A CONSTRUCTIVE CHARACTERIZATION OF THE LATTICES OF ALL RETRACTIONS, PRECLOSURE, QUASI-CLOSURE AND CLOSURE OPERATORS ON A COMPLETE LATTICE

when (vr. p el_0, v = 0 = 0 = 0 = 0 = 0 is n complete

PATRICK COUSOT AND RADHIA COUSOT *

Université de Metz Faculté des Sciences Ile du Saulcy 5700 Metz — França

1. Introduction

We give a constructive characterization of the complete lattices of all retractions, preclosure, quasi-closure and closure operators on a complete lattice. Our general approach is the following: in order to study the structure of the set $\Gamma \subseteq (L \to L)$ of operators ρ on a complete lattice L satisfying a given axiom A, we show that o has property A if and only if it is a fixed point of some monotone operator F on the complete lattice (L \rightarrow L) proving that Γ is the set of fixed points of F. Then using Cousot & Cousot's constructive version of Tarski's lattice theoretical fixed point theorem, we constructively characterize the infimum, supremum, union and intersection of the complete lattice Γ which are defined by means of limits of stationary transfinite iteration sequences for F. Variants of this argument are used when F is a clousre operator (in which case the constructive version of Tarski's theorem amounts to Ward's theorem) or when the operators with property A are the postfixed points of F or the common fixed points of two functionals. The reasoning is repeated when Γ is characterized by means of more than one axiom.

Recu Décembre 21, 1978.

This work was supported by CNRS, Laboratoire Associé n.º 7.

^(*) Attaché de Recherche au CNRS, CRIN-LA. 262.

2. Preliminaries

- 1.1. Let $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ be a non-empty complete lattice with partial ordering \sqsubseteq , least upper bound \sqcup , greatest lower bound \sqcap . The infimum \bot of L is \sqcap L, the supremum \top of L is \sqcup L. (Birkhoff's standard reference book [2] provides the necessary background material).
- 1.2. Let $\theta \in (L \to M)$ be a total function from the complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ to the complete lattice $M(\sqsubseteq', \bot', \top', \sqcup', \sqcap')$. θ is a *join-morphism* when $(\forall x, y \in L, \theta(x \sqcup y) = \theta(x) \sqcup' \theta(y))$. θ is a *complete join-morphism* when $(\forall S \subseteq L, \theta(\sqcup S) = \sqcup' \theta(S))$. The dual notions are the ones of *meet-morphism* and *complete meet-morphism*.
- 1.3. Using Church[3]'s lambda notation (so that $f \in (L \to M)$ is $\lambda x.f(x)$) let us recall that the set $(L \to L)$ of all operators on the complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $(\sqsubseteq', \bot', \top', \sqcup', \sqcap')$ where $((f\sqsubseteq'g) \Leftrightarrow (\forall x \in L, f(x) \sqsubseteq g(x))), \ \bot' = \lambda x. \ \bot, \ \top' = \lambda x. \ \top, \ \sqcup' = \lambda S.(\lambda x. \sqcup \{f(x):f \in S\}), \ \sqcap' = \lambda S.(\lambda x. \sqcap \{f(x):f \in S\})$. In the following we will omit the primes so that the distinction between $\sqsubseteq, \ \bot, \ \top, \ \sqcup, \ \sqcap$ and $\sqsubseteq', \ \bot', \ \top', \ \sqcup', \ \sqcap'$ will be contextual.
- 1.4. A retraction ρ on L is an operator on L (i. e. $\rho \in (L \to L)$) which is monotone (i. e. $\forall x, y \in L, (x \sqsubseteq y) \Rightarrow (\rho(x) \sqsubseteq \rho(y))$) and idempotent (i. e. $\rho = \rho \circ \rho$ that is $\forall x \in L, \rho(x) = \rho(\rho(x))$).
- 1.5. An upper preclosure operator $\bar{\rho}$ on L is monotone, idempotent and satisfies the upper connectivity axiom $(\forall x \in L, \bar{\rho}(x \sqcup \bar{\rho}(x)) = \bar{\rho}(x))$. The dual notion is the one of lower preclosure operator (Ladegaillerie, [6, Def. 1]).
- 1.6. A quasi-closure operator ρ on L is monotone, comparing (i. e. $\forall x \in L$, either $x \sqsubseteq \rho(x)$ or $\rho(x) \sqsubseteq x$) and satisfies the connectivity axiom ($\forall x \in L$, $\rho(x \sqcap \rho(x)) = \rho(x \sqcup \rho(x))$, Bernard[1, p. 6]). Notice that monotony and connectivity axiom imply ($\forall x \in L$, $\rho(x) = \rho(x \sqcap \rho(x)) = \rho(x \sqcup \rho(x))$) and using the comparing hypothesis this in turn implies idempotence.
- 1.7. An upper closure operator \bar{p} on L is monotone, idempotent and extensive (i. e. $\lambda x.x \sqsubseteq \bar{p}$), (Moore[9]). Dually a lower closure operator $\underline{\rho} \in (L \to L)$ is monotone, idempotent and reductive (i.e. $\underline{\rho} \sqsubseteq \lambda x.x$).

- 1.8. Let $\bar{\rho}$ be an upper closure operator on $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$. For all $x \in L$, the set $\{y \in \bar{\rho}(L) : x \sqsubseteq y\}$ is not empty and $\bar{\rho}(x)$ is its least element (Monteiro & Ribeiro[8, Th. 5.2]).
- 1.9. Let $R \subseteq L$ and $\bar{\rho} \in (L \to R)$ be such that for any $x \in L$, $\bar{\rho}(x)$ is the least element of the set $\{y \in R : x \sqsubseteq y\}$ then $\bar{\rho}$ is an upper closure operator and $R = \bar{\rho}(L)$, (Monteiro & Ribeiro[8, Th. 5.3]).
- 1.10. Let $\bar{\rho}$ be an upper closure operator on L, then the image $\bar{\rho}(L)$ of L by $\bar{\rho}$ is a complete lattice $\bar{\rho}(L)(\sqsubseteq,\bar{\rho}(\bot), \top, \lambda S.\bar{\rho}(\sqcup S), \Box)$ which is a complete sublattice of L if and only if $\bar{\rho}$ is a complete join-morphism, (Ward[14, Th. 4.1]).
- 1.11. Applying the duality principle it follows that if $R \subseteq L$ and $\bar{\rho}$, $\underline{\rho} \in (L \to L)$ are such that for any $x \in L$, $\bar{\rho}(x)$ is the least element of the set $\{y \in R : x \sqsubseteq y\}$ and $\underline{\rho}(x)$ is the greatest element of the set $\{y \in R : y \sqsubseteq x\}$ then $R = \bar{\rho}(L) = \underline{\rho}(L)$ is a complete sublattice $R(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ of L whereas $\bar{\rho}$ is a complete join-morphism and $\underline{\rho}$ is a complete meet-morphism.
- 1.12. Let $\bar{\rho}_1$ and $\bar{\rho}_2$ be upper closure operators on L. Then according to Ore[12, p. 525], $\bar{\rho}_1 \circ \bar{\rho}_2$ and $\bar{\rho}_2 \circ \bar{\rho}_1$ are upper closure operators on L if and only if $\bar{\rho}_1$ and $\bar{\rho}_2$ are commuting (i. e. $\bar{\rho}_1 \circ \bar{\rho}_2 = \bar{\rho}_2 \circ \bar{\rho}_1$) in which case $\bar{\rho}_1 \circ \bar{\rho}_2(L) = \bar{\rho}_2 \circ \bar{\rho}_1(L) = \bar{\rho}_1(L) \cap \bar{\rho}_2(L)$.
- 1.13. Let $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ be a complete lattice, μ the smallest ordinal such that the class $\{\delta: \delta \in \mu\}$ has a cardinality greater than the cardinality of L and $f \in (L \to L)$. The upper iteration sequence for f starting with $d \in L$ is the μ -termed sequence $(X^{\delta}, \delta \in \mu)$ of elements of L defined by transfinite recursion in the following way:
 - $-X^0=d$
 - $X^{\delta} = f(X^{\delta-1})$ for every successor ordinal $\delta \in \mu$
 - $X^{\delta} = \bigsqcup_{\alpha < \delta} X^{\alpha}$ for every limit ordinal $\delta \in \mu$

(The dual lower iteration sequence is defined by:

- $-X^{\delta} = \prod_{\alpha < \delta} X^{\alpha}$ for every limit ordinal $\delta \in \mu$)
- 1.14. We say that the sequence $\langle X^{\delta}, \delta \in \mu \rangle$ is stationary if and only if $(\exists \epsilon \in \mu : (\forall \beta \in \mu, (\epsilon \leqslant \beta) \Rightarrow (X^{\epsilon} = X^{\beta})))$ in which case the

limit of the sequence is X^{ε} . We denote by *luis* (f)(d) the limit of a stationary upper iteration sequence for f starting with d (dually *llis* (f)(d)).

- 1.15. Let f be a monotone operator on $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$. The sets of prefixed points, fixed points and postfixed points of f are respectively $prefp(f) = \{x \in L : x \sqsubseteq f(x)\}, fp(f) = \{x \in L : x \equiv f(x)\}, postfp(f) = \{x \in L : f(x) \sqsubseteq x\}.$
- 1.16. The set of postfixed points of a monotone operator f on a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice postfp(f) $(\sqsubseteq, lfp(f), \top, \lambda S.luis(\lambda z.z \sqcup f(z))(\sqcup S), \sqcap)$ which is the image of L by the upper closure operator $\lambda d.luis(\lambda z.z \sqcup f(z))(d)$. The least fixed point of f is $lfp(f) = luis(f)(\bot)$, (Cousot & Cousot[4, Th. 4.2]).
- 1.17. Let f be a monotone operator on the complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$. Then $\lambda x.luis(\lambda y.y \sqcup f(y))(x) = \lambda x.luis(\lambda y.x \sqcup f(y))(x) = \lambda x.lfp(\lambda y.x \sqcup f(y))$ is an upper closure operator on L greater than or equal to f, (Cousot & Cousot[4,Th.4.1. & 4.2]).
- 1.18. Cousot & Cousot[4,Th.5.1]'s constructive version of Tarski[13,Th.1]'s lattice theoretical fixed point theorem states that the set fp(f) of fixed points of the monotone operator f on $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $fp(f)(\sqsubseteq, luis(f)(\bot), llis(f)(\top), \lambda S.luis(f)(\sqcup S), \lambda S.llis(f)(\sqcap S))$. fp(f) is the image of L by the upper preclosure operator $llis(f) \circ luis(\lambda z.z \sqcup f(z))$ and the image of L by the lower preclosure operator $luis(f) \circ llis(\lambda z.z \sqcup f(z))$. Moreover $luis(f) \circ llis(\lambda z.z \sqcup f(z))$.
- 1.19. Let \underline{F} and \overline{F} be monotone operators on $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ such that $\underline{F} \sqsubseteq \overline{F}$ and $\overline{F} \circ \underline{F} \sqsubseteq F \circ \overline{F}$. Then the set $fp(\underline{F}, \overline{F}) = \{x \in L : x = \underline{F}(x) = \overline{F}(x)\}$ of common fixed points of \overline{F} and \underline{F} is a non-empty complete lattice $fp(\overline{F},\underline{F})(\sqsubseteq, luis(\overline{F})(\bot), llis(\underline{F})(\top), \lambda S.luis(\overline{F})(\sqcup S), \lambda S.llis(\underline{F})(\sqcap S))$ which is the image of L by the lower preclosure operator $luis(\overline{F}) \circ llis(\lambda z.z \sqcap \overline{F}(z))$ and the image of L by the upper preclosure operator $llis(\underline{F}) \circ luis(\lambda z.z \sqcup \overline{F}(z))$. Moreover $luis(\overline{F}) \circ llis(\lambda z.z \sqcap \overline{F}(z)) \sqsubseteq llis(\underline{F}) \circ luis(\lambda z.z \sqcup \overline{F}(z))$, (Cousot & Cousot [4, Th. 6.1]).

2. The lattice of all monotone operators on a complete lattice

Definition 2.1
$$\overline{M}, \underline{M} \in ((L \to L) \to (L \to L))$$

 $\overline{M} = \lambda f.(\lambda x. \sqcup \{f(y): (y \in L) \text{ and } (y \sqsubseteq x)\})$
 $\underline{M} = \lambda f.(\lambda x. \sqcap \{f(y): (y \in L) \text{ and } (x \sqsubseteq y)\})$

Theorem 2.2. If $f \in (L \to L)$ then M(f) is the least monotone operator on L greater than or equal to f and $\underline{M}(f)$ is the greatest monotone operator on L less than or equal to f.

PROOF: Let $a, b \in L$ be such that $a \sqsubseteq b$. For all $y \in L$, $(y \sqsubseteq a)$ implies $(y \sqsubseteq b)$ so that $\sqcup \{f(y):y \sqsubseteq a\} \sqsubseteq \sqcup \{f(y):y \sqsubseteq b\}$ proving that $\overline{M}(f)(a) \sqsubseteq \overline{M}(f)(b)$. Since \sqsubseteq is reflexive, $\forall a \in L$ we have $f(a) \sqsubseteq \sqcup \{f(y):y \sqsubseteq a\} = \overline{M}(f)(a)$ that is $f \sqsubseteq \overline{M}(f)$ proving that $\forall f \in (L \to L)$, M(f) is a monotone operator on L greater than or equal to f.

Let g be a monotone operator on L greater than or equal to f. For all $y \in L$, $f(y) \sqsubseteq g(y)$ so that $\forall a \in L$, $\overline{M}(f)(a) = \bigsqcup \{f(y) : y \sqsubseteq a\} \sqsubseteq \bigsqcup \{g(y) : g(y) \sqsubseteq g(a)\} = g(a)$ proving that $\overline{M}(f)$ is the least monotone operator on L greater than or equal to f.

By duality, $\underline{\mathbf{M}}(f)$ is the greatest monotone operator on L less than or equal to f. End of proof.

From 2.2 and 1.11 we get:

Corollary 2.3 \overline{M} is an upper closure operator on $(L \to L)$ which is a complete join-morphism and \underline{M} is a lower closure operator on $(L \to L)$ which is a complete meet-morphism.

The set of all monotone operators on the complete lattice L is a complete sublattice $\overline{M}(L \to L) = \underline{M}(L \to L)(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ of $(L \to L)(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$.

3. The lattice of all extensive operators on a complete lattice

Definition 3.1
$$E, \overline{E} \in ((L \to L) \to (L \to L))$$

 $\overline{E} = \lambda f.(\lambda x.(x \sqcup f(x)))$
 $E = \lambda f.(\lambda x.(x \sqcap f(x)))$

Lemma 3.2 If $f \in (L \to L)$ then $\overline{E}(f)$ is the least extensive operator on L greater than or equal to f. \overline{E} is a complete join-morphism.

Corollary 3.3 \overline{E} is an upper closure operator on $(L \to L)$. The set of all extensive operators on the complete lattice L is a complete sublattice $\overline{E}(L \to L)(\sqsubseteq, \lambda x.x, \top, \sqcup, \sqcap)$, of $(L \to L)$.

LEMMA 3.4

- $-\overline{\mathrm{M}} \circ \overline{\mathrm{E}} = \overline{\mathrm{E}} \circ \overline{\mathrm{M}}$ is an upper closure operator on $(\mathrm{L} \to \mathrm{L})$
- $-\overline{M}(L \to L) \cap \overline{E}(L \to L) = \overline{M} \circ \overline{E}(L \to L) = \overline{E} \circ \overline{M}(L \to L) \quad is \quad a$ $complete \ sublattice \ (\sqsubseteq, \lambda x.x., \ \top, \sqcup, \sqcap) \ of \ (L \to L).$

PROOF: Since \sqsubseteq is reflexive, for any $f \in (L \to L)$ and $x \in L$ we have $x \sqsubseteq \sqcup \{y \sqcup f(y) : y \sqsubseteq x\}$ so that $\overline{M}(\overline{E}(f))(x) = \sqcup \{y \sqcup f(y) : y \sqsubseteq x\} = x \sqcup (\sqcup \{y \sqcup f(y) : y \sqsubseteq x\}) = \sqcup \{x \sqcup y \sqcup f(y) : y \sqsubseteq x\} = \sqcup \{x \sqcup f(y) : y \sqsubseteq x\} = x \sqcup (\sqcup \{f(y) : y \sqsubseteq x\}) = \overline{E}(\overline{M}(f))(x)$. Therefore \overline{M} and \overline{E} are commuting and the lemma follows from 1.12 and 1.10. *End of proof.*

4. The lattice of all upper closure operators on a complete lattice

Lemma 4.1 Let F be the operator on $(\overline{M}(L \to L) \cap \overline{E}(L \to L))$ defined by $\lambda g.g \circ g$. Then

1 — F is monotone

$$2 - fp(F) = postfp(F)$$

PROOF: 1. If $f \sqsubseteq g$ then $f \in \overline{M}(L \to L)$ implies $F(f) = f \circ f \sqsubseteq f \circ g$. Also $f \circ g \sqsubseteq g \circ g = F(g)$ proving that F is monotone.

2. Let f be a postfixed point of F then $f \circ f \sqsubseteq f$. Since $f \in \overline{E}(L \to L)$ we have $\lambda x.x \sqsubseteq f$ so that $f \in \overline{M}(L \to L)$ implies $f \sqsubseteq f \circ f$. By antisymmetry $f \circ f = f$. End of proof.

Definition 4.2

$$\begin{split} &\vec{\mathrm{I}} \in ((\overline{\mathrm{M}}(\mathrm{L} \to \mathrm{L}) \cap \overline{\mathrm{E}}(\mathrm{L} \to \mathrm{L})) \to (\overline{\mathrm{M}}(\mathrm{L} \to \mathrm{L}) \cap \overline{\mathrm{E}}(\mathrm{L} \to \mathrm{L}))) \\ &\vec{\mathrm{I}} = \lambda f.luis(\lambda g.g \circ g)(f) = \lambda f.luis(\lambda g.g \sqcup g \circ g)(f) \\ &\vec{\mathrm{C}} \in ((\mathrm{L} \to \mathrm{L})) \to (\mathrm{L} \to)) \\ &\vec{\mathrm{C}} = \vec{\mathrm{I}} \circ \overline{\mathrm{M}} \circ \overline{\mathrm{E}} = \vec{\mathrm{I}} \circ \overline{\mathrm{E}} \circ \overline{\mathrm{M}} \end{split}$$

Ward[14,Th.4.2]'s theorem states that the set Γ of all upper closure operators on a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $\Gamma(\sqsubseteq, \lambda x.x, \top, \lambda S. \sqcap \{\eta \in \Gamma: (\forall \rho \in S, \rho \sqsubseteq \eta)\}, \sqcap)$. We give now a constructive version of this theorem:

Theorem 4.3

- $1 \overline{C}(L \to L)(\sqsubseteq, \lambda x.x, \top, \lambda S.luis(\lambda g.g \circ g)(\sqcup S), \sqcap)$ is the complete lattice of all uper closure operators on the complete lattice L
- $2-\overline{C}$ is an upper closure operator on $(L \to L)$
- $3 \longrightarrow \forall f \in (L \to L), \ \overline{C}(f)$ is the least upper closure operator on L greater than or equal to f.

Proof: According to definition 1.7 the set of all upper closure operators on the complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is the set of elements of $(\overline{M}(L \to L)) \cap \overline{E}(L \to L)$) which are idempotent that is to say which are fixed points of λg.gog. In compliance with lemmas 4.1 and 3.4 \(\lambda g.g \circ g\) is a monotone operator on the complete lattice $(\overline{M}(L \to L) \cap \overline{E}(L \to L)) (\sqsubseteq, \lambda x.x, \bot, \sqsubseteq, \Box)$ and $fp(\lambda g.g \circ g) = postfp$ $(\lambda g, g \circ g)$. Therefore 1.16 implies that the set of all upper closure operators on L is the complete lattice $postfp(\lambda g.g \circ g)(\sqsubseteq, luis(\lambda g.g \circ g))$ $(\lambda x.x) = \lambda x.x, \ \top, \lambda S.luis(\lambda g.g \circ g) \ (\sqcup S), \ \Box)$ which is the image of $\overline{M(L \to L)} \cap \overline{E(L \to L)}$ by the upper closure operator I that is (lemma 3.4 and definition 4.2) $I(M(L \to L) \cap E(L \to L)) = I \circ M \circ E$ $(L \to L) = \overline{C(L \to L)}$. \overline{C} is monotone and extensive since it is the composition of upper closure operators. $\forall f \in (L \to L), C(f)$ is extensive, monotone and idempotent, hence $\overline{C}(f) = \overline{E} \circ \overline{C}(f) = \overline{M} \circ \overline{C}(f) =$ $= \overline{I} \circ \overline{C}(f) = \overline{I} \circ \overline{M} \circ \overline{E} \circ \overline{C}(f) = \overline{C} \circ \overline{C}(f)$ proving that \overline{C} is idempotent whence an upper closure operator. Then 4.3.3 follows from 1.8. End of proof.

COROLLARY 4.4

$$1 - \overline{C} = \lambda f.(luis(\overline{E}(\overline{M}(f))))$$

$$2 - \overline{C} = \lambda f.(\lambda x.lfp(\lambda y.x \sqcup \overline{M}(f)(y)))$$

$$3-\overline{\mathrm{C}}(\mathrm{L} o \mathrm{L})(\sqsubseteq, \lambda x.x, \top, \lambda \mathrm{S}.luis(\sqcup \mathrm{S}), \sqcap)$$

$$4 - \overline{\operatorname{C}}(\operatorname{L} \to \operatorname{L})(\sqsubseteq, \lambda x.x, \top, \lambda \operatorname{S}.(\lambda x.lfp(\lambda y.x \sqcup (\sqcup \operatorname{S})(y))), \sqcap)$$

PROOF: It follows from 1.17 that $\forall f \in (L \to L), luis(\overline{E}(\overline{M}(f))) = \lambda x. lfp(\lambda y. x \sqcup \overline{M}(f)(y))$ is an upper closure operator on L greater

than or equal to $\overline{M}(f)$ whence according to theorem 2.2 greater than or equal to f. Let $\overline{\rho} \in \overline{C}(L \to L)$ be such that $f \sqsubseteq \overline{\rho}$. Then $\overline{E}(\overline{M}(f)) \sqsubseteq \overline{E}(\overline{M}(\overline{\rho})) = \overline{\rho}$ so that by monotony $luis(\overline{E}(\overline{M}(f))) \sqsubseteq luis(\overline{\rho})$. Moreover $luis(\overline{\rho}) = \overline{\rho}$ since $\overline{\rho}$ is idempotent proving that $luis(\overline{E}(\overline{M}(f)))$ is the least upper closure operator on L greater than or equal to f and therefore $\overline{C} = \lambda f.(luis(\overline{E}(\overline{M}(f)))) = \lambda f.(\lambda x.lfp(\lambda y.x \sqcup \overline{M}(f)(y))), (1.17).$

4.4.3 and 4.4.4 result from 1.10 remarking that whenever $S \subseteq \overline{C}(L \to L)$ then $\bigsqcup S$ is monotone and extensive (theorems 2.3 and 3.3) so that $luis(\overline{E}(\overline{M}(\sqcup S))) = luis(\sqcup S)$ and $\lambda x.lfp(\lambda y.x \sqcup \overline{M}(\sqcup S))$ $(y) = \lambda x.lfp(\lambda y.x \sqcup (\sqcup S)(y))$. End of proof.

It should be noted that given a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ and $f \in (L \to L)$ there does not necessarily exists an upper closure operator on L less than or equal to f. A counter-example is given by $L = \{\bot, \top\}$ where $\bot \sqsubseteq \bot \sqsubseteq \top \sqsubseteq \top$ and f defined by $f(\bot) = \bot$ and $f(\top) = \bot$. The upper closure operators on L are $\bar{\rho}_1$ (such that $\bar{\rho}_1(\bot) = \bot$ and $\bar{\rho}_1(\top) = \top$) and $\bar{\rho}_2$ (such that $\bar{\rho}_2(\bot) = \bar{\rho}_2(\top) = \bot$) and neither $\bar{\rho}_1 \sqsubseteq f$ nor $\bar{\rho}_2 \sqsubseteq f$.

Monteiro [7], Iseki [5] and Morgado ([10, 11] have given several characterizations of the upper closure operators on a partially ordered set by means of a single axiom. Wé now formulate a characterization of the upper closure operators on a complete lattice using only one axiom:

Corollary 4.5 If $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice and $\bar{\rho}$ is an operator on L, then $\bar{\rho}$ is an upper closure operator on L if and only if:

$$\bar{\rho} = \lambda x. \sqcup \{y \sqcup \bar{\rho}(\bar{\rho}(y)) : (y \in L) \text{ and } (y \sqsubseteq x)\}$$

PROOF: If $\bar{\rho}$ is a closure operator then it is monotone (so that $\overline{M}(\bar{\rho}) = \bar{\rho}$ (2.2)), extensive (so that $\overline{E}(\bar{\rho}) = \bar{\rho}$) and idempotent (so that $\bar{\rho} = \bar{\rho} \circ \bar{\rho}$) therefore $\bar{\rho} = \overline{M}(\overline{E}(\bar{\rho} \circ \bar{\rho})) = \lambda x. \sqcup \{y \sqcup \bar{\rho}(\bar{\rho}(y)) : (y \in L) \text{ and } (y \sqsubseteq x)\}$. Reciprocally, if $\bar{\rho}$ is equal to the monotone operator $\overline{M}(\overline{E}(\bar{\rho} \circ \bar{\rho}))$ then it is monotone. Also since \overline{M} and \overline{E} commute (3.4) $\bar{\rho}$ is equal to the extensive operator $\overline{E}(\overline{M}(\bar{\rho} \circ \bar{\rho}))$ whence it is extensive. Since $\bar{\rho} \circ \bar{\rho}$ is the composition of monotone and extensive operators it is monotone and extensive and therefore $\bar{\rho} = M(\overline{E}(\bar{\rho} \circ \bar{\rho})) = \bar{\rho} \circ \bar{\rho}$ (3.2,2.2) proving that $\bar{\rho}$ is idempotent whence an upper closure operator. End of proof.

p = R(p) [R(f) since p is a refraction on t

5. The lattice of all retractions on a complete lattice

Definition 5.1

$$\begin{split} & \bar{J} \ , \underline{J} \in (\overline{M}(L \to L) \to \overline{M}(L \to L)) \\ & \bar{J} = \lambda f. (llis(\lambda g. g \circ g) \circ luis(\lambda g. g \sqcup g \circ g)(f)) \\ & \underline{J} = \lambda f. (luis(\lambda g. g \circ g) \circ llis(\lambda g. g \sqcap g \circ g)(f)) \\ & \bar{R} \ , \underline{R} \in ((L \to L) \to (L \to L)) \\ & \bar{R} = \bar{J} \circ \overline{M} \\ & R = J \circ M \end{split}$$

Theorem 5.2 The set of all retractions on a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $\overline{R}(L \to L)(\sqsubseteq, \bot, \top, \lambda S. luis(\lambda g.g \circ g)(\sqcup S), \lambda S. llis(\lambda g.g \circ g)(\sqcap S))$ which is the image of $(L \to L)$ by the retractions R and \overline{R} such that $\underline{R} \sqsubseteq \overline{R}$.

 $\forall f \in (L \to L)$, if ρ is a retraction on L greater than or equal to (less than or equal to) f, then $\overline{R}(f)$ ($\underline{R}(f)$) is less than or equal to (greater than or equal to) ρ .

PROOF: The set of all retractions on L is the set of monotone operators on L(i. e. elements of $\underline{M}(L' \to L) = \overline{M}(L \to L)$) which are idempotent that is to say fixed points of $\lambda g.g \circ g$. Let $f, h \in \overline{M}(L \to L)$ be such that $f \sqsubseteq h$. Then $h \sqsubseteq h$ so that $f \circ h \sqsubseteq h \circ h$ and by monotony $f \circ f \sqsubseteq f \circ h$ hence $f \circ f \sqsubseteq h \circ h$ proving that $\lambda g.g \circ g$ is a monotone operator on $\overline{M}(L \to L)$. Consequently the set of all retractions on L is $fp(\lambda g.g \circ g)$ which according to 1.18 is a complete lattice $fp(\lambda g.g \circ g)$ ($\sqsubseteq, luis(\lambda g.g \circ g)$ (\bot) which is the image of $\overline{M}(L \to L)$ by the upper preclosure operator \overline{J} and the image of $\overline{M}(L \to L)$ by the lower preclosure operator \overline{J} hence the image of $\overline{M}(L \to L)$ by \overline{R} and \overline{R} .

 $\forall f \in (L \to L), \ \overline{J} \circ \overline{M}(f) \in \overline{M}(L \to L) \ \text{hence} \ \overline{J} \circ \overline{M} = \overline{M} \circ \overline{J} \circ \overline{M} \ \text{(Th. 2.3.)}$ Also $\overline{M} \circ \overline{J} \circ \overline{M}(f)$ is idempotent so that it is a fixed point of $\lambda g.g \circ g$ and consequently a fixed point of \overline{J} proving that $\overline{J} \circ \overline{M} \circ \overline{J} \circ \overline{M}(f) = \overline{M} \circ \overline{J} \circ \overline{M}(f) = \overline{J} \circ \overline{M}(f)$. $\overline{J} \circ \overline{M} = \overline{M} \circ \overline{J} \circ \overline{M}(f) = \overline{J} \circ \overline{M}(f)$ is idempotent but also monotone since \overline{M} is a monotone operator on $\overline{M}(L \to L)$, hence \overline{R} and by duality \overline{R} are retractions on $\overline{L} \to L$.

Let $f \in (L \to L)$ and $\rho \in \overline{R}(L \to L)$ be such that $\rho \sqsubseteq f$. Then $\rho = \overline{R}(\rho) \sqsubseteq \overline{R}(f)$ since ρ is a retraction on L and \overline{R} is monotone.

By duality if ρ is a retraction on L greater than or equal to f then $\underline{R}(f)$ is less than or equal to ρ . In general f and $\overline{R}(f)$ on one hand and f and $\underline{R}(f)$ on the other hand are not comparable. However $\underline{R}(f) \sqsubseteq \overline{R}(f)$ (1.18). End of proof.

6. The lattice of all upper preclosure operators on a complete lattice

DEFINITION 6.1

$$\begin{split} & \overrightarrow{A} \in (\overrightarrow{R}(L \to L) \to \overrightarrow{R}(L \to L)) \\ & \overrightarrow{A} = \lambda f.luis(\lambda g.g \circ \overrightarrow{E}(g))(f) = \lambda f.luis(\lambda g.g \sqcup g \circ \overrightarrow{E}(g))(f) \\ & \overrightarrow{P}, \underline{P} \in ((L \to L) \to (L \to L)) \\ & \overrightarrow{P} = \overrightarrow{A} \circ \overrightarrow{R} \\ & \underline{P} = \overrightarrow{A} \circ \underline{R} \end{split}$$

Theorem 6.2 The set of all upper preclosure operators on a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $\overline{P}(L \to L)$ $(\sqsubseteq, \bot, \top, \lambda S.luis(\lambda g.g \circ \overline{E}(g)) \circ luis(\lambda g.g \circ g)(\sqcup S), \lambda S.llis(\lambda g.g \circ g)(\sqcap S))$ which is the image of $(L \to L)$ by the retractions P and \overline{P} satisfying $P \sqsubseteq \overline{P}$.

 $\forall f \in (L \to L)$ if $\bar{\rho}$ is an upper preclosure operator on L greater than (less than) or equal to f then $\bar{P}(f)$ ($\underline{P}(f)$) is less than (greater than) or equal to $\bar{\rho}$.

Proof: The set of all upper preclosure operators on L is the set of monotone and idempotent operators on L (i. e. elements ρ of $\overline{R}(L \to L) = \underline{R}(L \to L)$) satisfying the upper connectivity axiom (i. e. $\rho = \lambda x.(\rho(x \sqcup \rho(x)))$) that is to say which are fixed points of $F = \lambda g.(\lambda x.(g(x \sqcup g(x)))) = \lambda g.g \circ \overline{E}(g)$. Let ρ be an element of $\overline{R}(L \to L)$. Then $F(\rho)$ is monotone. Also $F(\rho) \circ F(\rho) = \lambda x.(\rho(x \sqcup \rho(x))) \circ \lambda x.(\rho(x \sqcup \rho(x))) = \lambda x.\rho(\rho(x \sqcup \rho(x)) \sqcup \rho(\rho(x \sqcup \rho(x)))) = \rho(\rho(x \sqcup \rho(x))) = \rho(x \sqcup \rho(x)) = F(\rho)$ since ρ is idempotent and proving that $F(\rho)$ is idempotent. Therefore $P(\rho) = \rho \circ P(\rho) = \rho$

 $\overline{R}(L \to L)$. $\forall \rho \in \overline{R}(L \to L)$ $\rho = F(\rho)$ implies $F(\rho) \sqsubseteq \rho$. Reciprocally if $F(\rho) \sqsubseteq \rho$ then $\lambda x.x \sqsubseteq \overline{E}(\rho)$ implies by monotony $\rho \sqsubseteq \rho \circ \overline{E}(\rho) = F(\rho)$ and by antisymmetry $\rho = F(\rho)$ proving that fp(F) = postfp(F). It follows from 5.2 and 1.16 that the set of all upper preclosure operators on L is a complete lattice $postfp(F)(\sqsubseteq,luis(F)(\bot) = \bot, \top, \lambda S.luis(F) \circ luis(\lambda g.g \circ g)(\sqcup S), \lambda S.llis(\lambda g.g \circ g)(\sqcup S))$ which is the image of $\overline{R}(L \to L) = \underline{R}(L \to L)$ by the upper closure operator $\overline{A} = \lambda f.luis(F)$ (f) hence the image of $((L \to L))$ by \overline{P} and \overline{P} .

P and \overline{P} are monotone since \overline{R} and \overline{R} are monotone and \overline{A} is an upper closure whence monotone operator on $\overline{R}(L \to L) = \underline{R}(L \to L)$. Also $\forall f \in (L \to L), \overline{A} \circ \overline{R}(f)$ is monotone and idempotent so that $\overline{A} \circ \overline{R}(f) = \overline{R} \circ \overline{A} \circ \overline{R}(f)$. $\overline{A} \circ \overline{R}(f)$ satisfies the upper connectivity axiom and therefore it is a fixed point of F and consequently a fixed point of \overline{A} so that $\overline{A} \circ \overline{R}(f) = \overline{A} \circ \overline{A} \circ \overline{R}(f) = \overline{A} \circ \overline{R} \circ \overline{A} \circ \overline{R}(f)$ proving that \overline{P} is idempotent. The same way \overline{P} is a retraction on $(L \to L)$. Since $\overline{R} = \overline{R}$ and \overline{A} is monotone we have $\overline{P} = \overline{A} \circ \overline{R} \subseteq \overline{A} \circ \overline{R} = \overline{P}$.

 $\forall f \in (L \to L), \text{ let } \overline{\rho} \in \overline{P}(L \to L) \text{ be such that } f \sqsubseteq \overline{\rho}. \text{ Then } \overline{\rho} \in \overline{R}$ $(L \to L) \text{ and } 5.2 \text{ implies } \overline{R}(f) \sqsubseteq \overline{\rho}. \text{ Since } \overline{\rho} \text{ is closed under } \overline{A} \text{ we}$ $\text{have } \overline{P}(f) = \overline{A}(\overline{R}(f)) \sqsubseteq \overline{A}(\overline{\rho}) = \overline{\rho}. \text{ Similarly } \overline{\rho} \sqsubseteq f \text{ implies } \overline{\rho} = \overline{A}(\overline{\rho}) \sqsubseteq$ $\sqsubseteq \overline{A}(\overline{R}(f)) = \overline{P}(f). \text{ End of proof.}$

7. The lattice of all comparing operators on a complete lattice

Definition 7.1

$$\overline{K}, \ \underline{K} \in ((L \to L) \to (L \to L))$$

$$\overline{K} = \lambda f.(\lambda x.(\underline{if} \ f(x) \sqsubseteq x \ \underline{then} \ f(x) \ \underline{else} \ x \sqcup f(x)))$$

$$\underline{K} = \lambda f.(\lambda x.(\underline{if} \ x \sqsubseteq f(x) \ \underline{then} \ f(x) \ \underline{else} \ x \sqcap f(x)))$$

Lemma 7.2 If $f \in (L \to L)$ then K(f) (respectively $\underline{K}(f)$) is the least (greatest) comparing operator on L greater than (less than) or equal to f.

Corollary 7.3 \overline{K} is an upper closure operator on $(L \to L)$, \underline{K} is a lower closure operator on $(L \to L)$. The set of all comparing operators on the complete lattice L is a complete sublattice $\overline{K}(L \to L) = K(L \to L)$ ($\underline{\sqsubseteq}, \bot, \top, \bot, \Box$) of $(L \to L)$.

LEMMA 7.4

- $-\overline{K} \circ \overline{M}$ is an upper-closure operator on $(L \to L)$
- $\underline{K} \circ \underline{M}$ is a lower closure operator on $(L \leftrightarrow L)$
- $\begin{array}{c} -(\overline{M}(L \to L) \cap \overline{K}(L \to L)) = (\underline{M}(L \to L) \cap \underline{K}(L \to L)) = \overline{K} \circ \overline{M} \\ (L \to L) = \underline{K} \circ \underline{M}(L \to L) \text{ is a complete sublattice } (\sqsubseteq, \bot, \top, \sqcup, \sqcap) \\ \text{of } (L \to L). \end{array}$

PROOF: $\overline{K} \circ \overline{M}$ is monotone and extensive since it is the composition of upper closure operators. $\forall f \in (L \to L)$, $\overline{K}(\overline{M}(f))$ is either equal to $\overline{M}(f)$ or to $\lambda x.(x \sqcup \overline{M}(f)(x))$ proving that $\overline{K}(\overline{M}(f))$ is monotone and therefore equal to $\overline{M}(\overline{K}(\overline{M}(f)))$. Hence $\overline{K}(\overline{M}(f)) = \overline{K}(\overline{K}(\overline{M}(f))) = \overline{K}(\overline{K}(\overline{M}(f)))$ proving that $\overline{K} \circ \overline{M}$ is an upper closure operator and by duality $\underline{K} \circ \underline{M}$ is a lower closure operator on $(L \to L)$. Also $\overline{K} \circ \overline{M}(f)$ (respectively $\overline{K} \circ \underline{M}(f)$) is the least (greatest) monotone and comparing operator on \overline{L} greater than (less than) or equal to f. Hence according to 1.11, $(\overline{M}(L \to L) \cap \overline{K}(L \to L)) = (\underline{M}(L \to L) \cap \overline{K}(L \to L))$ is the complete sublattice $\overline{K} \circ \overline{M}(L \to L) = \underline{K} \circ \underline{M}(L \to L)$ ($\underline{\Box}, \bot, \top, \Box, \Box$) of $(L \to L)$. End of proof.

8. The lattice of all quasi-closure operators on a complete lattice

Definition 8.1

$$\overline{B}, \underline{B} {\in} (\overline{K} {\circ} \overline{M} (L \to L) \to \overline{K} {\circ} \overline{M} (L \to L))$$

$$B = luis(\lambda g.g \circ \overline{E}(g)) \circ llis(\lambda g.g \sqcap g \circ E(g))$$

$$\overline{\mathrm{B}} = llis(\lambda g.g \circ \underline{\mathrm{E}}(g)) \circ luis(\lambda g.g \sqcup g \circ \overline{\mathrm{E}}(g))$$

$$Q, \overline{Q} \in ((L \to L) \to (L \to L))$$

$$Q = B \circ K \circ M$$

$$\overline{Q}=\overline{B}{\circ}\overline{K}{\circ}\overline{M}$$

Bernard [1,Th.V.II.1]'s theorem states that the set Γ of all quasi-closure operators on a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $\Gamma(\sqsubseteq, \bot, \top, \lambda S.(\sqcup E(S)) \circ (\sqcup E(S)), \lambda S.(\sqcap E(S)) \circ (\square E(S)))$ where (\sqcup, \sqcap) and (\sqcup, \sqcap) respectively denote the union and intersection in the complete lattices of upper and lower closure operators on L. We now give a constructive and simpler version of this theorem:

Theorem 8.2 The set of all quasi-closure operators on a complete lattice $L(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ is a complete lattice $\overline{Q}(L \to L)$ ($\sqsubseteq, \bot, \top, \lambda S$. $luis(\lambda g. g \circ \overline{E}(g))$ ($\sqcup S$), $\lambda S. llis(\lambda g. g \circ \overline{E}(g))$ ($\sqcap S$)) which is the image of $(L \to L)$ by the retractions Q and \overline{Q} satisfying $Q \sqsubseteq \overline{Q}$.

 $\forall f \in (L \to L)$, if ρ is a quasi-closure operator on L greater than (respectively less than) or equal to f then $\overline{Q}(f)$ ($\underline{Q}(f)$) is less than (greater than) or equal to ρ .

PROOF: The quasi-closure operators on L are the monotone and comparing operators on L (i. e. $\rho \in \overline{K} \circ \overline{M}(L \to L)$) satisfying the connectivity axiom $\rho = \lambda x. \rho(x \sqcap \rho(x)) = \lambda x. \rho(x \sqcup \rho(x))$ that is the elements of $\overline{K} \circ \overline{M}(L \to L)$ which are common fixed points of the functionals $\overline{F} = \lambda g. g \circ \overline{E}(g) = \lambda g. (\lambda x. (g(x \sqcap g(x))))$ and $\overline{F} = \lambda g. g \circ \overline{E}(g) = \lambda g. (\lambda x. (g(x \sqcup g(x))))$.

 $\forall \rho \in \overline{K} \circ \overline{M}(L \to L)$, ρ is monotone and so are $\underline{F}(\rho)$ and $\overline{F}(\rho)$. Also ρ is comparing so that given $x \in L$ either $x \sqsubseteq \rho(x)$ in which case $x \sqsubseteq \rho(x) = \rho(x \sqcap \rho(x)) = \underline{F}(\rho)(x)$ or $\rho(x) \sqsubseteq x$ in which case $\underline{F}(\rho)(x) = \rho(x \sqcap \rho(x)) = \rho(\rho(x))$ and by monotony $\rho(\rho(x)) \sqsubseteq \rho(x) \sqsubseteq x$. Hence $\underline{F}(g)$ is comparing proving that \underline{F} (and by duality \overline{F}) is an operator on $\overline{K} \circ \overline{M}(L \to L)$.

F and F are monotone operators on $\overline{K} \circ \overline{M}(L \to L)$ and $\overline{F} \sqsubseteq \overline{F}$. Let us show that $\overline{F} \circ \overline{F} \sqsubseteq \overline{F} \circ \overline{F}$ that is $\forall \rho \in \overline{K} \circ \overline{M}(L \to L)$, $\forall x \in L$, $\overline{F}(\overline{F}(\rho))(x) = \rho((x \sqcup \rho(x \sqcap \rho(x))) \sqcap \rho(x \sqcup \rho(x \sqcap \rho(x)))) \sqsubseteq \rho((x \sqcap \rho(x \sqcup \rho(x))) \sqcup \rho(x \sqcap \rho(x))) = \rho(x)$ and $(x \sqcap \rho(x \sqcup \rho(x))) = \overline{F}(\overline{F}(\rho))(x)$. If $x \sqsubseteq \rho(x)$ then $(x \sqcup \rho(x \sqcap \rho(x))) = \rho(x)$ and $(x \sqcap \rho(x \sqcup \rho(x))) = x$ so that we must show that $\rho(\rho(x) \sqcap \rho(\rho(x))) \sqsubseteq \rho(x \sqcap \rho(x))$ which is true since $(\rho(x) \sqcap \rho(\rho(x))) = \rho(x)$ and $(x \sqcup \rho(x)) = \rho(x)$. Else $\rho(x) \sqsubseteq x$ and then $(x \sqcup \rho(x \sqcap \rho(x))) = x$ and $(x \sqcap \rho(x \sqcup \rho(x))) = \rho(x)$ so that we must show that $\rho(x \sqcap \rho(x)) \sqsubseteq \rho(\rho(x)) = \rho(x)$ and $\rho(x) \sqcup \rho(\rho(x)) = \rho(x)$. Applying 1.19 and using 7.4 we see that the set $f(x \sqcap \rho(x)) = \rho(x)$. Applying 1.19 and using 7.4 we see that the set $f(x \sqcap \rho(x)) = \rho(x)$. Applying 1.19 $f(x) = \tau$, $f(x) = \tau$, f(

Since $\underline{M} \sqsubseteq \overline{M}$, $\underline{K} \sqsubseteq \overline{K}$, $\underline{B} \sqsubseteq \overline{B}$ and \underline{K} , \underline{B} are monotone we have $\underline{Q} \sqsubseteq \overline{Q}$. \underline{Q} and \overline{Q} are composition of monotone operators and therefore monotone. Also \overline{Q} (and dually \underline{Q}) is idempotent since $\forall f \in (L \to L)$, $\overline{Q}(f)$ is monotone (hence $\overline{M} \circ \overline{Q}(f) = \overline{Q}(f)$), comparing (hence $\overline{K} \circ \overline{Q}(f) = \overline{Q}(f)$) and satisfies the connectivity axiom (hence is a common fixed point of \overline{F} and \overline{F} therefore fixed point of \overline{B}) so that $\overline{B} \circ \overline{K} \circ \overline{M} \circ \overline{Q}(f) = \overline{Q}(f)$.

 $\forall f \in (L \to L), \ \forall \rho \in \overline{Q}(L \to L), \ \text{if} \ f \sqsubseteq \rho \ \text{then} \ \overline{Q}(f) \sqsubseteq \overline{Q}(\rho) = \rho \ \text{and} \\ \text{if} \ \rho \sqsubseteq f \ \text{then} \ \rho = \underline{Q}(\rho) \sqsubseteq \underline{Q}(f). \ \textit{End of proof.}$

REFERENCES

- 1. Bernard J., *Préfermetures sur un ensemble ordonné*, Thèse de troisième cycle, Université de Clermont-Ferrand, France (26 Sept. 1969).
- 2. Birkhoff G., Lattice theory, AMS Colloquium Publications, XXV, Third edition, Providence, R. I., U. S. A., (1967).
- 3. Church A., The calculi of lambda conversion, Annals of Math. Studies, 6 (1951).
- Cousor P. & Cousor R., Constructive versions of Tarski's fixed point theorems, Pacific J. Math., 82 (1979), 43-57.
- ISEKI K., On closure operation in lattice theory, Nederl. Akad. Wetensch. Proc. Ser. A. 54, Indag. Math., 13(195)1, 318-320.
- LADEGAILLERIE Y., Préfermeture sur in ensemble ordonné, R.A.I.R.O., R-1 (Avril 1973), 35-43.
- Monteiro A., Caractérisation de l'opération de fermeture par un seul axiome, Portugal. Math., 4(1945), 158-160.
- Monteiro A. & Ribeiro H., L'opération de fermeture et ses invariants dans les systemes partiellement ordonnés, Portugal. Math., 3(1942), 171-184.
- 9. Moore E. H., Introduction to a form of general analysis, New Haven Math. Colloquium Pub., 2(1910).
- Morgado J., A characterization of the closure operators by means of one axiom, Portugal. Math., 3(1962), 155-156.
- Morgado J., A single axiom for closure operators of partially ordered sets, Gazeta de Mathematica, 100 (Julho-Dezembro) 1965, 57-58.
- Ore O., Combinations of closure relations, Ann. of Math., 44, 3 (July 1943), 514-533.
- TARSKI A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math., 5(1955), 285-310.
- WARD M., The closure operators of a lattice, Annals Math., 43, 2(April 1942), 191-196.