y,

do x > 0 + x, y := x - 1, any natural number

0 y>o+y:=y-1

od

does not enjoy the property of strong termination, because for X > 0 no upper bound

for y can be given.

Weak termination can be proved by Floyd’s method using the left lexicographic

ordering on pairs of natural numbers (x, y) < (x’, y’) if and only if (x <x’) v

(X=X’A y<y’).

This can also be proved by induction principle (1). We have S= Z2,

t=%((x,y),(x’,y’)).[(x>OAx’=x-l)v(y>0Ax’=xAy’=y-l)], f#J=J.(x,y).

[x=X2O~y=Y20], $=~~((x,y),(x’,y’)).[x’=y’=O] and choose n=X+2,

&X+1=~,~I((~,y))=[x=I]forI~(X+1),8,=IC/forI~(X+2),n=X+1,fi((x,y))=

Y for MX+% no=& ~~((~,Y),(~‘,Y’))=(Eo((x,Y))A(x’,Y’)=(x, Y)) C(P), F-2
when y’=O, (HS) when y’>O], ZA((x,y), (x’,y’))=(x=Or\ y>Or\t((x,y),

(x’,y’))) [(LI) with Z’=Z=O], Ii=&, [(C)l, when Z=l,...,X, ni=2, Z:((x,y),(x’,

Y’))=(EI((X,Y))A(X’,Y’)=(X,Y)) [F’h (WI, ~:((x,Y),(~‘,Y’))=(&I((x,
y))~t((x,y), (x’,y’))) [(LI) with /‘=1-l when x’=x-1, (LI) with I’=1 when

~‘=~andy’=y-~l,~~=~,C(~)l,~x+1=1~~~+I((x~~),(x’,~‘))=(~X+1((~,~))~
(x’,y’)=(x,y))[(P),(LI)withl’=X],Z i + i = 0; + i [(C)l. (The check of the verifica-

tion conditions is left to the reader. We have indicated after each intermittent

assertion which alternative should be chosen.)

As shown by the above example, the greater generality of Burstall’s method

restricted to natural numbers (which can be used to prove termination of weakly but

not strongly terminating programs) over Floyd’s method restricted to natural num-

bers (which can be used to prove only strong termination) is only seeming, because

Burstall’s method implicitly relies upon the lexicographic ordering on pairs of natural

numbers as pointed out by induction principle (1).

Despite this apparent superiority, the order type of the lexicographic ordering on

pairs of natural numbers involved in induction principle (1) is not as high as necessary

when considering arbitrarily unbounded nondeterminism. Therefore we make the

following semantic incompleteness conjecture: (0) + (1).

By analogy with Floyd’s method, two remedies can be considered in order to solve

incompleteness problems related to unbounded nondeterminism. One consists in

considering only bounded nondeterminism. The other consists in considering induc-

tion over arbitrary well-orderings (or up to an isomorphism over arbitrary ordinals).

However, we risk the conjecture that induction principle (1) is not complete even with

these simplifying hypotheses neither for bounded nondeterminism:

138 P. Cousot, R. Cousot

[(O) A V’SES.(I { s’~S.t(s, s’)}) <w)] + (1) nor for arbitrary well-orderings:

(0) + [(l), where f~(n+(S+d)), d~0u.Q (Ord is the class of ordinals).

These conjectures follow from the remark that except for trivial examples (that can

be handled by hand simulation) proofs involve a well-founded relation on the set of

descendants of initial states corresponding to (A x S, <), where (I’, s’) < (I, s) if and

only if (I’< 1 v (I’= 1 r\fi(s’)<J(s))). Although there is (by the inevitability assump-

tion) a well-founded relation on the set of descendants of each initial state, there may

exist no such well-founded relation on the set of descendants of all initial states as

necessary in induction principle (1) because fi does not depend upon initial states. This

is the case for S=o,t(x,x’)=[x’=x+l], 4(.x)=& $(x,x’)=[.Y’=~x].

5.6.3. A partial semantic completeness result

The above conjectures have only limited consequences because they do not apply in

a great number of practical situations.

One such situation is when nondeterminism is bounded and the number of initial

states is finite so that (at least in theory) proofs can be entirely done by hand

simulation.

More interesting situations are those of total correctness of sequential programs

considered in [3] or unary intermittent assertions considered in [ll, 11. Both

situations can be coped with as particular cases of the following partial

semantic completeness result.

We say that

l state s is intermediate for (S, t, 4, rl/) when there is some execution trace such that

$ does not hold up to s;

l state s is a goal for (S, t, 4, $) when $ holds for the first time at s on some execution

trace;

l state s is accessible for (S, t, 4, $) when s is an intermediate or a goal state;

l the inevitability of $ is initial states independent for (S, t, 4) when no intermediate

state can be a goal.

Definitions 5.3. (Intermediate, goal and accessible states, initial states independence).

0 Inrer(S,t,@,$)($={sES: 3pEC(S,t,4), iCDom(p). pO=SAVj<ii.l$(p,,pj)A

Inter(S,t,4,*)=tJ{I nter(S,t,4,$>(s): sES},

l Goal(S,t,4,IC,)($={s~S: 3pcZ(S,t,4), iEDom(p). po=pAvj<i.l$(po,Pj)A

Pizs A ti(PO,Pi)t3

Intermittent assertions induction principles 139

l Acc(S,t,~,rl/>(S)=Znter<S,t,~,~)(S)uGoal<S,t,#,~)(s),

Act (S, t, 4, $ > = Inter (S, t, 4, Ic/ > u Goal< S, t, 4, $ >,

l Zsind(S,t,~,$)=[Znter(S,t,~,$)nGoal(S,t,~,$)=@].

When this (sufficient but not necessary) initial states independence condition is

satisfied, inevitability properties can be proved by (1) with f~(/i+(S-+d)) for some

A E Or-d.
Before proving this fact we must characterize the ordinal A which is necessary;

stated otherwise, we propose a “measure” of the global nondeterminism of the

program (as opposed to local characterizations of nondeterminism such as the

so-called bounded nondeterminism [6]).

l We write Rel(W, -c) to state that < is a relation on W represented by its

characteristic function:

Rel(W,<)=[Wx WcDom(_Or\Rng(<)={tt,ff}].

l We write Wf(W,--c) to state that --c is a well-founded relation on W

Wf(W,<)=[Rel(W,--C)AVEC W.[Ef0~3y~E.(Vz~E.~(z -c y))]]

(this implies that there is no sequence PE(o--+ W) such that pi+ 1 --c pi for all igo.
Assuming the axiom of choice, this property is equivalent to the above definition).

l The left restriction of relation t to E is written tlE:

tjE(s,s’)=[seEr, t(s,s’)].

et -’ is the inverse of relation t:

t-‘(s’,s)=t(s,s’).

We first prove the following lemma.

Lemma 5.4 (Existence of a well-founded relation for inevitability proofs (with initial

states independence hypothesis)).

Proof. Assume by reductio ad absurdum that 3p@o+Acc(S, t, 4, $>).Vi~o. tl Zn-
ter(S, t, 4, $)(pi9pi+ 1). We can assume that 4(po) holds (else we can adjoin to the left

of p a prefix rO...rk of a trace of C(Acc(S, t,$,$), tlZnter(S, t,c$,$),cb> such that

q5(ro) holds). By (0) there is a smallest iEDom(p) such that $(po,pi) holds. Hence

piEGoal(S,t,c#,$). Also tlZnter(S,t,c$,$)(pi3pi+l) implies p+Znter(S,t,~,rC,) in

contradiction with Zsind(S, t, 4, $). 0

Let E be a class of ordinals. Sup(E)= U E will denote the least upper bound of

E and Sup + (E) will denote the least strict upper bound of E.

140 P. Cousot. R. Cousot

The rank of XE W with respect to a well-founded relation Wf(W, <) is an ordinal

defined by transfinite recursion on W as follows:

rk(W,d)(x)=Sup+{rk(W,--c)(y): y--c x).

The rank of a well-founded relation Wf(W,k) is

rk(W,<)=Sup+ {rk(W,-c)(x): XE W}

The global nondeterminism of (S, t, C#J > with respect to $ can be measured by the

rank of the inverse of t left restricted to intermediate states:

Definition 5.5 (Rank of the global nondeterminism (with initial states independence

hypothesis)). When (0) and Isind (S, t, 4, rc/) hold, we define

rkgrzd(S,t,~,C1/)=rk(Acc(S,t,~,*),tlInter(S,t,~,GI/)-‘).

Remark. Observe that if the nondeterminism is locally bounded (i.e. VSES. I{s’:

t(s, s’) 11 <w) then rkgnd (S, t, 4, $) d w. Similarly, if the nondeterminism is locally

countable (i.e. Vs~S.l{s’: t(s,s’)}l<~) then rkgnd(S,t,&$)dwl. Finally, if t is

recursive (i.e. effectively calculable) then rkgnd (S, t, 4, II/) d cuyK (where w T” is

Church-Kleene’s first nonrecursive ordinal [2]).

We can now state the partial completeness result concerning Burstall’s method.

Theorem 5.6 (Partial semantic completeness).

C(o)~rsind(S,t,~,~)l=>C(l) with f~(~~(S-trkynd(S,t,~,~)))l.

Proof. Assume (0) and Isind(S, t, C#J, t,b). Let us choose n = 2, co(s)=

[sEAcc(S,t,4,r1/>1, ~o(&S’l=l[3P~~(S,t,+), i~oom(p).(Vj<i.l~(p~, Pj)IA
(Po,Pi)A((3k,<i.p,=s)Api=s’l, fo~(Acc(S,t,~,cC/)~rkgnd(S,t,~,)), .h(~)=
rk(Acc(S,t,qkII/), tllnter<S,t,h Ic/>-'1, no=2, I;(S,S’)=[EO(S)AS’=S], I~(s,s’)=

[&O(S)AlBg(S,S)At(S,S')], I;=&, &I=$, e,=lj, ?21=1, I:(S,S’)=[E1(S)AS’=S],

Iy=O1, TC= 1. All verification conditions are obviously satisfied but for VS,S’ES.

(I;(S,S')Al&(S, S’))~(f0(S’)<,f0(S)AEO(S’)AvS”ES.e,(S’,S~)~r~(S,S”)).

If I~(s,s’)~i~,(s,s’) holds, we have, by definition of Zh, s0 and (0), that

~P~~(S,t,~),iEDom(P).(Vj<i.l~(P,,pj))A~(Po,Pi)A\k.(s=P,A(k+l)<
iAs’=pk+,). Since s,s’EZnter(S,t,&$) and t(s,s’) holds, we have &(s’)<

fo(s)r\cO(s’). If tI,,(s’,s”) then 3qEC(S,t,4), i’EDom(q). (Vj<i’.l$(pO,

pj))A\(Po,Pi,)A(3k’di’.q,‘=S’)Aqi’=S”. We have Vj.(k’<j<i’)*lll/(p,,qj)

since otherwise for the smallest j satisfying k’< jci’ A $(pO, qj), we would have

qjElnter(S, t, C/I,+) nGoal(S, t, 4, $). Observe that q,,EGoal(S, t, 4,$) SO that

$(pO, qi’) holds since, otherwise, qi, would be an intermediate state of the trace po.. . pk

qk’...qi. Since s=p, and s”=qi’ we conclude that Bo(s,s”), hence Zz(s,s”) hold. q

The above partial semantic completeness result applies to proofs of inevitability

properties such that goal states have no successor state.

Intermittent assertions induction principles 141

Theorem 5.7.

Proof. Assume that s~Goal(S, t, 4, $). We have Vs’~s.1 t(s,s’). It follows that

s$lnter(S, t, qb, II/) since otherwise there exists nE(o -O), ~EZ’“(S, t, 4) such that

ViEn.l$(p,,pi), in contradiction with (0). 0

As corollary, we obtain that Burstall’s [3] total correctness proof method for

sequential programs (i.e. (1) with f~(,4+(S+w))) 1s semantically complete because

program exit states have no successor states and only deterministic programs are

considered.

Theorem 5.6 also applies to [l 1, l] because they only consider unary intermittent

assertions (i.e. relational intermittent assertions are expressed using auxiliary vari-

ables the value of which is part of the state).

Theorem 5.8.

Proof. IfsEZnter(S,t,~,IC/)nGoal(S,t,~,IC,), there are s’,s”~S such that lIc/(s’,s)

and $(s”,s), a contradiction. 0

6. The basic induction principle generalizing Burstall’s intermittent assertions method

Although induction principle (1) is sound and semantically complete in a great

number of practical situations, we conjecture that it is not general enough to cope

with some types of inevitability properties of programs, such as those considered

in [lo] for cyclic programs. Hence the necessity arises of generalizing induction

principle (1).

The proposed generalization is quite simple. In order to ensure the existence of

well-orderings to be used for induction, lemmas and intermittent assertions should

depend upon initial states. Transfinite well-orderings should be used in order to cope

with unbounded nondeterminism. These remarks lead from (1) to (2), the last induc-

tion principle (2) being later shown to be semantically complete.

[MEW, &E(Ll+P+{tt, ff})), 8+l-*(S3+(tt, ff})),

de&d, &(A + (S2+A)), ne(A+o).

142 P. Cousot. R. Cousot

(2)

In order to illustrate the use of this induction principle, let us consider the following

example.

Example 6.1. $(x,x’)=[x’=~x] is inevitable for (w,t,4) such that t(x,x’)=[x’=

x+ 1] and $(x)=tt.

Observe that we do not have W’(Acc(S, t, 4, $), tl Inter(S, t, 4, $) - l).

The inevitability of $ can be proved by induction principle (2) by choosing A = 2,

71=1,E~(~,X)=[X.~x~2~],B~(~,X,X’)=[~~X~2~=X’],d=W,f~(_Y,X)=[2~-X],

~I(-x,x)=cx=xl , 0,(&X,Xr)=[5=XAX’=2X], n0=2, I$(&x,x’)=[x<x=

x’<2x] (satisfying (P) and (C) when x’=2x or (HS) when x’<2x),

I~(~,~,x’)=[~d.u<.x+ 1 =x’<2&] (satisfying(L1) with I’=l=O), Zg=8, (C), nl= 1,

I~(~,.x,x’)=[~=x=x’] ((P), (LI) with l’=O), Zy=tI, (C).

Induction principle (2) is an obvious generalization of (1).

Theorem 6.2 (Generalization of Burstall’s method). (1) a (2).

Before tackling the question of semantic completeness, we define which ordinals

A~0rd are sufficient in a proof by (2).

Definition 6.3 (Rank qf the global nondeterminism). When (0) holds, we define

rkgnd(S,t,~,IC/)=Sup’{rk(Acc(S,f,~,~)(s),

tlrnter(S,t,~,II/)(S)-‘): sES}.

(This definition is justified by the fact that for all SE& tl Inter(S, t, q5, $)(s) is well-

founded on Act (S, t, 4, $) (5). This is proved in [4].)

The proof of semantic completeness of (2) follows from the remark that (2) can be

used to express “a la Floyd” proofs.

Theorem 6.4 (Semantic completeness). (0) * ((2), with A = rkgnd (S, t, q5, $)).

Intermittenr assertions induction principles 143

pj)A~(p,,pi)A~=PoA3k~i.p,=sApi=s’],f, is useless, ni=l, I:(~S,S’)=[S=S=

s’ A cj+)] (satisfies (P) and (LI) with l’=O), 1: =dl, n0=2, I$(s,s,s’)= [Q,(~s)AS’=S]

(satisfies (P) and (C) or (HS)), IA(&s,s’)= [Ed A iBo(&s,s) A t(s,s’)] (satisfies

(LI) with I’=0 and fo(~s)=rk(,4cc(S,t,$,$)(~), tlrnter(S,t,~,*)(s)-l)(s) and

Zz = f30 (satisfies (C)).

7. Equivalent induction principles generalizing Burstall’s intermittent assertions method

We now derive a series of induction principles which are all shown to be sound and

complete and hence equivalent to the basic induction principle (2). For the sake of

conciseness, not all conceivable alternatives have been reported. One purpose of the

series of induction principles is to propose more and more abstract formalizations

that should lead to a better understanding of Burstall’s method. The other purpose of

the following proof principles is to broaden the allowed forms of proofs (so as to

introduce more flexibility in writing proofs but no additional proof power since all

principles are equivalent).

The number of lemmas (al, e,), lid which can be used in induction principle (2) is

finite. Hence an informal proposition such as

l if sometime x d X=x d 2x then sometime x d x d 2x = X _ -

has to be understood as a single lemma of name, say 0, such that

a0(x,x)=[5<x625] and 60(~,x,x’)=[~<x<2~=x’]. Eliminating this restriction

on names of lemmas, the above informal proposition can also be understood as

a shorthand for an infinite number of lemmas of name x such that E,(X) = [x < x < 2x1

and Qx(x, x’) = [x G x 9 2~ =x’]. This point of view is consistent with the fact that the

sole purpose of program initial state 2 in induction principle (2) is to offer the ability to

use well-orderings for induction on the data that depend upon program initial states.

These well-orderings can also be distinguished by giving them different names, one per

program initial state. Also the main proposition (4, $) need not be the consequence

of a single lemma (E,, 0,) as in (2) but could also be the consequence of different

lemmas for different program initial states. These remarks lead to the following

induction principle.

CUE&-d, fZ(/i+(S+{tt, ff})), B+G(SZ+{tt, ff})),

AEOrd, f~(/l+(s+A)), n~(A-w).

VSES.~~EA.(E,(S)=~(S)AVS’ES.~,(S,S’)=$(S,S’))A

(vaE/i.3z,E(n,+ l+(S2+{tt, ff))).

Vidn,, s,s’~S.

[&a(S) * 12th s)] A (3)

144 P. Cousot. R. Cousot

Theorem 7.1. (2) =S (3).

Proof. The objects which are different in induction principles (2) and (3) but have been

given the same name (such as A, E, . .) will be referred to using indices 2 and 3 (such as

A2,A3,a2,c3 ,...) in the proof.

By the axiom of choice, there is an ordinal .Z and a one-to-one function 6 that maps

E into S. C x A2 well-ordered by the lexicographic ordering (s’, 1’) -C (s, /) if and

only if ((s’ < s) v (s’ = s A 1’ <I)) is isomorphic with A, ic C (k is ordinal multiplica-

tion) by the order isomorphism I= i(s, I). [(A2 9 s) 4 I], (i is ordinal addition). We

let (a,z) be the inverse of r so that ~E((A~ icZ)+C), j.~((il~ icZ)-+Az) and

VZE(A~AZ).[CI=~((~(U),E,(C()))]. We choose A,=A, ice, &3=;1C(.I”S.[&2~(z)(8

(a(r)),s)l,B3=;(2.j.(s,s’).CeZ~(a)(6(~(X)),s,S’)l, A,=&, f3=~.a.ns.Cfi~col,(s(~(~)),s)l,
fl3 = ~.~.~2;.,a,, 13~=~.(~,~‘).1~~~,,(b(c~(x)),s,s’). It follows that E~~,(~~I(~),~,))(s)=~(s)

and 19~~((6 I,,,,,,,J(s, s’)= $(s, s’). The other verification conditions are obvious to

check. 0

The names CCEA of the lemmas (a,, 6,) in (3) are well-ordered. For a given lemma

(E,, 8,), the role of fI is to introduce a well-ordering on the initial states of lemma

(E,, 6,). The same effect can be obtained by considering not a single lemma (a,, 0,)

but a family of lemmas { (F~,,~,,~,, ~IQ,~)): SES}. This point of view is more abstract

in that only one well-ordering (IV<) need to be used. It is defined by

(x’,,L(s’))+ <GAS)) if and only if (c~‘<~~v(cc’=cr~f,~(s’)<f,(s))) on

W= { (r,fz(s)): MEA A SES}. Hence, up to an isomorphism we can use ordinals and

rephrase induction principle (3) as follows:

[3AECM, &E(/l+(S+{tt,ff~)), &(A-+P+{tt,ff})), rlE(A-MO).

(vS~S.3C(En.[(&,(S)=~(S))AvS’ES.(~,(S,S’)=~(S,S’))])A

(vxEil.3z,E(n,+ 1+s2+{tt, ff})).

Vi<n,, s,s’ES.

C&,(S) * I2(s, s)l A
[r;(s,s’)*

(3S”ES.t(S’,S”)AvS”ES.[t(Sf,S”)=>3j<i.~h(S,S”)])V

(31xr<r.[&~,(S’)AvS”ES.(H,,(S’,S”)~3j<i.Ija(S,S”))])V

d,(S, s’)l)l.

(4)

Intermittent assertions induction principles 145

Theorem 7.2. (3) =S (4).

Proof. (As, A,) well-ordered by the left lexicographic ordering is isomorphic with

A, k A3 by the order-isomorphism ~(a, K) = [A3 k CI 4 K] the inverse of which is (4, A).

We choose A4=A3kA3, &q=~C(.C~S.[E3~(a)(S)Af34(a)(S)=~(CI)ll, e,=la.C4%

S’).Ce31(or)(S,S’)Af3-(a)(S)=6(a)11, Q=~a.Q(,), 14~=~(s,s’).IIIs6~,)(s, S’)Af3&)(S)=

S(~)l. 0

Inevitability properties of programs have been specified as pairs (4, $) where 4 is

a condition on initial states and II/ a relationship between initial and final states so as

to adhere to the method introduced by Burstall [3]. However, a single binary relation

is enough because $ is inevitable for (S, t, 4) if and only if A(s, s’). [4(s) * $(s, s’)] is

inevitable for (S, t, %s.tt>. Hence we derive the following more abstract induction

principle:

[%lEord, &(A+(S2+{tt, ff})), nE(A&+o).

((Vs~S.3crEA.Vs’ES.[e,(s,s’)=(~(s)*~(s,s’))])A

(VcXEA.3Z*E(n,+ 1+(S2+{tt,ff})).

Vi< n,, s, s’ES.

UT

V-W

(W

(C)

I?(& s) A

[Zh(s,s’) *

(~S”ES.t(S’,Sf’)A~S”ES.[t(S’,S”)~3j<i.Zh(s,S”)])V

(3c(‘<ct.vS”ES.[e,~(S’,S”)-3j<i.zj,(S,S”)])V

us, s’)l)l.

(5)

Theorem 7.3. (4) = (5).

Proof. Choose A 5 = A4, e5a(S,S’)=[&4a(~)je,,(s,s’)], n5=n4 and Z56(s,s’)=

C&(S) * z‘t;(s,s’)l. 0

If in induction principle (5) we consider the inevitability proof of a given lemma 0,

and this proof can be obtained without (LI) then the verification conditions (P), (HS)

and (C) strongly resemble the verification conditions corresponding to Floyd’s proof

method [7] as formalized by induction principle (5) of Cousot and Cousot [4]. Stated

otherwise, in invariant Z~(S,S’), i plays the role of the nonnegative integer which is

strictly decremented at each program step. By comparison with Floyd’s method we

observe that (5) imposes two unnecessary restrictions on i: n, is a bound on the number

of program steps and this number is independent of the considered initial state, n,

146 P. Cousot. R. Cousot

(hence i) should be an integer (so that e.g. unbounded nondeterminism cannot be

handled without (LI)).

We first relax the first limitation, choosing n, as ordinal.

Theorem 7.4. (a) (i) =S (i with n~(A +Ord)), i = 2, . . . ,5,

(b) (i with nE(A-,Ord)-(i+ 1 with ne(A+Ord)), i=2, 3,4.

Proof. (a) is obvious because uEOrd, hence cc) c Ord. (b) follows from the proofs of

Theorems 7.1-7.3 which never use the fact that HEW but only that (nr+ 1,~) is well-

founded (this remains valid when n,eOrd and n, + 1 is the ordinal successor of n,). 0

We next relax the second limitation, choosing a possibly different maximum

“number of program steps” for each initial state 5 (the “number of program steps”

should not be understood to the letter but as rk(Acc(S, t, 4, $)(s),

tlrnter(S,t,~,IC/)(S)-')(s)):

[3nEOrd,BE(A~(S’,{tt,ff})),AEOrd,r~(n x A+(S’+{tt,ff})).

(v’s~S.3n~ll.vS’ES.[e,(S,S’)=(~(S)~~(S,S’))])A

(V~C(E A, s, s’ES, S’E A.

ptkd.I;(s,s)] A

[l;‘(s,s’)*

(3s”ES.t(s’,s”) A VsNd.[t(s’, sU) => (3s”<s’.I:“(s,s”))]) v

(3a’<cc.vs”~S.[e,~(s’,s”)~(~6”<6’.Ig”(s,s”))])v

dar(s, s’)l)l.

(6)

Theorem 7.5. ((5) with n@A-+Ord)) * (6).

Proof. Choose (1,=n,, Q6=05, A,=o, 16~(~,~‘)=[S<n501~15~(~,~‘)]. 0

The use of well-orderings (or up to order-isomorphisms of ordinals) in (6) is not

mandatory. Well-founded relations can as well serve as a basis for induction.

Also as observed by Schwarz [12], Burstall’s method can be explained as the

mathematical deduction of theorems from axioms specifying the effect of elementary

commands in the program. This informal explanation of Burstall’s method can be

formalized by considering the transition relation in the previous proof principles as

a set of axioms or a given lemma from which other lemmas are derived. One difference

(that had not to be taken into account by Schwarz [12], who considers only total

deterministic programs) is that inevitability of t for (S, t, h.tt) holds only for states

Intermittent assertions induction principles 147

which have at least one successor. Moreover, the deduction process that Schwarz [12]

left unspecified is always reducible to transfinite induction.

Finally, the main proposition E.(s, s’).[~(s) = $(s, s’)] can always be chosen as one

of the lemmas intervening in the proof.

Therefore, if we write Wj(W, --c, p) to state that --K is a well-founded relation on

W with minimal element ,u, i.e.

The above remarks lead to the following induction principle:

rqn x A+(S2+t, ff})).

Wfi(A, 4,p) A e,=tr\ Wf(A, <)Ae,=l”(S,S’).[~(S)~~(S,S’)]A

(V’aE(A-p), S,S’ES,S’EA.

[%Ed.I:(S,S)] A (7)

[Id,‘(s,s’)*

(&‘E/‘i.[d < MA([Ci’=/l] ==- [%“Es.8,,(S’,S”)])

Ab”ES.(&,(S’,S”)+ [%“ELi.(6”<d’A~;“(S,S”))])])V

Let us remark that condition [cr’= ~1 under which [3s”ES.B,(s’, s”)] should

hold is optional. When absent, the verification condition is simply redundant when

Go#jA.

Theorem 7.6. (6) =S (7).

Proof. Choose &(A6 $1) (e.g. A6 i 2) and A7 =(A, i 1)~ { ,u}, ~4 + 7 M if and only if

[a~(n,il)A((cr’=~)V(CL’E(/16/1)ACI’<tl))], n,=A,, A7=(A6u2), <,= <6= <,

bh~S’)=[(~=PA t(S,S’))V(C(=A6A(~(S)~ICI(S,S’)))V(C(</16A &,(S,S’))i,~7:(S,

S’)=[(ff=~)V(CI=~gA~=1AS’=S)V(~=/16A~=OA(~(S)~IC/(S,S’)))V(tl</16A

I,: (s,s’))l. 0

In induction principle (7) the verification condition (36~4 .Zi(s, s)] implies that

lemma 8, is inevitable for (S, t, As.tt). But for the main proposition 8, this property is

not necessary. We need only the fact that tIa should be inevitable for the particular

states for which it is used. Hence the verification condition [36~d.Z~(s,s)] of (7)

P. Cousot, R. Cousot 148

can be weakened in:

{tat, ff})),n~A, AEOrd, IE(A x A+(S’+{tt, ff

s,=~(s,s’).[~(s)~Ic/(s,s’)] A

(vsLs.366A.I~(s,s))A

(VrgA, s, s’ES, ~‘EA.

[If’(s,s’) 3

))I.

Theorem 7.7. (7) * (8).

(8)

Proof. We first show that ifO<e,,<yandO<E1<;’ then(yj(6,)/&g<(yic61)i&1 if

and only if ((6,<6,)v(6,=6, AQ,<E~)).

If &<6, then (~ic6,)/~~<(~j(6~)ip=yic(6~/1)~yic6~<(~ic6~)i~~. If

d0=6, AQ,<E~ then yic~?~=yic6,, hence (yA(50)~~0<(yAfil)/~1.

Ifconversely,l((6,<6,)v(&,=6, r\E0<El))theneither6,=6, andEO=tz, sothat

a=(yicbo)/~O=(yic61)i~1=Pand~4:Borelse(S,>6,)v(6,=6,~~,>~,)sothat

by the first part of the proof (with 0 and 1 interchanged) we have p<sl, hence a+b.

We next show that given a well-founded relation < on W, there is an injective and

order-preserving map l(W,<) of W into the class (Ord, <) of ordinals.

Let E(W,_OE(rk(W,<)-+{ X: X 5 W}) be defined by E(W,-<)(CC)={XE W:

rk(W,-<)(x)=%}. Observe that VJcc,r’crk(W,<).[cr#a’=E(W,<)(a)n

E(W,~)(C(‘)=C#J] and VXE W.jcrErk(w,<).[x~E(W,<)(a)].
By the axiom of choice, there is a linear ordering <(W,<)(x) which well-orders

E(w, <)(a).
Define p(W, -c)(x,y)=rk[E(W,<)(rx),+(W,-<)(rx)][y] where rx is

rk(W,<)(x) and ~(W,--<)(x)=p(K +)(x,x)/l so that VXEW.[O<E(W,

-c)(x)]. Define y(W,--c)=Sup+{~(W,~)(X): XE W} so that VXE W.[E(W,

-c)(x) --c y(W,--c)] and I(W,-c)(x)=y(W,-c)ic rk(W, -c)(x)+4 W,-<)(x).
If x<y then rk(W,<)(x)<rk(W,-<)(y); hence by the lemma

I(W,<)(x) -c I(W,+)(y). If u=z(W,<)(x)=l(W,-c)(y)=ly then IX +zly and

ly41x, so that by the lemma rk(W,--c)(x)=rk(W,d)(y) and E(W,-<)(x)=
E(W,<)(y); therefore p(W,~)(x,x)=p(W,-c)(x,y). This implies that neither

x4(W,<)(rx)y nor y@(W,d)(rx) x holds and, since x,y~E(W,<)(rx) which is

linearly ordered by e(W,~)(rx), we conclude that x =y.

Intermittent assertions induction principles 149

To prove that (7) * (8) is now immediate when choosing & =Sup + { I(d7 -p,

-<7)(x): xE(&“P))I,%=r(n,-P, +7)(7-r,), ~8a(S,S’)=C3a~(n,-~). (E=r(n7-P,
-<,)(u)A~~~(s,s’))],~~=SUP+~Z(~~, c7)(x): x~d,} and Is8(s,s’)=[3a~(n,-v~),
dEA,. a=z(A,-p, -~~)(a)r\b=z(A,, -c7)(d)Al,;(s,.s’)]. 0

The use of lemmas 0, in induction principle (8) is redundant because we can use
instead some intermittent assertion Zz for some 6 such that I,d(s,s’) = oa(s, s’). By
convention, we can choose 6=0 so that induction principle (8) can be simplified as
follows:

[UEOrd, TEA, AEOrd, IE(A x A-+(Sz-+(tt, R})).

(vS,S’ES.I,O(S,S’)=(~(S)~~(S,S’)))A

(v’sGS.36EA.z~(s,s))A

(9)

Theorem 7.8. (8) - (9).

Proof. Choose &=A,, 7cg=7c8, Ag=As, ~,d,(S,S’)=[(6=OA&.(S,S’))V(6>OA

MS, s’))l. 0

As shown by the succession of transformations, the proof that in (9) a state s’
satisfying Zl’(s,s’) inevitably leads to a state s” such that Ba(s,s”) holds involve an
induction along parts of computation paths modeled by 6’ and an induction upon the
data modeled by CL In order to make a comparison with Floyd’s method, both cases
can be reduced to computational induction using y’ measuring the “number of steps”
remaining to be done between s’ and s”:

[3TEOrd, 1~(T+(S’+{tt, ff I)), a~(r-tr).

(0 (VS~S.3y~:r.[l,(S,S)AtiiS’ES.(l,(y)(S,S’)=[#(S)J~(S,S’)]])A

(V/Y’EI-, s, S’ES.

[Z,,,(s,s’)* (10)

WW (3S”ES.t(S’,S”)AvS”ES.[t(S’,S”)s3y”<y’.(a(y”)=o(y’)

AI,..(S,S”))])V

150 P. Cousot. R. Cousot

W) (3y<y’.[z,(s’,s’)AvS”ES.[z,(y,(S’,S”)~3y”<y’.(~(y”)=O(y’)

A Z,~,(S,S”))])V

((3 I m(y,,(S,S')l)l.

Theorem 7.9. (9) =S (10).

Proof. Let I = I.(cc, iS).[(d, k c()/6] be the order isomorphism between /19 x d9

well-ordered by the left lexicographic ordering (~‘,6’) -K (IX, S) if and only if

((a’<a)v(cr’=ccr\6’<6))andZ,,=d9ic&well-orderedby <.Welet(s,d)bethe

inverse oflso that VCCE/~,, ~E~,.(c(=~(~((cc,~)))A~=~(z((c~,~)))) and V~EZ~~.‘J=

I((&), 6(y))). We choose Zlor (s,~‘)=Z~$~~(s,s’) and o(y)=l((cr(y),O)). 0

Using abstract generalization (10) of Burstall’s method we can make a fair compari-

son with similar generalization of Floyd’s method [4]. For Floyd’s method, line (LI) is

suppressed (so that one can always choose a(y)=O). Hence the crucial difference

between Floyd’s and Burstall’s methods is not the use of invariant versus intermittent

assertions, nor the use of computational induction versus induction upon the data

but, indeed, the introduction of recursion.

Equivalence of induction principles (2)-(10) follows from the following theorem.

Theorem 7.10 (soundness). (10) * (0).

Proof. We prove by induction on (Z, <) that V’~EZ.[VSES.V~EC(S,~,~S’.Z,(S,S’)).

3i~Dom(p).Z,,,,(s,pi)]. Assume this holds for y’<y. By reductio ad absurdum let

s~S,p~C(S,t,h’.Z,(s,s’)) be such that V’i~Dom(p).lZ,,,,(S,pi). To get a contra-

diction we build an infinite sequence ((ik, yk): k 20) such that

Vk>,O.[Z,,(s,p,,) A c~(y~)=c(y) A yk>yk+ i]. Choose yO=y and i0 =O. If the sequence

is built up to point k then Zyl,(s,pir) satisfies (HS),(LI) or (C). (C) is impossible (since

Z o(yk)(s,Pik) would imply Zocyi (S,pi,)). In case (HS), 3S”~S.t(pi~,s”) implies that

&+i=(&+l)EDom(p). Hence r(pik,piril) implies 3y,+,<y,.(a(y,+1)=a(y,)=

O(Y) A I,,+, (s, pi* + ,)). In case (LI) there exists y ’ < yk such that I,,(pik) pin). Hence by

induction hypothesis 3 j~Dom(p”“).Z,(,,,(p,+‘“,pf’“) (where p+j is the subsequence

pj pj+ 1 . . of p). If we let ik+ 1 be ik +j it follows that Z,cy~i(pik, pik f 1 1 holds whence

~Y~+~<Y~.CZ~,,I(S,P~*+I)A~(Y~+~)=~(Y~)=~(Y)I. Q.E.D.
Now if pEC(S,f,@) then 3y~Z-.Z,(p~,p~) so that p~C(S,r,E.s’.Z.,(p,,s’)) and by

the above lemma 3i~Dom(p).l,(,,(p,,pi). By (P) this implies #(po) * $(p,,pi), hence

ti(PO>Pi). q

8. Strong semantic completeness

The semantic completeness argument given in Theorem 6.4 is very weak because it

essentially consists in saying that (2) can always be used to formulate “a la Floyd”

Intermittent assertions induction principles 151

proofs (as suggested by Manna and Waldinger [lo]). Having extended Burstall’s

method so as to incorporate Floyd’s method (see Theorem 7.4 and (6)-(10)) the usual

semantic completeness argument for Floyd’s method can be transcribed for Burstall’s

method (e.g. (0) * ((10) with (LI) suppressed (and o(y)=O)) as proved in [4]). How-

ever such completeness arguments are not in the spirit of Burstall [3], who encourages

the decomposition of proofs of propositions into lemmas as opposed to Floyd [7],

who proves a single proposition (decomposed into partial correctness, absence of

blocking states and termination, a decomposition which is also applicable to each

lemma involved in Burstall’s method).

We now give a stronger semantic completeness result showing that the lemmas

involved in “a la Burstall” proofs can always be chosen more freely.

First we have to introduce an induction principle (11) where the choice between

“hand simulation” (HS) and “a little induction” (LI) is enforced. In particular, the

lemmas that are to be used in (LI) should be imposed. For that purpose we consider

a version of (6) where we introduce a choice relation lJs,s’,cr’) so that intermittent

assertion Zi’(s, s’) can be handled using lemma CI’ < CI if and only if ioL(s, s’, a’) holds.

(Observe that a dependence of z on 6’ would only be useful to impose the use of

identity lemmas, a case of little importance that we exclude for simplicity).

To simplify later reasonings, (HS) will be treated in the style of (7) as a particular

subcase of (LI) so that the transition relation t is viewed as a particular lemma, say QO,

given as axiom.

Moreover, as observed for (S), the verification condition [36~d .If(s, s)] of (6) or (7)

implies that lemma 8, is inevitable for (S, t, h.tt). However, this is needed only for the

particular states s for which 8, may be used, i.e. when 3~ <tl, s’~S.z,,(s’, s, a).

Finally, since all lemmas enjoy the same kind of inevitability properties there is no

real need to distinguish a particular main proposition.

These remarks lead to the following induction principle (where AEOrd,

~9~(A-+(S~+{tt,ff})), 8,=t and ~E(A~O-+(SXSXA~{~~,~~}))):

[SlEOrd, Is((A-0) x d+(S2+{tt, ff})).

(VC(E(A-O), SES.[(3c(‘E(L4-O), S’ES.Z,~(S’,S,tl))~36~4.f~(S,S)])A

(VE(A-O), S,S’ES, S’EA.

[Z2’(s,s’) =a

(11)

152 P. Cousot. R. Cousot

We first show that (I 1) is yet another formulation of the induction principles

generalizing But-stall’s method.

Theorem 8.1 (Equivalence of the induction principles). (6) * [3A, 8, I.(do = t A (1 l))].

Proof. Choose A,,=l-kA,, d,,=d,, O1lO=t, if cc,a’~A, then 6)11(1:.,=0ga,

I 11~;~or)(S,S’)=[16~‘(S,S’)AvbEd6.(1~~(S,S’)=J~’dS)],Ill(l;a)(S,S’,O)=[36’Ed~.

I 11P;Fa)(S,S’)AlB6~(S,S’)A3S”ES.t(S’,S”)AvS”ES.(t(S’,S”) *ps”<s’.r,,6”(S,S”)])]

and I Il(lia)(S,S’,1/X’)=[36’Edg.I ~~~;;Z,(S,S’)Al~e6a(S,S’)Avs”ES.(06a’(S’,S”)~

[36”<6’.Z,f”(S,S”)])]. 0

Theorem 8.2 (Equivalence of the induction principles (continued)).

[3/1,e,~,n~(n-o).(vs~S.~,(s,s,7()=ttAB,=~(s,s’).[~(s)~~(s,s’)]

Ae,=tA(ll))]*@).

Proof. Choose A 8 = ‘4, , , 8s,(s,S’)=ifCI=Othenttelse8,,.(s,s’),71g=7111,dg=dl1,

18~(s,s’)=ifa=0 then ff else Illf(s,s’). 0

Because we no longer distinguish a main proposition 8, as in (0), soundness of (11) is

better formulated as follows:

V%E(/t-O), p~~(S,t,i.S.[3a’,S’.I,‘(S’,S,~)]).3i~Dom(p).B,(p,,pi). (12)

Theorem 8.3 (Soundness (relative to t)). (11) * (12).

Proof. Follows from the later proved Theorems 8.5 and 8.6. 0

We are mainly concerned about the semantic completeness of (11). The reciprocal of

Theorem 8.3 is not true.

Theorem 8.4 (Insufficient completeness condition). (12) + (11).

Proof. Consider the counterexampleS=ja,b,c}, t(s,s’)=[(s=a~s’=b)v(s=b~s’

=c)],/1=3,8,=t,~,(s,s’)=[s=a~s’=c],~~(~,~’)=[~=aAs=b],A#O,~,(s,s’,r’)=

[(c~=l As=aAs’E{a,bj Ad=O)V(Ct=2AS’=S=UAdE{1,2j)].

Obviously, (12) holds. If (11) were true then we would have z,(u,u, 2) hence

36,~d.I$‘(u,a) and by r2(u,u,1) and @,(a,~) we would have 36,<6,.1F(u,c). But

1 Q,(a, c) and V'cr ’ < 2.1 12(a, c, a’), a contradiction. 0

In Burstall’s method the use of lemma fI1 in the proof of proposition 6, has the effect

of covering a number of transitions by a single step 8,. Hence 8, can be used in the

Intermittent assertions induction principles 153

proof of 0, only if this reduction leaves 0, inevitable. Stated otherwise, 0, must be

inevitable for transitions O1 made up of the lemmas that are used in the proof of 0,.

This is expressed more formally by condition (where O,, = t):

VcX(/i-O), s~S.[(3CL’E/1,S’ES.z,,(Sf,S,CI))

~(~P~~(S,~,,,~~.CS=~l>.~i~~~~(~).~a(Po,Pi))l, (13)

where z,,(s’,s”)=[3a’~cc.~,(s,s’,cc’)~O,.(s’,s”)].

Condition (13) is a necessary one for semantic completeness:

Theorem 8.5 (Soundness (relative to r) - necessary completeness condition)).

(11)*(13).

Proof. Assume (11). If /1= 1 or VU’, s’.l la,(s’, s, U) then (13) obviously holds, else we

prove (13) by transfinite induction on cre(/l-0). Given ae(n-0) and s~S, assume

by reductio ad absurdum that 3tl’~/i, s’~S,pgC(S, ~as,~~.[~=~]).la,(~‘,~,~) A

V’i~Dom(p).lO,(p,,pi). To get a contradiction, we show that it is then possible to

build an infinite sequence ((6,, ik): ka0) such that Vk>O.Z,dk(s,pi,) holds and (6,:

k30) is an infinite strictly decreasing chain of ordinals.

We have z,,(s’,s,M) so that by (11) we derive I$‘(s,s) i.e. 12(s,pi,) with iO=O. If the

sequence has been built up to point k, then by (11) Z$(s,pir) implies

([~~<~.l~(S,Pi,,~)]A[V~‘<C1.1*(S,Pik~~’)~([ff’=O~3S”ES.O~ (pi,,S”)]

A [V~“ES.(O,‘(pi,,S”) * 3S”<6,. Zt”(S, S”))])])

because we have assumed 10a(Po,Pik) and p,,=s. If cl=0 then ~s”ES.O,(pi,,s”)

whence ~s”ES.~~JP~~,S”). Else O<g<cr, so that by induction hypothesis Vs’~S.[(3c(“,

S”.l,-(s”, S’,~))~(V$EC<S,T ,,,,&.[~=s’]).GliEDom(p’).O,(pb,p:))]. In particular

fors’=pc3ra(s,ph,~)holdsandZ(S,r ap,,, &.[s=pJ) is not empty so that we derive

3S”ES.0~(pik,s”), whence 3S”ES.ras(Pikrs”). Since pik is not a blocking state

ik+ 1 =it+ 1 belongs to Dam(p) and we have ras(pik,Pik+,). It follows that

3cl’<a.I,(s,pi~,CI’)AOBa,(pir,piktt)) whence 36k+1<6k.I~+l(~,~i~+~). q

Condition (13) (i.e. each lemma is inevitable relatively to the lemmas used in its

proof) implies condition (12) (i.e. each lemma is inevitable relatively to the transition

system):

Theorem 8.6 (Inevitability relative to z implies inevitability relative to t). (13) * (12).

Proof. Assume (13), we prove (12) by transfinite induction on @A -0). Assume

by reductio ad absurdum, that 3peC(S, t,h.[3a’,s’.l,,(s’,s,a)]). VieDom(p).

10,(pO,pi). To get a contradiction, we shall build an infinite sequence (i,: k>O)

such that piOpi, . . . is a counterexample to (13), i.e. Zlcr’, s’ .r,,(s’,piO, rx) A

Vk~0.[Sapi,(Pir,Pir+1)A108,(Pi,,Pik)]. We let it, be 0. If the sequence is built up to ik

154 P. Cousot. R. Cousot

then it can be extended since 3ik +, 2 ik. zapLo (pi,, pi, + 1 1 (and 1 fl,(pi”, pi,) by hypothesis

and i,=O). Otherwise, Vj>,ik.lTrp,,(pik,pj) so that by definition of rRP,_ we would

have V~>,ik.VM’<C(.[l~a(po,~i~,M’)Vi~a,(pi~,pj)]. If Vg’<X.ll,(p,,pi,,a’) then

VS’ES.lZap,o(pik,S’) SO that Pio...PirEC(S,~.lp,~, j.2. [S=pio]), in contradiction

with (13). Else ~c(‘<cc.z~(~~,~~~,cc’); so for that r’<z we derive Vj>i,.16,,(pi,,pj),

hence Pir,Pik + I . ..d(S, t, j.s.[Sx”, s”. la..(s”, s, x’)]), in contradiction with induction

hypothesis (12). 0

We can now give a necessary and sufficient semantic completeness conditionfor (11).

Theorem 8.7 (Necessary and sufficient strong completeness condition). (13) 0 (11).

Proof. By Theorem 8.5 we just have to prove (13)*(11). Given r~(n-O), SES, we

define:

0 Inas= u { Inter(S,T,,, &.tt,d,)(s): 3r’EA,s’ES.z,,(S’,s,C()},

l G~~~=~{Goaf(S,z,,, i_~.tt,Q,)(s): ~cI’EA,s’ES.I,,(S’,S,I)},

l AC,, = Inas u Go,,.

We first prove that (13) + (Vae(n -0) SES. Wf(Ac,,, t,,j In,,-‘)).

This is obvious when tix’~n,s’~S.l~,,(s’,s,~~) since AC,, is empty. Else, given

x~(il-0) and SCS such that ~cx’E~,s’ES.I,,(S’,S, 2) assume, by reductio ad absurdum,

that 3p~(o~Ac,,).Vi~o.t,,11n,,(pi,pi+l). For all i~:w we have piEIn,, SO that

1(3,(s, pi), hence pi+ Go,,. Since pot In,, we can assume p. = s (else we can adjoin to

the left of p a prefix r,, . ..rk of some trace I.EZ(S,T,,,&.~~) such that

ro=sr\Vjdk.lB,(ro,rj)r\rk=pO SO that Vi < k. ~~~1 In,,(ri, ri+ 1)). We have

~c~‘E/~,s’ES.I,,(S’,S,X) and ~EZ(S,T zs, 22. [s=s]) and V’i~D0m(p).pi@G0,, hence

~0~(p~,p~), in contradiction with (13). Q.E.D.

Assuming (13), by the previous lemma we can define:

l d=S~p’{rk(Ac,,,~,,1In,,-‘): a~(ii-O)ASSES~,

l I~‘(s,s’)=[s’EAc,,Afi’=rk(Ac,,,~,,lln,,ml)(s’)].

If ZE(/~-O), SES and C!C(‘E(~ -0) s’~S.~,,(s’,s,r) then SEAC,, so that Zi(s,s) holds

with 6=rk(Ac,,,zZsl In,,-‘)(s).

Assume CCE(L~-O), s,s’~S, 6’~d and Z~‘(S,S’). We have s’EAc,,. If s’EGo,, then

oa(s, s’) holds. Else s’EIn,, so that by (13) there exists S”ES such that T,,(s’, s”), hence

some c~‘<tl such that I~(s,s’,x’) A (~,.(s’,s”). If a’=0 we conclude Ys”eS.t(s’,s”) since

&=t. Else r’#O and if Vs”~S.~t(s’,s”) then (s’)EZ(S,~,~.S’.[~~~,S.I,(S,S’,~’)]),

whence by (13) and Theorem 8.6 we conclude from (12) that ~,,(s,s’); hence T&s’,s’)

holds. It follows from s’E In,, that 3sr,~P~C(S,T,,,;.s.[s=s]>,

i~Dom(p).l,(~s,a)AVjdi.lB,(p~,Pj)APk=.S’, SO that the infinite trace

p. . ..pks’s’... is a counterexample to (13). Hence, by reductio ad absurdum we

conclude that 3s”ES. t(s’, s”). Finally, given x’ -C c(and S”ES such that I,(& s’, LX’) and

~,,(s’,s”) we have ~l~n,,(s',~") hence s ” E AC,, and there exists

6” =rk(AC,,, ~,,l Inas -l)(s”)<rk(Ac,,,rl,lIn,,m’)(s’)=fi’ such that Ii”(s,s”)

holds. q

Intermittent assertions induction principles 155

In a related paper [5], we show that Floyd’s method (i.e. (2) without (LI)) and

Burstall’s method (more precisely (2)) are strongly equivalent in the sense that a proof

by one method can be translated into a proof by the other method.

9. Conclusion

Our study and generalization of Burstall’s method should be extended (e.g. in the

style of [4]) so as to take fairness hypotheses for parallel programs into account. It

should also be extended from a methodological point of view in order to obtain better

presentations of Burstall’s method and broader applications e.g. for logic programs.

Acknowledgment

We would like to thank L. Lamport and the other, anonymous, referee for their

comments on the manuscript.

References

Cl1

PI

c31

c41

c51

[61

c71

PI

191

[lOI

Cl11

1121

K.R. Apt and C. Delporte, An axiomatization of the intermittent assertion method using temporal
logic (extended abstract), in: Proc. IOth ICALP, Lecture Notes in Computer Science, Vol. 154

(Springer, Berlin, 1983) 15-27.
K.R. Apt and G.D. Plotkin, Countable nondeterminism and random assignment. J. ACM 33 (1986)

724-767.

R.M. Burstall. Program proving as hand simulation with a little induction, Inform. Process. 74 (1974)

308-312.
P. Cousot and R. Cousot, “A la Floyd” induction principles for proving inevitability properties of

programs, in: M. Nivat and J. Reynolds, eds, AIgehraic Methods in Semantics (Cambridge Univ. Press,

Cambridge, 1985) 2777312.

P. Cousot, and R. Cousot, SOMETIME = ALWAY S + Recursion 3 ALWAYS, on the equivalence of

the intermittent and invariant assertions methods for proving inevitability properties of programs,

Acta Inform. 24 (1987) l-31.
E.W. Dijkstra, Selected Writings on Computing: a Personal Perspective (Springer, Berlin, 1982).

R.W. Floyd, Assigning meaning to programs, in: Proc. Symp. Applied Math., Vol. 19 (AMS, Provi-

dence, RI, 1967) 19-32.

D. Harel, First Order Dynamic Logic, Lecture Notes in Computer Science, Vol. 68 (Springer, Berlin,

1979).
Z. Manna and A. Pnueli, Verification of concurrent programs: a temporal proof system, in: Proc. 4th
School on Advanced Programming, Math. Centre Tract No. 159 (CWI, Amsterdam (1982) 163-255.

2. Manna, and R.J. Waldinger, Is SOMETIME sometimes better than ALWAYS?, intermittent

assertions in proving program correctness, Comm. ACM 21 (1978) 159-172.

Pnueli, A., The temporal logic of programs, in: Proc. 18th Sump. on Foundarions of Camp. Sci.,

Providence, RI (1977) 4657.
J. Schwarz, Event-based reasoning - a system for proving correct termination of programs, in: Proc.
3rd ICALP, Edinburgh (1976) 131-146.

