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1. Introduction

We give a constructive characterization of the complete lattices
of all retractions, preclosure, quasi-closure and closure operators on
a complete lattice. Our general approach is the following: in order
to study the structure of the set I' = (L. — L) of operators p on a
complete lattice L satisfying a given axiom A, we show that p has
property A if and only if it is a fixed point of some monotone
operator F on the complete lattice (L — L) proving that I' is the
set of fixed points of F. Then using Cousot & Cousot’s constructive
version of Tarski’s lattice theoretical fixed point theorem, we
constructively characterize the infimum, supremum, union and
intersection of the complete lattice I' which are defined by means
of limits of stationary transfinite iteration sequences for F. Variants
of this argument are used when F is a clousre operator (in which
case the constructive version of Tarski’s theorem amounts to Ward’s
theorem) or when the operators with property A are the postfixed
points of F or the common fixed points of two functionals. The
reasoning is repeated when I' is characterized by means of more
than one axiom.

This work was supported by CNRS, Laboratoire Associé n.2 7.
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2. Preliminaries

1.1. Let L(C, L, T,LI,1) be a non-empty complete lattice with
partial ordering [, least upper bound ||, greatest lower bound [7.
The infimum L of L is L, the supremum T of L is LIL.
(Birkhoff’s standard reference book [2] provides the necessary
background material).

1.2. Let 6e(L — M) be a total function from the complete lattice
L(C, L, T,L,M) to the complete lattice M(C’, L/, 77,11, I1'). 0 is
a join-morphism when (Va,y €L,0(z] |y) = 0(z)['8(y)). 0 is a complete
Join-morphism when (VS < 1,0(1JS) = [I’0(S)). The dual notions
are the ones of meet-morphism and complete meet-morphism.

1.3. Using Church[3]’s lambda notation (so that fe(L — M)
is Az.f(x)) let us recall that the set (L —1L) of all operators on
the complete lattice L(CC, L, 7,LJ,17) is a complete lattice (C’, L”,
T,5L5 1) where (') < (Vzel, f@)Ce@), L' =2z L1, 7/ =
= Az T, LI" = 2S.(62. LI{f(2):f€S)), M’ == 2S.(.M{f(x):feS)). In the
following we will omit the primes so that the distinction between
E, L, 7, LI, 1 end T 107 i Y, 7 will be 'contextuall

1.4. A retraction ¢ on L is an operator on L (i. e. pe(L — L))
which is monotone (i. e. Va, y €L, (x T y) = (p(x)C p(%))) and idempotent
(i. e. p = pop that is VaeL, p(@) = p(p(x))).

1.5. An upper preclosure operator p on L is monotone, idempotent
and sai.i.sﬁeg the upper connectivity aziom (vreL, p(zlIp(z)) = p(w)).
The dual notion is the one of lower preclosure operator (Ladegaillerie, [6,
Def. 1]).

1.6. A quasi-closure operator p on L is monotone, comparing
(i. e. VxeL, either xCp(x) or o(x)Cw) and satisfies the connectivity
axtom (VzeL, p(@[p(x)) = elallp(z)), Bernard[1, p. 6]). Notice that
monotony and connectivity axiom imply (VzeL, p(z) = p(a[Tp(@)) =
= p(xLlp(x))) and using the comparing hypothesis this in turn
implies idempotence.

1.7. An upper closure operator p on L is monotone, idempotent
and extensive (i.e. hx.zCp), (Moore[9]). Dually a lower closure
operator poe(L— L) is monotone, idempotent and reductive (ie.
o L hz.z).
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1.8. Let p be an upper closure operator on L(C,L, T,Ll,)
For all wel, the set {yep(L) :wyy is not empty and p(x) is its least
element (Monteiro & Ribeiro[8, Th. 5.2]).

1.9. Let R =L and pe(l — R) be such that for any €L,
p(z) is the least element of the set {yeR:x[y} then p is an upper
closure operator and R = p(L), (Monteiro & Ribeiro[3, Th. 5.3]).

1.10. Let p be an upper closure operator on L, then the
image p(L) of L by p is a complete lattice p(L)(C,p(L), T,AS.p(LIS),MM)
which is a complete sublattice of L if and only if p is a complete
join-morphism, (Ward[14, Th. 4.1]).

1.11. Applying the duality principle it follows that if R = L
and p, oe(li— L) are sach that for any wxel, p(x) is the least
element of the set {yeR:x C y} and p(x) is the greatest element of
the set {yeR :y C ) then R = p(L) = (L) is a complete sublattice
R(C,L, T, LJ,) of L. whereas p is a complete join-morphism
and p is a complete meet-morphism.

1.12. Let p, and p, be upper closure operators on L. Then
according to Ore[12, p. 525], p;oP, and p.ep, are upper closure operators
on L if and only if p, and p, are commuting (i. e. pyops = Peopy) I
which case pypy(L) = Paopa(L) = pa(L) M Pa(L).

1.13. Let L(C, L, T,L1, 1) be a complete lattice, p. the smallest
ordinal such that the class {3:3ep} has a cardinality greater than
the cardinality of L and fe(L. — L). The upper iteration sequence for f
starting with deL is the p-termed sequence < X°, dep.> of elements
of L defined by transfinite recursion in the following way:

—Xt=d

— X?® = f(X?%-Y) for every successor ordinal dep

— X% = || X* for every limit ordinal dep
a8

(The dual lower iteration sequence is defined by:
— X® = 1 X~ for every limit ordinal 3ey)
a8

1.14. We say that the sequence < X° dep> is stationary if
and only if (Jecep:(YRey, (e < B) = (X = XP))) in which case the
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limit of the sequence is X°. We denote by luis (f)(d) the lLimit of
a stationary upper iteration sequence for f starting with d (dually
liis (f)(d)).

1.15. Let f be a monotone operator on L(CC, L, T,LJ,[). The
sets of prefived _poini? fized poinis and postfized points of [ are
respectively prefp(f) = {w €L C f(2)}, [p(f) = {w €Lz = f(x)}, postfp(f)

= {weL:f(z) C z}.

1.16. The set of postfixed points of a monotone operator f on
a complete lattice L(LC, L, T,LJ, 1) is a complete lattice postfp(f)
L, ifp(), T, S.lurs(hz.z1f(2))(LIS),l1) which is the image of L
by the upper closure operator Ad.luis(Az.z||f(2))(d). The least fized
point of fis ifp(f) = luis(f)(L), (Cousot & Cousot[4, Th. 4.2]).

1.17. Let f be a monotone operator on the complete lattice
LOC, L, 7,1, ). Then ax.luis(hy.ylIf(y))(@) = Ax.lais(xy.xLIf(y))(x)
= M.lfp(hy.x | 1f(y)) is an upper closure operator on L greater than
or equal to I, (Cousot & Cousot[4,Th.4.1. & 4.2]).

1.18. Cousot & Cousot[4,Th.5.1]s constructive version of
Tarski[13,Th.1]’s lattice theoretical fixed point theorem states that
the set fp(f) of fixed points of the monotone 0perator f on
L(C, L, T,0LU,M) is a complete lattice fp(f)(C, luis(f) (L), dis(f)(T
AS.lurs(f) (LIS), 2S.Uis(f) (T1S)).  fp(f) is the image of L by the upper
preclosure operator llis(f)eluis(rz.z| |f(z)) and the image of L by the
lower preclosure operator luis(f)ollis(Az.z[f(z)). Moreover luis(f)ollis
(rz.z[11(z)) C Uis(f)oluis(hz.z| | (z)).

1.19. Let F and F be monotone operators on L(, L, T, LI, )
such that FCF and EDEE_F:)F. Then the set fp(F,F) = {zeli:x=
=F_(1r)=f(:z:)} of common fixed points of F and F is a non-
-empty complete lattice fp(f‘,F)(E, Zuis(ﬁ)( L), Uis(F)(T), AS.luis
(F)(LIS), 2S.Uis(F )(I18)) which is the image of L by the lower
preclosure operator qus(F) llis(hz.z[1 F(z)) and the image of L by
the upper preclosure operator lis(F)eluis()z. zl_l]*( z)). Moreover
Euz.s(F) Uis (\z.z [ F (z)) C lis(F)e luis(\z.z| | F (z)), (Cousot & Cousot
[4, Th. 6.1]).
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2. The lattice of all monotone operators on a complete lattice

DeriniTion 2.0 M Me((L - L) = (L — L))

M = .0 LI{f():(y€L) and (y C 2)})
M = Af.(0.l1{f(y):(yeL) and (xCy)))

Turorem 2.2. If fe(L - L) then ﬁ(f) ts the least monolone
operator on L greater than or equal to [ and M(f) is the greatest
monotone operator on L less than or equal to f.

Proor: Let a, beL be such that ¢ C b. For all yeL, (y Ca)
implies (y[Cd) so that |I{f(y):yCa} C L{f(y):y Cb} proving that
M(f)(a) I: ﬁ(f)(b). Since [ is reflexive, Va el we have f(a) C LI {f(y):
yC a) = M(f)(a) that is fC M(f) proving that Vfe(L —L), M(f) is
a monotone operator on L greater than or equal to f.

Let ¢ be a monotone operator on L gredter than or equal to f.
For all yel, f(y) Eg(y) so that vaeL, M(f)(a = L{f(y):y C a}C
Li{e):y T a} T Ltg):e) Cela)} = gla) provmg that M(f) is
the least monotone nperator on L greater than or equal to f.

By duality, M(f) is the greatest monotone opeartor on L less
than or equal to f. End of proof.

From 2.2 and 1.11 we get:

CoRrOLLARY 2.3 M is an upper closure operator on (L — L)
which is a complete join-morphism and M is a lower closure operator
n (L — L) which ts a complete meet-morphism.

The set of all monotone operators on the complete lattice Li is a
complete sublattice M (L—L)= M(L—>L)(I: L, 7,L, 1) of (L—L)
(’: J—; T, L, I_[}

3. The lattice of all extensive operators on a complete lattice

DeriviTiON 3.1 E,E e((L = L) - (L — 1))

— M@ (zLUf(%)))
E = M.(.(a[f(@)))
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-Lemma 3.2 If fe(L— L) then E(f} is the least extensive operator
on L greater than or equal to f. B is a complete join-morphism.

CoroLLARY 3.3 E is an upper closure operator on (L — L).
The set of all extensive operators on the complete lattice L is a complete

sublattice E(L — L)(C .2, T,L1, M), of (L — L).

Levma 3.4
— MoE = EoM is an upper closure operator on (L — L)

—ML%-L)QE(L%-L) - Mo E(L—:»L)—LGM(L—.»L) is a
complete sublattice (C .z, T,L1,M) of (L — L).

Proor: Since [ is reflexive, for _any fe(Li->L) and zeL we

have @ C LI {yLIf(y):yCx} so that M(E(f))(x) = Ly Lif(y):yC &) =
=zl (UL i) yCa) = U{:vLJJufU )y ap =L L j(y):

yCay =zl (LU{f(y): yC a}) = EM(f))(z). Therefore M and E are
commuting and the lemma l‘c)llows from 1.12 and 1.10. End of proof.

4. The lattice of all upper closure operators on a complete lattice

LemMa 41 Let F be the operator on (M(L — L) N E(L — L))
defined by hg.geg. Then
1 —TF is monotone

2 — fp(F) = posifp(F)

Proor: 1. If fC g then feM(L — L) implies F(f) = fof C fog.
Also fog [ gog = F(g) proving that F is monotone.

2. Let fbe a postfixed point of F then fof C f. Since fe E(L—L)
we have 2z.z [ f so that feM(L — L) implies f fof. By antisym-
metry fof = f. End of proof.

DerINITION 4.2

I€((M(L — L) N E(L - L)) - (M(L - L) N E(L — L)))
1 = 2f.luis (rg.geg) (f) = M.luis (rg.¢ LI g=¢) f)

Ce(ll = L)) =T~ ))

C = IoMoE = ToEoM
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Ward[14,Th.4.2]'s theorem states that the set I' of all upper
closure operators on a complete lattice L(C, L, T,Ll, M) is a
complete lattice T'( C, Ax.z, TAS. M {nel«(veeS,e C )}, M). We
give now a constructive version of this theorem:

TrEOREM 4.3

1 — C(L — L) (C, a2, T,2S.luis (hg.gog) (LI S), 1) is the complete
lattice of all uper closure operators on the complete lattice 1.

%—C is an upper closure operator on (L — L)

3 —Vvfe(l—L), E(f} is the least upper closure operator on L
greater than or egqual lo f.

Proor: According to definition 1.7 the set of all upper closure
operators on the complete lattice L(LC. L, T,LJ,) is the set of
elements of (M(LL — L) N E(L — L)) which are idempotent that is to
say which are fixed points of Ag.geg. In compliance with lemmas 4.1
and 3.4 2g.geg is a monotone operator on the complete lattice
(M(L — L) E(L — L)) (C,2.3, L,11,71) and fp (hg.geg) = postfp
(rg.geg). Therefore 1.16 implies that the set of all upper closure
operators on L is the complete lattice postfp(hg.gog) (L, luts(rg.g°g

(r&.3) = Az.w, T, AS.luis(hg.gog) (LUS), M) which is the mnageo of
M(L - L) N E(L - L) by the upper closure operator I that is
(lemma 3.4 and definition 4.2) I(M(L - L) N E(L — L)) = I-M-E
(L—=L) = Gl L). C is monotone and extensive since it is the
composition of upper closure operators. er (L — L), C(f) is exten-
give, monotone and Idempotent hence L(f = EOC{f) = Mo C(f)

= ToG( (f) = IeMo E<C(f) = CoC(f) proving that C is idempotent
whence an upper closure operator. Then 4.3.3 follows from 1.8.
End of proof.

COROLLARY 4.4

1 — C = M. (luis(EQ(F))))

2 — C = .Qw.lfp(y.2 LIM(F) (9)))

3 — G(L — L)(T .2, T,28.luis(LIS),r)

4 — C(L — L)(C @z, T,2S. 0a.lfp 0.z L1 (LIS) (), 1)

Proor: It follows from 1.17 that Vfe(L — L), luis(E E(M( (N =
= .lfp(y.z] M( (f)(y)) is an upper closure operator on L greater
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than or equal to ﬁ(f) whence according to theorem 2.2 greater than
or equal to f. Let peC(L — L) be such that fCp. Then E(ﬁ(f}
C E(M(p)) = p so that by monotony luis(E(M(f))) T luis(p). Moreover
luis(p) = p since p is idempotent proving that luis(E(M(f))) is the
least upper closure operator on L greater than or equal to f and
therefore G = 2f. (luis (E(V(f)))) = Af. (w.lfp Oz LI M(F) (3))), (L.17).

443 and 4.4.4 result from 1.10 remarking that whenever
Sic G~ L) then LIS is monotone and extensive (theorems 2.3
and 3.3) so that Iuis(E(I\TI(i_IS))) = luis(1JS) and Az.ifp(hy.xzl | M(LIS)
(%) = 2.dfp Oy.zLI(LIS)(y)). End of proof.

It should be noted that given a complete lattice L(C, L, T,LI,7)
and fe(L — L) there does not necessarily exists an upper closure
operater on L less than or equal to f. A counter-example is given
by L={Ll, 7} where L C L [ T C T and f defined by f(L) =
= T and f(7) = L. The upper closure operators on L are p, (such
that p;(L) = L and p,(T) = T) and p, (such that py(L) = p,(T) =
= T) and neither p, C f nor p, L /.

Monteiro [7], Iseki[5] and Morgado ([10, 11] have given several
characterizations of the upper closure operators on a partially ordered
set by means of a single axiom. Wé now formulate a characterization
of the upper closure operators on a complete lattice using only one
axiom:

CororLary 4.5 IfL(C,L, T,LI,1M) is a complete lattice and p is
an operator on L, then p is an upper closure operator on L if and
only if:

p =2z L{yLUp(p(y)): (yeL) and (yC )}

Proor: 1If p is a closure operator then it is monotone (so that
M(p) = p (2.2)), extensive (so that E(p) = p) and idempotent (so that

p = pep) therefore p = M(E(pp)) = Az LifyLIp(p(y)):(yeL) and (yCa)).
Reciprocally, if p is equal to the monotone operator M(E(p-p)) then
it is monotone. Also since M and E commute (3.4) p is equal to
the extensive operator E(M(pep)) whence it is extensive. Since pop
1s the composition of monotone and extensive operators it is monotone
and extensive and therefore p = M(E(pp)) = pop (3.2,2.2) proving
that p is idempotent whence an upper closure operator. End of proof.
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5. The lattice of all retractions on a complete lattice

DEeriNITION D.1

J e(M(L — L) - M(L > L))

M- (Uis(hg.gog)luis(hg.g L1 g°g) (f))
M- (luis(rg.gog)° Eizs(lg gMgeg)(f))

R, Re( ((L—1L) > (L~ L))

Il

el i
I H

| & \':”

=i [

I

Tueorem 5.2 The set of all retractions on a complete lattice
L(C,L, T,LI, 1) is a complete lattice R(L—»L)(E oo S TS
(hg. gog)(uS) AS. Hm(?\g gog)(I1S)) which is the image of (L — L) by the
retractions R and R such that Rz R.

vfe(l. — L), if ¢ is a retraction on L greater than or equal to (less

than or equal to) f, then ﬁ(f) (R(f)) is less than or equal lo (greater
than or equal to) p.

Proor: The set of all retractions on L is: the set of monotone
operators on L(i. e. elements of M(L'— L) = M(L — L)) which are
idempotent that is to say fixed points of Ag.geg. Let fheM L —L)
be such that f C k. Then k[ h so that feh [ keh and by monotony
fof C foh hence fof T hoh proving that Ag.geg is a monotone operator
on M(L —>1L). Consequently the set of all retractions on L is
fp(hg.gog) which according to 1.18 is a complete lattice fp(hg.g°g)
(T luis(hg-gog) (L) = L,llis(Ag.g2g) (T) = TAS. luis(hg.geog) (LIS), 2S.llis
(Ag-gog)(I18)) which is the image of M(L — L) by the tpper preclosure
operator J and the image of M(L —L) by the lower preclosure
operator J hence the image of (L —L) by R and R.

er (L — L), JeM( f)e\I (L — L) hence JoM = MeJoM (Th. 2.3.)
Also Mo c\I (f) is idempotent so that it is a fixed pomt of Ag.geg

and consequently a fixed point of J proving that JoMeJeM(f) =

— MoJoM(f).= - JoM(f). JoM is idempotent but also monotone since M
is a monotone operator on (L - L) and J a monotone operator on
M(L — L), hence R and by duality R are retractions on (L — L.

13
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Let fe(L - 1) and peR(L — L) be such that pCf Then
p= B( JER (f) since p is a retraction on L and R is monotone.

By duality if p is a retraction on L greater than or equal to /"

then R(f) is less than or equal to p. In general f and R(f) o
one hand and f and R(f) on the other hand are not cumparable.

However R(f) C R(f) (1.18). End of proof.

6. The lattice of all upper preclosure operators on a complete lattice

DEerINITION 6.1
AE( R(L'= Ly <> R(I2CT))

A = Mluis(hg.goE(g)) (f) = M.luis(rg.gllg-Elg)) (f)
p, Pe((L L) > (L > L))

P — AR

P = AR

Turorem 6.2 The set of all upper preclosure operators on a
complete lattice 1(C, L, 7,1U,MM) is a complete lattice P(L — L)
(T, L, T 2S.luis (rg.goE(g))oluis (Ag.gog) (LIS), 2S.1lis (hg.gog) (MS)) which
18 the image of (L — L) by the retractions P and P satisfying P P.

Vfe(L—L) if p is an upper preclosure operator on L. greater

than (less than) or equal to [ then P(f) (P(f)) is less than (greater than)
or equal to p.

Proor: The set of all upper preclosure operators on L is the
set of monotone and idempotent operators on L (i. e. elements e
of B(L — L) = R(L — L)) satisfying the upper connectivity axiom
(1. e. p = Ax.(p(x)p(z)))) that is to say which are fixed points of
F = g.(m.(g(zlg(v)))) = Ag.g°E(g). Let p be an element of R(L—L).
Then F(p) is monotone. Also F(p)oF(p) = Az.(p(zLlp(x)))h. (p(zLlp(x)))

= 2z plp(@ L p(x)) Ll plp(x LI p(2))) = plp(x L p())) = (2Ll p(z)) = F(p)
since p is idempotent_and proving that F(p) is idempotent. Therefore

F is an operator on f{(L—>L). Let ¢ and v be elements of E(L—>L)
such that p[C 1. Then E(p) C E(y) and by monotony F(p) = goE(p) C
E()C neE(n) = F(y) proving that F is a monotone operator on



CONSTRUCTIVE CHARACTERIZATION OF LATTICES 195

R(L —=1). VpeR(L—>1L) ¢ = F(p) implies F(p) C p. Reciprocally
if F(p) C p then iz.x T E(p) -implies by monotony p T poE(p) =

= F(p) and by antisymmetry ¢ = F(p) proving that fp(F) = postfp(F

It follows from 5.2 and 1.16 that the set of all upper preelosure
operators on L is a complete lattice postfp(F)(C,luts(F)(L)= L, T,
2S.luis (F)eluis (hg.geg) (LIS),AS.Uis (Ag.gog) (I1S)) which is the image of
R(L —-L) =R(L—L) by the upper closure operator A = Af.luis(F)
(f) hence the image of ((L. - L) by P and P.

P and P are monotone since R énd R are monotone and A
is an upper closure whence monotone operator on R(L — L) =
= R(L—=L). Also vfe(L —L), AoR(f) is monotone and idempotent

so that AeR(f) = ReAeR(f). AoR(f) satisfies the upper connectivity
axiom and therefore it is a fixed point of F and consequently a

fixed pom.u of A so that AeR(f) = A-AoR ()= AsReAoR(f) proving
that P is 1demp0tont The same way P is a retraction on (L — L).
Since R = R and A is monotone we have P= AOR C A-R=P.

vfe(L - L), let peP(L — L) be such that fCp. Then peR
(L —}L) and .)2 implies R(f)C p. Since p is closed under A we
have P(f) = A(R(f)) C A(p) = p. Similarly p C f implies p = A(p) C

[ A(H(f)) P(f). End of proof.

-

7. The lattice of all comparing operators on a complete lattice

DeriviTion 7.1

K, Ke((l— Ly — (I - L))

K= M. (if flx) T @ then f(x) else x| If(x)))
K — M-0a.(if o f(@) then f(z) else & [1f(x))

Lemuma 7.2 If fe( = L) then K{f} (respectively K(f)) is the least
(greatest) comparing operator on L greater than (less than) or equal to f.

CoroLLARY 7.3 K is an upper closure operator on (L — L),
K is a lower closure operator on (L. — L). The set of all comparing

operators on the complete laitice L. is a complete sublattice K(L > L) =
= K(L— L)(C,L, 7,L1,M) of (L — L).
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Lemma 7.4

— KoM is an upper-closure operator on (L — L)

— KeM is a lower closure operator on (L — L)

— (M(L - L) N K(L - L)) = (M(L - L) N K(L - L)) = KoM
(L —L) = KeM(L — L) is a complete sublaitice (C, L, T, LI, [7)
of (L — L).

Proor: KoM is monotone and extensive since it is the composition
of upper closure operators. Vfe(L — L), K(M(f)) is either equal to
M(f) or to Az.(xLIM(f)(z)) proving that K(M(f)) is monotone and

therefore equal to M(K(M(f))). Hence K(M( (f)) = I&(K ‘vI(f))

— K(M(KM (f)) proving that KoM is an upper closure operator
and by duality KoM is a lower closure operator on (L —L). Also
Koﬁ(f) (respectively KeM(f)) is the least (greatest) monotone and
comparing operator on L greater than (less than) or equal to f.
Hence according to 1.11, (M(L — L) N K(L — L)) — (ML—-L)NK
(L — 1)) is the complete sublattice KﬂM(L-—}L) KoM(L — L)
(C, L, 1,0, M) of (L - L). End of proof.

8. The lattice of all quasi-closure operators on a complete lattice

DeriniTION 8.1

B, Be(KeM(L — L) — KoM(L - L))
B = luis(rg.g°E(g))ellis (rg.g M g-E(g))
B = llis(g.g-B(g))eluis(rg.g LI g-Elg)

Q, Qe((L — L) — (L — L))
Q = B-K-M
6 — —DEOJ\'—{

Bernard [1,Th.V.II.1]’s theorem states that the set I' of all
quasi-closure operators on a complete lattice L(C, L, T,L1,[7) is a
complete lattice I'(C, L, T,28.(L1 E(S))e(LIE(S)), AS.(TTE(S))o(T1E(S)))
where (L, [7) and (LI, [7) respectively denote the union and inter-
section in the complete lattices of upper and lower closure operators
on L. We now give a constructive and simpler version of this
theorem:
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TaeoreM 8.2 The set of all quasi-closure operators on a complete
lattice L(C, L, T,L1,1) is a complete lattice Q(L —= T (E, L TAs,
luis()xg.gof (2)) (LUS), 2S.Ulis (rg.g°E (g)) (T1S)) which is the image of
(L— L) by the retractions Q and Q satisfying Q 6

vfe(L — L), if p is a quasi-closure operator on L greater than

(respectively Icss than) or equal to f then Q(f) (Q(f)) is less than
(greater than) or equal to p.

Proor: The quasi-closure operators on L are the monotone
and comparing operators on L (i. e. peﬁo;\ﬁf(L — L)) satisfying the
connectivity axiom p = Aw.p(x[Ne(x)) = ra.p(xlp(x)) that 15 the
elements of KeM(L — L) which are common fixed points of the
functionals F = Ag.goE(g) = Ag-(x.(g(alMg(x)))) and F = 2g.goElg) =
= 2¢.0w-(gleLig(@))))-

Vceh sM(L — L), ¢ is monotone and so are F(p) and ‘1':‘"(9). Also

o is comparing so that given zeL either z[Cp(x) in which case

zCp(x) = p(aMp(x)) = Flp)(@) or p(x)Cz in which case F(p)x) =

— (=M (@) = plp(x)) and by monotony ple()) C p(#) C 2. Hence

F(g) is comparing proving that F (and by duality F) is an operator
on KoM(L — L).

F and F are monotone operators on KoM(L —~ L) and F C F
Let us show that FoF T FeoF that is Vee KoM(L — L), VaeL, F(F(p))(x
= pl(@ Ll (M p(@))) M ple L (2 M (2))) S pl((@ T ol Ll pl )))I_Ip(tl_lp(x
Lie()))) = F(F())(x). If aC p(@) then (zLlpxMex)) = e(x) and
(@Melzllp(x))) = « so that we must show that p(e(2) e(e(x () C
T e(aMe(w)) which is true since (p(x)Mp(p(x))) = p(@) and (zLle(x ) =
= o(x). Else p(x) C « and then (x| lp(xMp(x))) = @ and (z e (2| _lp(x)))
= o(z) so that we must show that g(zMe(x)) C ele(x) Lip(p(2))) which
is true since (ze(x)) = p(«) and (p(z) Lip(p())) = p(%). Applying 1.19
and using 7.4 we see that the set fp(F,F) of common fixed points
of F and F is a complete lattice fp( (F,F)(C, luis(F) (L) = L, Uis
(F)(T) = T,Ab.lms(l")(u@) AS.Uis(F)(r1S)) which 1s the image of
Koﬁ(L — L) = KoM(L — L) by the lower preclosure operator B and
the upper preclosure operator B satisfying B[ B hence the image
of (L = L) by Q and Q.
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Since M C M, LI, K, B B and K, B are monotone we
have Q CC Q. Q and Q are ccomposition of monotone operators and
therefore monotone. Also Q (and dually Q) is Jdempotent since
Vfe.(L — L), Qf) is monotone (hence MoQ = Qf)), comparing

(hence KoQ(f) = Q[ and satisfies the connectivity axiom (hence
i1s a common fixed point of F and F therefore fixed point of B)
s0 that BoKoMo Q(f) = - Q(f).

Vie(l.— L), ¥peQ(L — L), if £ T p then Q(f) C C Qlp) = p and
if o f then p = Qo) C Q(f). End of proof.
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