
1

Compositional Separate Modular
Static Analysis of Programs
by Abstract Interpretation
Patrick Cousot

Département d’informatique
École normale supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

http://www.di.ens.fr/˜cousot

and Radhia Cousot

Laboratoire d’informatique
École polytechnique

91128 Palaiseau cedex, France
Radhia.Cousot@polytechnique.fr

http://lix.polytechnique.fr/˜rcousot

Abstract—The purpose of this paper is to present four ba­
sic methods for compositional separate modular static analy­
sis of programs by abstract interpretation:
• Simplification-based separate analysis;
• Worst-case separate analysis;
• Separate analysis with (user-provided) interfaces;
• Symbolic relational separate analysis;
as well as a fifth category which is essentially obtained by
composition of the above separate local analyses and global
analysis methods.

Keywords—Abstract interpretation, Static program analy­
sis, Global analysis, Whole program analysis, Separate
analysis, Modular analysis, Component analysis, Composi­
tion of analyses.

I. Introduction

Static program analysis is the automatic compile-time
determination of run-time properties of programs. This is
used in many applications from optimizing compilers, to
abstract debuggers and semantics based program manip­
ulation tools (such as partial evaluators, error detection
and program understanding tools). This problem is unde­
cidable so that program analyzers involve some safe ap­
proximations formalized by abstract interpretation of the
programming language semantics. In practice, these ap­
proximations are chosen to offer the best trade-off between
the precision of the information extracted from the pro­
gram and the efficiency of the algorithms to compute this
information from the program text.
Abstract interpretation based static program analysis is

now in an industrialization phase and several companies
have developed static analyzers for the analysis of soft­
ware or hardware either for their internal use or to provide
new software analysis tools to end-users, in particular for
the compile-time detection of run-time errors in embedded
applications (which should be used before the application
is launched). Important characteristics of these analyzers
is that all possible run-time errors are considered at com­
pilation time, without code instrumentation nor user inter­

This work was supported in part by the RTD project
IST-1999-20527 daedalus of the european IST FP5 programme.

action (as opposed to debugging for example). Because
of foundational undecidability problems, not all errors can
be statically classified as certain or impossible and a small
percentage remains as potential errors for which the analy­
sis is inconclusive. In most commercial software, with low
correctness requirements, the analysis will reveal many pre­
viously uncaught certain errors so that the percentage of
potential errors for which the analysis is inconclusive is
not a practical problem as long as all certain errors have
been corrected and these corrections do not introduce new
certain errors . However, for safety critical software, it is
usually not acceptable to remain inconclusive on these few
remaining potential errors 1. One solution is therefore to
improve the precision of the analysis. This is always the­
oretically possible, but usually at the expense of the time
and memory cost of the program analyses, which can be­
come prohibitive for very large programs.
The central idea is therefore that of compositional sepa­

rate static analysis of program parts where very large pro­
grams are analyzed by analyzing parts (such as compo­
nents, modules, classes, functions, procedures, methods, li­
braries, etc…) separately and then by composing the analy­
ses of these program parts to get the required informa­
tion on the whole program. Components can be analyzed
with a high precision whenever they are chosen to be small
enough. Since these separate analyzes are done on parts
and not on the whole program, total memory consump­
tion may be reduced, even with more precise analyzes of
the parts. Since these separate analyzes can be performed
in parallel on independent computers, the global program
analysis time may also reduced.

II. Global Static Program Analysis

The formulation of global static program analysis in the
abstract interpretation framework [1], [2], [3], [4], [5] con­
sists in computing an approximation of a program seman­

1The number of residual potential errors, even if it is a low percent­
age of the possible errors (typically 5%), may be unacceptably large
for very large programs.

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
Radhia.Cousot@polytechnique.fr
http://lix.polytechnique.fr/~rcousot

2

tics expressing the properties of interest of the program P
to be analyzed. The semantics can often be expressed as
a least fixpoint S�P� = lfp

�
F �P � that is as the least so­

lution to a monotonic system of equations X = F �P �(X)
computed on a poset 〈D, �〉 where the semantic domain
D is a set equipped with a partial ordering � with in­
fimum ⊥ and the endomorphism F �P � ∈ D m�−−→ D is
monotonic. The approximation is formalized through a
Galois connection 〈D, �〉 −−−→←−−−α

γ
〈D̄, �̄〉 where a concrete

program property p ∈ D is approximated by any abstract
program property p̄ ∈ D̄ such that p � γ(p̄) and has a
best/more precise abstraction α(p) ∈ D̄ (Other formaliza­
tions through closure operators, ideals, etc. are equivalent
[1], [3]. The best abstraction hypothesis can also be re­
laxed [6]). Then global static program analysis consists
in computing an abstract least fixpoint S̄�P � = lfp

�̄
F̄ �P �

which is a sound approximation of the concrete semantics
in that lfp

�
F �P � � γ(lfp

�̄
F̄ �P �). This fixpoint sound­

ness condition can be ensured by stronger local/functional
soundness conditions such as F̄ �P � is monotonic and ei­
ther α ◦ F �P � �̄ F̄ �P � ◦ α , α ◦ F �P � ◦ γ �̄ F̄ �P � or
equivalently F �P � ◦ γ � γ ◦ F̄ �P � (see [3]). The least
fixpoint is computed as the limit of the iterates F 0 = ⊥̄ ,
…, Fn+1 = F̄ �P �(Fn) , … where ⊥̄ is the infimum of the
abstract domain D̄. Convergence of the iterates can al­
ways be enforced using widening/narrowing techniques [2].
The result is correct but less precise than the limit S̄�P � =⊔̄
n≥0

Fn where �̄ is the least upper bound (which does exist

if the abstract domain D̄ is a cpo, complete lattice, etc.)
[2], [6].
For example, the reachability analysis of the following

program with the interval abstract domain [2]:

0: x := 1;

1: while (x < 1000) do

2: x := (x + 1)

3: od

4:

consists in solving the following system of fixpoint equa­
tions 〈X0, X1, X2, X3, X4〉 = F̄ �P �(〈X0, X1, X2, X3, X4〉)
[7] where Xi is the abstract environment associated to pro­
gram point i = 0 , …, 4 , each environment Xi maps pro­
gram variables (here x) to a description of their possible
values at run-time (here an interval), U is the union of
abstract environments and _O_ denotes the singleton con­
sisting of the undefined initial value:

X0 = init(x, _O_)

X1 = assign[|x, 1|](X0) U X3

X2 = assert[|x < 1000|](X1)

X3 = assign[|x, (x + 1)|](X2)

X4 = assert[|x >= 1000|](X1)

The least solution to this system of equations is then ap­
proximated iteratively using widening/narrowing iterative
convergence acceleration methods [2] as follows:

X0 = { x:_O_ }

X1 = { x:[1,1000] }

X2 = { x:[1,999] }

X3 = { x:[2,1000] }

X4 = { x:[1000,1000] }

Some static program analysis methods (such as typing
[8] or set based-analysis [9]) consist in solving constraints
(also called verification conditions, etc.), but this is equiv­
alent to iterative fixpoint computation [10] , maybe with
widening [9] (since the least solution to the constraints
F �P �(X) � X is the same as the least solution lfp

�
F �P �

of the equations X = F �P �(X)).
Such fixpoint computations constitute the basic steps of

program analysis (e.g. for forward reachability analysis,
backward ancestry analysis, etc.). More complex analyzes
are obtained by combining these basic fixpoint computa­
tions (see e.g. [1] , [11] or [12], [13] for abstract testing of
temporal properties of program).
The type of static whole-program analysis methods that

we have briefly described above is global in that the whole
program text is needed to establish the system of equations
and this system of equations is solved iteratively at once.
In practice, chaotic iteration strategies [14], [15] can be

used to iterate successively on components of the system
of equations (as determined by a topological ordering of
the dependency graph of the system of equations). How­
ever, in the worst case, the chaotic iteration may remain
global, on all equations, which may be both memory con­
suming (since the program hence the system of equations
can be very large) and time consuming (in particular when
convergence of the iterates is slow).
This problem can be solved by using less precise ana­

lyzes but this may simply lead to analyzes which are both
imprecise and quite costly. Moreover, the whole program
must be reanalyzed even if a small part only is modified.
Hence the necessity to look for local methods for the static
analysis of programs piecewise.

III. Separate Modular Static Program Analysis

A. Formalization of Separate Modular Static Program
Analysis in the Abstract Interpretation Framework

In general programs P [P1, . . . , Pn] are made up from
parts P1, . . . , Pn such as functions, procedures, modules,
classes, components, libraries, etc. so that the semantics
S�P � of the whole program P is obtained compositionally
from the semantics of its parts lfp

�i
F �Pi� , i = 1, . . . , n as

follows:

S�P � = lfp
�
F �P �[lfp

�1
F �P1�, . . . , lfp

�n
F �Pn�]

where F �Pi� ∈ Di
m�−−→ Di , i = 1, . . . , n and F �P � ∈ (D1×

. . .×Dn) m�−−→ (D m�−−→ D) are (componentwise) monotonic
(see e.g. [16]).
This compositional separate modular static analysis of

the program P [P1, . . . , Pn] is based on separate abstrac­
tions 〈Di, �i〉 −−−→←−−−

αi

γi 〈D̄i, �̄i〉 , for each part Pi , i =

3

1, . . . , n. The analysis of the parts then consists in comput­
ing separately an abstract information
Ai �̄i lfp

�̄i
F̄i�Pi� ,

i = 1, . . . , n on each part Pi so that lfp
�i

F �Pi� �i γi(
Ai).
Since the components Pi , i = 1, . . . , n are generally small,
they can be analyzed with a high precision by choosing
very precise abstractions 〈Di, �i〉 −−−→←−−−αi

γi 〈D̄i, �̄i〉 , (see
examples of precise abstract domains in e.g. [4], [5]). A
typical example is the replacement of numerical interval
analysis (using intervals [a, b] where a and b are numeri­
cal constants) by a more precise symbolic interval analysis
(using intervals [L, H] where L and H are mathematical
variables, which can be implemented through the octago­
nal abstract domain of [17]).
The global analysis of the program consists in composing

the analyses
Ai , i = 1, . . . , n of these program parts Pi ,
i = 1, . . . , n to get the required information on the whole
program by computing lfp

�̄
F̄ �P �[
A1, . . . ,
An].

Since these separate analyzes are done on parts and not
on the whole program, total memory consumption may
be reduced, even with more precise analyzes of the parts.
Since the separate analyzes of the program parts can be
performed in parallel on independent computers, the global
program analysis time may also reduced. The global ab­
straction is composed from the abstractions of the program
parts and has the form:

〈D[D1, . . . , Dn], �〉 −−−−−−−−−→←−−−−−−−−−
α[α1,...,αn]

γ[γ1,...,γn]
〈D̄[D̄1, . . . , D̄n], �̄〉 .

The local/functional soundness condition is:

α[α1, . . . , αn](F �P �[γ1(X1), . . . , γn(Xn)]) �̄
F̄ �P �[X1, . . . , Xn]

which implies that:

lfp
�
F �P �[lfp

�1
F �P1�, . . . , lfp

�n
F �Pn�] �

γ[γ1, . . . , γn](lfp
�̄
F̄ �P �[
A1, . . . ,
An]) .

B. Difficulty of Separate Static Program Analysis: Inter­
ference

The theoretical situation that we have sketched above
in Sec. III-A is ideal and sometimes very difficult to put
into practice. This is because the parts P1, . . . , Pn of the
program P are not completely independent so that the sep­
arate analyses of the parts Pi are not independent of those
of the other parts P1 , …, Pi−1 , Pi+1 , …, Pn and of that
of the program P .
For example in an imperative program à la C, a function

may call other functions in the program and use and/or
modify global variables. In Pascal, a program may modify
variables on the program execution stack at a program
point where these variables are even not visible (see [18]).
A very simple formalization consists in considering that

the semantics of the program can be specified in the follow­
ing equational form:




Y = F �P [P1, . . . , Pn]�〈
Y ,
X1, . . .,
Xn〉

Xi = F �Pi�〈
Y ,
X1, . . .,
Xn〉
i = 1, . . . , n

where
Y represents the global information on the pro­
gram while
Xi represents that on the program part Pi ,
i = 1, . . . , n. In general, the least solution is preferred for
a componentwise ordering � × �1 × . . . × �n where 〈D,
�〉 and the 〈D1, �1〉 , …, 〈Dn, �n〉 are the concrete do­
mains (usually cpos, complete lattices, etc.) respectively
expressing the properties of the program P [P1, . . . , Pn] and
its parts Pi , i = 1, . . . , n.
In general the local properties
Xi of the part Pi depend

upon the knowledge of the local properties
Xj of the other
program parts Pj , j �= i and of the global properties
Y

of the program P [P1, . . . , Pn]. The properties
Y of the
program P [P1, . . . , Pn] are also defined in fixpoint form so
depend on themselves as well as on the local properties
Xi

of the part Pi , i = 1, . . . , n. Usually, the abstraction yields
to an abstract system of equations of the same form:




Y = F̄ �P [P1, . . . , Pn]�〈
Y ,
X1, . . .,
Xn〉

Xi = F̄ �Pi�〈
Y ,
X1, . . .,
Xn〉
i = 1, . . . , n

on the abstract domains 〈D̄, �̄〉 and the 〈D̄1, �̄1〉 , …, 〈D̄n,

�̄n〉 with Galois connections 〈D, �〉 −−−→←−−−α

γ
〈D̄, �̄〉 and 〈Di,

�i〉 −−−→←−−−αi

γi 〈D̄i, �̄i〉 , for all i = 1, . . . , n.
Ideally, the separate analysis of program part Pi consists

in computing a fixpoint:

lfp
�̄i

λ
Xi · F̄ �Pi�〈
Y ,
X1, . . .,
Xi, . . .,
Xn〉

where the
Y ,
X1 , …,
Xi−1 ,
Xi+1 , …,
Xn denote the ab­
stract properties which are assumed/guaranteed on the
objects of the program P [P1, . . . , Pn] and its parts Pj ,
j = 1, . . . , i − 1, i + 1, . . . , n which are external references
within that part Pi (such as global variables of a proce­
dure, external functions called within a module, etc.). The
whole problem is to determine
Y ,
X1 , …,
Xi−1 ,
Xi+1 , …,

Xn while analyzing program part Pi.

C. Dependence Graph

A classical technique (also used in separate compilation)
consists in computing a dependence graph where a part Pi

depends upon another part Pj , i �= j if and only if the
analysis of Pi uses some information which is computed by
the analysis of part Pj (formally Pi depends upon part Pj

if and only if ∃
Xj ,
X ′
j : F �Pi�〈
Y ,
X1, . . .,
Xj , . . .,
Xn〉 �=

F �Pi�〈
Y ,
X1, . . .,
X ′
j , . . .,
Xn〉. It is often the case that this

dependency graph is built before the analysis and parts are
analyzed in sequence by their topological order (see e.g.
[19], [20]). As in most incremental compilation systems,
circular dependency may not be considered (i.e. all circu­
larly dependent parts are grouped into a single part since

4

an iterative analysis is necessary). At the limit, the analy­
sis will degenerate into a global analysis as considered in
Sec. II , the dependence graph then corresponding to a par­
ticular chaotic iteration strategy [1], [16], [15]. Otherwise,
the circularities must be broken using one of the composi­
tional separate modular static program analysis methods
considered in this paper:
– Simplification-based separate analysis;
– Worst-case separate analysis;
– Separate analysis with (user-provided) interfaces;
– Symbolic relational separate analysis;
or by a combined method which is essentially obtained by
composition of the previous local ones and global analysis.

IV. Simplification-Based Separate Analysis

To start with, we consider ideas based upon the simpli­
fication of the equations to be solved. We do not consider
here local simplifications of the equations (that is simpli­
fication of one equation independently of the others such
as e.g. [21]) but global simplifications, where the simplifi­
cation of one equation requires the examination of other
equations. Since these systems of equations can be consid­
ered as functional programs, many program transforma­
tion and optimization techniques are directly applicable to
do so such as algebraic simplification, constant propaga­
tion, partial evaluation [22] , compilation, etc.
For each program part, the fixpoint transformer

F̄ �Pi� (often expressed as a system of equations X =
F̄ �Pi�(X) or equivalently as constraints F̄ �Pi�(X) �i

X , [10]) is simplified into F̄s�Pi�. The global
analysis of the program then consists in computing
lfp

�̄
F̄ �P �[lfp

�̄1
F̄s�P1�, . . . , lfp

�̄n
F̄s�Pn�] so that the fix­

points for the parts are computed in a completely known
context or environment.
Very often, F̄s is obtained by abstract interpretation of

F̄ . A frequently used variant of this idea consists in first
using a preliminary global analysis of the whole program
P [P1, . . . , Pn] with a rough imprecise abstraction to collect
some global information on the program in order to help
in the simplification of the F̄ �Pi� , designed with a more
precise abstraction, into F̄s�Pi�.
Examples of application of this simplification idea can

be found in the analysis of procedures of [2 , Sec. 4.2] , in
the componential set-based analysis of [23] , in the variable
substitution transformation of [24] and in the summary op­
timization of [25]. Another example is abstract compilation
where the equations and fixpoint computation are compiled
(often in the same language as the one to be analyzed so
that program analysis amounts to the execution of an ab­
stract compilation of program), see e.g. [26], [27], [28], [29],
[30].
Since the local analysis phases of the program parts Pi ,

which consist in computing the fixpoints lfp
�̄i

F̄ �Pi� are de­
layed until the global analysis phase, which consists in com­
puting lfp

�̄
F̄ �P �[lfp

�̄1
F̄s�P1�, . . . , lfp

�̄n
F̄s�Pn�] , not much

time and memory resources are saved in this computation,
even though the simplified fixpoint operators F̄s�Pi� are

used in place of the original ones F̄ �Pi�. The main reason
is that the simplification often saves only a linear factor 2 ,
which may be a negligible benefit when compared to the
cost of the iterative fixpoint computation. In our opinion,
this explains why this approach does not scale up for very
large programs [31].

V. Worst-Case Separate Analysis

We have seen that the problem of separate analysis of
a program part Pi consists in determining the properties

Y ,
X1 , …,
Xi−1 ,
Xi+1 , …,
Xn of the external objects
referenced in the program part Pi while computing the local
fixpoint:

lfp
�̄i

λ
Xi ·F �Pi�〈
Y ,
X1, . . .,
Xi, . . .,
Xn〉

The worst-case separate analysis consists in considering
that absolutely no information is known on the interfaces

Y ,
X1 , …,
Xi−1 ,
Xi+1 , …,
Xn. Traditionally in program
analysis by abstract interpretation the top symbol �̄ is
used to represent such an absence of information (�̄ is the
supremum of the complete lattice D̄i representing the ab­
stract program properties ordered by the approximation
ordering �̄i corresponding to the abstraction of the logical
implication). The worst-case separate analysis therefore
consists in first separately computing or effectively approx­
imating the local abstract fixpoints:

Ai �i lfp
�̄i

λ
Xi · F �Pi�〈�̄, �̄, . . .,
Xi, . . ., �̄〉

for all program parts Pi. Then the global program analysis
is:

lfp
�̄
λ
Y · F̄ �P �[
Y ,
A1, . . . ,
An] .

The main advantage of this approach is that all ana­
lyzes of the parts Pi , i = 1, . . . , n can be done in parallel.
Moreover the modification of a program part requires only
the analysis of that part to be redone before the global
program analysis. This explains why the worst-case sepa­
rate analysis is very efficient. However, because nothing is
known about the interfaces of the parts with the program
and with the other parts, this worst-case analysis is often
too imprecise.
An example is the procedure analysis of [16 , Sec. 4.2.1 &

4.2.2] where the effect of procedures (in particular the val­
ues of result/output parameters) are computed by a local
analysis of the procedure assuming that the properties of
value/input parameters is unknown in the main call (and a
widening is used in recursive calls both to cope with possi­
ble non-termination of calls with identical parameters and
with the possibility of having infinitely many calls with
different parameters).
Another example is the escape analysis of higher-order

functions by [32]. Escape analysis aims at determining
which local objects of a procedure do not escape out of
the call (so that they can be allocated on the stack, the

2Sometimes the simplification can save an exponential factor, see
e.g. [21].

5

escaping object have to be allocated on the heap since their
lifetime is longer than that of the procedure call). In this
analysis, the higher-order functions which are passed as
parameter to a procedure are assumed to be unknown, so
that e.g. any call to such an unknown external higher-order
function may have any possible side-effect.
Yet another example is the worst-case separate analysis

of library modules in the points-to and side-effect analyses
of [25].
A last example is the abstract interpretation-based

analysis for automatically detecting all potential interac­
tions between the agents of a part of a mobile system in­
teracting with an unknown context [33].
As considered in Sec. IV, an improvement consists in

using a preliminary global analysis of the whole program
P [P1, . . . , Pn] with a rough imprecise abstraction to collect
some global information on the program in order to get
information on the interface
Y ,
X1 , …,
Xi−1 ,
Xi+1 , …,

Xn more precise than the unknown �̄. An example is the
preliminary inexpensive whole-program points-to analysis
made by [34] before their modular/fragment analysis.

VI. Separate Analysis with (User-Provided)

Interfaces

The idea is to ask the user to provide information about
the properties
Y ,
X1 , …,
Xi−1 ,
Xi+1 , …,
Xn of the exter­
nal objects referenced in the program part Pi while com­
puting the local abstract fixpoints:

lfp
�̄i

λ
Xi ·F �Pi�〈
Y ,
X1, . . .,
Xi, . . .,
Xn〉 .

i = 1, . . . , n as well as the global abstract fixpoint:

lfp
�̄
λ
Y ·F �P [P1, . . . , Pn]�〈
Y ,
X1, . . .,
Xn〉 .

The information provided on the interface of the program
part with the external world takes the form of:
• the assumptions
J on the program and
I1 , …,
Ii−1 ,
Ii+1 ,
…,
In on the other program parts Pj , i �= j that can be
made in the local analysis of the program part Pi. These as­
sumptions will have to be guaranteed by the local analyzes
of the other parts and the global analysis of the program
when using this part Pi. These assumptions make possible
the analysis of the program part Pi independently of the
context in which that program part Pi is used (or more
generally several possible contexts may be considered);
• the guarantee
Ii on the program part Pi that must be es­
tablished by the local analysis of that part Pi. The global
program analysis and that of the other program parts will
rely upon this guarantee when using that part Pi (consid­
ering only the possible behaviors of that part Pi which are
relevant to its context of use).
Typically, the interface should be precise enough so that
the assumptions (or preconditions)
J on the program and

I1 , …,
Ii−1 ,
Ii+1 , …,
In are the weakest possible so that
the analysis of a part Pi only requires the source code
of that part Pi while the guarantee (or postcondition)
Ii

should be the strongest possible so that analyzes using that

part Pi never need to access the source code of that part
Pi.
Formally, the separate analysis with interfaces
J ,
I1 ,

…,
In consists in computing or approximating the local
abstract fixpoints:

Ai �̄i lfp
�̄i

λ
Xi · F �Pi�〈
J,
I1, . . .,
Xi, . . .,
In〉 .

One must also check that one can rely upon the assump­
tions
J ,
I1 , …,
Ii−1 ,
Ii+1 , …,
In made during the analysis
on the program part Pi by verifying that it is guaranteed
by the analysis of the other parts Pj , j �= i in that:

∀i = 1, . . . n :
Ai �̄i

Ii

as well as for the global assumption
J on the program that
should be guaranteed by the global program analysis:

A �̄ lfp
�̄
λ
Y ·F �P [P1, . . . , Pn]�〈
Y ,
I1, . . .,
Ii, . . .,
In〉,

in that:

A �̄
J .

This technique is classical in program typing (e.g. user
specified number, passing mode and type of parame­
ters of procedures which are assumed in the type check­
ing of the procedure body and must be guaranteed at
each procedure call) and in program verification (see e.g.
the rely/guarantee specifications of [35]). Examples of
user-provided interfaces in static program analysis are the
control-flow analysis of [36] and the notion of summary in­
formation of [25], [37].
A particular case is when no assumption is made on

the interface of each program part with its external envi­
ronment so that the automatic generation of the properties
guaranteed by the program part essentially amounts to the
worst-case analysis of Sec. V or its variants.
Instead of asking the user to provide the interface, this

interface can sometimes be generated automatically. For
example, a backward analysis of absence of run-time errors
or exceptions (such as the backward analysis using greatest
fixpoints introduced in [38]) or any other ancestry analysis
(e.g. to compute necessary termination conditions [38] or
success conditions for logic programs [39]) can be used to
automatically determine conditions on the interface which
have to be assumed to ensure that the program part Pi

is correctly used in the whole program P [P1, . . . , Pn]. A
forward reachability analysis will provide information on
what can be guaranteed on the interface of the program
part Pi with its environment, that is the other parts Pj ,
j �= i and the program P . A refinement is to combine the
forward and backward analyses [11], [12], [13].
As considered in Sec. IV and Sec. V , an improvement

consists in using a preliminary fast global analysis of the
whole program P [P1, . . . , Pn] with a rough imprecise ab­
straction to collect some global information on the program
in order to get information on what is guaranteed on the
interfaces
J ,
I1 , …,
In.
Moreover simplification techniques, as considered in Sec.

IV can be applied to simplify the automatically synthesized
or user-provided interface.

6

VII. Symbolic Relational Separate Analysis

To start with, we consider a powerful but not well-known
compositional separate modular static program analysis
method that we first introduced in [16]. Symbolic relational
separate analysis is based on the use of relational abstract
domains and a relational semantics of the program parts
(see e.g. [40]). The idea is to analyze a program part Pi

separately by giving symboloc names to all external ob­
jects used or modified in that part Pi. The analysis of the
part consists in relating symbolically the local information
within the part Pi to the external objects through these
names. External actions have to be handled in a lazy way
and their possible effects on internal objects must be de­
layed3 (unless the effect of these actions is already known
thanks to a previous static analysis, see Sec. III-C). When
the part is used, the information about the part is obtained
by binding the external names to the actual values or ob­
jects that they denote and evaluating the delayed effects.
The concrete semantics can be understood either as a re­
lational semantics or as a program symbolic execution [1 ,
Ch. 3.4.5] which is abstracted without loosing information
about the relationships between the internal and external
objects of the program part thanks to the use of a relational
domain.
An example is the pointer analysis using collections [42]

of [16 , Sec. 4.2.2]. There pointer variables are organized
in equivalence classes where variables in different classes
cannot point, even indirectly, to the same position on the
heap. This analysis is relational and can be started by
giving names to actual parameters which are in the same
class as the formal parameters (as well as their potential
aliases, as specified in the assumption interface).
Another example, illustrated below, uses the polyhedral

abstract domain [43] so that functions (or procedures in
the case of imperative programs) can be approximated by
relations. These relations can be further approximated by
linear inequalities between values of variables [43]. Let us
illustrate this method using a Pascal example taken from
[44]:

procedure Hanoi (n : integer; var a, b, c : integer;
var Ta, Tb, Tc : Tower);

begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }

if n = 1 then begin
b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0; a := a − 1;

{ n = n0 = 1 ∧ a = a0 − 1 ∧ b = b0 + 1
∧ c = c0 }

end else begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }
Hanoi(n − 1, a, c, b, Ta, Tc, Tb);
{ n = n0 > 1 ∧ a = a0 − n+ 1 ∧ b = b0

∧ c = c0 + n − 1 }
b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0; a := a − 1;
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + 1

∧ c = c0 + n − 1 }
Hanoi(n − 1, c, b, a, Tc, Tb, Ta);
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + n

∧ c = c0 }

3[41] is another example of lazy static program analysis used in the
context of demand-driven analysis.

end;
{ n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0

∧ c = c0 }
end;

The result of analyzing this procedure, which is given
above between brackets {…} is independent of the values
of the actual parameters provided in calls. This is obtained
by giving formal names n0 , a0 , b0 and c0 to the values of
the actual parameters corresponding to the initial values
of the formal parameters n , a , b and c (array parameters
Ta , Tb and Tc are simply ignored, which corresponds to a
worst-case analysis) and by establishing a relation with
the final value of these formal parameters. The result is
a precise description of the effect of the procedure in the
form of a relation between initial and final values of its
parameters:

φ(n0, a0, b0, c0, n, a, b, c) = (n = n0 ≥ 1 ∧
a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0)

Observe that it is automatically shown that n0 ≥ 1 , which
is a necessary condition for termination.
In a function call, n0 , a0 , b0 and c0 are set equal to

the values of the actual parameters in φ and eliminated by
existential quantification. For example:

a := n; b := 0; c := 0;
{ n = a ∧ b = 0 ∧ c = 0 }
Hanoi(n, a, b, c, Ta, Tb, Tc);
{ ∃n0, a0, b0, c0 : n0 = a0 ∧ b0 = 0 ∧ c0 = 0 ∧
n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0 }

This last post-condition can be simplified by projection as:

{ a = 0 ∧ n = b ≥ 1 ∧ c = 0 }

In recursive calls, successive approximations of the re­
lation φ must be used, starting from the empty one. A
widening (followed by a narrowing) [2], [16] can be used to
ensure convergence.
Such relational analyzes are also very useful in the more

classical context where functions are analyzed in the order
of the dependence graph (see Sec. III-C) since, as shown
above, the relational analysis of the function determines
a relationship between the inputs and the outputs of the
function. This allows the function to be analyzed indepen­
dently of its call sites and therefore the analysis becomes
“context-sensitive” which improves the precision (and may
decrease the cost if the function/procedure may be ana­
lyzed only once, not for all different possible contexts).
An example of such a symbolic relational separate analy­

sis is the notion of summary transfer function of [45], [46]
in the context of points-to analysis for C++. A summary
transfer function for a method expresses the effects of the
method invocation on the points-to solution parameterized
by unknown symbolic initial values and conditions on these
values.
Another example of symbolic relational separate analy­

sis is the strictness analysis of higher-order functions [47]
using a symbolic representation of boolean higher order
functions called Typed Decision Graphs (TDGs), a refine­
ment of Binary Decision Diagrams (BDDs).

7

A last example the backward escape analysis of
first-order functions in [32] since the escape information
for each parameter is computed as a function of the escape
information for the result. For JavaTM , it is not a func­
tion but a relation between the various escape information
available on the parameters and the result [48].
This symbolic relational separate analysis may degener­

ate in the simplification case of Sec. IV if no local iteration
is possible. However this situation is rare since it is quite
uncommon that all program parts circularly depend upon
one another.

VIII. Combination of Separate Analysis Methods

The last category of methods essentially consists in com­
bining the previous local separate analysis methods and/or
some form of global analysis. We provide a few examples
below.

A. Preliminary Global Analysis and Simplification

We have already indicated that a preliminary rough
global program analysis can always be performed to im­
prove the information available before performing a local
analysis. A classical example is pointer analysis [49], [50],
[51], [52], [53], [54], [55], [56], [57], [25], [58] , see an overview
in [59]. A preliminary pointer analysis is often mandatory
since making conservative assumptions regarding pointer
accesses can adversely affect the precision and efficiency
of the analysis of the program parts requiring this infor­
mation. Such pointer alias analysis attempts to determine
when two pointer expressions refer to the same storage lo­
cation and is useful to detect potential side-effects through
assignment and parameter passing.
Also the simplification algorithms considered in Sec. IV

are applicable in all cases.

B. Iterated Separate Program Static Analysis

Starting with a worst case assumption
Y 0 = �̄ ,
X0
1 = �̄ ,

…,
X0
n = �̄ a separate analysis with interfaces as consid­

ered in Sec. VI can be iterated by successively computing:

Xk+1
i = lfp

�̄i
λ
Xi · F̄ �Pi�〈
Y k,
Xk

1 , . . .,
Xi, . . .,
Xk
n〉

i = 1, . . . , n (1)

Y k+1 = lfp
�̄
λ
Y · F̄ �P [P1, . . . , Pn]�〈
Y ,
Xk

1 , . . .,
Xk
n〉

Note that this decreasing iteration is similar to the iterative
reduction idea of [60 , Sec. 11.2] and different from and
less precise than a chaotic iteration for the global analysis
(which would start with
Y 0 = ⊥̄ ,
X0

1 = ⊥̄ , …,
X0
n = ⊥̄).

However the advantage is that one can stop the analysis at
any step k > 0 , the successive analyzes being more precise
as k increases (a narrowing operation [2] may have to be
used in order to ensure the convergence when k → +∞).
A variant consists in starting with the user provided in­

terfaces
Y 0 =
J ,
X0
1 =
I1 , …,
X0

n =
In. Then the validity
of the final result
Y k ,
Xk

1 , …,
Xk
n must be checked as

indicated in Sec. VI.

A particular case is when some program parts are miss­
ing so that their initial interfaces are initially �̄ and are
refined by a new iteration (1) as soon as they become
available. Again after each iteration k , the static program
analysis of the partial program is correct.
Yet another variant consists in successively refining the

abstract domains 〈D, �〉 , 〈D1, �1〉 , …, 〈Dn, �n〉 between
the successive iterations k. The choice of this refinement
can be guided by interaction with the user. Sometimes, it
can also be automated [61], [62], [63].

C. Creating Parts Through Cutpoints

x
Most often the parts P1 , …, Pn of a program

P [P1, . . . , Pn] are determined on syntactic criteria (such as
components, modules, classes, functions, procedures, meth­
ods, libraries, etc.). A preliminary static analysis can also
be used to determine the parts on semantic grounds.
For example in Sec. II on global static analysis, we have

considered chaotic iteration strategies [14], [15] that can be
used to iterate successively on components of the system
of equations (as determined by a topological ordering of
the dependency graph of the system of equations). Such
dependences can also be refined on semantic grounds (such
as definition-use chains [64]). These dependences can be
used as a basis to split the whole program into parts by in­
troducing interfaces as considered in Sec. VI. For example,
with a dependence graph of the form:

CC

the iteration will be ((C1)
; (C2)
)
 where (Ci)
 denotes
the local iteration within the connected component Ci ,
i = 1, 2 , “;” is the sequential composition and the external
iteration (. . .)
 handles the external loop. By designing
interfaces at the two cutpoints:

CC

G A

A G

one can have a parallel treatment of the two components
as ((C1)
 ‖ (C2)
)
. Moreover a preliminary dependency
analysis of the variables can partition the variables into
the global ones and those which scope is restricted to one
connected component only, so as to reduce the memory size
needed to separately analyze the parts. If we have G12 ⇒
A12 and G21 ⇒ A21 then G12 and G21 are invariants in the
sense of Floyd [65] so that no global iteration is needed.
Otherwise the external iteration can be used to strengthen
the interface until a fixpoint is reached, as done in Sec.
VIII-B. The limit of this approach is close to classical
proof methods with user-provided invariants at cutpoints
of all loops [18].

8

D. Refinement of the Abstract Domain into a Symbolic Re­
lational Domain

Separate non-relational static program analyzes (such
as sign analysis, interval analysis, etc.) expressing prop­
erties of individual objects of programs (such as ranges
of values of numerical variables) but no relationships be­
tween objects manipulated by the program (such as the
equality of the values of program variables at some pro­
gram point) cannot be successfully used for the relational
separate analysis considered in Sec. VII which, in absence
of user-provided information, amounts to the worst-case
separate analysis of Sec. V. In this case, and whenever
the symbolic relational separate analysis considered in Sec.
VII is not applicable, it is always possible to refine the
non-relational abstract domain into a relational one for
which the separate analysis method is applicable. This
can be feasible in practice if the considered program parts
are small enough to be analyzed at low cost using such
precise abstract domains. A classical example consists in
analyzing locally program parts (e.g. procedures) with the
polyhedral domain of linear inequalities [43] and the global
program with the much less precise abstract domain of in­
tervals [2]. If the polyhedral domain is too expensive, the
less precise domain of difference bound matrices [17] can
also be used for the local relational analyzes of program
parts. This is essentially the technique used by [66].

E. Unknown Dependence Graph

Separate static program analysis is very difficult when
the dependence graph is not known in a modular way
(which is the case with higher-order functions in functional
languages or with virtual methods in object-oriented lan­
guages). When the dependence graph is fully known and
can be decomposed modularly, the symbolic relational sep­
arate analysis technique of Sec. VII is very effective. If
the graph is not modular and parts can hardly be created
through cutpoints as suggested in Sec. ssec:CPTP or the
dependence graph is partly unknown, the difficulty in the
lazy symbolic representation of the unknown part of Sec.
VII is when the effect of this unknown part must later
be iterated. Iin the worst case, the delaying technique of
Sec. VII then amounts to a mere simplification as consid­
ered in Sec. IV. As already suggested, computational costs
can then only cut down through of the worst-case separate
analysis of Sec. V or by an over-estimation of the depen­
dence graph (such as the 0-CFA control-flow analysis in
functional languages [67] or the class hierarchy analysis in
object-oriented languages [68]).

IX. Conclusion

The wide range of program static analysis techniques
that have been developed over the past two decades allows
to analyze very large programs (over 1.4 million lines of
code) in a few seconds or minutes but with a very low
precision [69] up to precise relational analyses which are
able to analyze large programs (over 120 thousands lines
of code) in a few hours or days [70] and to very detailed

and precise analyzes that do not scale up for programs over
a few hundred lines of code.
If such static program analyses are to scale up to pre­

cise analysis of huge programs (some of them now reaching
30 to 40 millions of lines), compositional separate modular
methods are mandatory. In this approach very precise an­
alyzes (in the style of Sec. VII) can be applied locally to
small program parts. This local analysis phase can be fast
if all these preliminary analyzes are performed indepen­
dently in parallel. Then a cheap global program analysis
can be performed using the results of the previous analyzes,
using maybe less precise analyzes which have a low cost.
The idea can obviously be repeatedly applied in stages to
larger and larger parts of the program with less and less
refined abstract domains.
Moreover the design of specification and programming

languages including user-specified of program parts inter­
faces can considerably facilitate such compositional sepa­
rate modular static analysis of programs.

Acknowledgements
We thank Bruno Blanchet , Jerôme Feret , Charles Hymans,

Francesco Logozzo, Laurent Mauborgne , Antoine Miné and Bar­
bara G. Ryder for their comments on a preliminary version of this
paper.

References

[1] P. Cousot, Méthodes itératives de construction et d’approxi-
mation de points fixes d’opérateurs monotones sur un treillis,
analyse sémantique de programmes , Thèse d’État ès sciences
mathématiques, Université scientifique et médicale de Grenoble,
Grenoble, France, 21 March 1978. II , III-C, 3

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin­
ciples of Programming Languages, Los Angeles, California, 1977,
pp. 238–252, ACM Press, New York, New York, United States.
II , IV, 3 , VIII-B , VIII-D

[3] P. Cousot and R. Cousot, “Systematic design of program analy­
sis frameworks,” in Conference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, Texas, 1979, pp. 269–282, ACM Press,
New York, New York, United States. II

[4] P. Cousot, “Abstract interpretation: Achievements and
perspectives, invited paper,” in Proceedings of the SS­
GRR 2000 Computer & eBusiness International Con­
ference, Compact disk paper 224 and electronic proceed­
ings http://www.ssgrr.it/en/ssgrr2000/proceedings.htm ,
L’Aquila, Italy, 31 July – 6 August 2000, Scuola Superiore G.
Reiss Romoli. II , III-A

[5] P. Cousot, “Abstract interpretation based formal methods and
future challenges, invited paper,” in « Informatics — 10 Years
Back, 10 Years Ahead » , R. Wilhelm, Ed., vol. 2000 of Lec­
ture Notes in Computer Science, pp. 138–156. Springer-Verlag,
Berlin, Germany, 2000. II , III-A

[6] P. Cousot and R. Cousot, “Abstract interpretation frameworks,”
Journal of Logic and Computation , vol. 2, no. 4, pp. 511–547,
August 1992. II

[7] P. Cousot and R. Cousot, “Introduction to abstract interpreta­
tion,” Course notes for the “NATO International Summer School
1998 on Calculational System Design”, Marktoberdorff, 28 July
– 9 August 1998. II

[8] P. Cousot, “Types as abstract interpretations, invited pa­
per,” in Conference Record of the Twentyfourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Paris, France, January 1997, pp. 316–331, ACM
Press, New York, New York, United States. II

http://www.ssgrr.it/en/ssgrr2000/proceedings.htm

9

[9] P. Cousot and R. Cousot, “Formal language, grammar and set-
constraint-based program analysis by abstract interpretation,” in
Proceedings of the Seventh ACM Conference on Functional Pro­
gramming Languages and Computer Architecture, La Jolla, Cal­
ifornia, 25–28 June 1995, pp. 170–181, ACM Press, New York,
New York, United States. II

[10] P. Cousot and R. Cousot, “Compositional and inductive
semantic definitions in fixpoint, equational, constraint, clo­
sure-condition, rule-based and game-theoretic form, invited pa­
per,” in Proceedings of the Seventh International Conference
on Computer Aided Verification, CAV ’95 , P. Wolper, Ed. 3–5
July 1995, Liège, Belgium, Lecture Notes in Computer Science
939, pp. 293–308, Springer-Verlag, Berlin, Germany. II , IV

[11] P. Cousot and R. Cousot, “Abstract interpretation and ap­
plication to logic programs,” Journal of Logic Programming,
vol. 13, no. 2–3, pp. 103–179, 1992, (The editor of Jour­
nal of Logic Programming has mistakenly published the un­
readable galley proof. For a correct version of this paper, see
http://www.di.ens.fr/˜cousot .). II , VI

[12] P. Cousot and R. Cousot, “Abstract interpretation based
program testing, invited paper,” in Proceedings of the
SSGRR 2000 Computer & eBusiness International Con­
ference, Compact disk paper 248 and electronic proceed­
ings http://www.ssgrr.it/en/ssgrr2000/proceedings.htm ,
L’Aquila, Italy, 31 July – 6 August 2000, Scuola Superiore G.
Reiss Romoli. II , VI

[13] D. Massé , “Combining forward and backward analyzes of tem­
poral properties,” in Proceedings of the Second Symposium
PADO ’2001, Programs as Data Objects, 0. Danvy and A. Filin­
ski, Eds. 2001, Århus, Denmark, 21–23 May 2001, Lecture Notes
in Computer Science 2053, pp. 155–172, Springer-Verlag, Berlin,
Germany. II , VI

[14] P. Cousot and R. Cousot, “Automatic synthesis of optimal in­
variant assertions: mathematical foundations,” in ACM Sym­
posium on Artificial Intelligence & Programming Languages,
Rochester, New York, ACM SIGPLAN Notices 12(8):1–12, 1977.
II , VIII-C

[15] F. Bourdoncle, “Efficient chaotic iteration strategies with widen­
ings,” in Proceedings of the International Conference on Formal
Methods in Programming and their Applications, D. Bjørner,
M. Broy, and I.V. Pottosin, Eds. 28 June –2 July 1993, Akadem­
gorodok, Novosibirsk, Russia, Lecture Notes in Computer Sci­
ence 735, pp. 128–141, Springer-Verlag, Berlin, Germany. II ,
III-C , VIII-C

[16] P. Cousot and R. Cousot, “Static determination of dynamic
properties of recursive procedures,” in IFIP Conference on For­
mal Description of Programming Concepts, St-Andrews, N.B.,
Canada , E.J. Neuhold, Ed. 1977, pp. 237–277, North-Holland
Pub. Co. , Amsterdam, The Netherlands. III-A, III-C , V, VII ,
3

[17] A. Miné, “A new numerical abstract domain based on difference-
bound matrices,” in Proceedings of the Second Symposium
PADO ’2001, Programs as Data Objects, 0. Danvy and A. Filin­
ski, Eds. 2001, Århus, Denmark, 21–23 May 2001, Lecture Notes
in Computer Science 2053, pp. 155–172, Springer-Verlag, Berlin,
Germany. III-A, VIII-D

[18] P. Cousot, “Methods and logics for proving programs,” in For­
mal Models and Semantics, J. van Leeuwen, Ed., vol. B of Hand­
book of Theoretical Computer Science, chapter 15, pp. 843–993.
Elsevier Science Publishers B.V. , Amsterdam, The Netherlands,
1990. III-B , VIII-C

[19] M. Codish, S. Debray, and R. Giacobazzi, “Compositional
analysis of modular logic programs,” in Conference Record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Charleston, South Car­
olina, 1993, pp. 451–464, ACM Press, New York, New York,
United States. III-C

[20] O. Lee and K. Yi, “A proof method for the correctness of
modularized kCFAs,” Technical Memorandum ROPAS-2000-9,
Research On Program Analysis System, Korea Advanced
Institute of Science and Technology, November 2000,
http://ropas.kaist.ac.kr/˜cookcu/paper/tr2000b.ps.gz .
III-C

[21] C. Flanagan and J.B. Saxe, “Avoiding exponential explo­
sion: generating compact verification conditions,” in Conference
Record of the Twentyeight Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM
SIGPLAN Notices 36(3) , London, Great Britain, January 2001,

pp. 193–205, ACM Press, New York, New York, United States.
IV , 2

[22] N. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation, International Series in Com­
puter Science. Prentice-Hall, Inc. , Englewood Cliffs, New Jersey,
United States, June 1993. IV

[23] C. Flanagan and M. Felleisen, “Componential set-based analy­
sis,” ACM Transactions on Programming Languages and Sys­
tems, vol. 21, no. 2, pp. 370–416, February 1999. IV

[24] A. Rountev and S. Chandra, “Off-line variable substitution
for scaling points-to analysis,” in Proceedings of the ACM
SIGPLAN ’01 Conference on Programming Language Design
and Implementation (PLDI). ACM SIGPLAN Notices 35(5) ,
Vancouver, British Columbia, Canada, 18–21 June 2000, pp.
47–56. IV

[25] A. Rountev and B. Ryder, “Points-to and side-effect analyses
for programs built with precompiled libraries,” in Proceedings
of the Tenth International Conference on Compiler Construc­
tion, CC ’2001 , R. Wilhelm, Ed. 2–6 April 2001, Genova, Italy,
Lecture Notes in Computer Science 2027, pp. 20–36, Springer-
Verlag, Berlin, Germany. IV, V, VI , VIII-A

[26] G. Amato and F. Spoto, “Abstract compilation for sharing analy­
sis,” in Proceedings of the FLOPS 2001 Conference, H. Kuchen
and K. Ueda, Eds., Tokyo, Japan, March 2001, vol. 2024 of Lec­
ture Notes in Computer Science, pp. 311–325, Springer-Verlag,
Berlin, Germany. IV

[27] D. Boucher and M. Feeley, “Abstract compilation: A new im­
plementation paradigm for static analysis,” in Proceedings of
the Sixth International Conference on Compiler Construction,
CC ’96 , T. Gyimothy, Ed. 24–26 April 1996, Linköping, Sweden,
Lecture Notes in Computer Science 1060, pp. 192–207, Springer-
Verlag, Berlin, Germany. IV

[28] M. Codish and B. Demoen, “Deriving polymorphic type depen­
dencies for logic programs using multiple incarnations of Prop,”
in Proceedings of the First International Symposium on Static
Analysis, SAS ’94 , B. Le Charlier, Ed., Namur, Belgium, 20–22
september 1994, Lecture Notes in Computer Science 864, pp.
281–296. Springer-Verlag, Berlin, Germany, 1994. IV

[29] S.K. Debray and D.S. Warren, “Automatic mode inference for
logic programs,” Journal of Logic Programming , vol. 5, no. 3,
pp. 207–229, september 1988. IV

[30] F. Malésieux, O. Ridoux, and P. Boizumault, “Abstract com­
pilation of Lambda-Prolog,” in Joint International Conference
and Symposium on Logic Programming, JICSLP ’98 , J. Jaffar,
Ed. 15–19 June 1992, Manchester, United Kindom, pp. 130–144,
MIT Press, Cambridge, Massachusetts, United States. IV

[31] M. Felleisen, “Program analyses: A consumer’s perspective
and experiences, invited talk,” in Proceedings of the Seventh
International Symposium on Static Analysis, SAS ’2000 , J.
Palsberg, Ed., Santa Barbara, California, United States, Lec­
ture Notes in Computer Science 1824. Springer-Verlag, Berlin,
Germany, 29 June – 1 July 2000, Presentation available at URL
http://www.cs.rice.edu:80/˜matthias/Presentations/SAS.ppt .
2

[32] B. Blanchet, “Escape analysis: Correctness proof, implemen­
tation and experimental results,” in Conference Record of the
Twentyfifth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Diego, California,
United States, 19–21 January 1998, pp. 25–37, ACM Press, New
York, New York, United States. V, 3

[33] J. Feret, “Confidentiality analysis of mobile systems,” in Proceed­
ings of the Seventh International Symposium on Static Analysis,
SAS ’2000 , J. Palsberg, Ed., Santa Barbara, California, United
States, Lecture Notes in Computer Science 1824, pp. 135–154.
Springer-Verlag, Berlin, Germany, 29 June – 1 July 2000. V

[34] A. Rountev, B.G. Ryder, and W. Landi, “Data-flow analysis of
program fragments,” in Software Engineering - ESEC/FSE’99,
7th European Software Engineering Conference, Held Jointly
with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Lecture Notes in Computer Science
1687 , O. Nierstrasz and M. Lemoine, Eds., Toulouse, France,
september 1999, pp. 235–252. V

[35] P. Colette and C.B. Jones, “Enhancing the tractability of
rely/guarantee specifications in the development of interfering
operations,” in Proof, Language and Interaction, G. Plotkin,
C. Stirling, and M. Tofte, Eds., chapter 10, pp. 277–307. MIT
Press, Cambridge, Massachusetts, United States, 2000. VI

[36] Y.M. Tang and P. Jouvelot, “Separate abstract interpreta­

http://www.di.ens.fr/~cousot
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm
http://ropas.kaist.ac.kr/~cookcu/paper/tr2000b.ps.gz
http://www.cs.rice.edu:80/~matthias/Presentations/SAS.ppt

10

tion for control-flow analysis,” in Proceedings of the Interna­
tional Conference on Theoretical Aspects of Computer Software,
TACS ’95, Lecture Notes in Computer Science 789 , M. Hagiya
and J.C. Mitchell, Eds., Sendai, Japan, pp. 224–243. Springer-
Verlag, Berlin, Germany, 19–22 April 1994. VI

[37] M.J. Harrold, D. Liang, and S. Sinha, “An approach to ana­
lyzing and testing component-based systems,” in Proceedings
of the First International ICSE Workshop on Testing Distrib­
uted Component-Based Systems. Los Angeles, California, United
States, 17 May 1999. VI

[38] P. Cousot, “Semantic foundations of program analysis,” in Pro­
gram Flow Analysis: Theory and Applications, S.S. Muchnick
and N.D. Jones, Eds., chapter 10, pp. 303–342. Prentice-Hall,
Inc. , Englewood Cliffs, New Jersey, United States, 1981. VI

[39] R. Giacobazzi, “Abductive analysis of modular logic programs,”
in Proceedings of the International Symposium on Logic Pro­
gramming, ILPS ’1994 , M. Bruynooghe, Ed. 13–17 November
1994, Ithaca, New York, United States, pp. 377–391, MIT Press,
Cambridge, Massachusetts, United States. VI

[40] P. Cousot and R. Cousot, “Galois connection based abstract
interpretations for strictness analysis, invited paper,” in Pro­
ceedings of the International Conference on Formal Methods
in Programming and their Applications, D. Bjørner, M. Broy,
and I.V. Pottosin, Eds. 28 June – 2 July 1993, Akademgorodok,
Novosibirsk, Russia, Lecture Notes in Computer Science 735, pp.
98–127, Springer-Verlag, Berlin, Germany. VII

[41] C. Hankin and D. Le Métayer, “Lazy type inference and program
analysis,” Science of Computer Programming , vol. 25, no. 2–3,
pp. 219–249, 1995. 3

[42] P. Cousot and R. Cousot, “Static determination of dynamic
properties of generalized type unions,” in ACM Symposium on
Language Design for Reliable Software, Raleigh, North Calorina,
ACM SIGPLAN Notices 12(3):77–94, 1977. 3

[43] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in Conference Record
of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages , Tucson, Arizona, 1978,
pp. 84–97, ACM Press, New York, New York, United States. 3 ,
VIII-D

[44] P. Cousot and R. Cousot, “Relational abstract interpretation of
higher-order functional programs,” Actes JTASPEFL ’91, Bor­
deaux, France. BIGRE, vol. 74, pp. 33–36, October 1991. 3

[45] R. Chatterjee, B.G. Ryder, and W. Landi, “Relevant context in­
ference,” in Conference Record of the Twentysixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, Texas, United States, 19–21 January
1999, pp. 133–146, ACM Press, New York, New York, United
States. 3

[46] R. Chatterjee, B.G. Ryder, and W. Landi, “Relevant
context inference,” Technical report DCS-TR-360, Depart­
ment of Computer Science, Rutgers University, January 1999,
ftp://athos.rutgers.edu/pub/technical-reports/dcs-tr-360.ps.Z .
3

[47] L. Mauborgne, “Abstract interpretation using typed decision
graphs,” Science of Computer Programming , vol. 31, no. 1, pp.
91–112, May 1998. 3

[48] B. Blanchet, “Escape analysis for object-oriented languages: Ap­
plication to Java,” in Proceedings of the ACM SIGPLAN Con­
ference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA ’99). ACM SIGPLAN Notices 34(10) ,
Denver, Colorado, United States, 1–5 November 1999, pp. 20–34.
3

[49] M. Emami, R. Ghiya, and L.J. Hendren, “Context-sensitive
interprocedural points-to analysis in the presence of function
pointers,” in Proceedings of the ACM SIGPLAN ’93 Conference
on Programming Language Design and Implementation (PLDI).
ACM SIGPLAN Notices 28(6) , Orlando, Florida, United States,
June 1994, pp. 242–256, ACM Press, New York, New York,
United States. VIII-A

[50] R. Ghiya and L.J. Hendren, “Putting pointer analysis to
work,” in Conference Record of the Twentyfifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, United States, 19–21 January
1998, pp. 121–133, ACM Press, New York, New York, United
States. VIII-A

[51] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interproce­
dural pointer alias analysis,” ACM Transactions on Program­

ming Languages and Systems, vol. 21, no. 4, pp. 848–894, July
1999. VIII-A

[52] M. Hind and A. Pioli, “Assessing the effects of flow-sensitivity on
pointer alias analyses,” in Proceedings of the Fifth International
Symposium on Static Analysis, SAS ’98 , G. Levi, Ed., Pisa,
Italy, 14–16 september 1998, Lecture Notes in Computer Science
1503, pp. 57–81. Springer-Verlag, Berlin, Germany, 1998. VIII-A

[53] S. Horwitz, “Precise flow-insensitive may-alias analysis is
NP-hard,” ACM Transactions on Programming Languages and
Systems, vol. 19, no. 1, pp. 1–6, January 1997. VIII-A

[54] S. Jagannathan, P. Thiemann, S. Weeks, and A.K. Wright,
“Single and loving it: Must-alias analysis for higher-order lan­
guages,” in Conference Record of the Twentyfifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, United States, 19–21 January
1998, pp. 329–341, ACM Press, New York, New York, United
States. VIII-A

[55] W.A. Landi, “Undecidability of static analysis,” ACM Letters on
Programming Languages and Systems , vol. 1, no. 4, pp. 323–337,
December 1992. VIII-A

[56] D. Liang and M.J. Harrold, “Efficient points-to analy­
sis for whole-program analysis,” in Software Engineering -
ESEC/FSE’99, 7th European Software Engineering Conference,
Held Jointly with the 7th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Lecture Notes in Com­
puter Science 1687 , O. Nierstrasz and M. Lemoine, Eds.,
Toulouse, France, september 1999, pp. 199–215. VIII-A

[57] G. Ramalingam, “The undecidability of aliasing,” ACM Trans­
actions on Programming Languages and Systems, vol. 16, no. 5,
pp. 1467–1471, september 1994. VIII-A

[58] A. Venet, “Automatic analysis of pointer aliasing for untyped
programs,” Science of Computer Programming, Special Issue on
SAS’96 , vol. 35, no. 1, pp. 223–248, september 1999. VIII-A

[59] B.G. Ryder, W. Landi, P.A. Stocks, S. Zhang, and R. Altucher,
“A schema for interprocedural side effect analysis with pointer
aliasing,” ACM Transactions on Programming Languages and
Systems , 2001, To appear. VIII-A

[60] P. Cousot, “The calculational design of a generic abstract in­
terpreter,” in Calculational System Design, M. Broy and R.
Steinbrüggen, Eds., vol. 173, pp. 421–505. NATO Science Series,
Series F: Computer and Systems Sciences. IOS Press, Amster­
dam, The Netherlands, 1999. VIII-B

[61] R. Giacobazzi and E. Quintarelli, “Incompleteness, counterex­
amples and refinements in abstract model-checking,” in Proceed­
ings of the Eight International Symposium on Static Analysis,
SAS ’01 , P. Cousot, Ed. 16–18 July 2001, Paris, France, Lecture
Notes in Computer Science 2126, pp. 356–373, Springer-Verlag,
Berlin, Germany. VIII-B

[62] R. Giacobazzi and F. Ranzato, “Refining and compressing ab­
stract domains,” in Proceedings of the Twentyfourth Interna­
tional Colloquium International Colloquium on Automata, Lan­
guages and Programming ’97 , P. Degano, R. Gorrieri, and A.
Marchetti-Spaccamela, Eds. 1997, vol. 1256 of Lecture Notes in
Computer Science, pp. 771–781, Springer-Verlag, Berlin, Ger­
many. VIII-B

[63] R. Giacobazzi, F. Ranzato, and F. Scozzari, “Making abstract
interpretations complete,” Journal of the Association for Com­
puting Machinary, vol. 47, no. 2, pp. 361–416, 2000. VIII-B

[64] M.J. Harrold and M.L. Soffa, “Efficient computation of interpro­
cedural definition-use chains,” ACM Transactions on Program­
ming Languages and Systems, vol. 16, no. 2, pp. 175–204, March
1994. VIII-C

[65] R.W. Floyd, “Assigning meaning to programs,” in Proceedings
of the Symposium in Applied Mathematics , J.T. Schwartz, Ed.,
vol. 19, pp. 19–32. American Mathematical Society, Providence,
Rhode Island, United States, 1967. VIII-C

[66] Z. Xu, T. Reps, and B.P. Miller, “Typestate checking of machine
code,” in Proceedings of the Tenth European Symposium on Pro­
gramming Languages and Systems, ESOP ’2001 , D. Sands, Ed.
2001, Genova, Italy, 2–6 April 2001, Lecture Notes in Computer
Science 2028, pp. 335–351, Springer-Verlag, Berlin, Germany.
VIII-D

[67] O. Shivers, “The semantics of scheme control-flow analysis,” in
Proceedings of the ACM Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM ’91 , P. Hudak
and N.D. Jones, Eds. september 1991, Yale U., New Haven, Con­
necticut, United States, 17–19 June 1991, ACM SIGPLAN No­

ftp://athos.rutgers.edu/pub/technical-reports/dcs-tr-360.ps.Z

11

tices 26(9), pp. 190–198, ACM Press, New York, New York,
United States. VIII-E

[68] J. Dean, Grove D. , and G. Chambers, “Optimization of
object-oriented programs using static class hierarchy analy­
sis,” in Proceedings of the Ninth European Conference on Ob­
ject-Oriented Programming, ECOOP ’95 , W.G. Olthoff, Ed.,
Århus, Denmark, 7–11 August 1995, Lecture Notes in Computer
Science 952, pp. 77–101. Springer-Verlag, Berlin, Germany, 1995.
VIII-E

[69] M. Das, B. Liblit, M. Fähndrich, and J. Rehof, “Estimating
the impact of scalable pointer analysis on optimization,” in Pro­
ceedings of the Eight International Symposium on Static Analy­
sis, SAS ’01 , P. Cousot, Ed., Paris, France, Lecture Notes in
Computer Science 2126, pp. 259–277. Springer-Verlag, Berlin,
Germany, 16–18 July 2001. IX

[70] F. Randimbivololona, J. Souyris, and A. Deutsch, “Improving
avionics software verification cost-effectiveness: Abstract inter­
pretation based technology contribution,” in Proceedings DASIA
2000 – DAta Systems In Aerospace. 22–26 May 2000, Montreal,
Canada, ESA Publications. IX

