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abstract

The original formulation of abstract interpretation
[12, 13, 14, 16] represents program properties by sels.
A property is understood as the set of semantic values
satisfying it. Strongest program properties are defined
by the collecting semantics which extends the standard
semantics to powersets of semantic values. The ap-
proximation relation corresponding to the logical impli-
cation of program properties is subset inclusion. This
was expressed using set and lattice theory in the con-
text of transiltion systems [16] thal is of an operational
semantics. This approach was applied to imperative
programs [14], first-order procedures [15], communi-
cating processes [17], parallel [18] and logic [19] pro-
grams.

Some applications of abstract interpretation, such
as strictness analysis for lazy functional languages
[10, 54], require infinite behaviors of higher-order
functions to be taken into account. In this contexrt
denotational semantics is very natural (striciness is
f(L) = L where L denotes non-termination). The
set-theoretic approach to abstract interpretation was
felt incompatible with denotational semantics. The at-
tempts to express the collecting semantics in denota-
tional form were unsuccessful [3] since properties of
functions f € D' — D? had to be expressed as con-
tinuous functions between powerdomains F' € PD! —
PD? which is not expressive enough.

We solve the problem by returning to the sources
of abstract interpretation, which consists in consid-
ering collecting semantics such that e.g. properties
of functions f € D' — D? are sets of functions
F € p(D' — D?). Various Galois connection based
approzimations of F € p(D' — D?) can then be ap-
plied. By using Galois connections, properties of the
standard semantics naturally transfer to the collecting
and then to the abstract semantics.

This set-theoretic abstract interpretation framework
is formulated in a way which is independent of both the
programming language and the method used to spec-
ify its semantics. It is illustrated for a higher-order
monomorphically typed lazy functional language start-
g from its standard denotational semantics. The

1074-8970/94 $3.00 © 1994 IEEE

95

Radhia Cousot

LIX — Ecole Polytechnique
91128 Palaiseau cedex (France)
radhia@poly.polytechnique.fr

chosen application s comportment analysis which
genemhzes strictness, termination, projection (includ-
ing absence) [64], dual projection (mcludmg totality)
and PER analysis [{1] and is expressed in denotalional
style.

Part I : Higher-Order Abstract
Interpretation

1: Principles of abstract interpretation

In the context of program analysis, abstract inter-
pretation consists in answering questions about pro-
grams by approximation of a collecting semantics ex-
pressing program properties relative to a standard se-
mantics [12, 13, 14, 16].

1.1: Collecting semantics

For example, the collecting semantics {p} € p(D)
of program p is a set {[p]¢ | ¢ € I} C D of possible
output values (in the set D of concrete values) corre-
sponding to a given set I of possible input values, as
defined by the standard semantics [p].

1.2: Questions about programs

Concrete questions asked about program p have the
form “p}} € R?” where the set R € P of desired

results is a concrete property of P = ©(D) which is a
complete lattice (P; C, @, T, U, N} with T = D.

1.3: Approximation ordering

Question @ is said to be more precise than @' or
Q' 15 an_appromimation of () if and only if @ C Q"
The partial order C is called the approzimation order-
ing. Observe that the collecting semantics {p|} is the
most precise question which can be answered about
program p. The approximation ordering is a logical
ordering corresponding to implication which is totally
unrelated with any relation between semantic values.



1.4: Abstract semantics

The collecting semantics {p]} is not computable, so
that an abstract semantics (p) € P, can be used in-
stead. The set P, of abstract properties is a complete
lattice {(Pg; Cq, Oa, Yo, Ua, Na)-

1.5: Connecting the collecting and abstract
semantics

The correspondence between concrete and abstract
properties is given by means of a Galois connection!:

P

(P; C) = (Pa; Ca)
that is a pair of functions:
a € P—=7P, v € Pg—P

satisfying:

YQ EP :YQ, € Py :
Q) Sy Qa = Q Cv(Qa)

or equivalently:

VQ, Q' :€P, VQa, Qy €P

(1)

: (2)

Q

« monotone: QCR)=>(a(®) C, (@)

3 monotone: (O Cr Q) = (4(Qa) € 2(Q)))
¥ o o extensive: @ C y(a(Q))

a o 7y reductive:  a(y(Qq)) Co Qa

1.6: Best approximation

The only considered properties are now of the form
¥(Qaq) where Qq € Pgy is an abstract property. Qg
is said to be more precise than @/, if and only if
¥(Qa) € v(Q%). Let us call an approzimation of a
concrete property () any abstract property @, such
that @ C v(Q,). The interest of Galois connec-
tions 1s that «(Q) is the best approzimation of Q
(it is an approximation by @ C y(«(Q)) in (2) and
a(Q) is more precise than any other approximation
Qq since Q@ C v(Q,) implies a(Q) C, Q4 by (1) so
that v(a(Q)) € 7(Qa) by monotony).

1Evariste Galois introduced such “correspondences” as the
basis of his criterion for solvability of a polynomial equation of
degree > 5 by radicals and for the constructibility by straight-

edge and compass. If E is a given field then let Inv G B {a €
E |3p € G :n(a) = a} for a group G of automorphisms in E.
The Galois group Gal E/F of E over a subfield F' is the set of
automorphisms 1 of E such that n(a) = a for every a € F'. The
maps o(F) = Gal E/F and ~+(F) = Gal E/F are such that:

(1 C F2) = (a(F1) 2 a(Fz))
(G1 2 G2) = (v(G1) C~(G2))
F Cr(a(F))
a(v(G) 2 G

which, as remarked in [16], corresponds to (2), but for the use of
the dual ordering O = C,, hence more precisely to the residu-
ated mappings of P. Dubreuil and R. Croisot [23, 28]. The idea
of using Galois connection in the context of order theory is in
[31, 61] and, implicitly, in [6].
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1.7: Correctness and completeness of the
abstract interpretation

Questions are now answered in the abstract form
“Upd C. Qq2”. This approach is correct whenever:

VQa € Py (]PD Co Qo = {Ipﬂ - V(Qa)

and complete whenever:

V@4 € Pa: {Ipﬂ - V(Qa) = (IPD Cu Qa
By the Galois connection property (1), any choice of
(p) such that a({p}}) S, (p) 1s correct while (p) C,
a({pl) is complete.

1.8: Higher-order abstract interpretation

In order to lift this approach to higher-order, we
have to provide methods for approximating a set of
functions (corresponding e.g. to the collecting seman-
tics of a function type) and a relation (corresponding
e.g. to the collecting semantics of a pair type or e.g.
to an ordering on values).

2: Abstraction of a set of functions

We now consider abstract interpretations of sets of
functions in (P! — D?) where D! and D? are sets
for which abstract interpretations are available:

{(p(D); €, 0, D', U, N) (3)

v
=

. . .a . . . .
(D Coy 0, Yo, U, 0G) =12

2.1: Abstraction of a set of functions by a
binary relation

A first abstraction consists in approximating a set
F of functions {f; | i € A} by a relation r relating el-
ements {x, y) which can be mapped by some function
fi in the set F: fi(x) = y. Precisely which function

fi is ignored. We write D! — D? for p(D! x D?) =
{{z, y) | * € D! Ay € D?}. We define:
af(F) = {{z, f(z)) e €D AfEF)
74(r) {feD'—D? Ve €D : (2, f(z)) €7}
so that we have the Galois connection:
(p(Dt —D?); C, 0, D' — D2 U, N)
,yQ

o

(D' - D% C, 0, P! x D% U, N)

def

2.2: Binary relations as set-valued func-
tions

Once a set of functions has been approximated by a
binary relation, we are left with the problem of approx-
imating this relation with respect to the approxima-
tion ordering. We first consider two isomorphic rep-
resentations of binary relation by functions and then
their approximation.



Pointwise coding: There are many possible cod-
ings of a relation by a function. A first one is the
pointwise coding into a function mapping elements to
their images under the relation:

a®(r) = Aze{y | {z, y) € r}
77 (8) = {{z, 9) |y € d(x)}
(D' - D% C, @,wpl x D2 U, N)

o
—
b

(D! — p(D?); C, Az+ 0, dz+D2, U, N)

The arrow «— indicates that in the Galois connec-
tion v% is surjective or equivalently that o is injec-
tive. The arrow — indicates that o™ 1s surjective
or equivalently that o™ is injective. Here we have an
order isomorphism which is a special case of Galois
connection (a® o ¥ and ¥¥ o o are the identity).
Another tnverse pointwise coding would consist in us-
ing the pointwise coding for the inverse relation.

Set-transformer coding: A second equivalent
coding is set-transformer coding. The relation i1s coded
by a set-transformer mapping sets to their images un-
der the relation. Such set-transformers are complete
union-morphisms i.e. f € p(D') =+ p(D?) such that

Usex f({z}) = F(Upex{zd) (= F(X)):
a’(r) E AXJy|FeeX:(x,y)er} (4)
7(@) = Az, y) |y ee({x}) ()
(D' - D% C, QJ,ng x D2 U, N)

<
(a4

(p(DY) == p(D?); C, AX+0, AX-D*, U, )
Observe that this coding is familiar when the relation r
is a function f (in which case (z, y) € rand {(z, y') € r

imply y = y' = f(7)), since a*(r) = AX+{f(z) | z €
X} is the usual extension of functions on elements to
functions on sets of elements. Another inverse set-
transformer coding would be relative to the inverse
relation.

2.3: Abstraction of a set-valued function

Pointwise abstraction of a set-valued function:
The approximation of a set-valued function in D'
p(D?) can be done using a pointwise abstraction (with

no loss of information on P! and approximation on
p(D?) only), as follows:

a"(¢) = Azea’(¢(x))
Y(®) E dze{y |y e (P(x))}
(D' — p(D?); C, /\9£°®, AzeD? U, M)

o
a

.92 . .
(D' — D2, €, Aee 02, Az Y2, Uz, (1)

Functional abstraction of a set-transformer: A
set-transformer in p(D!) — (D?), which is a com-
plete union-morphism hence @-strict (f(#) = 0) and
set-inclusion monotonic (X C Y = f(X) C f(Y)),
can be approximated by a @-strict and monotonic func-
tion on abstract values (with loss of information both

on p(DP') and p(D?)) using the following set-trans-
Jformer abstraction [12, 13, 14, 16]:
Ozw(q)) d:Ef 2o<I>o’y1
7@(\1}) d:Ef E o ¥o Ozl
(p(DY) &5 o(D?); C, AX+0, AX-D2 U, A) (6)

(DL S D25 CoL AA02, AA-T2, UL, A7)

3: Compositional abstraction

The composition of Galois connections {«a®, y7):

(p(D); C,0,D,U, N) == (Du; Cay b, Ty Ug, Na)
and (o, 7°):
b

y
<Da; gaa waa Taa Uaa ma) %} <Dba gba wba Tba Uba mb)

is a Galois connection {a®, ¥%) o {(a® v4):
(o(D) €, 0, D, U, 1) ©
L_°>
Ozb o

Oé
(Dy; Ca, 0y, To, U, M)

It follows that an abstract interpretation can be de-
signed compositionally by composition of successive
abstractions. For example we consider two possible
abstractions of sets of functions by an abstract func-
tion.

Pointwise abstraction of a set of functions: A
set of functions in p(D! — D?) can be approximated
pointwise without loss of information on the domain
D! and abstraction on the co-domain D? only:

Al o™ 6 a% o al
= AFedx-o?({f(x) e €D AFEFY
FTE ey T "
= AF{f|Va: f(zx) €% (®(x))}
(p(Dt —D?); C, 0, D' — D% U, N) (8)
il

(D' — D2 €, 02, T2, U2, (A2)

Functional abstraction of a set of functions: A
coarser approximation of a set of functions in p(D?! —
D?) is by abstraction as a set transformer and then on



both the domain P! and on the co-domain D?:

a? T af .0l
= APAX-a¥({f(2) |2 €91 (X) A f € F)
A L A
= A0S |Ve: f(x) € 72 oW al({x})}
(p(Dt —D?%); C, 0, D' — D2, U, N) (9)
2
ot

.9 - . .
(DL &S D2 Co 02, T2, U2, (D)

4: Abstraction of a binary relation

We now consider abstract interpretations of rela-
tions in D! — D? where D' and D? are sets for which
abstract interpretations (3) are available. Observe
that by the i1somorphisms between binary relations
and set-valued functions (Sect. 2.2) and set-transform-
ers (Sect. 2.2), we can already use the abstractions
given in Sect. 2.

4.1: Relations on elements as relations on
sets

Corresponding to the extension of a function on el-
ements to a function on sets of elements (by the func-
tional set-transformer of Sect. 2.2), a relation on ele-
ments can be coded by a relation on sets of elements:

'Y = {reD' ey :(x,y)er}

"X = {yeD?|FreX:(x y €r}
a=(r) = {{X,Y)€p(D') = p(D*) | X C|"Y}
am(r) = {(X,Y)€p(D") = pD)|Y C1"X}
a*(r) e a”(r) N a—(r)
R) = (e, ) | {2}, {v}) € R

The same way that not all functions on sets are
set-transformers (they must be complete union-mor-
phisms hence (-strict), not all relations between sets
are set relators. Therefore we define:

p(D') < p(D*) =

IEA IEA
p(DY) 2 p(D?)
p(D1) & p(D?) N p(D') & o(D?)
so that we have the Galoils connection:
(D' =D* C, 0, D' xD* U, N)
v

(10)

L
(p(DY) ¥ p(D?); C, 0%, T+, U, N)
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where
o = {0, 0))
= PP u(p(DHY\{0}) x (p(D*)\ {0})

The above connection is useful in conjunction with
(4) to extend a relation defined for the standard se-
mantics to a corresponding relation for the collecting
semantics:

(1)

VfeD—D:VreD—7D:

@Wl‘, y) €D xD:(x, y)€r=(f(z), f(y) er
V(X,Y) € p(D) x p(D):
X, Y) €a*(r) = (a"(/)(X), a*(f)(Y)) € a*(r)

Example 1 (Fixpoint inducing) f € D™~ 7 is C7-

monotonic whence by (11), f* = a’(f)is o (C7)-pre-
serving. (D7; C7, L7, I_IT) 1s a poset so that {p(D7);

C7*, L7%, I_IT*) is a preorder where C™* = o*(C7)
L7 E L and U X S {0 |[Vie A x
€A €A
X;}. L7 is an infimum on p(D7)\ {0}. We have:
It [ =0T P = () (12)
which is the least fixpoint on the poset {p*(D7); C7*)
where p*(D7) 2 o(D7)/=* = {[X]% | X € p(D7)\
{01}, [X]E = {Y | X = Y} is the equivalence class
of X for the equivalence relation X =F Y = X C7*
YAYC™* Xand [X[ECF[Y]E EXCTFY. O

bl

4.2: Abstraction of a relation on sets by a
relation on abstract values

Using the abstractions (3) of sets of values in D!

0,u

and D?, one can abstract a set relator in p(D!) =

p(D?):
a’(R)
V() =

= (=, 9) | (v'(2), ¥’ (v)) € R}
{{X, V)| Ve (X € 'yl(x)) =

(Fy:Y €v*(y) A, y) €7)}
(13)

= p(D?); C, 0%, T, U, )
ﬂ:w

(a4
<D<11 HDZ; <, @Z, TZ? U, ﬂ>

{p(D")

where:

0% {0, 02)}
T3 0% V(D \ {0:}) x (DZ\ {03}
so that relator preserving set-transformers are approx-

imated by abstract relation preserving abstract trans-
formers:

def

def

VFEW( D) == o(D VREW( ) ¥ p(D) : (14)
V(X )EW( ) X
(X,Y)eR =><( ),F( ) ER

=

V{x, y) € Dy x Dy :

(2. 1) € a”(R) = {a(F)(x), a?(F)(y)) € a*(R)



Example 2 (Fixpoint inducing) Going on with

Ex. 1, {p(D7); E7*, L™ U™) is a pre-order so
that (D; C;, 17, UZL) is also a pre-order where
E; d:ef Ozp(ET*), J_; d:ef aT(J_T*) and UTZEA z; d:ef

aT (U iea 7 (). By (11), fu = a®(f*) is T7*-pre-
serving. It has a least fixpoint (unique up to equiva-
lence classes):

Ifpy fs = UL f5"(LD) = {Ifp [}

neN

(15)

ad

4.3: Abstraction of a binary relation by a
pair of sets

A relation can be approximated componentwise:

a(r) = (mr, myr)
mr = {z|3y:(x, y) €r}
myr = {y|3x:(x, y)€r}
PN, YY) E X xY
(DlHD C, 0, D' x D% U, N) (16)
&

Oz)(
(p(D') x p(D?); %, 0%,
where C*=' C x C, 0% = (), 0), T
U EUxUand X Enxn.

U, NX)
X d_Ef <D1 D2>

4.4: Abstraction of a pair of sets by an ab-
stract pair

In turn a pair (X, V) € p(D!) x p(D?) of sets can
be approximated by a pair of corresponding abstract
values:

(X, V) = (al(X), o*(Y))
Oz y) F (M) ( )
(p(D) x p(D?); C*, 0%, T, UX, n%)
(Dg xD}); €%, 09, T9, UP, N9)
where C® = CLxC2 0® = (BL, 02), ¥® = (T, T2),
U® Ul x U2 and N® =Nl x N2

(17)

5: Abstraction by partitioning

A common way of abstracting elements of p(D) is
by partitioning D. A partition P € p(p(D)) satisfies
YA, BeP:ANB =10and D = UgepB. It can be
defined e.g. by an equivalence relation = as P = {[z]- |
z € D}. A subset S of D can then be approximately
described by the list of blocks (equivalence classes) in
which S has elements:

of (X) =
yP(L) =

{BeP|BNX#£0}
U{S|SelL}
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P
(p(D); C, 0, D, U, M) = (p(P); C, 0, D, U, n)
In practice a coding of p(P) by an C-isomorphic set
may be used.

6: Reduction of an abstraction

If o is not surjective in (3), then there exists dif-
ferent abstract values z € Dy and y € D; with the
same meaning y*(z) = v*(y). Hence one of them can

be eliminated from D! without loss of expressiveness
of the abstract interpretation, since (3) implies:
(18)

{(p(D"); C, 0, D', U, N)

(RL(DL); Chy ol o 7/ (B), Th, UL, AX w0l 0 4(MEX)
where %ZZ(DZ) = o o yi(x) | £ € DL} and —> indi-
cates that o is surjective. For example, two abstract
interpretations where v/(0)) = 0, ¢ = 1, 2 can be ex-
tended to pairs with v¥({z, y)) = v1(2) N y*(y) in
which case all pairs with an empty component denote
the empty set and can be eliminated in favor of (§, ().

Our later examples are (implicitly) reduced.

7: Completions of lattices of properties

We now recall the disjunctive completion of a lat-
tice of properties, a technique we introduced in [16]
to prove that merge-over-paths (MOP) dataflow anal-
yses can be equivalently expressed in fixpoint form.
More generally, we consider the complete lattice of
completions of the lattice of properties and exhibit a
few interesting members which we present in various
equivalent forms. Concrete and abstract properties
are assumed to correspond, as follows:

(19)

<W(D)a ga Qa Da Ua m)

pm—

<Da; gaa maaaTaa Uaa ma)
7.1: Disjunctive completion

Disjunctive completion consists in enriching ap-
proximate disjunctions in the lattice of properties by
exact ones.

Definition of the disjunctive completion: De-
fine the preorder CY on p(D,) by X CV Y = v €
X:3dyeY .z C,y By considering the equivalence
classes [X]Y Y | X =V Y]} of X € p(D,) for the

def

equivalence relation X =YV = X CY Y AY CY X,

" (Do) = p(Do)/=] = {[ 1L, | X € p(D.) \ {0}},

is a complete lattlce (pV(D ); gg, 0y, DY, Uy, Ny

where [X]Z CY [YIL, = X CY Y, 0F i ({0312, ,

Dy DL, U, I, & [U Xill,, ML, =
€A ieA



[N 15 X)L, and |S« X Z{zeD, |Fye X xC,y
i€EA

y}.

Completion of the lattice of concrete proper-
ties: When (D,; C,) is {p(D); C) we obtain the lat-
tice (pY (p(D)); CY, 0V, p(D)Y, UY, NY) of disjunctive
concrete properties. By eliminating disjunctions, us-
ing:

VIXTY) & u
o’ ([X]Y) o

X)) 2 [} e e X
we obtain a Galois connection with the original (non-
disjunctive) properties:

(pY(p(D)); €V, 0¥, p(D)¥, U, NY)

,y\/

=

(0(D); C, 0, D, U, )

def

(20)

Completion of the lattice of abstract proper-
ties: When completing both the lattice of concrete
and abstract properties, the abstraction:

og(X) = o) |z € X)L,

7a ([X]Z,) [{v(v) v e X}2

is, by (19), a Galois connection:
<WV(W(D))’ gv’ @V’ W(D)Va Uva mV)

v
Ya
—

v

def

(21)

aa

o}, DY, Uy, )

This disjunctive abstract interpretation is more pre-
cise than the original one, since:

ay ([X]L,) = U.X 77 (x)
1s a Galois connection:

(" (Pa); Sa

Y =a?

(" (Pa); Sa

Y =a?

= [{eh,

B, DY, UL, )
e

=

a¥

<Da; gaa maaaTaa Uaa ma)
When {aY

Yo vY) is strictly more precise than the
original abstract interpretation, this original abstract
interpretation (o, ) 1s said to be “non-digjunctive”
else 1t 1s “disjunctive”.

The meaning of the completion of the abstract
properties is defined by (21) with respect to the com-
pletion of the concrete properties. By composing with
(20), as defined in (7), the meaning can be expressed
with respect to the original (non-disjunctive) lattice
of the concrete properties.

7.2: Order ideal completion

The order ideal completion consists in considering

order ideals to represent the equivalence classes [X]Y
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of p¥(Dy). An order ideal of the complete lattice {Dg;
Ca, 04, Yo, Uq,Ng) is I C D, such that I = |Se 1. The
order ideal completion of D, i1s the complete lattice
<pl(Da); ga {@a}, Daa Ua m) where pl(DG) = {I g
Dy | I =|%TAI+#0} The disjunctive and order
ideal completions are isomorphic:

ol(X)L,) = & X a(I)
(9" (D) X, 0%, DY, UL, )

1

Va

=

ag
<pl(Da); g’ {@a}, Daa Ua m)

= [

=a

7.3: Scott closed ideal completion

Considering Scott closed ideals (containing lubs of
increasing chains) leads to a less precise completion.

The Scott closed ideal of X € p(D,) is S+ X =
1S« X UR(|Se X) where h(X) = {U, 2 | Vi € IV :
teN
z; € X Na; C, a4} is the adherence of X. The
lower power domain of D, is p*(D,) = {I C D, |
I =5 TAT+#D0} Ttis acomplete lattice (p¥(D,);
C, {0,}, Dy, AX+h(UX), N). By defining the Galois
connection:
ot () E K (T =T
(9" (Da); Cq, 07, Dy, Uz, Og)
i
5

pm—

(p*(Da); C, {wa},%a, AX -« R(UX), N)

we see that the Scott closed ideal completion of p(Dy)
is an abstract interpretation of order ideal completion
9" (D,), hence, by (7), an abstract interpretation of
9(Dy). Tt is in general less precise since for all X €
9(Dy), |5« X = )&« X if and only if D, satisfies the
ascending chain condition, in which case the order and
Scott closed ideal completions coincide:

(pV(DG); gg, @;L, D(\I/, UZ, ﬂg} D, satisfies

7«__» th.e ascenFl—
at ing chain
(9*(D,); C, {0a}, Do, XX~ R(UX), N) condition.

7.4: Anti-chain completion

Scott closed ideals can be represented by their max-

imal elements [7]. The crown W(X) = {m € X | V& €
X :mCq 2= m=uzx}of X is the set of its maximal
elements. It is an anti-chain since no two elements
are comparable. The crown completion ¥ (D,) =
{CCD, | C=WC)NC # 0} of D, is a complete
lattice (p¥(Dy); Co, {04}, {Ya}, UY, M%), where
CCi C"EVeeC:Iyeld  vChy U E
AX-w(UX) and NY = AXW(Neex |5 C). The

crown and Scott closed ideal completions coincide:

a¥(J) wW(J) 7¥(C) |EC

def

def



(9*(Da); €, {02}, Day AX+R(UX), 1) (22)

v
=
QW

<WW(DG); g;ya {@a}, {Ta}, UW’ mw>
Again, the crown and order ideal completions coincide

if and only if D, satisfies the ascending chain condi-
tion.

7.5: The complete lattice of join comple-
tions

More generally, a join completion is any subset
9'"(Dy) of p'(D,) which is a Moore family (i.e. con-
tains the supremum D, and NX with any X C
9'”(Dy)) and contains all principal ideals of D, (i.e.
" (D, ) = = {|S{x} | * € D,}) is a complete lattice
which is an approximation of the disjunctive comple-

tion:
VXY, E n{lep”(@
7y = Iy

=a

(9"(Da); Ca, 0s, D, Uy, 0G)

u

o) | X C I}

"
ol

lU

(9 (Pa); S, {0}, Da, U, 1)
Up to isomorphism, the complete lattice of all p'” (D,)
for C has infimum @' (D,) and supremum p'(D,).
The principal completion p* (D) (i.e. the Moore fam-
ily corresponding to the intersection of principal ide-
als) is isomorphic with D, while the disjunctive com-
pletion p'(D,) corresponds to the most precise prop-

erties obtained by completing missing disjunctions in
D,.

7.6: Order filter completion

We now examine the dual situation and observe
that in the abstract lattice D,, conjunctions are exact
with respect to p(D) (while disjunctions are approxi-
mate).

An order filter of a complete lattice (Dy; Cg4, 04,
Yo, Ug, Ng)is F C Dy, such that F' = S« F where
the order filter of X is [S« X Z {y | Iz € X : 2 C,
y}. The order filter completion of D, is the complete
lattice (p"(Dy); 2, Dy, {Ya}, N, U) where p'(D,) =
{FCD,|F=1%FAF#0}. If (19) then:

o'(X) = 15 {a({z}) |z € X}

YI(F) = 0fy) |y eF}
<W(D)a ga wa Da Ua m)
1
O
<WT(D(1); Qa Daa {Ta}a ma U>
The original abstract interpretation is an abstraction
of 1ts order filter completion:

al(F) = N F i) = 1 {z}

{9'(Pa); 2, Pa, {Ta}, 0, V)

’Ya
pm—

T
aa
<Da; gaa waa Taa Uaa ma)

However the order filter completion is not more expres-
sive than the original abstract interpretation, since its
reduction is isomorphic with the original abstract in-
terpretation:

T
<§RZA(WT(DG)); 2,a'o VT(DG)a {Ta}a n,
AXeal o yT(UX))

<Da; gaa waa Taa Uaa ma)

Otherwise stated, the intersections which are intro-
duced by the filters where already present in the orig-
inal abstract lattice D,. Hence order filter comple-
tion as well as conjunctive, dual Scott closed and dual
crown completion of D, are useless — with respect to
©(D) — in the context of abstraction by Galois connec-
tions (which ensures the existence of a best approxi-
mation)..

Part II : Application to Comportment
Analysis Generalizing Strictness,
Termination, Projection and PER
Analysis of Functional Languages

To get faster implementations of lazy functional lan-
guages on sequential or parallel machines, optimiz-
ing compilers transform call-by-need into call-by-value
when the program meaning is not altered (up to the
reason for divergence or run-time errors). Four pro-
gram analysis techniques are mainly used in order to
determine when this transformation is safe:

— Strictness and termination analysis introduced

by Mycroft [54, 55];

— Projection analysis introduced by Hughes [38]
and Wadler [64];

— PER analysis introduced by Hunt [42].
We introduce a new application of higher-order ab-
stract interpretation, called comportment analysis,

which unifies and generalizes all four methods into a
single abstract interpretation framework.

8: Background on the analysis of lazy
functional languages

8.1: Strictness analysis

Strictness analysis is used to answer the question
of knowing if f(L) = L where L denotes divergence
(and run-time errors), as usual in denotational seman-
tics. This shows that function f either does not ter-
minate or needs its argument. Strictness analysis is
based on abstract interpretation [14, 16]. The approx-

imation of ) and of {1} is 0. The approximation of



any other nonempty subset of values is 1. Therefore
the meaning of these abstract values is y(0%) = {1}

and v(1") = D, where D; £ DU {L} and D is
the domain of values. The denotational semantics of
functions f on D) 1s approximated by an abstract se-
mantics f* on {0, 1"} such that f#(0%) = 0 implies
f(L) = L and fH(1%) = OF implies V& € D : f(z) =
L whereas fia) = 1" represents an unknown behav-
ior:

Aze1 ] 1 truth
Acex | f(L)=L1 strictness
Az+0 [ Ve € Dy : f(x) = L | divergence

When considering functions with multiple argu-
ments, Mycroft’s strictness analysis [55] is disjunc-
tive (“relational analysis” in [47]). Tt can express
that a function is jointly strict in its arguments when
fH0%,0%) = 0 but neither f¥(1%,0°) = 0% nor
fH0* 1%) = 0'. Johnsson’s strictness analysis [46]
18 non-disjunctive (“independent attribute” in [47])
whence less expensive but also less precise. The strict-
ness is expressed independently for each argument

by f#(0%) = 0 for Yy € D, : f(L,y) = L and
30" = 0 for Yo € Dy : f(x, 1) = L. In all cases
disjunctive analyses are more powerful than non-dis-
junctive ones.

Strictness analysis is a forward analysis in that the
abstract result is computed knowing the abstract ar-
guments representing the past history of the computa-
tion. By observing that the knowledge of the inverse
image f!~1(0") of 0 is equivalent to that of !, one ob-
tains ideal-based backward strictness analyses [29, 30]
where the abstract arguments are computed using the
abstract result representing the future history of the
computation. Relating forward and backward analy-
ses 18 not so easy in denotational semantics since the
inverse of function may not be a function and con-
tinuity may be obtained only by restriction to finite
abstract domains [35, 36]. For a practical example, the
fact that forward and backward disjunctive strictness
analyses are isomorphic and that, if no useless approx-
imation is done, the same holds for non-disjunctive
strictness analyses seems to have escaped from the at-
tention of [26]. The cases when forward analysis is
equivalent to backward analysis should now be well-

understood [36].

Most approaches to strictness analysis use denota-
tional semantics as standard semantics [59], but can
also be formalized with an operational semantics [27].
One difficulty with denotational semantics is that the
collecting semantics uses powerdomains [57]. When
considering nondeterministic functional languages one
should consider powerdomains of powerdomains which
becomes complicated.

Strictness analysis has been extended to higher-
order [9, 10, 34H, to lazy data structures [33, 63], to
polymorphism [1, 4, 5] and can be mixed with type
inference [11, 49, 65] using the equivalence between
logical rule-based and fixpoint presentations [44].
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8.2: Termination analysis

Mycroft’s termination analysis [2, 55] is used to an-
swer the question of knowing if function f terminates
for all arguments that is Yo € D : f(z) € D. The
evaluation of an always terminating call-by-need ar-
gument can be safely anticipated.

Termination analysis is an abstract interpretation
of the denotational semantics on the abstract do-
main {1’,0°} with interpretation v(1") = D and
'y(Ob) = D, . It follows that fb(lb) = 1" implies to-
tality (convergence for converging argument): Vo €
D : f(x) € D and fb(Ob) = 1" implies convergence:
Vee D, : f(x)e D:

Aze0 | truth
Arex (Ve € D: f(x) € D | totality
Azl |Ve € Dy : f(x) € D | convergence

Observe that termination analysis is a very crude form
of constant propagation [48] where the value of con-
stants is simply ignored. This may explain why it has
not be much studied [2].

8.3: Projection analysis

Projection analysis [38, 25, 64] uses projections
3,6 € D1 — Dy which are reductive (3 C id where
id is the identity function: V& € Dy : id(z) = x)
and idempotent (8 o § = ) continuous functions
on D;. Here C is Scott’s partial ordering: Va €
D:1LC 1LCaxC x A projection [ represents a
safe loss of information. For example abs such that
Vo € Dy : abs(z) = L specifies that a value z can be
replaced by L without changing the meaning of the
program since this value is not used. The equivalent
relations:

Bof=0Fofob <= [BofLfob

are denoted by Hughes/Wadler’s backward notation
f:8=6 (to get F’s worth about the result we only
need to know &’s worth about the argument to f)
or by Launchbury’s forward notation f:6— g (if we
know é’s worth about the argument to f then we know
3’s worth about the result). TFor example absence
f:abs — id means that replacing the argument by L
does not change the result, thatis ¢d o f = id o f o abs
whence Vo € Dy : f(z) = f(L1). Unfortunately there
are no projections 8 and § on D such that strictness
F(L) = L can be expressed as f:6 — §. To do so D
must be lifted into Dy, with a new infimum 5 called
abort: Ve € Dy :3C S C x. If bis true then & 7 e; :
e; is e, else e;. By defining:

def def

id
fail

Axex | sir

Az

Are(z € {8, L} 75:2)
Are(x =5%75: 1)

def def

abs




and considering that all functions are § -strict (f(3)
%), one can express:

def

:str— str strictness

S~y

f=1

s abs — str, absence

cabs — id

Ve e D, : f(x) = f(1)

fail—str |(Vee Dy fle)=1 divergence

sid —ad, tt
s1d — str,
s1d — abs,
s1d — faal,
:str— abs,
: str— faal,
s abs — abs,
s abs — fail,

: fail — fail

truth

[ R S S S T S S S (S

str—d,
fifarl —d,
f i farl — abs

falsity

Observe than there may be many ways to express the
same property.

For functions with multiple arguments, traditional
projection analysis 18 non-dis-
junctive. f:[6',...,6"]— 3 means that Vi € [1,n] :
B(f(xt,...;2™)) T f(at, ... 8 (2, ...,2"). A dis-
junctive form \/; A f: [61,...,60]— B3 can also be
used [58].

Projection analysis has been used for time complex-
ity analysis [62], binding-time analysis [50, 51] and
extended to higher-order [24], to lazy data structures
[37, 64] and to polymorphism [39, 40].

Burn has observed that projection analysis, which
can express strictness and divergence, encompasses
strictness analysis. For strict functions (for which
absence is equivalent to divergence), the projection
and strictness results are equivalent [8]. Neuberger
and Mishra [58] have shown that when considering
a disjunctive version of projection analysis but with
projections fail, str and id only, one obtain results
isomorphic with Mycroft’s non-disjunctive strictness
analysis. In fact not only the results but the iterative
computations themselves are 1somorphic and this also
holds for the non-disjunctive versions.

The overall informal impression when comparing
projection analysis and strictness analysis is that pro-
jection analysis is more precise. However, the com-
parisons found in the literature are confusing since
they proceed by restricting abstract interpretation (to
bottom-reflecting abstraction maps in [8]: Ve € D :
a(z) = L = « = 1) or projection analysis (to smash
projections in [58]: Ve € Dy : f(x) #5= B(x) = ).

8.4: Dual projection analysis

As noticed by Launchbury (private communica-
tion), by inverting the order relation, one can define a
dual projection analysis:

fi6 = pBEfob6Cpof
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so as to express the following properties:

Vee Dy : f(x)eD

sid == str,

cabs = sir

convergence

:str = sir

VeeD: f(x)eD
Vee Dy fe)=L

totality

cid = abs,
cabs = abs,
cstr = abs
sid = ad, tt
Dstr = ad,
cabs = d,
Dfarl = 1
:farl =
s fail = str,
fail = abs
sid = fail,
cstr = faul,
cabs = fail

divergence

truth

? b
fail,

falsity

s [T S S S S S [ s [ S [

Dual projection analysis is definitely more expressive
than termination analysis.

8.5: Per analysis

Hunt’s PER analysis [42] can express program
properties of the form:

f(a)=8 Ve,ye Dy rx=, y= f(x) =5 [(y)
where =, and =, are partial equivalence relations

(PERs) that is transitive and symmetric binary re-
lations on ;. Hunt’s PER analysis generalizes pro-
jection analysis by defining:

7(Bor) = =BoT =Bor = L L)}
def def

y(m) = = =n = Yz, z) |z e Dy}
v(aBs) = =.as = bs =D, x Dy

so as to express the following properties:
f(or) = BoT | f(L)=L1 strictness
f(saBs) = Va,y € Dy f(x)=f(y) | absence
f(aBs) = Bor |Ve e Dy:f(z)=1 divergence
f(Bor) = ams, | truth
f(Botr) = m,
f(m) = Bor,
f(w) = a»s,
f(m) = m,
f(ans) = ams

PER-based abstract interpretations have been in-
troduced as a generalization of projection analysis for
strictness [42] and binding-time properties [43]. In fact
the generalization is not so obvious since no method
is given for constructing the abstract domain of PERs
corresponding to a given set of projections. For exam-
ple, [42] passes over abort Y in silence.

In order to express totality as in dual projection

analysis, one can introduce the PER var such that
def def

y(var) = =,,, where =, = D x D. Totality is then



f(var) = var and convergence is f(aBs) = var. Observe
that both [42] and [43] use totally ordered domains of
PERs whereas Bor and var are incomparable. Since
PERs are required to be closed under intersection, it
is also necessary to introduce the empty PER emp such
that v(emp) et =, up Where=_ 0. We can now ex-
press falsity as f(P) = emp for all P # smp. Then PER
analysis generalizes both projection and dual projec-
tion analysis. We can even express properties that can
neither be expressed by projection nor by dual projec-
tion analysis such as f(Bor) = BoT A f(vaL) = var, that
18 “the function diverges if and only if its argument
diverges” (f(L)= LAYz € D : f(x) € D). However,
PER analysis cannot express properties of the form
f(Bor) = BoT A (f(vaL) = Bor V f(var) = var) and this
excludes functions that terminate for some but not all
terminating values of their parameters. The problem
with PERs here is that disjunctions are missing.

9: A simply typed lambda calculus

To illustrate higher-order abstract interpretation,
we consider a simply typed lambda calculus, as the
core of a functional language with basic types 3 (such
as bool, num, etc.) and {ypes T including basic types
3, pairs 7 x 7 and functions 7 — 7':

ro=f8lrxr|re—1

The syntax of expressions e of type 7 (written e7) is:

e’ = 7 variables, z7 € V,
| constants,
| ebeel 7 el el conditional,
| (eT' e3") pair (r =7 x 1),
| fst eTXT first projection,
| snd eT X7 second projection,
| AT ee” abstraction (7 = 7' — 1),
| eT=mer application,
|  paTee” fixpoint.

10: Standard denotational semantics of
the simply typed lambda calculus

A Scott domain (D;C, L, L) is a bounded-complete
w-algebraic complete partial order where C is the par-
tial ordering, L is the infimum and countable chains
{x, | n € N} of elements of D (such that ¥n € N :
Zp T #p41) have a least upper bound (lub) Upenay

[32].

The set D7 of values of type 7 is a Scott do-
main (D7; C7, L7, U7) which is given for basic
types 3 (for example as a flat domain such that
Ve € PP . 1P P 1P Cf & CP x). TFor pairs
(DTXTI; ETXTI, 17> I_ITXTI) is defined componen-
twise as D7X7 ¥ DT x DT, (z, y) Cmx7 (&', y')
def ET x' Ay ET’ y/’ J_TXTI def <J_T’ J_TI> and
I_ITTLéTA (2, yn)ld:ef (Ul en Tn, I_ITTLIEA Yn). For functions
(D=7, BT, LT U T ) s defined pointwise
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[=7]p jzi p(x7)
[l = ¢

o
o
i

[[eliool ? 672— . eg]]p = 1T if [[eliool]]p — J_bool
def . 0o
= el il Do=t
= [e3lp it [e]o =1

o
o
i

(71, [3"10)
s [[erxr ]]P
7.‘.2 o [[eTXT']]p

et )]y
[£ste™ 7 Jp
[snde™ *7]p

o
o
i

o
o
i

P ve” Tp E AweD e p[aT —1]
[e7="e5lp = app([e] ~"1p, [ 1p)
e+ elp Mo dv € D [Tl ]
where:
¢ € D™ is the value of ¢”

det

def

det

y
f(z)

Figure 1: Synopsis of the denotational semantics [e”]

app(f, )

as D777 E DT DT T g e € DT
f@) ©7 g(x), 1= 2 ape 17 and 07l fn &
/\gr:ol_lflleA fa(x). Functions f € D77 have a least
fixpoint Ifp f such that f(lfp f) = lfp f and for all z €
D7, f(x) = @ implies Ifp f C7 =. Ifp f = U] . f"(L7)
where f?1(x) £ f(f*(x)) and fO(x) =

= z.
An environment p € £ is a map of variables 7 € V

to values p(27) € D7. If v € D7 then we write p[a™ —v]
for g/ € &€ such that o/(27) = v and p'(y"') = p(y™)
whenever z” # y™ . The set of environments is & &'
YV — D where P &' U.D7 is the set of values for all

types.
The denotational semantics [e"]p € DT of expres-

sion e of type 7 in environment p is defined in fig.

1.

11: Collecting semantics of the simply
typed lambda calculus

11.1: Basic collecting semantics

Basic concrete questions asked about expressions
e” have the form “Does [e"]p belong to R for all
p € 627 for given sets of environments 6 € p(&
and for given sets of possible results R € p(D7
that is “Vp € 0 : [e"]p € R”. For example the

strictness question in variable 2 corresponds to § =
{p[a:TIHJ_TI] | p €&} and R = {17} where L7 € D7

denotes non-termination for objects of type 7. By
defining the collecting semantics {le™ |} as:
leh € (p(&) = p(D7); C) (23)

lerbe = {le7lplp €6}



or equivalently {e”} = a°([e"]) the question can be
reformulated in the form considered in Sect. 1, that is
e™[t0 € R?” or equivalently Vi € p(&) : {e" ¥ C
Q)27 that is “fe’} C° Q?” where {e7] and
Q = M+ = 0 7 R : D7) belong to the domain
of concrete properties PT d:e p(&) — p(D7) which
0T, YT, U7, AT) with
pointwise subset inclusion partial ordering QT, infi-
mum @7 = AX+ @, supremum Y7 = AX « D7, pointwise
union U™ and pointwise intersection U’ .

is a complete lattice (P7; C

11.2: More general collecting semantics

The notion of collecting semantics 1s relative to a set
of questions. It defines exactly which questions can be
answered about programs. These questions can take
numerous forms. Different forms of questions usually
correspond to different forms of collecting semantics.
For example; another collecting semantics for the stan-
dard semantics [e™] would be:

{e"l e (p(& —D7);
{e’d = {le'D

With (24), the absence property “the value of €™

not depend upon the variable x can be formulated
in the form considered in Sect. 1 as:

Je' C{p|Vpe& Vv, v €D :

<) (24)

does

()

pple™ —v]) =
p(ple™ =}

Yet another form of collecting semantics would be:

) € {p(p(&) = plp(P7)): €7)
le’h = xe-{{[lvlpecCt|Ccen)}
(25) is well suited for PER analysis (and avoids resort-
ing to sets of pairs of values [41, 42]) since “JE7[ QW

©” corresponds to the question:

VO:VC €0 :3C" € p(©) :VpeC:[e]pe

(25)

12: Abstraction of the basic collecting
semantics

Asin Sect. 11.1, we consider an abstract semantics

. . T
(e™) .bGIOIllglIlg to the complete lattice (P7; C,, 07,
Y7, U,, N.). The correspondence between concrete

and abstract properties is given by means of a Galois
connection:

(P7; &7y == (PI; 1)

where P = p(€) — p(D7) is defined as in (23).
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12.1: Pointwise abstraction of sets of envi-
ronments

For each type 7, let be given an abstraction of sets
of values of type 7:

<W(D7)a ga Q_a DTa Ua m)

5y
—ﬁr

(a4
<DZI—; gT’ @T’ TT’ UT’ mT)
The abstraction of sets ¢ € p(&) of environments, that
is of sets of functions in p(V — D), can be done

pointwise as in (8), that is by means of an abstract
environment © € &, associating an abstract value

(26)

O(x") € DI to each variable 2™ € V:
S, = {O0|V2"eV:0uT)eDl}) (27)
af(0) = AzT-a"({p(x") | p b))
15(©O) = {pe&|VaT eVip(aT) €77(O(27))}
(D(E); C, 0, €U, M) L= (€ €5, 0, TS, LE, )

12.2: Functional abstraction of the basic
collecting semantics

Following [15, 16] the abstraction of the collect-
ing semantics i1s defined by induction on the struc-
ture of its domain of definition. For example since

PT = (&) —= p(D7) we can use abstract interpreta-
tions of environments (27) and of values (26) and use
the functional abstraction of set-transformers of (6):

a(¢) 7(®) ¥ o ®oaf
(28)
so as to obtain an abstract interpretation of collecting
semantics in P7T = p(é‘) —— (D7) by an abstract

semantics in P =&, D) :

(P C 07, Y7, U, () == (PZ;QZ,VJZ,TLUZ,“D
The correctness proof can be done in one of the fol-
lowing forms:

a({e’l) Co (7]
[by Def. (28)]
o el o " o e”)
[by def. of ]l
VO € £, : a7 (1e7}(+5(8))) 7 (e7)O
[by Def. (1)]
(©)) € 77((e7)O)

VO € & e (v

[by Def. (23)]

VO €&, [l | p € 15(0)) € 7 ((e7)O)

[by def. of C]

VO €& :Vpev¥(0):[e"]p € v ((€7)O)

We say that (e7), is better than (e”)), if and only if
v((e7),) C - 7((e7),). Observe that a({e”]}) is the

best abstract interpretation with respect to the ab-
straction {«, 7) whence provides a guideline for de-
signing (e7)), a definite advantage of the Galois con-
nection approach to abstract interpretation [14, 16]

def

def

OzTo¢>o’y£

HHHHH



over its variant formalization using logical relations

[2, 56].
13: Basic comportment abstraction

13.1: Abstraction of basic types

In basic comportment analysis we partition P? into
two blocks {1°} and D \ {L1°}. We use the isomor-
phic coding by Pl = {p, L, L, T} where @ = 0 is
the abstraction of the empty set ), L= {{17}} is the
abstraction of infinite behaviors, £ = {D? \ {1°}}
is the abstraction of non-L? (usually finite) behav-
iors i.e. of any set of basic values not containing 1°
while T = {{17} DF\ {LP}} is the abstraction of
all possible behaviors i.e. of any subset of P?. This is

formalized by the abstraction al:

af(0) E @ ol(X) ¥ Lif1PgX £
odB({LP)) ¥ L of(x) ¥ Ti{lflcXx
and concretization 'yg:

(@) = 0 7a(d) = DA\ {17}

(L) = {LP} (T = DpP
which form a Galois connection:
¥
(p(P"); €, 0, D%, 0, M) = (DL C 6, T, UL, )

B

for the approzimation ordering gﬁi. Scott ordering C
on D is extended to the collecting semantics p(D?) as
in (10). For example, the extension of the flat ordering
is Egli-Milner ordering (with (§ isolated):

{1}

(D% C)
This set relator is further abstracted by (13). Since
Scott ordering is reflexive and 17 is the infimum, the
abstraction by (ag, 'yg) leads to the computation or-
dering which is a complete lattice (Dg; gﬁi, J_g, Tg,

uﬁi, r@) The approximation and computation order-
ings are defined by the following Hasse diagrams:

(p(D7); a’(D))

T e
1 X 7T

%) le T oo
(DZ; ) (DJ; C7)
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The computational ordering is an abstraction of

Scott’s ordering in the sense that X gﬁi Y if and
only if Y possibly describes more (finite) behaviors in

DP\ {LP} and less infinite behaviors (in {1°}) than
X.

13.2: Abstraction of pair types

In the basic comportment abstract interpretation,
the analysis of pairs 1s dependence-free. Given ab-
stract interpretations for the components:

<W(D7)a ga wa DTa Ua m)
5

—hr

Xy
(Dy; <5y 03, YT, UL, Ng)

(p(D7); €, 0, D7, U, )

y
7
a”

(DL €T, 07, YT, VT, nE)
the abstract interpretation of pair types (i.e. sets of
pairs i.e. relations):

<p('DT><TI); g’ m’IDTXTI’ U, m)
’Y;XT

po—

ar X!
B
1 1 1 1 1 1
TXT . CTXT TXT TXT TXT TXT
<D5 P ST 05 TR U, NG >

is defined componentwise as {(a®, v9) o (a*, vX) de-

fined in (17) and (16):

(z,y) 7 (', ¢)
OzTXTI(X)

def

#CLae Ny CL Y
B (al(m (X)), o (n2(X)))
Y27 ({2, ) yI(x) x 77 (y)

Since the abstract computation ordering gg”' is also
defined componentwise:

(w, ) E7 (2 )
the C(I)mpletel latticelstructure (D77 %7, Lp*T,
TLXT, UR*T, Np*7 ) is also preserved. For example,

the abstraction of sets of pairs of values of basic types
is:

def

def

def

e CLa' AyCL o

(D205 0 0P TP U, )



With the approximation ordering chxp (1, T) and
(T, 4) are not comparable since, for the first compo-
nent, L represents less possible values than T, while
for the second component, T represents more poss1ble
values than 4.

{r>1)

(121
<J_’_{>

(L)

(1>1)

(DI 042, 180, T2, L2, i)
With the computation ordering e (L4, T) and
(T, L) are comparable since, for the first component,
T represents more possible finite behaviors than 1,
while for the second component, 4 represents less pos-
sible infinite behaviors than T.

13.3: Abstraction of function types

For function types pr= = pT E. DTI, we use
the abstraction (9). By induction, the relations C7€
D" — D" and I:TIE D™ — D7 have been extended
to the collecting semantics (D7) and p(DT ) by (10)
and then to thelr abstractions C, € D] < D] and
ET € DT — DT by (13), so that, by (11) and (14),
abstract functions f must be pothlse monotonic:

Y(x, y) € D7 x D7 1 (x Cf y) = (f(x) CF f(v))

Hence D™7 = D] e, Dgl. We get the following

Galois connection:

(p(D™="'); €, 0, DT D7,

,YTP—*T
r»—»r’

(a3
<’DTHT, : =B wg 3 T;I’ U; 3 m; >
For example Dﬁ s given below. We see that f

=@, Lie 4 L L T|—>T] is not in DE7 set
since L C,4 but not I( ) i )) es [| es stands
for the non-deterministic ch01ce or, in our determin-
istic language, for an expression e 7 ey : e3 where the
analysis of e; returns T):

U, Ny (29)

divergence (e.g. pufe Az f(x)):
div Zp—¢, L—1 4— 1L T—1]
727 (div) = {p |V e D7 p(a) = L}

identity (e.g. Aze 2):
ide =g, L—Ll L—4 T—T]
vo=Pide) = {p|VeeDl 1 p(x) = Lo w= 1}
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strictness (e.g. pufeAz-(z=070: f(z —1))):
str Zp—@, L—L LT, T—T]
7o (str) = {p]p(L) =1}

convergence (e.g. Az« 1):
con Zp—¢, L—d, L—4 T—A1]
1877 (com) = {g | Vo € D - () £ 1)

totality (e.g. Az+(1[%)):
tot L [@.—>Q§,J_.—>T,_/I'_»—>_/L,T.—>T]
727 (bot) = {p|Ve e DI\ {L}: p(x) # L}

truth (e.g. pfeAx<(1(z=070: f(x —1))):

top Zp—9¢ LT LT, TT]
The approximation ordering is (DgHﬁ; gi)
top
~ ,\ ~
~ - ™
tot ¢- ¢ Str
o /
cone ~lcge o div
. -
~ -
i ]
%)

Using (11) and (14) once again, the pointwise Scott-
ordering C C’ on DT'_’TI is extended to the computation

ordering (DT'_’T I: J_T —i—;l, LI;I, ﬁ;l). For basic
types, (Dg~7; EZ)
con ¢
tot
top ide
str
dive e

13.4: Basic comportment semantics

The basic comportment semantics (e7),0 € Df of
expression e of type 7 in abstract environment © is

defined in Fig. 2.

Example 3 (absence) The basic comportment se-
mantics of program g f™™ 7™ e Az™"e true 7 1 : fo is:

(pfeAzetrue ?1: fp),0 =
HpE™ ™™ Ape Ax e LUR™ o(x)
The iterates are as follows:
O =Xy L
P e Lupme® () = Ax- Lug™ L=y T
o2 = ol



= o)

ap({c’})

= ((ebet),0=L7 1%

(lee'),© = T 7 L7 07)
Uz (€250 U5 (€3),,0)

i

({e1' e2)),0 = {(e1),0, (e37),0)
£ste™ )0 =l ((e7),0)
(snde” ¥7) © = 72 ((]eTXT 0)
Az e e ), £ e D7 (]e ”[)5(9[1‘7 —v]
(e 7e),© = app((e] ~7),0, (5),9)
(ueme™),© = IpL v € DL+ (e7), O —v]
where:

¢ € D™ is the value of ¢”
Tz, y) = e
) =y
app(f, v) = f(2)

Uple = LI, ¢"(LD)
neN

Figure 2: Synopsis of the basic comportment seman-
tics (e7),

Absence is not captured by basic comportment anal-
ysis. a

Proposition 1 (Correctness)

YO €& Y EvE(O): [l €I ((e7),©)  (30)

Observe that the collecting semantics is used as an
intermediate step in the design of abstract interpreta-
tions for the formalization of program properties and
the construction of the abstract semantics (e.g. of the
computational ordering) but that no explicit formula-
tion is required for the correctness proof. For example,
¢ = A €D [e7]Ox" —v] is E-monotonic in the de-
notational semantics so that, by (11) and (14), ® =
Av € DL+ (e7) Oz —v] is I: -preserving in the ab-
stract semantics. Moreover, by (12) and (15), Ifp, ®
exists in p(D7), hence in DT, and Is correct.

13.5: Comparing basic comportments and
strictness

The abstraction of basic comportments to strictness
properties only yields [10]. However the abstraction of
abstract basic comportment properties into abstract
strictness properties, as shown in Fig. 3 shows that
in strictness analysis the approximation and compu-
tational orderings coincide. It follows that [10] do not
distinguish between the approximation and the com-
putational orderings, a point of view which is too re-
stricted to make their framework of general scope.

Figure 3: Abstraction of the basic comportment ap-
proximation and computation orderings into Mycroft’s
strictness ordering

13.6: Comparing basic comportments and
smash projections

At this point comparison with smash projections
(Ve e Dy : f(x) #5 = B(x) = ) is easy. For smash
projections, [:6—p is equivalent to Yz € §71() :
f(z) € B=1(5) where o™ (y) = {y | (x) = y} de-
notes the inverse image of y by ¢. By deﬁnmg ab-
stract values § with meaning 'y(ﬁ) = /75 - 11

we can express a similar property in the abstract in-
terpretation framework as f2(6) = 3. For example

str = L and fail = T so that f:str — str correspond-
ing to f?(L) = L (satisfied by div, ide and str) ex-
presses strictness whereas f: fail — sir corresponding
to f2(T) = L (satisfied by div only) expresses diver-
gence.

The abs projection is much more difficult to un-
derstand. This may explain why 1t 1s excluded from
all comparisons available in the literature between
projection analysis and abstract interpretation. It
cannot be described with basic comportments. For
example, £(x) = (£(x) [] 1) leads to divergence if
the first alternative i1s always chosen or convergence
if the second alternative is ever chosen. Its analysis
divU con = top with basic comportments yields no
information on the result of £. The problem here is
that disjunctions are too approximate.

14: Comportment abstraction

Comportment properties are obtained by comple-
tion of basic comportment properties, as explained in

Sect. 7.

14.1: The abstract domain of comport-
ments

The collecting semantics of e” in comportement
analysis is {e"[} € p(€ — D7) as defined in (24). The
corresponding abstract comportment semantics is:

(e7). € ¥ (Es— D)

with meaning given by:

¥ET(T) £ Ufyi(e) | ¢ €T}



= {x0-0(x7)}
= {20 ar({c'))}

def

= W[ 3T, e(ehot), 3. € (eq),

U (e5), : I' = 20+(I'4(O)

=L1?717:(Ty©)=T7

L7070Vl ()
(€] €3 ) = W({r0- ([1(©), I'2(0)) |

rye qel ) AT € (57D,
W({A0- 7 (T(0)) [T € (7). })
W({A0- 72 (1(©)) [T € (e 7). })
W({AO+ Av € D] - T(O[x7 <—v])|
re ().}
(©), T2(0)) |
Z').})

Db

Figure 4: Synopsis of the comportment semantics

(e™De

(fst eTXTI])C
(]sndeTlXT])C
P+ er), &
(e77e5'), E W({AO app(Ty
L€ (e]™7) ATz €
W({AO-Ifp7, Av € DT-

(paTeem),
I'(©z"—v])

{lpe&—D7 |l VO €&,y :
Yo €75(0) : (p) € 72(1(©))}
Comportment analysis is more precise than basic
comportment analysis since:

.
Y. Yes

<pw(55 HD;); C —

- T
Cs ) 7 (&= Dy Cy)
where:

detf

al (T) =

cB

Ven(®)

For expression e” without free variables, p¥ (&5 +—
D7) is isomorphic with ¥ (DZ). Using (18), elements
of p¥(DL) with the same meaning:

7e(2) U{ys(x) [ x € B}

can be identified. In this way, for basic types, pw(Dg)

A0 UT{C(0) | C €T}
1o}

def

def

i1s isomorphic with pE. However, at higher order,
@Y (D7) is more expressive than D7,. For example, the
complete lattice (DgHﬁ; Co=P g8=F xlB=f =
m?*’fj) resulting from the reduction of the crown com-

pletion of the lattice DE~F s given in Fig. 5. The
corresponding computation ordering (DgHﬁ; Ch=f
L= Th=f yi=h ﬂﬁHﬁ) is given in Fig. 6. For
example in Dﬁ # {com, tot} = {[p—¢@, Li—4,
L— 4 Tb—>_’L] [Q§I—>Q§ 1—T _/I’_H_/L T|—>T]} has
the same meaning as {tot} = {[p—¢@, L—T,
Li— L, T T]} whereas {ide, div} # {str} since in
the first case the behavior is the same for all the values
of the parameter (as in £(x) = (x [ £(x))) whereas
in the second case the behavior of the function may
be different for different values of the parameter (as in
f(x) = (x=07x:1(x - 1))).
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{top}

{tot, div} {str}

{tot} {ide, div}

{con} {div}

Figure 5: Approximation ordering of pi=r

{con}
{tot}

{top}

{con, div} }

{tot, div}

{ide}

{str}
{ide, div}

{div} e

Figure 6: Computation ordering of ph—=r

14.2: Comportment semantics

The comportment semantics 1s defined in Fig. 4.
Various approximations are possible to speed up the
analysis at the cost of a loss of precision. For example,
(uzTee™), ZA0«1p] Av € DL (U (e7),) (O™ —v])
would be correct but not optlmal.

Example 4 (absence) The comportment semantics
of program pf™"~™™"e Azg™"e true 7 1 : fx is:

(pfeAeetrue 7 1: fp). =
{A@’ lfp;umb—»num AQD c Dgum»—»num. F(@[fFSD]) |

[ e {Ape dve L dpe Ave p(v)}}
that is {A@+ Ave L A0+ Ave L}, so that absence is

captured by comportment analysis. a

Proposition 2 (Correctness)

{e’h < 287 ((em)e)



truth

A

Al
{ide, div} e
absence
{div}
~ divergence Ar 0
falsity
Comportment Projection Strictness

Figure 7: Abstraction of comportment analysis into
projection and strictness analysis

rz.0

rr.x

Termination

Comportment

Dual-projection

Figure 8: Abstraction of comportment analysis into
dual projection and termination analysis

14.3: Projection analysis as an abstract in-
terpretation

To show that comportment analysis generalizes pro-
jection analysis and that projection analysis can be
done by abstract interpretation it is sufficient to ex-
hibit an abstraction into the lattice of properties ex-
pressible by projections, as shown in Fig. 7. A further
abstraction to strictness properties yields [44, 45]. An-
other abstraction, shown in Fig. 8, yields dual projec-
tions and termination analysis. By choosing a finer
partition of P?, comportment analysis can easily be
enriched, e.g. to take possible values of variables into
account.

15: Summary and conclusions

We have shown that the abstract interpretation of
a simply typed lambda calculus defined by its stan-
dard semantics can be defined by the method intro-
duced in [14, 15, 16], that is by compositional ab-
straction of a collecting semantics using structured ap-
proximations based Galois connections defining a best
approximation. This was possible in a set-theoretic
framework since there is no necessity for providing a
domain-based denotational definition of this collecting
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semantics? and indeed no explicit definition is needed
in correctness proofs since the correctness of the stan-
dard semantics with respect to the (implicit) collecting
semantics is a general result in the framework.

The application to comportment analysis gen-
eralizes strictness, termination, projection, dual-
projection and PER-analysis. The abstract seman-
tics leads to a system of equations which, in practice,
must be solved efficiently. This would consist in using
a compact representation of properties (using e.g. sets
of generators of atoms for comportment analysis) and
convergence acceleration methods [15]. Another prob-
lem beyond the scope of that paper is the usefulness
of comportment analysis which can only be shown by
practical experience.

As far as the methodological aspects are concerned,
our approach is rather different from the other ab-
stract interpretation frameworks based upon denota-
tional semantics. In particular, we distinguish be-
tween the approximation and computation orderings
and interpret them completely differently. The ap-
proximation ordering, does not exist in the standard
semantics. It corresponds to logical implication of pro-
gram properties which is fundamental in the definition
of the approximation by Galois connections. The com-
putation ordering happens to pre-exist in the standard
semantics under the form of Scott’s ordering. Tt is
induced in the abstract domain through the Galois
connections. Any other predicate, relation, etc. pre-
existing in the standard semantics could be abstracted
in a similar way. Therefore our approach is tied up nei-
ther to a particular syntactical form of languages (or
meta-languages [52, 60]), nor to a particular style for
specifying the semantics such as denotational seman-
tics, nor to a specific programming style such as func-
tional programming, nor to a specific typing scheme,
etc. It is directly applicable e.g. to a non-deterministic
functional language with relational semantics [22] as
well as to logic programming [19] with operational se-
mantics.

This should be contrasted with the relational frame-
work for abstract interpretation [56] which attempts
to solve the problem of defining a collecting semantics
in denotational style by completely evading the ap-
proximation ordering and overemphasizing the com-
putation ordering, so that, e.g., the notion of best
approximation completely disappears. Moreover, for
logical relations [2], the approximation process is tied
up with the standard computation ordering and the
type system in the abstraction process. Application
to logic programming with e.g. declarative semantics
then becomes a bit tortuous. Moreover, it freezes ap-
proximation to a few paradigms (such as “approximate
pairs by pairs”, “approximate functions by functions”)
which should leave the place to a broader palette of
possible choices, such as “approximate functions by
pairs, functions, relations, ..., up to a Galois con-
nection) as abundantly illustrated in this paper. For
example an abstract interpretation framework should

2An explicit inductive definition of the collecting semantics
could be given in G*®SOS [21].



not enforce function properties to be necessarily of
the form p(D1) — @(D2) since we have seen that
©(D1 — D3) is more general and sometimes required.
Choosing p(P1) — @(D2), or a powerdomain form
thereof [52, 57, 53, 60], introduces an initial approx-
imation in the development of the abstract interpre-
tation framework from which it is later very hard to
recover. Galois connections themselves, which enforce
the existence of a best approximation, can sometimes
be too constraining. Such constraints can be lifted
by using concretization functions only. However, by
loosening up the connection too much, all fundamen-
tal theorems of abstract interpretation are lost. This
problem of finding a reasonable balance between full
generality and strong properties of abstract interpre-
tation frameworks is discussed in [20].
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