
Temporal Abstract Interpretation

Patrick COUSOT

Département d’informatique
École normale supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

and Radhia COUSOT

Laboratoire d’informatique
École polytechnique

91128 Palaiseau cedex, France
rcousot@lix.polytechnique.fr

Abstract

We study the abstract interpretation of temporal calculi and logics
in a general syntax, semantics and abstraction independent setting.
This is applied to the xµ� -calculus, a generalization of the µ-calculus
with new reversal and abstraction modalities as well as a new time-
symmetric trace-based semantics. The more classical set-based se-
mantics is shown to be an abstract interpretation of the trace-based
semantics which leads to the understanding of model-checking and
its application to data-flow analysis as incomplete temporal abstract
interpretations. Soundness and incompleteness of the abstractions
are discussed. The sources of incompleteness, even for finite sys-
tems, are pointed out, which leads to the identification of relatively
complete sublogics, à la CTL.

1. Introduction

We apply abstract interpretation to temporal calculi and logics. We
consider new calculi/logics which, on one hand, are time-symmetric
thanks to a “reversal” temporal operator designed to provide a fully
symmetric, hence simpler, treatment of past and future and, on the
other hand, mix linear and branching time thanks to state closure
modalities. We interpret temporal formulae as sets of infinitary
time-symmetric traces discussed in Section 3. This is used in Sec-
tion 4 to define the trace-based semantics of programs generated
by a transition system and in Section 5 to provide the trace-based
semantics of thexµ� -calculus and its various subcalculi/logics. Rudi-
ments of abstract interpretation are recalled in Section 6 and used
in Section 7 to characterize useful properties of trace-based models
such as origin, forward, backward and state closeness. The com-
positional, generic, syntax, semantics and abstraction independent
abstract interpretation of general fixpoint definitions (hence of tem-
poral calculi/logics) is developed in Section 8. Sufficient soundness
and completeness hypotheses are stated and corresponding correct-
ness theorems proved. This is used in Section 9 to show that the
conventional set-based semantics of temporal calculi/logics with
respect to a given transition system is an abstract interpretation of
the trace-based semantics, which, in the case of the propositional
µ-calculus is complete. However this completeness result does not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
POPL 2000 Boston MA USA
Copyright ACM 2000-1-58113-125-9/00/1…$5.00

hold in general, in particular when considering the universal and ex-
istential abstractions introduced in Section 10. These abstractions
are used in Section 11 to show that model checking is an abstract in-
terpretation of the trace-based semantics of temporal calculi/logics
(which, in the case of abstract model checking, is composed with
state-based abstractions, as shown in Section 14). These checking
abstractions are in general incomplete, even for finite systems, so
that the sources of incompleteness are pointed out in Section 12.
Complete sub-calculi/logics generalizing CTL are identified in Sec-
tion 13 for which the respective reasonings on sets of traces and sets
of states are equivalent, whereas in general we have a sound approx-
imation only. Application to dataflow analysis and the calculation
design of the boolean flow equations by abstract interpretation of
the temporal specification is discussed in Section 15, in particular
to correct an erroneous claim that classical live variable analysis is
unsound. Finally a few research perspectives following from the
understanding of model checking as abstract interpretation are dis-
cussed the conclusive Section 16.

2. Notations

Set theory. {x ∈ S | P(x)} is the subset of elements of S
satisfying condition P. S is omitted when clear from P. The

characteristic function P maps S into the set B
�= {tt, ff} of true

“tt” and false “ff” booleans.
�= is the symbol for “is defined as”.

The conditional is ((tt ? x ¿ y))
�= x and ((ff ? x ¿ y))

�= y.

A× B
�= {〈x, y〉 | x ∈ A∧ y ∈ B} is the cartesian product of A by

B. A
→ B is the set of maps of A into B. ℘(A) is the powerset of A,
that is the set of all subsets of the set A, including the empty set∅. For
a relation t ∈ ℘(A × B), we indifferently write 〈s, s′〉 ∈ t , t (s, s′)
or s

t−→ s′. The inverse of t is t−1 �= {〈s, s′〉 | 〈s′, s〉 ∈ t}. Using
Church’s lambda notation λ x ·e, we write f or f [•] for λ x · f (x)

and f � g
�= λ x · f (g(x)). The identity map is 1 �= λ x ·x . We let

N and Z be respectively the set of naturals and integers. O is the
class of ordinals. For a sequence σ ∈ N
→ S, σ ∈ Z
→ S or a
transfinite one σ ∈ O
→ S, we write σi for σ(i).

Order theory. A poset 〈L,�〉 is a set equipped with a reflex-
ive, antisymmetric and transitive relation �. The dual of a state-
ment on this poset is the statement obtained by replacing � by its
dual (or inverse) �. A poset is a lattice 〈L,�, �, �〉 if and only
if (iff) every finite subset S ⊆ L has a least upper bound (lub) �S
and a greatest lower bound (glb) �S. A poset is a complete lat-
tice 〈L,�,⊥,�,⊔,

�〉 iff every subset S ⊆ L has a least upper
bound (lub)

⊔
S so that ⊥ = ⊔ ∅ is the infimum, � = ⊔

L is
the supremum and the greatest lower bound

�
S = ⊔{x ∈ L |

12

∃y ∈ S : x � y} is well-defined. An increasing chain of L is
x ∈ O
→ L such that ∀β, η ∈ O : (β < η) ⇒ (xβ � xη).
A complete partial order (cpo) is a poset 〈L,�,⊥, �〉 with infi-
mum ⊥ such that any chain C of L has a lub �C . A complete
boolean lattice 〈L,�,⊥,�, �, �, ¬〉 is a complemented complete
lattice. The complement ¬x of x ∈ L such that x � ¬x = ⊥ and
x � ¬x = � satisfies ¬¬x = x . A complete boolean algebra is
a completely distributive complete boolean lattice. An example of
complete boolean algebra is the powerset 〈℘(S),⊆, ∅, S, ∪, ∩, ¬〉
of a set S. If S is a set and 〈L,�〉 is a poset (resp. cpo, complete
lattice, complete boolean algebra) 〈S
→ L, �̇〉 is a poset (resp. cpo,
complete lattice, complete boolean algebra) for the pointwise order-
ing f �̇ g ⇔ ∀x ∈ S : f (x) � g(x).

Maps. A map f is strict (written f ∈ 〈L,�〉 ⊥
→ 〈M, #〉)
if it preserves the infimum: if ⊥ is the �-infimum of L (it is
unique whenever it exists) then f (⊥) is the #-infimum of M . The

dual notion of co-strictness is written f ∈ 〈L,�〉 �
→ 〈M, #〉.
A map f is monotone (written f ∈ 〈L,�〉 mon
−→ 〈M, #〉) iff
∀x, y ∈ L : x � y ⇒ f (x) # f (y) and antitone iff ∀x, y ∈
L : x � y ⇒ f (x) $ f (y). Monotony is self-dual. A map is con-
tinuous (written f ∈ 〈L,�〉 con
−→ 〈M, #〉) iff it preserves existing
lubs of increasing chains (i.e. if the increasing chain x ∈ O
→ L has
a lub

⊔
β∈O xβ then { f (xβ) | β ∈ O} does have a lub

∨
β∈O f (xi)

such that f (
⊔
β∈O xβ) =

∨
β∈O f (xβ)). The dual notion is that

of co-continuity (written f ∈ 〈L,�〉 co-con
−→ 〈M, #〉). A map is a
complete join morphism (written f ∈ 〈L,�〉 �
→ 〈M, #〉) iff it pre-
serves existing lubs of any set X ⊆ L : if

⊔
X exists then f (

⊔
X)

=
∨

f (X) is the lub of f (X)
�= { f (x) | x ∈ X}. The dual notion

of complete meet morphism is written f ∈ 〈L,�〉 �
→ 〈M, #〉. A
complete join morphism is continuous which implies monotony. If
the infimum exists (in which case ⊥ = ⊔ ∅) then a complete join
morphism is strict. A topological upper closure operator f on a
lattice L is a join morphism (∀x, y ∈ L : f (x � y) = f (x) � f (y),
whence monotone), extensive (∀x ∈ L : x � f (x)) and idempotent
(∀x ∈ L : f (f (x)) = f (x)).

Fixpoints. Monotone operators f ∈ 〈L,�〉 mon
−→ 〈L,#〉 on cpos
〈L,�,⊥, �〉 (resp. complete lattices 〈L,�,⊥,�, �, �〉) have a

least fixpoint lfp
�

f (resp. and a greatest fixpoint gfp
�

f). By

order-theoretic duality, lfp
�

f = gfp
�

f and gfp
�

f = lfp
�

f . If

f ∈ 〈L,�〉 con
−→ 〈L,�〉 then lfp
�

f =
⋃

n∈N f n(⊥) where
f n+1 = f � f n and f 0 = 1.

3. Time-symmetric trace-based temporal models

The semantics of a language L (either a programming language or a
specification language such as a temporal calculus/logic) assigns a
temporal model �π� to each program/formulaπ ofL. �•�∈L
→ M
where M is the semantic domain. We describe below the temporal
model semantic domain M .

3.1 Temporal models

Informally, temporal models are sets of traces that is computation
paths considered at a certain time. We need sets because of possible
indeterminism. The discrete time is chosen in Z. Traces 〈i, σ 〉
record the present time i ∈ Zas well as a computation path σ . This
computation path σ ∈ Z
→ S records the past states σj at all past
times j < i , the present state σi and the future states σj at all future

times j > i of the computation. So a path is infinite both in the past
and in the future (as opposed to the conventional asymmetric finite
past and infinite future [20]). Traditionally, a terminating execution
has a final state which is repeated forever. Similarly, a starting
execution has an initial state which is repeated forever in the past.
The set of states is assumed to be given. Formally, we let:

S : states P
�= Z
→ S paths

T
�= Z× P traces M

�= ℘(T) temporal models

3.2 Basic temporal models

Given a set S ∈ ℘(S) of states, the S-state model σ{|S|} is the set of
traces the present state of which is in S:

σ{|S|} �= {〈i, σ 〉 ∈ T | σi ∈ S} S-state model (1)

Given a transition relation t ∈ ℘(S× S), the t -transition model
π{|t |} is the set of traces for which the next step is a transition t :

π{|t |} �= {〈i, σ 〉 ∈ T | σi
t−→ σi+1}.In general, t is chosen to be

total that is ∀s ∈ S : ∃s′ ∈ S : t (s, s′) ∧ ∀s′ ∈ S : ∃s ∈ S : t (s, s′).
Otherwise we define the initial state transitions xt

�= {〈s′, s′〉 | ∀s ∈
S : ¬t (s, s′)}, the final state transitions ty

�= {〈s, s〉 | ∀s′ ∈ S :
¬t (s, s′)} and consider the total transition relation xt ∪ t ∪ ty instead
of the partial t .

3.3 Basic temporal model transformers

Temporal model transformers T ∈ M
→ M map models to mod-
els. Monotone transformers T ∈ M mon
−→ M are used in fixpoint
definitions.

Predecessor transformer. The predecessor ⊕{|M|} of a model
M is M considered at the previous time:

⊕{|M|} �= {〈i − 1, σ 〉 ∈ T | 〈i, σ 〉 ∈ M} predecessor of M

= {〈i, σ 〉 ∈ T | 〈i + 1, σ 〉 ∈ M} (2)

⊕{|•|} is⊆-monotone. The intuition is that a trace 〈i, σ 〉 of the pre-
decessor⊕{|M|} of model M will, at next time, be a trace 〈i + 1, σ 〉
of M .

Reversal transformer. The path reversal σx
�= λ j ·σ− j and

the trace reversal 〈i, σ 〉x �= 〈−i, σx〉 exchange past and future
with respect to the time origin (not with respect to the present time).
The model reversal is:

x{|M|} �= {〈i, σ 〉x | 〈i, σ 〉 ∈ M} model reversal of M (3)
x{|•|} is ⊆-monotone. Reversal is useful to formalize time-
symmetric arguments (e.g. as in [9] that backward program analysis
is the reversal of forward program analysis) by considering only the
unique reversal operator whereas the argument would have to be re-
peated for all backward modalities with time-asymmetric temporal
models.

State closure transformers. The universal (respectively
existential) temporal model state closure ∀{|M1,M2|} (resp.
∃{|M1,M2|}) is the set of traces 〈i, σ 〉 of M1 for which all (resp.
some) trace in M1 with the same present state σi belongs to M2.
This generalizes the ∀ and ∃ temporal operators of CTL� [2, 3, 14].
We formally define the state projection •↓• ∈ M × S
→ M as:

M↓s
�= {〈i, σ 〉 ∈ M | σi = s} state projection (4)

13

so that the state closure transformers are:

∀{|M1,M2|} �= {〈i, σ 〉 ∈ M1 | M1↓σi
⊆ M2} universal (5)

∃{|M1,M2|} �= {〈i, σ 〉 ∈ M1 | (M1↓σi ∩ M2) (= ∅} existential

These transformers are dual in that ∀{|M1, M2|} = ¬ ∃{|M1,¬M2|}
and ∃{|M1,M2|} = ¬∀{|M1,¬M2|}. ∀{|M1,M2|} and ∃{|M1,M2|}
are both ⊆-monotone in M2.

Union, intersection and complement transformers. The
union and intersection of models are monotone while the comple-
ment is antitone (i.e. M1 ⊆ M2 ⇒ ¬{|M1|} ⊇ ¬{|M2|}):
∪{|M1,M2|} �= {〈i, σ 〉 | (〈i, σ 〉 ∈ M1) ∨ (〈i, σ 〉 ∈ M2)} union

¬{|M|} �= {〈i, σ 〉 | 〈i, σ 〉 (∈ M} complement (6)

∩{|M1,M2|} �= ¬{|∪{|¬{|M1|},¬{|M2|}|}|} intersection

3.4 Temporal model fixpoint definition

Temporal models can be defined as the least fixpoint lfp
⊆

T (resp.

greatest fixpoint gfp
⊆

T) of⊆-monotone temporal model transform-
ers T ∈ M mon
−→ M .

3.5 Derived temporal model transformers

The classical past and future modal operators of [20] can all be
defined in terms of the basic models and transformer fixpoints (in-
cluding the new state abstraction and reversal transformers), but
with a different trace-based semantics. For example, the successor
+{|M|} of a model M is M considered at the next time:

+{|M|} �= x{|⊕{|x{|M|}|}|} = {〈i + 1, σ 〉 ∈ T | 〈i, σ 〉 ∈ M}
= {〈i, σ 〉 ∈ T | 〈i − 1, σ 〉 ∈ M} successor of M (7)

(this definition would not hold for time-asymmetric temporal models
[20]).

⊎{|M1,M2|} is the model such that, while future time passes
away, all traces are in M1 until they are in M2:

⊎{|M1, M2|} �= lfp
⊆
λ X · ∪{|M2,∩{|M1,⊕{|X |}|}|} until

= {〈i, σ 〉 ∈ T | ∃k ≥ i : 〈k, σ 〉 ∈ M2 ∧∀ j : i ≤ j < k : 〈 j , σ 〉 ∈ M1}

Its time-symmetric version “since” is −
⋃{|M1,M2|} �=

x{|⊎{|x{|M1|},x{|M2|}|}|}. We define the following model
transformers:

+♦{|M|} �= ⊎{|T,M |} sometime

+�{|M|} �= ¬{| +♦{|¬{|M|}|}|} always

−�{|M|} �= x{| +�{|x{|M|}|}|} has always been

= gfp
⊆
λ X · ∩{|M,+{|X |}|} (8)

±�{|M|} �= ∩{| +�{|M|}, −�{|M|}|} ever (9)

4. Program semantics

Following [9], we assume that the program semantics is given by a
transition system 〈S, τ 〉 where S is a set of states and the transition
relation τ ∈ ℘(S× S) is described e.g. by a small-step operational
semantics.

Hypothesis (10) [total transition system] 〈S, τ 〉 is a total
transition system.
Definition (11) [model generated by the transition system]
The temporal model Mτ generated by the program/transition
system 〈S, τ 〉 is:

Mτ
�= ±�{|π{|τ |}|} = {〈i, σ 〉 ∈ T | ∀k ∈ Z : σk

τ−→ σk+1}
Lemma (12) [totality of the model] Mτ is total i.e. ∀s ∈ S :
Mτ ↓s (= ∅.

5. The syntax and semantics of modal calculi and logics

We consider various generalizations of classical modal calculi and
logics, with a different trace-based semantics and including new
modalities such as state abstraction and reversal.

The reversible xµ� -calculus is inspired from Kozen’s [18] µ-
calculus. Assume that X is an infinite set of variables. An envi-
ronment ρ ∈ E �= X
→ M assigns a model ρ(X) to free variables
X ∈ Xof a temporal formula. The substitution ρ[X := x] is ρ′ such
that ρ′(X) = x and ρ′(Y) = ρ(Y) when Y (= X . The semantics
�ϕ� ∈ E
→ M of formula ϕ of the xµ� -calculus maps environments
to the model described by that formula ϕ. The semantics is partially
defined by structural induction on ϕ:

Definition (13) [semantics of the xµ� -calculus]

ϕ ::= σS S ∈ ℘(S) �σS�ρ �= σ{|S|}
| πt t ∈ ℘(S× S) �πt �ρ �= π{|t |}
| ⊕ϕ1 �⊕ϕ1�ρ �= ⊕{|�ϕ1�ρ|}
| ϕ1

x �ϕ1
x�ρ �= x{|�ϕ1�ρ|}

| ϕ1 ∨ ϕ2 �ϕ1 ∨ ϕ2�ρ �= ∪{|�ϕ1�ρ, �ϕ2�ρ|}
| ¬ϕ1 �¬ϕ1�ρ �= ¬{|�ϕ1�ρ|}
| X X ∈ X �X�ρ �= ρ(X)

| µ X · ϕ1 �µ X · ϕ1�ρ �= lfp
⊆
λ x ·�ϕ1�ρ[X := x]

| ν X · ϕ1 �ν X · ϕ1�ρ �= gfp
⊆
λ x ·�ϕ1�ρ[X := x]

| ∀ϕ1 : ϕ2 �∀ϕ1 : ϕ2�ρ �= ∀{|�ϕ1�ρ, �ϕ2�ρ|}
σS is a shorthand for atomic propositions p found in Kripke struc-
tures together with the mapping L taking each proposition to some
subset ofS (the states where the proposition is true) in that S = L(p).

Missing operators are abbreviations (such as e.g. ∃ϕ1 : ϕ2
�=

¬(∀ϕ1 : (¬ ϕ2)), ϕ1 ∧ ϕ2
�= ¬(¬ ϕ1 ∨ ¬ϕ2), etc). We write

ϕ1 ≡ ϕ2
�= ∀ρ ∈ E : �ϕ1�ρ = �ϕ2�ρ for semantic equivalence.

The reversible
x

CTL� temporal logic is inspired from CTL� [2,
3, 14]. It includes the reversal operator and the semantics �ϕ� ∈ M
ofϕ ∈ x

CTL� is that �ϕ�∅ of thexµ� -calculus in the empty environment

∅. (The “until” modal operator is ϕ1 Uϕ2
�= µ X · ϕ2 ∨ (ϕ1 ∧⊕ X)

where X (∈ FV(ϕ1) ∪ FV(ϕ2)):

ϕ ::= σS | πt | ⊕ϕ1 | ϕ1
x | ϕ1 ∨ ϕ2 | ¬ ϕ1 | ϕ1 U ϕ2 | ∀ϕ1

The universal state closure ∀ϕ1 is with respect to a transition system

〈S, τ 〉 which, as in the case of CTL�, is left implicit. So ∀ϕ1
�=

∀ ±� (πτ) : ϕ1. CTL�+ is the forward
x

CTL�, that is without the

14

reversal operator. The backward CTL�− is
x

CTL� without the reversal
operator and the primitive operators πt , ⊕ and U replaced by their

respective time-symmetric versions π t−1 ,+ and S (such that+ ϕ1
�=

(⊕ϕ1
x)x and ϕ1 Sϕ2

�= (ϕ1
x Uϕ2

x)x). The forward/backward
terminology will be justified in Section 7.

The reversible
x

CTL temporal logic is inspired from CTL [2,

3, 14]. It semantics is that of
x

CTL� but the syntax is restricted as

follows (the “unless” modality is ϕ1 V ϕ2
�= ν X · ϕ2 ∨ (ϕ1 ∧⊕ X)

where X (∈ FV(ϕ1) ∪ FV(ϕ2)):

ψ ::= σS | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ1 | ∀ϕ | ∃ϕ state formulae

ϕ ::= ψ | πt | ⊕ψ | ψ1 U ψ2 | ψ1 V ψ2 | ϕ1
x path formulae

x∀CTL (respectively
x∃CTL) is

x

CTL without ∀ (resp. ∃) operator. The

forward logics CTL+ , ∀CTL+ and ∃CTL+ are
x

CTL,
x∀CTL and

x∃CTL
without the reversal operator. The corresponding backward logics
are respectively CTL− , ∀CTL− and ∃CTL− .

6. Rudiments of abstract interpretation

We introduce abstract interpretation [8, 9] very briefly. We use the
Galois connection-based presentation (but closure operators, Moore
families, etc. would be equivalent formalizations [9]). A pair of
maps α ∈ M
→ L and γ ∈ L
→ M between the posets 〈M, #〉
and 〈L,�〉 is a Galois connection iff:

∀x ∈ M, y ∈ L : α(x) � y ⇔ x # γ (y).
This is denoted 〈M, #〉 −−→←−−

α

γ 〈L,�〉. α is called the abstraction
and γ the concretization. This definition is equivalent to the four
conditions (a) α is monotone, (b) γ is monotone, (c) 1 #̇ γ � α and
(d) α �γ �̇ 1. We have α �γ �α = α and γ �α �γ = γ . If M has an
infimum 0 then α(0) is the infimum of L (since ∀x ∈ M : 0 # γ (x)
soα(0) � x) and if L has a supremum� then γ (T) is the supremum
of M (again ∀x ∈ M : α(x) � � so x # γ (�)). This also
follows from the fact thatα preserves existing lubs while γ preserves

existing glbs. The composition of Galois connections 〈M, #〉−−−→←−−−
α1

γ1

〈L,�〉 and 〈L,�〉 −−−→←−−−
α2

γ2 〈N, ≤〉 is a Galois connection 〈M, #〉
−−−−−→←−−−−−
α2�α1

γ1�γ2 〈N, ≤〉.
We write 〈M, #〉 −−→−→←−−−

α

γ 〈L,�〉 when α is surjective (or equiv-

alently γ is injective or α�γ = 1), 〈M, #〉 −−−→←←−−−
α

γ 〈L,�〉when α is

injective (or γ is surjective or γ �α = 1) and 〈M,#〉 −−→−→←←−−−
α

γ 〈L,�〉
when α is bijective. If α is surjective and M has a supremum 1 then
α(1) is the supremum of L (since ∀y ∈ L : ∃x ∈ M : α(x) = y so
x # 1 implies by monotony that y = α(x) � α(1).

If S is a set and 〈M,#〉 −−→←−−
α

γ 〈L,�〉 then 〈S
→ M, #̇〉 −−→←−−
α̇

γ̇

〈S
→ L, �̇〉 where α̇(f)
�= α � f and γ̇ (g) = γ � g. We also have

〈(S
→ M)
mon
−→ M, 11#〉 −−−→←−−−

11α
11γ 〈(S
→ L)

mon
−→ L, 11�〉 with f 11≤
g
�= ∀x : f (x) ≤ g(x), 11α(F) �= α � F � γ̇ and 11γ (G) = γ � G � α̇.

Moreover if α is surjective then so are α̇ and 11α.
If 〈L,#, 0, 1, ∨, ∧, ¬〉 and 〈M,�,⊥,�, �, �, ¬〉 are com-

plete boolean algebras and f ∈ L
→ M then we define the

left complement q f
�= λ x ·¬ f (x), the right complement f q

�=
λ x · f (¬x) and the dual f̃

�= q f q = λ M ·¬ f (¬M) of f . If

〈L,#〉 −−→←−−
α

γ 〈M,�〉 then 〈L,$〉 −−−→←−−−
αq

qγ 〈M,�〉 is the right com-

plement Galois connection, 〈L,#〉 −−−→←−−−
qα

γq 〈M,�〉 is the left com-

plement Galois connection, and 〈L,$〉 −−→←−−
α̃

γ̃ 〈M,�〉 is the dual

Galois connection (and similarly for Galois injections/surjections).

Fundamental results of abstract interpretation theory [6, 9] in-
clude fixpoint transfer and approximation theorems.
Proposition (14) [Least fixpoint image] If 〈M, #, 0, ∨〉 is

a cpo, the abstraction α ∈ 〈M, #〉 ⊥,con
−−→ 〈L,�〉 is strict and
continuous, F ∈ M

mon
−→ M and G ∈ L
mon
−→ L are monotone

and satisfy the α-commutation condition α � F = G � α then the

least fixpoints are well-defined such that α(lfp
#
F) = lfp

�
G.

In particular 〈M, #〉 −−→←−−
α

γ 〈L,�〉 implies α ∈ 〈M, #〉 ⊥,con
−−→
〈L,�〉 in which case Proposition (14) is directly applicable. For
the greatest fixpoint image, we use the dual of Proposition (14).

The same way, if 〈L,�,�, �〉 is a dual cpo and 〈M, #〉 −−→−→←−−−
α

γ

〈L,�〉 is a Galois surjection then 〈L,�〉 −−−→←←−−−
γ

α 〈M, $〉 so that

if F ∈ M
mon
−→ M and G ∈ L

mon
−→ L are monotone and satisfy
the γ -commutation condition F � γ = γ � G then, by the dual of

Proposition (14), the fixpoints are well-defined such that γ (lfp
�
G)

= lfp
$
F so α(gfp

#
F) = α � γ (gfp

�
G) = gfp

�
G since α � γ = 1.

The α- and γ -commutation conditions are independent, includ-
ing for Galois surjections.

Finally, if 〈M, #, 0, 1, ∨, ∧, ¬〉 and 〈L, �, ⊥, �, �, �,

¬〉 are complete boolean lattices and 〈M, #〉 −−→←−−
α

γ 〈L,�〉 then

〈M,$〉 −−→←−−
α̃

γ̃ 〈L,�〉 so that if F ∈ M
mon
−→ M and G ∈ L

mon
−→ L

are monotone and satisfy the dual commutation condition α̃ � F =
G � α̃ then, by the dual of Proposition (14), the greatest fixpoints are

well-defined such that α̃(gfp
#
F) = gfp

�
G

As a direct application of Proposition (14), consider a monotone
operator f ∈ L

mon
−→ L on a complete boolean lattice L . We have

〈L,�〉 −−→−→←←−−−
¬
¬ 〈L,�〉 and ¬ � f = f̃ � ¬ so that Proposition (14)

implies Park’s complement duality fixpoint theorem:

¬lfp
�

f = ¬gfp
�

f = lfp
�

f̃ .

The fixpoint reversal theorem also follows from the fixpoint transfer
Proposition (14) in the cpo 〈M , ⊆, ∅, ∪〉 for the Galois isomorphism

〈M , ⊆〉 −−−−−→−→←←−−−−−−
x{|•|}
x{|•|} 〈M , ⊆〉 and states that:

x{|lfp⊆T |} = lfp
⊆
λ X · x{|T x{|X |}|}

Proposition (15) [Least fixpoint approximation] If 〈M,#,

0, ∨〉 and 〈L,�,⊥, �〉 are cpos, the abstraction α ∈ 〈M, #〉 ⊥,con
−−→
〈L,�〉 is strict and continuous, F ∈ M

mon
−→ M and G ∈ L
mon
−→ L

are monotone and satisfy the α-semi-commutation condition α �F

�̇G�α then the least fixpoints are well-defined such that: α(lfp
#
F)

� lfp
�
G.

Proposition (16) [Greatest fixpoint approximation] If
〈M, #, 1, ∧〉 and 〈L, �, �, �〉 are dual cpos, the abstraction
α ∈ 〈M, #〉 mon
−→ 〈L,�〉 is monotone, F ∈ M

mon
−→ M and
G ∈ L

mon
−→ L are monotone and satisfy the α-semi-commutation
condition α �F �̇ G �α then the greatest fixpoints are well-defined

such that α(gfp
#
F) � gfp

�
G.

15

In the particular case when 〈M, #〉 −−→←−−
α

γ 〈L,�〉 which implies

α ∈ 〈M, #〉 mon
−→ 〈L,�〉, the semi-commutation condition α �F �̇
G � α is equivalent to F � γ #̇ γ � G.

7. Origin/forward/backward/state closed temporal for-
mulae

We define origin-closed temporal models (invariant by shifting the
origin of time), forward-closed temporal models (referring only to
the future), backward-closed models (referring only to the past) and
state closed models (referring only to the present). We propose an
abstract interpretation of the concrete semantics of the temporal for-
mulae supplying a sound criterion for checking forward/backward
closeness. Besides providing a simple instantiation of Section 6,
this abstract interpretation will be useful in the forthcoming Section
13 when discussing the completeness of the transition checking ab-
straction of temporal calculi/logics.

7.1 Origin closeness

A temporal model M ∈ M is origin closed if the present time can be
shifted arbitrarily along any trace of M without changing the model

M . We define Or(M)
�= {〈i + k, λ j ·σj−k〉 | 〈i, σ 〉 ∈ M∧k ∈ Z}.

Or(•) is a topological operator so that origin independent models
M satisfy M ⊆ Or(M) or equivalently Or(M) = M . In general
temporal models are not origin independent. However:
Lemma (17) The temporal model Mτ generated by a transition
system 〈S, τ 〉 is origin independent.

7.2 Forward/backward state closeness

If η, σ ∈ P are paths then the prolongation of η by σ at/after time
i ∈ Z is:

η[iσ �= λ k ·((k < i ? ηk ¿ σk)) prolongation at i

ηi]σ �= (σx[−iη
x)x = λ k ·((k ≤ i ? ηk ¿ σk)) prolong. after i

A temporal model M ∈ M is forward closed if the past of each
trace of M can be changed arbitrarily without changing the model
M . Backward closeness is the time symmetric notion, so the future
is unknown. State closeness is when the present only matters. We
define:

Fd(M)
�= {〈i, η[iσ 〉 | 〈i, σ 〉 ∈ M ∧ η ∈ P} forward closure

Bd(M)
�= x{|Fd(x{|M|})|} backward closure

= {〈i, σ i]η〉 | 〈i, σ 〉 ∈ M ∧ η ∈ P}
St(M)

�= Fd(M) ∪ Bd(M) state closure

= {〈i, η[iσ i]η′〉 | 〈i, σ 〉 ∈ M ∧ η, η′ ∈ P}
These are topological upper closure operators onP, so e.g. Fd(M) ⊆
M iff Fd(M) = M . We define forward closeness FD(M)

�=
(Fd(M) ⊆ M), backward closeness BD(M)

�= (Bd(M) ⊆ M)

and state closeness ST (M)
�= (St(M) ⊆ M).

7.3 Forward/backward/state closeness checking

We define an abstract interpretation �ϕ�c ∈ (X
→ ℘(C))
→ ℘(C)

where C
�= {f, b} such that a ground formula ϕ is forward closed

when f ∈ �ϕ�c∅, backward closed when b ∈ �ϕ�c∅ (whence state
closed when �ϕ�c∅ = C). The corresponding abstraction is:

αc(X)
�= ((∀M ∈ X : Fd(M) ⊆ M ? {f} ¿ ∅)) ∪

∀M ∈ X : Bd(M) ⊆ M ? {b} ¿ ∅))
γ c(C)

�= ((f ∈ C ? {M ∈ M | Fd(M) ⊆ M} ¿ M)) ∩
((b ∈ C ? {M ∈ M | Bd(M) ⊆ M} ¿ M))

so that 〈℘(M),⊆〉 −−−→−→←−−−−
αc

γ c

〈℘(C),⊇〉. For sets of environments,

we define:

1αc(R)
�= λ X ·αc{ρ(X) | ρ ∈ R}

1γ c(r)
�= {ρ | ∀X ∈ X : ρ(X) ∈ γ c(r(X))}

so that 〈℘(E),⊆〉 −−−→−→←−−−−
1αc

1γ c

〈℘(X
→ C), ⊇̇〉. Finally, for collecting

semantics S ∈ ℘(E)
→ ℘(M) , we define:

11αc(S)
�= αc � S � 1γ c 11γ c(Sc)

�= γ c � Sc � 1αc

so that 〈℘(E)
→ ℘(M),⊆〉 −−−→−→←−−−−−
11αc

11γ c

〈℘(X
→ C)
→ ℘(C), ⊇̇〉.
Given a formula ϕ, its collecting semantics {|ϕ|}c ∈ ℘(E)
→ ℘(M)

is {|ϕ|}c R
�= {�ϕ�ρ | ρ ∈ R} and its abstract closeness semantics

�ϕ�c ∈℘(X
→ C)
→ ℘(C) should satisfy the following soundness
criterion �ϕ�c ⊆̇ 11αc({|ϕ|}c). This soundness criterion ensures that
if f ∈ �ϕ�c R (resp. b ∈ �ϕ�c R) then for all ρ ∈ 1αc(R), �ϕ�ρ is a
forward (resp. backward) closed temporal model (hence state closed
if �ϕ�c R = C). The calculational design of the abstract semantics
leads to:

�πt �c R
�= ((t = S× S? C ¿ {f})) �σS�c R

�= {f, b}
�⊕ϕ1�c R

�= �ϕ1�c R ∩ {f} �ϕ1
x�c R

�= (�ϕ1�c R)x

where Xx
�= {xx | x ∈ X}, fx

�= b and bx
�= f

�ϕ1 ∨ ϕ2�c R
�= �ϕ1�c R ∩ �ϕ2�c R �¬ϕ1�c R

�= �ϕ1�c R

�∀ϕ1 : ϕ2�c R
�= �ϕ1�c R �X�c R

�= R(X)

�µ X · ϕ1�c R
�= �ν X · ϕ1�c R

�= gfp
⊆
λ x ·�ϕ1�c R[X := x]

The abstract closeness semantics of derived temporal opera-
tors can easily be calculated. For example: �ϕ1 U ϕ2�c R =

�µ X · ϕ2 ∨ (ϕ1 ∧⊕ X)�c R = gfp
⊆
λ x ·�ϕ2�c R∩ �ϕ1�c R ∩ x ∩{f}

= �ϕ1�c R ∩ �ϕ2�c R ∩ {f}. So if ϕ1 and ϕ2 are both forward closed
then so is ϕ1 Uϕ2, otherwise the analysis is inconclusive. The same

way, +�ϕ
�= σSU ϕ so � +�ϕ�c R = �ϕ�c R ∩ {f}.

The abstract semantics �•�c is not complete in that for ex-
ample if S

�= { ❞, �} then neither ϕ1 ≡ +σ{ ❝} ∧ +� σ{ �} nor
ϕ2 ≡ +σ{ �} ∧ +�σ{ �} is forward (because the state immediately
preceding the present state does matter) whereas their disjunction
ϕ1 ∨ ϕ2 ≡ +� σ{ �} is forward but the analysis is inconclusive since
�ϕ1 ∨ ϕ2�c∅ = �ϕ1�c∅ ∩ �ϕ2�c∅ = ∅.

Finally, by induction on the syntax of formulae, it is very easy,
using the above abstract interpretation, to prove that:
Lemma (18) All formulae of CTL�+, CTL+ , ∀CTL+ and ∃CTL+ (re-
spectively CTL�−, CTL− , ∀CTL− and ∃CTL−) are forward (resp. back-
ward) closed.

8. Compositional generic temporal abstract interpreta-
tion

In this section we study the sound (and complete) compositional ab-
stract interpretation of temporal calculi/logics in very general terms

16

that is independently of a particular language, semantics and abstrac-
tion (which is general enough for this Section 8 not to be limited to
temporal calculi/logics).

Compositional abstract interpretation, that is by induction on
the syntax of formulae, is in general confined to a particular syn-
tax and semantics. To avoid this difficulty, we consider a generic
abstract syntax, covering all particular cases through abbreviations
(i.e. syntactic macros). Moreover the concrete and abstract seman-
tics are also generic in that they are parameterized by a semantic
domain and semantic transformers to handle basic operators. To be
fully general, we must handle various monotony/antitony conditions
both on the semantic transformers and the abstractions. For example
negation is antitone and can be used to generate monotone/antitone
abstractions α, qα, αq and α̃. So abstract interpretation soundness is
expressed using well-definedness and typing conditions in order to
cover all cases at once. Moreover soundness and in/completeness
are handled together.

8.1 Abstract syntax

We let O = ⋃
n≥0O

n be the set of operators �n ∈ On of arity
n. The formulae/sentences ϕ of the language L have the following
syntax:
Definition (19) [abstract syntax]

ϕ ::= �n(ϕ1, . . . , ϕn) �n ∈ On , n ≥ 0 n-ary operator

| X X ∈ X variable

| f p X ·ϕ1 fixpoint

p ::= + | − positiveness

For constants �0 ∈ O0, we often write �0 for �0(). In Defini-
tion (19), f+ stands for the least fixpoint µ and f− for the greatest
ν. The free variables FV(ϕ) and bound variables BV (ϕ) of a formula
ϕ are defined inductively as usual.

8.2 Concrete semantic domain

Hypothesis (20) [concrete domain] The concrete semantic
domain 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean algebra.

8.3 Concrete interpretation of primitive operators

In order to reason as if all operators were monotone we introduce the

notion of monotony up to positiveness. We define≤+ �=≤ and≤− �=
≥ and assign to each operator�n ∈ On its positiveness Pos��n� ∈
{+,−}n . Then the concrete interpretation J��n� of �n ∈ On ,
which belongs to Ln
→ L, satisfies the following monotonicity up
to positiveness condition:
Hypothesis (21) [monotonicity of the concrete operators]
If Pos��n� = 〈p1, . . ., pn〉 then for all x1, …, xn, y1, …, yn ∈ L:

∀i ∈ [1, n] : xi ≤pi yi ⇒ J��n�(x1, . . . , xn) ≤ J��n�(y1, . . . , yn)

For example Pos�¬� = 〈−〉 because J�¬� = ¬ is antitone (by
Hypothesis (20), x ≤− y ⇔ x ≥ y ⇔ ¬x ≤ ¬y) while Pos�∨� =
〈+,+〉 because J�∨� = � is monotone in its two arguments.

8.4 Concrete semantics

Given an environment ρ ∈ E , the concrete semantics of the lan-
guage L partially defines the semantic value �ϕ�ρ of formula ϕ ∈ L
in environment ρ. The following compositional definition of the
semantic function �•� ∈ L
→ (E
→ L) is partial in that the least

fixpoint lfp
≤+

(or the greatest for lfp
≤−

) may not exist:

Definition (22) [concrete semantics]

��n(ϕ1, . . . , ϕn)�ρ �= J��n�(�ϕ1�ρ, . . . , �ϕn�ρ)
�X�ρ �= ρ(X)

�f p X ·ϕ1�ρ �= lfp
≤p

λ x ·�ϕ1�ρ[X := x]
Definition (22) includes the special case ��0�ρ �= J��0�() for con-
stants �0 ∈ O0.

8.5 Well-definedness of the concrete semantics

Given an environment η ∈ X
→ {+,−}, we define the following
sufficient well-definedness condition 1 Wd�ϕ�η ∈ B of formulae
ϕ ∈ L in environment η:
Definition (23) [well-definedness]

Wd��n(ϕ1, ..., ϕn)�η �=
n∧

i=1

Wd�ϕi �(λ X · pi ⊗ η(X))
where Pos��n� = 〈p1, . . ., pn〉

Wd�X�η �= (η(X) = +)
Wd�f p X ·ϕ1�η �= Wd�ϕ1�η[X :=+]

where the rule of signs is + ⊗+ �= +, + ⊗ − �= −, − ⊗ + �= −
and −⊗− �= +.

For constants �0 ∈ O0, Definition (23) amounts to Wd��0�η �=tt.
Example (24) We have Pos�¬� = 〈−〉 and Pos�∨� = 〈+,+〉 so that
the formula µ Y · ¬ µ X · ¬(¬ X ∨ Y) is well-defined, as shown
below:

Wd�µ Y · ¬ µ X · ¬(¬ X ∨ Y)�∅
= Wd�¬µ X · ¬(¬ X ∨ Y)�∅[Y :=+]
= Wd�µ X · ¬(¬ X ∨ Y)�∅[Y :=−]
= Wd�¬(¬ X ∨ Y)�∅[Y :=−][X :=+]
= Wd�¬ X ∨ Y �∅[Y :=+][X :=−]
= Wd�¬ X�∅[Y :=+][X :=−] ∧Wd�Y �∅[Y :=+][X :=−]
= Wd�X�∅[Y :=−][X :=+] ∧Wd�Y �∅[Y :=+][X :=−]
= ∅[Y :=−][X :=+](X) = +∧ ∅[Y :=+][X :=−](Y) = +
= tt

The following Lemma (25) generalizes the syntactic condition given
for the µ-calculus closed formulae stating that variables bound by
the fixpoint operators should be in the scope of an even number of
negations. It is a special case of Lemma (31) which is proved in
Section 8.12.
Lemma (25) Let ϕ ∈ L be a formula and η ∈ X
→ {+,−}
such that Wd�ϕ�η = tt. Let the free variables of ϕ be FV(ϕ) =
{X1, . . . , Xm}. Then Hypothesis (21) implies that for all environ-
mentsρ ∈ E , the mapλ x1, . . . , xm ·�ϕ�ρ[X1 := x1, …, Xm := xm]
is well-defined in Lm
→ L, monotone in xi if η(Xi) = + and an-
titone in xi if η(Xi) = −:

∀i ∈ [1,m] : xi ≤η(Xi) yi ⇒
�ϕ�ρ[X1 := x1, …, Xm := xm] ≤ �ϕ�ρ[X1 := y1, …, Xm := ym]

In the following we consider formulae ϕ ∈ L such that Wd�ϕ�η = tt
(also called “in positive form” [18]) which concrete semantics �ϕ�
is, by Lemma (25), well-defined. Observe that the well-definedness
abstract interpretation is sound (in that Wd�ϕ�η = tt implies well-
definedness) but incomplete (in that the semantics of ϕ might be
well-defined even when Wd�ϕ�η = ff).

1We do not develop the point that this well-definedness condition is indeed a typing
by abstract interpretation of the semantics with possible undefinedness, see [7].

17

8.6 Abstract semantic domains

Since in general we use different abstractions (whence abstract do-
mains) for different operators, variables and fixpoints of the lan-
guage, we let A be a set of abstraction indexes such that the corre-
sponding abstract domains M a , a ∈ A satisfy the following:
Hypothesis (26) [abstract domains] For all a ∈ A , the a-
indexed abstract semantic domain 〈M a , �a, ⊥a, �a, �a , �a, ¬a〉
is a complete boolean algebra.

8.7 Abstractions

The set A = A + ∪ A − of abstraction indexes covers posi-
tive/monotone abstractions A + and negative/antitone abstractions
A − . For each abstraction αa, a ∈ A , the following hypotheses
(27−) or (27−) are needed in order to apply one of the Propositions
(14) or its dual, (15) and/or (16) to fixpoints:
Hypothesis (27) [abstractions]

∀a ∈ A + : αa ∈ 〈L, ≤a〉 ⊥,con
−−→ 〈M a ,�a〉 (27+)

∀a ∈ A − : αa ∈ 〈L, ≤a〉 �,co-con
−−→ 〈M a ,�a〉 (27−)

8.8 Abstract interpretation of primitive operators

Since different arguments of an operator�n ∈On may be abstracted
differently, we assign to each operator�n ∈On a signature Sig��n�
⊆ {[a1, . . . , an]→an+1 | ∀i ∈ [1, n + 1] : ai ∈ A } specifying
which abstraction is used for each argument and for the result. For
constants �0 ∈ O0, we write a as a shorthand for []→a. The
abstract interpretation J��n�[a1,...,an]→a of an n-ary operator �n
∈ On belongs to (M a1 × . . . × M an)
→ M a and satisfies the

monotonicity condition (recall that �+ �= � and �− �= �):
Hypothesis (28) [monotonicity of the abstract operators]
If Sig��n� = [a1, . . . , an]→a

�= s then for all x1, y1 ∈ M a1 , …,
xn, yn ∈ M an :

∀i ∈ [1, n] : xi �ai yi ⇒
J��n�s(x1, . . . , xn) �a J��n�s(y1, . . . , yn)

By reflexivity, this hypothesis always holds for the abstract inter-
pretation J��n�a of a constant �0 ∈ O0 with signature Sig��0�
= a. J��n�a belongs to the abstract domain M a isomorphic to
M a 0
→ M a = ∅
→ M a .

8.9 Abstract environments

Abstract environments assign abstract values to free variables of for-

mulae. So the set of abstract environments is E A �=X
→ M A where
the join of the abstract domains is defined as M A �=⋃

a∈A M a . An
environment type t ∈ X
→ A specifies which abstraction αt (X) ∈ A
is used for each variable X ∈ X. We define the t -typed abstract

environment domain as E t �= {ρ ∈ E A | ∀X ∈ X : ρ(X) ∈ M t (X) }.

8.10 Abstract semantics

Given an abstract environment ρ ∈ E A , the abstract semantics of the
language L partially defines the semantic value �ϕ�aρ of formula
ϕ ∈ L in environment ρ for abstraction αa ∈ A . The following
definition of the semantic function �•� ∈ L
→ (E
→ L) is partial

in that the least fixpoint lfp
≤+

(or the greatest for lfp
≤−

) may not
exist (this will be excluded by the well-definedness condition of
Definition (23)) and values of variables may not be in the proper

abstract domain (this will be excluded by the typing condition given
in Definition (30) below):
Definition (29) [abstract semantics]

��n(ϕ1, . . . , ϕn)�aρ
�= J��n�[a1,...,an]→a(�ϕ1�a1ρ, . . . , �ϕn�anρ)

�X�aρ
�= ρ(X)

�f p X ·ϕ1�aρ
�= lfp

(�a)p

λ x ·�ϕ1�aρ[X := x]
Definition (29) covers the special case of constants �0 ∈ O0 such

that ��0�aρ
�= J��0�a().

8.11 Abstract semantics typing

We define a typing of the abstract semantics in order to check that the
free variables consistently belong to the proper abstract domain and
that the abstraction is sound Type�

a
(and complete Type=). A type

t ⇒ a ∈ (X
→ A) × A specifies that a formula ϕ can be abstracted
withαa when its free variables X ∈ FV(ϕ) are abstracted withαt (X).
Definition (30) [abstract semantics typing]

Type=/�
a ��n(ϕ1, . . . , ϕn)� �=

{t ⇒ a | ∃[a1, . . . , an]→a ∈ Sig��n� :
∀i ∈ [1, n] : t ⇒ ai ∈ Type=/�

a �ϕi �}
Type=/�

a �X� �= {t ⇒ t (X) | t ∈ X
→ A }
Type=�f p X ·ϕ1� �= {t ⇒ a | a ∈ A p ∧

t[X := a] ⇒ a ∈ Type=�ϕ1�}
Type�

a �f p X ·ϕ1� �= {t ⇒ a | t[X := a] ⇒ a ∈ Type�
a �ϕ1�}

For constants �0 ∈ O0, Definition (30) amounts to Type=/�
a ��0�

�= {t ⇒ a | t ∈ X
→ A ∧ a ∈ Sig��0�}. Obviously Type=�ϕ� ⊆
Type�

a �ϕ�.

8.12 Well-definedness of the abstract semantics

Lemma (31) Let ϕ ∈ L be a formula, η ∈ X
→ {+,−} such that
Wd�ϕ�η = tt and t ⇒ a ∈ Type�

a �ϕ�. Let the free variables of ϕ be
FV(ϕ) = {X1, . . . , Xm}. Then Hypothesis (28) implies that for all
environments ρ ∈ X
→ M A such that ∀X ∈ X : ρ(X) ∈ M t (X) , the
map λ x1, . . . , xm ·�ϕ�aρ[X1 := x1, …, Xm := xm] is well-defined
in (M t (X1) × . . . × M t (Xm))
→ M a , monotone in xi if η(Xi) = +
and antitone in xi if η(Xi) = −, as follows:

∀i ∈ [1,m] : xi

(
�t (Xi)

)η(Xi)
yi ⇒

�ϕ�aρ[X1 := x1, …, Xm := xm] �a �ϕ�aρ[X1 := y1, …, Xm := ym]
Observe that Lemma (25) directly follows from Lemma (31) with
A − = ∅, A + = {•}, the Galois isomorphism 1 on 〈L, ≤〉 and
Hypothesis (21) in lieu of Hypothesis (28).

8.13 Soundness/completeness hypotheses on the ab-
stract interpretation of the operators

An abstract semantics must be sound in that it is an approximation of
the abstraction of the concrete semantics. We say that the abstraction
is complete (exact, precise, faithful, etc. can also be found in the
literature) if the abstract semantics equals the abstraction of the
semantics. For example the rule of signs [9] is not complete since the
sign abstraction of an expression may be different from the sign of

18

the value of the expression. However the rule of signs is sound since
the sign of the value of an expression can never be in contradiction
with the sign derived by the rule of signs, if any.

The following (semi-)commutation hypothesis [9] of the con-
crete and abstract interpretations of the primitive operators ensures
the soundness (=)/completeness2 (�a) of the abstract semantics for
the abstraction αa , as will be shown in Section 8.15 by application
of Propositions (14) or its dual, (15) and/or (16) to fixpoints. We
use the shorthand=/�a for the two different commutation hypoth-
esis with = and semi-commutation hypothesis with �a . Grouping
together the two cases shorten later proofs. When their distinction
is needed, we respectively refer to Hypothesis (32)= and Hypothe-
sis (32)�a

.
Hypothesis (32) [(semi-)commutation]

∀�n ∈ On : ∀[a1, . . . , an]→a ∈ Sig��n� : ∀x1, . . . , xn ∈ L :
αa(J��n�(x1, . . . , xn)) =/�a

J��n�[a1,...,an]→a(αa1(x1), . . . , α
an (xn))

Hypothesis (32) covers the special case of constants �0 ∈ O0 for
which ∀�0 ∈ O0 : ∀a ∈ Sig��0� : αa(J��0�) =/�a J��0�a .

8.14 Environment abstraction

Definition (33) [environment abstraction] The abstraction
of an environment ρ ∈ E of type t ∈ X
→ A is α̇t(ρ) ∈ E t

defined as:

α̇t(ρ)
�= λ X ·αt (X)(ρ(X)).

Lemma (34)

α̇t ′ (ρ[X := x]) = α̇t ′ (ρ)[X :=αt ′(X)(x)]
PROOF

α̇t ′ (ρ[X := x])
= λ Y ·αt ′(Y)(ρ[X := x](Y)) �by Definition (33) of α̇t ′ (ρ)�
= �by definition of substitution and conditional�

λ Y · ((Y = X ? αt ′(X)(x) ¿ αt ′(Y)(ρ(Y))))
= �by definition of substitution�
(λ Y ·αt ′(Y)(ρ(Y)))[X :=αt ′(X)(x)]

= α̇t ′ (ρ)[X :=αt ′(X)(x)] �by Definition (33) of α̇t ′ (ρ)� �

Lemma (35)

(α̇t[X :=a](ρ))[X := y] = α̇t(ρ)[X := y]
PROOF

(α̇t[X := a](ρ))[X := y]
= �by definition of substitution�

λ Y · ((Y = X ? y ¿ α̇t[X := a](ρ)(Y)))
= �by Definition (33) of α̇t(ρ)�

λ Y · ((Y = X ? y ¿ αt[X := a](Y)(ρ(Y))))
= �by definition of substitution when X (= Y �

λ Y · ((Y = X ? y ¿ αt (Y)(ρ(Y))))

= λ Y · ((Y = X ? y ¿ α̇t(ρ)(Y))) �by Definition (33) of α̇t(ρ)�
= α̇t(ρ)[X := y] �by definition of substitution� �

2We should say relative completeness to stress the fact that we reason in set theoretical
terms, so that, in logical terms, an oracle is assumed to exist for logical implication.

8.15 Soundness and completeness of the abstract se-
mantics

We start with a lemma in order to extend the (semi-)commutation
condition of Hypothesis (32) from operators to the full abstract se-
mantics.
Lemma (36) For all well-defined formulae ϕ ∈ Lwith Wd�ϕ�η =
tt, for all t ∈ X
→ A and a ∈ A such that t ⇒ a ∈ Type=/�

a �ϕ�,
for all ρ ∈ E , we have:

αa(�ϕ�ρ) =/�a �ϕ�a(α̇t(ρ)). (37)

PROOF The proof is by structural induction on the formula ϕ:

For variables ϕ = X ∈ X:

αa(�X�ρ)
= αa(ρ(X)) �by Definition (22)�
= �t ⇒ a ∈ Type=/�

a �X� implies that t (X) = a by Defini-
tion (30)�

αt (X)(ρ(X))

= α̇t(ρ)(X) �by Definition (33)�
= �X�a(α̇t) �by Definition (29)�

For n-ary operators ϕ = �n(ϕ1, . . . , ϕn):

αa(��n(ϕ1, . . . , ϕn)�ρ)
= αa(J��n�(�ϕ1�ρ, . . . , �ϕn�ρ)) �by Definition (22)�
=/�a �by Hypothesis (32)�

J��n�[a1,...,an]→a(αa1(�ϕ1�ρ), . . . , αan (�ϕn�ρ))
=/�a �by Hypothesis (28) in the �a case and structural induction

Hypothesis (37) applied to ϕ1, …, ϕn�
J��n�[a1,...,an]→a(�ϕ1�a1(α̇t(ρ)), . . . , �ϕn�an (α̇t(ρ)))

= ��n(ϕ1, . . . , ϕn)�a(α̇t(ρ)) �by Definition (29)�
For fixpoints ϕ = f p X ·ϕ1, we define:

F
�= λ x ·�ϕ1�ρ[X := x] G

�= λ y ·�ϕ1�aα̇t(ρ)[X := y]
We have Wd�f p X ·ϕ1�η = tt hence by Definition (23),

Wd�ϕ1�η[X :=+] = tt which together with η[X :=+](X) = +
and according to Lemma (25) implies that F ∈ L
→ L is well-
defined and ≤-monotone.

Moreover t ⇒ a ∈ Type=/�
a �f p X ·ϕ1� so that by Def-

inition (30), t[X := a] ⇒ a ∈ Type=/�
a �ϕ1�. It follows by

Lemma (31) that G is well-defined in M t[X := a](X)
→ M a =
M a
→ M a since t[X := a](X) = a. Moreover η(X) = + so(
�t[X := a](X)

)η(X)
= (�a)+ = �a so that Lemma (31) implies that

G is �a-monotone.

For the (semi-)commutation condition, we have:

αa(F (x))

= αa(�ϕ1�ρ[X := x]) �by definition of F (x)�
=/�a �by induction hypothesis (37) applied to ϕ1, which by Defi-

nition (30) has type t[X := a] ⇒ a�
�ϕ1�a(α̇t[X := a](ρ[X := x]))

= �by Lemma (34) with t ′ = t[X := a] so that t ′(X) = a�
�ϕ1�a(α̇t[X := a](ρ)[X :=αa(x)]))

= �ϕ1�a α̇t(ρ)[X :=αa(x)] �by Lemma (35)�
= G(αa(x)) �by definition of G�

19

We now prove that: αa(lfp
≤p

F) =/�a lfp
(�a)p

G (38)

In the equality case (38)=, we have t ⇒ a ∈ Type=�f p X ·ϕ1�
so that by Definition (30), a ∈ A p . If p is + then αa is strict and
continuous by Hypothesis (27) and we conclude by Proposition (14)
that (38)= holds. If p is − then αa is co-strict and co-continuous
by Hypothesis (27) and we conclude by the dual of Proposition (14)
that (38)= holds.

In the inequality case (38)�a
, αa is monotone in both cases a ∈

A + and a ∈ A + by Hypothesis (27). So if p is +, we conclude
that (38)�a

holds by Proposition (15) whereas when p is −, we
conclude that (38)�a

holds by Proposition (16). Q.E.D.

Finally we get:

αa(�f p X ·ϕ1�ρ)
= αa(lfp

≤p

λ x ·�ϕ1�ρ[X := x]) �by Definition (22)�
= αa(lfp

≤p

F) �by definition of F �
=/�a lfp

(�a)p

G �by (38)�
= lfp

(�a)p

λ y ·�ϕ1�a(α̇t(ρ))[X := y] �by definition of G�
= �f p X ·ϕ1�a(α̇t(ρ)) �by Definition (29)� �

In Section 10, we will have A + = A − = A and stronger properties
than Hypothesis (27), as follows:
Hypothesis (39) [Galois abstraction]

or
〈L, ≤a〉 −−−→−→←−−−−

αa

γ a

〈M a ,�a〉 ∧ αa ∈ 〈L, ≤a〉 �,co-con
−−→ 〈M a ,�a〉 (39+)

〈L, ≥a〉 −−−→−→←−−−−
αa

γ a

〈M a ,�a〉 ∧ αa ∈ 〈L, ≤a〉 ⊥,con
−−→ 〈M a ,�a〉 (39−)

In case (39+), αa is a complete join morphism whence strict and
continuous, so that Hypothesis (27) is satisfied, with a ∈ A + . In
case (39−), αa is a complete meet morphism whence co-strict and
co-continuous, so that Hypothesis (27) is satisfied, with a ∈ A − .

For environments, we define:

γ̇ t(ρ)
�= λ X ·γ t (X)(ρ(X)).

For semantics, we define:

αt⇒a �= λφ ·αa � φ � γ̇ t and γ t⇒a �= λψ ·γ a � ψ � α̇t .

Theorem (40) Hypothesis (39) implies that for all well-defined
formulae ϕ ∈ L of type t ⇒ a ∈ Type=/�

a �ϕ�, we have:

αt⇒a(�ϕ�) =/�a �ϕ�a.

PROOF If t ∈ X
→ A and p ∈ {+,−}, Hypothesis (39p) implies

〈L, (≤a)p〉 −−−→−→←−−−−
αa

γ a

〈M a , (�a)p〉 whence

〈E, (≤̇a)p〉 −−−→−→←−−−−
α̇t

γ̇ t

〈E t , (�̇a
)p〉 (41)

and 〈E
→ M , (≤̇a)p〉 −−−−−→←−−−−−
α̇t⇒a

γ̇ t⇒a

〈E t
→ M a , (�̇a
)p〉 so that for all

a ∈ A and ρ ∈ E t , we have:

αt⇒a(�ϕ�)(ρ) = αa(�ϕ�(γ̇ t(ρ))) �by definition of αt⇒a�
=/�a �ϕ�a(α̇t(γ̇ t(ρ))) �by Lemma (36)�
= �ϕ�aρ �by α̇t � γ̇ t = 1 in the Galois surjection (41)� �

9. State-based abstraction for model-checking

One way of understanding model-checking is to define a model-
checking specification language L (chosen as a subset of the
x

µ� -calculus) and then to formally derive the specification of the
model-checking algorithms by a sound and complete abstraction of
the trace-based semantics of L. This is illustrated in this Section 9
on the propositional µ-calculus [18, 19]:

ϕ ::= σS | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ1 | [] ϕ1 | 〈〉ϕ1 |
X | µ X · ϕ1 | ν X · ϕ1

where, given a transition system 〈S, τ 〉, the modal operators [] and
〈〉 are defined as follows:

[]ϕ1
�= ∃πτ : ⊕ϕ1 〈〉ϕ1

�= ∀ πτ : ⊕ϕ1 (42)

The current state abstraction:

α•(M) �= {σi | 〈i, σ 〉 ∈ M} γ •(S) �= {〈i, σ 〉 | σi ∈ S} = σ{|S|}
is self-dual (i.e. ¬α•(¬M) = α•(M) and ¬γ •(¬S) = γ •(S)) so
that we have the following dual Galois connections:

〈M , ⊆〉 −−−→−→←−−−−
α•
γ • 〈℘(S),⊆〉 and 〈M , ⊇〉 −−−→−→←−−−−

α•
γ • 〈℘(S),⊇〉.

It follows that α• is both a complete join and meet morphism which
implies Hypothesis (39) (whence (27)) and the commutation Hy-
pothesis (32)= for ∨ and ∧. For ¬, α•(�¬ ϕ�ρ) = α•(¬�ϕ�ρ) =
¬α•(�ϕ�ρ)by self-duality. The two remaining cases areα• (�[] ϕ�ρ)
= p̃re[τ](α•(�ϕ�ρ)) and α•(�〈〉ϕ�ρ) = pre[τ](α•(�ϕ�ρ)), where:

post[t](P) �= {s′ | ∃s : t (s, s′) ∧ s ∈ P}
]post[t](P) �= ¬post[t](¬P)= {s′ | ∀s : t (s, s′)⇒ s ∈ P} (43)

pre[t](P) �= post[t−1](P)= {s | ∃s′ : t (s, s′) ∧ s′ ∈ P}
p̃re[t](P) �= ¬pre[t](¬P)= {s | ∀s′ : t (s, s′)⇒ s′ ∈ P} (44)

Observe thatα•(x{|X |})= α•(X) so that reversal is of no real interest
in the propositional µ-calculus.

For any propositional µ-calculus formula ϕ, Theorem (40) im-
pliesα•(�ϕ�)= �ϕ�•, where the abstract semantics of Definition (29)
is as follows:

�ϕ1 ∨ ϕ2�•ρ = �ϕ1�•ρ ∪ �ϕ2�•ρ �σS�•ρ = S

�ϕ1 ∧ ϕ2�•ρ = �ϕ1�•ρ ∩ �ϕ2�•ρ �¬ ϕ1�•ρ = ¬�ϕ1�•ρ
�[] ϕ1�•ρ = p̃re[τ](�ϕ�•ρ) �〈〉 ϕ1�•ρ = pre[τ](�ϕ�•ρ)

�µ X · ϕ1�•ρ = lfp
⊆
λ x ·�ϕ1�•ρ[X := x] �X�•ρ = ρ(X)

�ν X · ϕ1�•ρ = gfp
⊆
λ x ·�ϕ1�•ρ[X := x]

The classical boolean specification of the model-checking algo-
rithms [19] follows by application of the characteristic predicate iso-

morphism 〈℘(S),⊆〉 −−−−→−→←←−−−−−
θ

θ−1

〈S
→ B , ⇒̇〉 with θ(S)
�= λ s · s ∈

S and the finiteness hypothesis of S.

We think that this completeness result corresponds to the intu-
itive understanding that set-based model-checking algorithms are an
economical but equivalent way of reasoning on trace-based speci-
fications. In our opinion, this is misleading since an incomplete
abstraction is hidden in the ∀- and ∃-based definitions (42). In the
following sections we study these abstractions explicitly in order to
exhibit the source of incompleteness.

20

10. The checking abstractions

Checking abstractions check a specification φ ∈ M for a model
M ∈ M (e.g. generated by a transition system). They provide set of
present states s such that all traces in M (for the universal abstrac-
tion) or some trace in M (for the existential one) with present state
s do satisfy φ. This is an approximation since a set of computation
traces is approximated by a set of present states.

10.1 The universal checking abstraction

The universal checking abstraction α∀M (φ) checks for each state
s ∈ S that all traces of the model M ∈ M which current state is s
definitely satisfy the specification φ ∈ M .
Definition (45) [universal checking abstraction]

α∀M (φ)
�= {s | M↓s ⊆ φ} universal abstraction (46)

γ ∀M (S)
�= {〈i, σ 〉 | 〈i, σ 〉 ∈ M ∧ σi ∈ S} u. concretization (47)

We have 〈M , ⊇〉 −−−−→←−−−−
α∀M

γ ∀M 〈℘(S),⊇〉. Moreover by the total-

ity Lemma (12), γ ∀M is injective, so 〈M , ⊇〉 −−−−→−→←−−−−−
α∀M

γ ∀M 〈℘(S),⊇〉
whence α∀M is ∅-strict. Finally, α∀M is ⊆-continuous: α∀M ∈
〈M , ⊆〉 con
−→ 〈℘(S),⊆〉. Otherwise stated the universal abstrac-
tion satisfies Hypothesis (39−):

〈M , ⊇〉 −−−−→−→←−−−−−
α∀M

γ ∀M 〈℘(S),⊇〉, α∀M ∈ 〈M , ⊆〉 ⊥,con
−−→ 〈℘(S),⊆〉 (48)

It follows that in order to apply Theorem (40), we just have to design
an abstract semantics satisfying the (semi-)commutation condition
Hypothesis (32). We respectively write α̇∀M and 11α∀M for the point-
wise extensions of α∀M to X
→ M and (X
→ M)
→ M .

10.2 The existential checking abstraction

The existential checking abstraction α∀M (φ) checks for each state
s ∈ S that at least one trace of the model M ∈ M which current
state is s does satisfy the specification φ ∈ M .
Definition (49) [existential checking abstraction]

α∃M (φ)
�= ¬α∀M (¬φ) existential abstraction

= {s | (M↓s ∩ φ) (= ∅}
γ ∃M (φ)

�= ¬γ ∀M (¬φ) existential concretization

= {〈i, σ 〉 | (〈i, σ 〉 ∈ M)⇒ (σi ∈ S)}
so that, by duality, the existential abstraction satisfies Hypothesis
(39+):

〈M , ⊆〉 −−−−→−→←−−−−−
α∃M

γ ∃M 〈℘(S),⊆〉, α∃∈〈M , ⊆〉 �,co-con
−−→ 〈℘(S),⊆〉 (50)

Again, in order to apply Theorem (40), we just have to design an
abstract semantics satisfying the (semi-)commutation condition Hy-
pothesis (32). We respectively write γ̇ ∀M and 11γ ∀M for the pointwise
extensions of γ ∀M to X
→ M and (X
→ M)
→ M .

11. The transition system checking abstraction of tem-
poral calculi/logics

We now derive the classical interpretation/semantics of temporal
calculi/logics (where a formula ϕ is interpreted as a set of states in
which ϕ is true) by abstract interpretation of the trace-based seman-
tics of Section 5 using the checking abstractions of Section 10 for the
model Mτ generated by a total transition system 〈S, τ 〉. Hypoth-
esis (32) leads to a calculational design of the abstract semantics
�ϕ�∀τ =/⊆ 11α∀Mτ

(�ϕ�) and �ϕ�∃τ =/⊆ 11α∃Mτ
(�ϕ�). The sources of

incompleteness, even for finite systems, are clearly identified thus
showing that classical model checking is not complete with respect
to trace-based semantics (whereas it is after abstraction to sets of
states, as shown in Section 9).

11.1 Abstraction of state and transition models

We study typical cases, starting with σS :

α∀Mτ
(σ{|S|})

= {s | Mτ ↓s ⊆ σ{|S|}} �by Definition (45)�
= �by Definitions (4) and (1)�
{s | {〈i, σ 〉 ∈ Mτ | σi = s} ⊆ {〈i, σ 〉 ∈ T | σi ∈ S}}

= {s | ∀〈i, σ 〉 ∈ Mτ : (σi = s)⇒ (σi ∈ S)} �by def. of ⊆�
= �by Hypothesis (10) implying Lemma (12) so that ∀s :

∃〈i, σ 〉 ∈ Mτ : σi = s�
= S

= �σS�∀τ (α̇∀Mτ
(ρ)) �by defining �σS�∀τ ρ �= S�

The same way, we get: �σS�∃τ ρ �= S, �πτ �∀τ ρ �= {s | ∀s′ :
t (s, s′)⇒ τ(s, s′)} and �πτ �∃τ ρ �= {s | ∃s′ : t (s, s′) ∧ τ(s, s′)}.

11.2 Semi-commutation for the predecessor operator

For the predecessor operator ⊕, we show that:

α∀Mτ
(⊕{|X|}) ⊇/⊆FD(X) p̃re[τ](α∀Mτ

(X)) (51)

(⊇/⊆FD(X) denotes that fact that the inclusion ⊇ always holds
whereas⊆ holds whenever the temporal model X is forward closed,
that is X = Fd(X) (written for short FD(X)).) PROOF Given Mτ

generated by the transition system 〈S, τ 〉, we define:

A(s)
�= ∀i : ∀σ : (σi = s ∧ τ(s, σi+1) ∧ (52)

〈i + 1, σ 〉 ∈ Mτ)⇒ (〈i + 1, σ 〉 ∈ X)

B(s)
�= ∀s′ : ∀ j : ∀σ ′ : (τ(s, s′) ∧ σ ′j+1 = s′ ∧ (53)

〈 j + 1, σ ′〉 ∈ Mτ)⇒ (〈 j + 1, σ ′〉 ∈ X)

We first prove that ∀s : B(s)⇒ A(s): (54)

B(s) ∧ (σi = s ∧ τ(s, σi+1) ∧ 〈i + 1, σ 〉 ∈ Mτ)

⇒ �B(s) with s′ = σi+1, j = i , σ ′ = σ so that τ(s, s′) ∧
σj+1 = s′ ∧ 〈 j + 1, σ ′〉 ∈ Mτ implies 〈 j + 1, σ ′〉 =
〈i + 1, σ 〉 ∈ X�

⇒ 〈i + 1, σ 〉 ∈ X �proving A(s)� Q.E.D.

Next, we prove that FD(X)⇒ (∀s : A(s)⇒ B(s)): (55)

21

A(s) ∧ τ(s, s′) ∧ σ ′j+1 = s′ ∧ 〈 j + 1, σ ′〉 ∈ Mτ

⇒ �by Hypothesis (10) implying Lemma (12) so that there
exists a trace σ = η[j s[j+1σ

′ of Mτ . We have s =
σj ∧ τ(s, σj+1) ∧ 〈 j + 1, σ 〉 ∈ Mτ so that A(s) implies
〈 j + 1, σ 〉 ∈ X�

〈 j + 1, σ 〉 ∈ X ∧ σ = η[j s[j+1σ
′

⇒ �FD(X) so that σ = η[j s[j+1σ
′ and 〈 j + 1, σ 〉 ∈ X implies

〈 j + 1, σ ′[j+1σ
′〉 = 〈 j + 1, σ ′〉 ∈ X�

〈 j + 1, σ ′〉 ∈ X �proving B(s)� Q.E.D.

We can now consider the (semi-)commutation condition (51) for

the predecessor operator ⊕:

α∀Mτ
(⊕{|X|})

= α∀Mτ
({〈i, σ 〉 ∈ T | 〈i + 1, σ 〉 ∈ X}) �by Definition (2)�

= �by Definition (4) of •↓• and Definition (45) of α∀Mτ
�

{s | {〈i, σ 〉 ∈ Mτ | σi = s} ⊆ {〈i, σ 〉 ∈ T | 〈i + 1, σ 〉 ∈ X}}
= �by Definition of ⊆�
{s | ∀i : ∀σ : (σi = s ∧ 〈i, σ 〉 ∈ Mτ)⇒ (〈i + 1, σ 〉 ∈ X)}

= �by Definition (11) of Mτ and Lemma (17) so that 〈i, σ 〉 ∈
Mτ iff 〈i + 1, σ 〉 ∈ Mτ �

{s | ∀i : ∀σ : (σi = s ∧ τ(s, σi+1) ∧ 〈i + 1, σ 〉 ∈ Mτ) ⇒
(〈i + 1, σ 〉 ∈ X)}

= {s | A(s)} �by Definition (52) of A�
⊇/⊆FD(X) {s | B(s)} �by Lemmata (54) and (55)�
= �by Definition (53) of B where i = j + 1�
{s | ∀s′ : ∀i : ∀σ ′ : (τ(s, s′) ∧ σ ′i = s′ ∧ 〈i, σ ′〉 ∈ Mτ) ⇒
(〈i, σ ′〉 ∈ X)}

= �by letting σ = σ ′, Definition (4) of •↓• and logical defini-
tion of ⇒�

{s | ∀s′ : τ(s, s′) ⇒ [∀i : ∀σ : 〈i, σ 〉 ∈ Mτ ↓s ′) ⇒ (〈i, σ 〉 ∈
X)]}

= �by set-theoretical definition of ⊆�
{s | ∀s′ : τ(s, s′)⇒ [s′ ∈ {s′′ | Mτ ↓s ′′ ⊆ X}]}

= �by Definition (46) of α∀Mτ
�

{s | ∀s′ : τ(s, s′)⇒ s′ ∈ α∀Mτ
(X)}

= p̃re[τ](α∀Mτ
(X)) �by Definition (44) of p̃re� �

In general, α∀Mτ
(⊕{|X|}) p̃re[τ](α∀Mτ

(X)) (56)

PROOF Consider the counter-example S
�= { ❞, �}, τ

�=
{〈 �, �〉, 〈 �, ❞〉, 〈 ❞, ❞〉} so that Mτ = {〈i, λ � · �〉, 〈 j , λ � · ❞〉,
〈k, λ � ·((� < m ? �¿ ❞))〉}. We let X

�= {〈i, σ 〉 | ∀ j < i :
σj = �} so that ¬FD(X). We have Mτ ↓ � = {〈i, λ � · �〉,
〈k, λ � ·((� < m ? �¿ ❞))〉 | k < m}, Mτ ↓ ❝ = {〈 j , λ � · ❞〉,
〈k, λ � ·((� < m ? �¿ ❞))〉 | k ≥ m} and ⊕{|X|} = {〈i, σ 〉 | ∀ j ≤
i : σj = �}. We have α∀Mτ

(⊕{|X|}) = {s | Mτ ↓s ⊆ ⊕{|X|}} = { �}
whereas p̃re[τ](α∀Mτ

(X)) = p̃re[τ]({s | Mτ ↓s ⊆ X}) = p̃re[τ]({ �})
= {s | ∀s′ : t (s, s′)⇒ s′ = �} = ∅ since t (s, �) implies s = �and
t (�, ❞) holds. �

11.3 Commutation of the reverse operator

For the reverse operator, we have:

α∀Mτ
(x{|X|}) = α∀M

τ−1
(X) (57)

PROOF

α∀Mτ
(x{|X|})

= {s | Mτ ↓s ⊆ (x{|X|})} �by Definition (46) of α∀Mτ
�

= �by Definition (3) of x{|•|} and that of ⊆�
{s | x{|Mτ ↓s |} ⊆ (x{|x{|X|}|})}

= �by Definition (3) of x{|•|} so that x{|x{|M|}|} = M�
{s | x{|Mτ ↓s |} ⊆ X)}

= �by Definition (11) of Mτ , (3) of x{|•|}, (4) of •↓• and
Lemma (17)�

{s | Mτ−1↓s ⊆ X)}
= α∀M

τ−1
(X) �by Definition (46) of α∀Mτ

� �

11.4 Semi-commutation for the successor operator

In order to illustrate the time-symmetric reasoning, let us consider:

α∀Mτ
(+{|X|})

= α∀Mτ
(x{|⊕{|x{|X|}|}|}) �by Definition (7) of +{|•|}�

= α∀M
τ−1
(⊕{|x{|X|}|}) �by (57)�

⊇/⊆FD(·|x{|X|}) i.e. ⊇/⊆BD(X) p̃re[τ−1](α∀M
τ−1
(x{|X|})) �by (51)�

= p̃re[τ−1](α∀M
(τ−1)−1

(X)) �by (57)�
=]post[τ](α∀Mτ

(X)) �by (τ−1)−1 = τ , Defs. (43) and (44)� �

11.5 Commutation of the conjunction operator

By (48), α∀Mτ
is a complete ⊇-join morphism that is a complete

∩-morphism α∀Mτ

(⋂
i∈�Xi

)
=

⋂
i∈� α∀Mτ

(Xi). It follows that

the commutation Hypothesis (32) holds for ∩{|•, •|}.

11.6 (Semi-)commutation of the disjunction operator

By (48), α∀Mτ
is⊇-monotone hence ⊆-monotone so that α∀Mτ

(X1)

∪ α∀Mτ
(X2)⊆ α∀Mτ

(X1∪X2). However, in general, equality does
not hold, even for forward temporal models:

α∀Mτ
(X1) ∪ α∀Mτ

(X2) α∀Mτ
(X1 ∪X2) (58)

PROOF Consider the counter-example S
�= { ❞, �}, τ

�=
{〈 �, �〉, 〈 �, ❞〉, 〈 ❞, ❞〉} so that Mτ = {〈i, λ � · �〉, 〈 j , λ � · ❞〉,
〈k, λ � ·((� < m ? �¿ ❞))〉}. We let X1

�= +♦{| +�{|{ ❞}|}|} and X2
�=

+�{|{ �}|} which are both forward closed temporal models. We have
α∀Mτ

(X1) = { ❞} since in a �-state, one may always stay in a �-

state whence never satisfy +�{| ❞|}. α∀Mτ
(X2) = ∅ since the present

state must be �which does not prevent some future state to be ❞.
However, we have α∀Mτ

(X1 ∪X2) = { ❞, �} since in a ❞-state, the
future states will all be ❞so that +�{|{ ❞}|} hence +♦{| +�{|{ ❞}|}|} holds.
Otherwise in a �-state either all future states will be �in which case
+�{|{ �}|} holds or a 〈 �, ❞〉-transition will be fired and later states will
all be ❞in which case +♦{| +�{|{ ❞}|}|} holds. � Neverthe-
less, when one of X1 or X2 is state-closed then the commutation
Hypothesis (32) holds for ∪{|•, •|}:
ST (X1) ∨ ST (X2)⇒(

(α∀Mτ
(X1) ∪ α∀Mτ

(X2) = α∀Mτ
(X1 ∪X2)

) (59)

PROOF By commutativity, we only have to consider the case when
ST (X1). By inclusion (58), we only have to prove that α∀Mτ

(X1)∪
α∀Mτ

(X2)⊇α∀Mτ
(X1∪X2), which we do by reductio ad absurdum.

22

If inclusion (58) is strict then there exists a state s such that s ∈
α∀Mτ

(X1∪X2)∪¬α∀Mτ
(X1)∪¬α∀Mτ

(X2). By Definition (46) of

α∀Mτ
, s ∈ α∀Mτ

(X1 ∪X2) implies that ∀〈i, σ 〉 ∈ Mτ : σi = s ⇒
〈i, σ 〉 ∈ (X1 ∪X2). The implication cannot vacuously hold since
there exists some 〈i, σ 〉 ∈ Mτ satisfying σi = s since otherwise
Mτ ↓s = ∅ in contradiction with Lemma (12). Hence for any such
〈i, σ 〉, either 〈i, σ 〉 ∈ X1 or 〈i, σ 〉 ∈ X2. X1 is state-closed
so if 〈i, σ 〉 ∈ X1 then any other 〈 j , σ ′〉 with σj = σi = s also
belongs to X1 proving that Mτ ↓s ⊆ X1 in contradiction with
s (∈ α∀Mτ

(X1). We conclude that the only possibility is 〈i, σ 〉 ∈ X2,
whence ∀〈i, σ 〉 ∈ Mτ : σi = s ⇒ 〈i, σ 〉 ∈ X2 which now is in
contradiction with s (∈ α∀Mτ

(X2). �

11.7 Abstraction of the model complement

For the negation operator, we observe that:

α∀Mτ
(¬{|X|}) = ¬ α∃Mτ

(X)

PROOF

α∀Mτ
(¬{|X|})

= {s | Mτ ↓s ⊆ (¬{|X|})} �by Definition (46) of α∀Mτ
�

= {s | Mτ ↓s ⊆ (¬X)} �by Definition (6) of ¬{|•|}�
= ¬{s | ¬(Mτ ↓s ⊆ (¬X))} �by Definition of ¬�
= ¬{s | Mτ ↓s ∩X) (= ∅} �by Definition of ∩�
= ¬α∃Mτ

(X) �by Definition (49) of α∃Mτ
� �

11.8 Commutation of the universal state closure opera-
tor

As seen in Section 5, the universal state closure operator is ∀ϕ1
�= ∀ ±� (πτ) : ϕ1 so that, when considering the semantics of these

formulae in Definition (13), we have

∀{|X|}
�= ∀{|Mτ ,X|} �by Definitions (9) and (11)�
= {〈i, σ 〉 ∈ Mτ | Mτ ↓σi ⊆ X} �by Definition (5)�
= {〈i, σ 〉 ∈ Mτ | σi ∈ {s | Mτ ↓s ⊆ X}}
= {〈i, σ 〉 ∈ Mτ | σi ∈ α∀Mτ

(X)} �by definition (46)�
= γ ∀Mτ

(α∀Mτ
(X)) �by definition (47)�

It follows that ∀ is the upper closure operator γ ∀Mτ
�α∀Mτ

whence

our “universal state closure” terminology. The commutation condi-

tion of Hypothesis (32) follows immediately since:

α∀Mτ
� ∀{|X|}

= α∀Mτ
� γ ∀Mτ

� α∀Mτ

= α∀Mτ
�by Galois connection (48)�

= 1 � α∀Mτ
�by Definition of the identity map 1�

12. Incompleteness of the transition checking abstrac-
tion of temporal calculi/logics for finite systems

It follows from the previous section, that the universal (and dually
existential) checking abstractions do not satisfy the sufficient condi-
tions of Theorem (40) for completeness. Indeed these abstractions

are not complete, even for finite transition systems 〈S, τ 〉 as shown
by the following trivial counter-example. This means that in gen-
eral, using the reversible xµ� -calculus with trace-based and set-based
semantics is not equivalent.
Counter example (60) Let us consider the formula +⊕ −�σ{ �}
for the transition system S= { ❞, �} and τ = {〈 �, �〉, 〈 �, ❞〉, 〈 ❞, ❞〉}.
On one hand, by Definition (13) and (8), the concrete se-

mantics is �+⊕ −�σ{ �}�∅ = +{|⊕{|gfp
⊆
λ X · ∩{|σ{ �},+{|X |}|}|}|} =

{〈i, σ 〉 | ∀ j ≤ i : σj = �} so that its universal state ab-
straction is α∀Mτ

�+⊕ −�σ{ �}�∅ = α∀Mτ
{〈i, σ 〉 | ∀ j ≤ i : σi = �}

= { �}. On the other hand, the abstract semantics is
�+⊕ −� σ{ �}�∀ = p̃re[τ](]post[τ](gfp

⊆
λ X · ∩{|σ{ �},]post[τ](X)|}))

= p̃re[τ](]post[τ]({ �})) = p̃re[τ]({ �}) = ∅. So α∀Mτ
(�+⊕ −�σ{ �}�∅)

! �+⊕ −�σ{ �}�∀.

13. Completeness of the transitioncheckingabstraction
for the µ+-calculus and CTL

Incompleteness results from the predecessor/successor operators
when mixing forward and backward modalities (56) as well as from
general disjunction (58). Completeness is obtained by considering
forward modalities only as well as the restriction of disjunction to
at least one state formulae (59). We get the µ∀+-calculus:

ψ ::= σS | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ1 | ∀ϕ state formulae

ϕ ::= ψ | πt | ⊕ϕ1 | ϕ1 ∧ ϕ2 | path formulae

ψ1 ∨ ϕ2 | ϕ1 ∨ ψ2 | X | µ X · ϕ1 | ν X · ϕ1

such that �ϕ�∀ = 11α∀Mτ
(�ϕ�). This covers ∀CTL+ whence ∀CTL−

by reversal. Dual results hold for the existential abstraction which
yields a completeness result for ∃CTL+ and ∃CTL− . Observe that
contrary to classical comparable results [4, 5, 16], there is no obli-
gation to approximate the transition system by an abstract transition
system, as is the case in standard abstract model checking.

14. Abstract model checking

Abstract model checking [4, 5] uses a set S̄of abstract states (so that

the corresponding set of abstract models is M̄
�= ℘(Z× (Z
→ S̄)))

as well as state property and model abstractions:

〈℘(S),⊇〉 −−−→−→←−−−−
ᾱ∀s

γ̄ ∀s 〈℘(S̄),⊆〉 ᾱ∀s ∈ ℘(S) ⊥,con
−−→ ℘(S̄) (61)

〈M , ⊆〉 −−−→−→←−−−−
ᾱ∀m

γ̄ ∀m 〈M̄ ,⊆〉 γ̄ ∀m ∈ M ⊥,con
−−→ M̄ (62)

The corresponding universal checking abstraction:

ᾱ∀M
�= ᾱ∀s � α∀M � γ̄ ∀m γ̄ ∀M

�= γ̄ ∀m � α∀M � γ̄ ∀s (63)

satisfies (48).
In the literature on abstract model checking [4, 5], a single type

of self-dual abstraction is considered, given by @ ∈ S
→ S̄, so that:

ᾱ∀s (S)
�= {@(s) | s ∈ S} γ̄ ∀s (S̄)

�= {s | @(s) ∈ S̄}
ᾱ∀m(M)

�= {〈i, λ j ·@(σj)〉 | 〈i, σ 〉 ∈ M}
γ̄ ∀m (M̄)

�= {〈i, σ 〉 | 〈i, λ j ·@(σj)〉 ∈ M̄}
which respectively satisfy (61) and (62). By defining an abstract
transition system:

τ̄
�= {〈s̄1, s̄2〉 | ∃s1, s2 : @(s1) = s̄1 ∧@(s21) = s̄2 ∧

τ(s1, s2)} (64)

23

we have Mτ̄ ⊇ ᾱ∀m(Mτ) whence ᾱ∀m(Mτ↓s) ⊆ (ᾱ∀m(Mτ)↓@(s) ⊆
Mτ̄ ↓@(s) so that:

ᾱ∀Mτ
(φ)

= ᾱ∀s � α∀Mτ
� γ̄ ∀m (φ) �by (63)�

= ᾱ∀s ({s | Mτ ↓s ⊆ γ̄ ∀m (φ)}) �by (46)�
= {@(s) | ᾱ∀m(Mτ↓s) ⊆ φ} �by (61) and (62)�
= {s̄ | Mτ̄ ↓s ⊆ φ} �since ᾱ∀m(Mτ↓s) ⊆ Mτ̄ ↓@(s)� �

which is of the required form (46) for the results on checking ab-
stractions to be directly applicable. Dual definitions, hypotheses
and results hold for the existential abstraction ᾱ∃M satisfying (50).
However this is a very restricted form of abstraction, mainly use-
ful to reuse existing model-checkers. Moreover in practice S̄must
be finite, which in view of [10], requires the abstraction to be re-
designed for each particular concrete transition system, which on
one hand might not be of this restricted form and on the other hand
is unthinkable in the context of program analysis.

15. Data-flow analysis is a boolean abstract interpreta-
tion

Data flow analysis was shown, at least for the available expres-
sions example, to be a boolean abstract interpretation in [9, example
7.2.0.6.3]. In [9], the semantics of programs is a (prefix closed) set
of (finite) traces generated by a transition system. The data flow
property specification is also a set of traces specified equationally
i.e. inductively along one path. The abstraction is the composition
of a static partitioning with a checking abstraction including the
existential or universal merging of path properties. The contribu-
tion of [23] is essentially in the use of a branching time temporal
logic for the data flow property specification so that model-checkers
boolean equations solvers can be reused for dataflow analysis. [22]
remarks that the abstract flowchart with respect to which the data
flow property is specified by [23] is itself an abstract interpretation
of the program semantics. This essentially consists in applying the
static partitioning abstraction of [6]. A problem with this “data-flow
analysis as model checking of abstract interpretations” approach is
that the abstract interpretation of the program semantics into an ab-
stract flowchart and the model-checking specification of the abstract
flowchart are separate processes. Their composition may be not triv-
ial as shown by live-variable analysis which is erroneously claimed
to be unsound in [22]. By understanding both processes as abstract
interpretations, their combination becomes a well-understood com-
position of abstract interpretations.

15.1 The data-flow analysis abstractions

Assume that programs have a finite set of labels � ∈ L such that the
setSof states can be partitioned into {S� | � ∈ L} (i.e.S= ⋃

�∈L S�
and ∀�, �′ ∈ L : (� (= �′)⇒ (S� ∩ S�′ = ∅)). The boolean version
of the static partitioning abstraction of [6] is:

α∀L(S)
�=

∏
�∈L

S� ⊆ S γ ∀L(B)
�=

⋃
{S� | B(�)} universal

α∃L(S)
�=

∏
�∈L

(S�∩ S) (= ∅ γ ∃L(B)
�=

⋂
{S� | B(�)} existential

so that:

〈℘(S),⊇〉 −−−→−→←−−−−
α∀L

γ ∀L 〈
∏
�∈L

B , ⇐̇〉 〈℘(S),⊆〉 −−−→−→←−−−−
α∃L

γ ∃L 〈
∏
�∈L

B , ⇒̇〉

which can be composed with the checking abstractions of Section
10:

α̇∀
L,τ

�= α∀L � α∀Mτ
α̇∃

L,τ
�= α∃L � α∃Mτ

=
∏
�∈L

(Mτ ∩ σ{|S�|}) ⊆ φ =
∏
�∈L

(Mτ ∩ σ{|S�|} ∩ φ) (= ∅

The boolean dataflow equations can then be designed by calculus
starting from the temporal specification as given e.g. in [22].

15.2 On live-variable data flow analysis

Assume that 〈S, τ 〉 is the small-step operational semantics of the pro-

gram where states have the form s = 〈s�, s�〉 ∈ S �=L× (X
→ V)
where s� is the label of state s and the environment s� of state s
assigns values s�(x) to program variables x. Let mod(x) be a spec-
ification of the program variables x which are potentially modified
by a step τ and used(x) be a characterization of the transitions τ
definitely using the value of x:

mod(x)
�= {〈s, s′〉 | τ(s, s′) ∧ s′�(x) (= s�(x)}

used(x)
�= {〈s, s′〉 | τ(s, s′) ∧ ∃v ∈ V : ¬τ(〈s�, s�[x := v]〉, s′)}

“In live-variable analysis we wish to know for variable x and pointp
whether the value of x at p could be used along some path in the
flow graph starting at p. If so, we say x is live at p; otherwise x is
dead at p” [1, p. 631]. From this informal specification, we derive
that variable x is live at the origin of a computation if and only if it
will not be modified until it is used:

isLive(x)
�= (¬ π{|mod(x)|}) U π{|used(x)|}

Now, variable x is live at location � if and only if it is live on some
computation path starting from that location �. It is dead if and only
if it is not live:

Live(x)
�= α̇∃

L,τ (�isLive(x)�∅)
Dead(x)

�= ¬̇Live(x)= α̇∀
L,τ (¬�isLive(x)�∅)

(65)

The classical dataflow equations derives from this specification us-
ing Theorem (40). We define:

succ(l) ⊇ {�′ | ∃s ∈ S� : ∃s′ ∈ S�′ : τ(s, s′)}
used�x(l, l

′) ⇐ ∃s ∈ S� : ∃s′ ∈ S�′ : 〈s, s′〉 ∈ used(x)

¬mod�x(l, l
′) ⇐ ∃s ∈ S� : ∃s′ ∈ S�′ : 〈s, s′〉 (∈ mod(x)

so that:

Live(x) ⇒̇ Live�(x)
�= (66)

lfp
⇒̇

λ X ·λ l ·(∃l ′ : used�x(l, l
′)) ∨

∨
l′∈succ(l)

¬mod�x(l, l
′) ∧ X (l ′)

Notice the implication⇒̇, not⇐̇, so liveness is about “might be” live

variables. By defining Dead�(x)
�= ¬ Live�(x) we have Dead�(x)

⇒̇ Dead(x) proving that the detection of “must be” dead variables
is always correct.

15.3 On the soundness of live-variable analysis

The example given by [22, Sec. 7, Fig. 5] to show that live variable
analysis is unsound is reproduced on next page. The argument is that
y is declared live by the classical data flow analysis equations (66)
although y is not live at the program entry on the concrete execution
path starting with x = 2. This is harmless since “data-flow practi-

24

tioners are well aware of the
above problem, and disaster does
not arise in practice, because
live variables analysis is used
‘dually’ — it is used to detect
dead variables”. Observe that
the example is correct with re-
spect to the specification (65) and
(66). The unsoundness argu-
ment in [22] follows from a (mis-

y := 1

x live

x == 2

x := y

tt

ff

y live

x, y live

x, y live

x, y dead

Example of [22, Sec. 7, Fig. 5]

)specification of live variable analysis as a universal abstraction
Live(x) (�= α̇∀

L,τ (�isLive(x)�∅). Then definition of dead variables as

Dead�(x)
�= ¬Live�(x) in [22] is existential whence also invalid.

However the fixpoint characterization given by [22] for dead vari-
ables, which can be easily derived from (66) by Park dual fixpoint
theorem, is correct. Hence the correct classical data flow equations
(both (66) for live variables and their dual for dead variables) cannot
be derived from the incorrect modal specification (indeed the univer-
sal abstraction for live variables would lead to a greatest fixpoint).
This incoherence in [22] shows the importance of formally deriv-
ing the model checking equations by abstract interpretation of the
temporal logic specification.

16. Conclusion

Model checking of finite systems is understood as a complete formal
verification method as opposed to static analysis/testing of infinite
state programs which is fundamentally incomplete. In practice this
does not make a significative difference because the systems which
are verified are relatively small when compared e.g., in hardware,
with the size of a microprocessor. So the success stories in model
checking are most often relative to bugs which have been found af-
ter exploration of part of the state space. When considering infinite
systems, and except for very particular cases, incompleteness is to
be taken into account. As is the case in program analysis by abstract
interpretation, this does not prevent infinite systems to be verified,
but partially only, that is by restricting the abstract properties that can
be checked. Our understanding of model-checking as an abstract
interpretation leads to three possible research directions different
from the present-day manual design of the abstraction [4, 5, 16].
First, one can look for generic temporal abstract domains going
well beyond the abstract transition systems of (64) Section 14, as in
[21]. Second, the optimal abstract domain for a particular property
of a particular transition system can be formally specified [15] and
it might be the case that its computation could, at least partially,
be automated. Third, [10] shows that the general abstract interpre-
tation approaches applicable to families of systems must abandon
the consideration of finite abstract domains (e.g. [5, 12]) and use
widening/narrowing techniques [8] which has not yet been much
explored, except in the classical application of polyhedral abstract
interpretation [11] to the verification of safety properties [13, 17].

References

[1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers. Princi-
ples, Technique and Tools. Addison-Wesley, 1986.

[2] BEN-ARI, M., MANNA, Z., AND PNUELI, A. The temporal
logic of branching time. Acta Informat. 20 (1983), 207–226.

[3] CLARKE, E., EMERSON, E., AND SISTLA, A. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. TOPLAS 8, 2 (Jan. 1986), 244–263.

[4] CLARKE, E., GRUMBERG, O., AND LONG, D. Model
checking and abstraction. TOPLAS 16, 5 (Sep. 1994), 1512–
1542.

[5] CLEAVELAND, R., IYER, P., AND YANKELEVITCH, D. Op-
timality in abstractions of model checking. Proc. 2ndInt. Symp.
SAS ’95, LNCS 983. Springer-Verlag, 1995, 51–63.

[6] COUSOT, P. Semantic foundations of program analysis. In
Program Flow Analysis: Theory and Applications, S. Much-
nick & N. Jones, Eds. Prentice-Hall, 1981, 303–342.

[7] COUSOT, P. Types as abstract interpretations, invited paper.
24th POPL (Paris, 1997), 316–331.

[8] COUSOT, P., AND COUSOT, R. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. 4th POPL (Los Angeles,
1977), 238–252.

[9] COUSOT, P., AND COUSOT, R. Systematic design of program
analysis frameworks. 6th POPL (San Antonio, 1979), 269–
282.

[10] COUSOT, P., AND COUSOT, R. Comparing the Galois con-
nection and widening/narrowing approaches to abstract inter-
pretation, invited paper. Proc. Int. Work. PLILP ’92, LNCS
631. Springer-Verlag, 1992, 269–295.

[11] COUSOT, P., AND HALBWACHS, N. Automatic discovery
of linear restraints among variables of a program. 5th POPL
(Tucson, 1978), 84–97.

[12] DAMS, D., GRUMBERG, O., AND GERTH, R. Abstract inter-
pretation of reactive systems. TOPLAS 19, 2 (1997), 253–291.

[13] DILL, D., AND WONG-TOI, H. Verification of real-time
systems by successive over and under approximation. Proc.
7thInt. Conf. CAV ’95, LNCS 939. Springer-Verlag, 1995,
409–422.

[14] EMERSON, E., AND HALPERN, J. “Sometimes” and “Not
Never” revisited: On branching time versus linear time.
TOPLAS 33 (1986), 151–178.

[15] GIACOBAZZI, R., RANZATO, F., AND SCOZZARI, F. Com-
plete abstract interpretations made constructive. Proc. 23rdInt.
Symp. MFCS ’98, LNCS 1450. Springer-Verlag, 1998, 366–
377.

[16] GRAF, S., AND LOISEAUX, C. A tool for symbolic pro-
gram verification and abstraction. Proc. 5thInt. Conf. CAV ’93,
LNCS 697. Springer-Verlag, 1993, 71–84.

[17] HALBWACHS, N., PROY, Y., AND ROUMANOFF, P. Verifica-
tion of real-time systems using linear relation analysis. Formal
Methods in System Design 11, 2 (Aug. 1997), 157–185.

[18] KOZEN, D. Results on the propositional µ-calculus. Theoret.
Comput. Sci. 27 (1983), 333–354.

[19] LONG, D., BROWNE, A., CLARKE, E., JHA, S., AND MAR-
RERO, W. An improved algorithm for the evaluation of fix-
point expressions. Theoret. Comput. Sci. 178(1-2):237-255
(1997).

[20] MANNA, Z., AND PNUELI, A. The Temporal Logic of Reac-
tive and Concurrent Systems, Specification. Springer-Verlag,
1992.

[21] MAUBORGNE, L. Binary decision graphs. Proc. 6thInt. Symp.
SAS ’99, LNCS 1694. Springer-Verlag, 1999, 101–116.

[22] SCHMIDT, D. Data-flow analysis is model checking of ab-
stract interpretations. 25th POPL (San Diego, 1998), 38–48.

[23] STEFFEN, B. Generating data flow analysis algorithms from
modal specifications. Sci. Comput. Programming 21 (1993),
115–139.

25

