Acta Informatica 24, 1-31 (1987) Inr uL'lE\.EtI

© Sprm}acr Verlag 1987

Sometime = Always + Recursion = Always

on the Equivalence of the Intermittent and Invariant
Assertions Methods for Proving Inevitability Properties
of Programs

. Patrick Cousot! and Radhia Cousot?
! Ecole Polytechnique, Centre de Mathématiques Appliquées, F-91128 Palaiseau Cedex, France
-2 Université de Paris-Sud, Centre d’Orsay, LRI, Bat. 490, F-91405 Orsay Cedex, France

Summary We propose and compare two .induction principles called

“always” and “sometime” for proving inevitability properties of programs.
They are respective formalizations and generalizations of Floyd invariant
assertions and Burstall intermittent assertions methods for proving total
correctness of sequential programs whose methodological advantages or dis-
advantages have been discussed in a number of previous papers. Both princi-
ples are formalized in the abstract setting of arbitrary nondeterministic transi-
tion systems and illustrated by appropriate examples. The “sometime” meth-
od is interpreted as a recursive application of the “always” method. Hence
“always” can be considered as a special case of “sometime”. These proof
methods are strongly equivalent in the sense that a proof by one induction
principle can be rewritten into a proof by the other one. The first two theo-
rems of the paper show that an invariant for the “always™ method can
be translated into an invariant for the “sometime” method even if every
recursive application of the later is required to be of finite length. The third
and main theorem of the paper shows how to translate an invariant for
the “sometime” method into an invariant for the “always” method. It is
emphasized that this translation technique follows the idea of transforming
recursive programs into iteratiye ones. Of course, a general translation tech-
nique does not imply that the original “sometime™ invariant and the resulting
“always” invariant are equally understandable. This is illustrated by an
example.

1. Introduction

We compare two induction principles (that we call “always” and “sometime”)
for proving inevitability properties of transition systems, the nondeterminism
of which can be unbounded. These induction principles are formalizations of
program proof methods independently of a particular programming language,
of a particular inevitability property and of a particular style of presentation

ta

P. Cousot and R. Cousot

of proof methods. Thanks to these abstract and concise formalizations we can
make more rigorous comparisons of program proof methods which for some
time have always been compared using methodological arguments based on
examples [8, 12].

We introduce the induction principle called “always” in [47. It is a generaliza-
tion of those program proof methods in the class of Floyd [7] invariant asser-
tions method for proving total correctness of sequential programs. We introduce
the induction principle called “sometime” in [5]. Tt is an abstract generalization
of Burstall [2] intermittent assertions method for proving total correctness of
sequential programs,

The “always” induction principle involves an induction along execution
traces whereas the “sometime™ induction principle involves a combination of
an induction along (parts of) execution traces (connected to Burstall’s “hand
simulation”) and recursion induction (related to Burstall’s “induction on the
data™). Hence the “always” induction principle corresponds to the particular
case of the “sometime” induction principle when recursion is not used.

The “always” and “sometime” induction principles are sound and semanti-
cally complete (see the proofs respectively in [4, 5]) hence weakly equivalent
in the sense that when a proof exists by one method. a proof must exist by
the other method. Here we prove a stronger equivalence result, in the sense
that whenever a proof exists by one method it can be rewritten into a proof
by the other method. Intuitively this is because recursion can be eliminated
from proofs in favour of induction in just the same way as it can be eliminated
from programs in favour of iteration.

We illustrate our techniques by examples.

2. Inevitability Properties of Programs Represented as Transition Systems

To introduce abstract formalizations of program proof methods, we view pro-
grams as (nondeterministic) transition systems ¢S, t> [9] where S is a nonempty
set of states and the transition relation ¢ between a state and its possible succes-
sors is represented as a function te(S x S— {tt, ff}) from pairs of states into
truth values (¢t is true and ff is false).

We say that the nondeterminism of ¢ is bounded when states can only have
a finite number of successor statés that is to say when VseS. |{s'eS: (s, 5)} |ew
(where |E| is the cardinal of a class E and w is the set of natural numbers)
and wunbounded otherwise. There is no need for the nondeterminism of ¢ to
be bounded. Hence we can represent parallel programs and even fair ones as
transition systems by decomposition of these programs into their atomic actions.
This decomposition usually destroys syntactic structure of programs and is there-
fore a debatable way of proceeding. However we neither suggest that program
proofs should make a direct use of our induction principles nor that programs
should be represented as transition systems before initiating the proofs. On
the contrary we attach a great importance to the presentation of proofs. In
[3] we have proposed a systematic method for constructing proof methods
from induction principles, so that, in particular, the structural information about

Sometime = Always + Recursion= Always 3

the original program need not be lost in the proof method (although it might
have been in case of direct use of the induction principle).

Example 2.1 (The transition system corresponding to the tree traversing program).
The following sequential program to traverse a binary tree and count its tips
is taken (literally) from Burstall [2]. It will be used as example throughout
the paper.

The value of variable Tr of type tree is either nil or (If(Tr).rg(Tr)) where
If(Tr) and rg(Tr) are trees, the value of Co of type nat is a natural number
and the value of variable St of type stack is either () or (hd(St).tl(St)) where
hd(St) is a tree and t1(St) is a stack.

Start: St:=(); Co:=0;
Loop: if Tr=nil
then begin Push Tr onto St;
Tr:=If(Tr); goto Loop
end
else begin Co:=Co+1;
if St =() then goto Finish;
Pop Tr from St;
Tr:=rg(Tr); goto Loop
end;
Finish:
We will use capital letters Tr, ... for program variables and small letters

possibly with quotes tr, tr', tr”, ... for their values at different time instants.
The transition system (S, t corresponding to that program is defined by:

S={Start, Loop, Finish} x tree x nat x stack

t(I, tr, co’, st', (U7, tr', co”, st D) =
[(I'=Start Al"=Loop atr’"=tr' nco”=0nast"=())
v (I'=Loop atr'==nil Al"=Loop A tr"” =If(tr') A co” =co’ A st” =(tr’.st'))
v(I'=Loopatr'=nil ast'#()al"=Loopatr’"=rg(hd(st") A
co”"=co'+1 ast’'=tl(st’)) ~ ;
v(I'=Loopatr'=nil ast'=()al"=Finish A tr"=tr' A co”"=co'+1

ast’=st)]. O

Executions of a program {8, ¢) shall be modelled by its set 2 (S, (> of com-
plete execution traces py, pi, pa» --- Where the p; are states, there is a transition
from p; to p,,, and the sequence is either infinite or terminates in a state p,
which has no possible successor. More formally,

— 0 is the empty set or zero,
If new and n=0 then n will denote {0, ... n—1},
(so that men is equivalent to m<n)

4 P. Cousot and R. Cousot

— If Eis a set then E~x={yeE: y$x},

— D — — R is the class of partial functions from D into R,

— D — R is the class of total functions from D into R,

— %S =D
Empty traces are not considered,

— 28, ty={pen—S):Vie(n—1).t(p;, p;+,) AVseS.t(p,_1, 5)}
Finite traces of length n>0 (p; is short for p(i)),

— 28, ty={pe(®w—>S): View.t(p;, pi+1)}
Infinite traces,

— 248, t)="|) Z"S, US>

HE @
Complete traces.
A relation yre(S x S — {tt, ff'}) is inevitable for a program (S, t) if any pro-
gram execution eventually leads to a state that is related to the initial state

by .
More formally, Y e(S x S — {tt, ff}) is inevitable for {8, t> if and only if

g VpeXZ{S,ty.JieDom(p). yr(pe, p;) (1)

(where Dom(p)={x: 3y.(y=p(x))} is the domain of function p).

Example 2.2 (Total correctness as an inevitability property). Total correctness
of program 2.1 can be specified by the inevitability of i such that:

W((L tr, co, st), (I, tr', co', st')) = [(I=Start) = (I'= Finish A co’ = tips(tr))]

where
tips(tr)=if tr =nil then 1 else tips(If(tr)) + tips(rg(tr)). [I

Extending Dijkstra’s definitions of strong and weak termination [6] (see
also Back [1], Gries [8]), we say that inevitability is strong when the number
i of program steps necessary for reaching the “final” state p; is bounded by
an integer k depending only on the “initial” state p,,.

More formally, ye(S xS — {tt, ff}) is strongly inevitable for (S, t) if and
only if

VSES.EIkE(x).VpeZa(S, 0. [(po=s)=Fi< k. (po, p:))]

Ye(S xS —{tt, ff}) is weakly inevitable for {S, t) if and only if i is inevitable
for {8, t> but not strongly.

3. The ““Always” Induction Principle Generalizing Floyd’s Invariant Assertions
Proof Method

Floyd’s total correctness proof method for sequential programs [7] was general-
ized to inevitability proofs for nondeterministic transition systems ¢S, t> and
formalized by a number of strongly equivalent induction principles in Cousot

Sometime = Always + Recursion = Always 5

and Cousot [4], the most abstract one being:

[3re0rd, Je(I' x S x S — {tt, ff}). (2)
(F.1) (VseS.Ayel.J(y,5,5)
(F.2) AVs,s'eS, y'el.
J(y,s,s)= ;
(F.2.a) [@s"eS.t(s,,s") AV eS.[t(s,s)=Ty" <y".T(,5,58)])
(F2.b) V(s)]

where (Ord, <) is the class of ordinals.

This induction principle is better understood by first considering the case
when the nondeterminism of ¢ is bounded. Then one can choose I'=w (instead
of F'eOrd) in induction principle (2) and prove strong inevitability. More precise-
ly, the induction hypothesis J (7', s, §') is true when “current” state s’ is a descen-
“dant of “initial” state s and from s’ on, execution will lead in at most 7’ steps
to some “final” state s” satisfying (s, s”). In particular by F.1, for any initial
state s there is an integer 7 such that execution for this initial state s is guaranteed
to lead to some final state (s” satisfying (s, s”)) in less than y steps. Moreover
by F.2, a descendant s' of an initial state s which is not a final state must
have a successor state s” and all its successor states must be closer to the
goal .

We now show that induction principle (2) is a model of Floyd’s “always™
proof method using the following:

Example 3.1 (Proof of the tree traversing program using the “always” induction
principle). 1. Floyd’s method requires three separate proofs to establish total
correctness, one to show partial correctness, the other to show termination
and the last to show absence of run-time errors.

(i) The partial correctness proof of program 2.1 first consists in discovering
intermediate assertions attached to the control points of the program. These
assertions should be local invariants that is to say express relationships that
hold between the initial values tr, co, st of variables Tr, Co, St and the values
tr', co’, st’ of these variables Tr, Co, St whenever control passes through the
corresponding points:

Ign(tr, co, st, tr', co/, st) =[tr' =tr Aco’=co A st'=st]
oo | 1
I} oop(tr, O, st, tr', cO', st') = [(tips(tr') + co’ + Sum(tipserg, st')) =tips(tr)]
Tinisn (tT, €O, 8t tr, €O', st') = [co’ = tips(tr)]

where
fog(x)=f(g(x)) andiffe(tree - w)and stis a stack then

Sum(f, st)=if st=() then 0 else f (hd(st)) + Sum(f, tl(st)).

Observe that these local invariants on values of program variables are equiva-
lent to the following global invariant on program states:

1K1, tr, co, st), (I tr', co’, st')) =[(I=Start) = I (tr, co, st, tr', co’, st)]

6 P. Cousot and R. Cousot

in the sense that during execution I(s, s') holds between the initial state s and
the current state s'. More precisely, if we let t* be the reflexive transitive closure
of t, we have

Vs, s'eS.[t*(s, s) = I(s, 5)].

These assertions are then shown to satisfy verification conditions which (by
induction on the number of program execution steps) imply that they are invari-
ants:

— The local assertion attached to the program entry point Start must hold
when the current state {tr’, co’,st’) is equal to the initial state {tr, co, st> of
the variables so that

Igan (11, CO, st, tr, CO, st)

must be true.

— If the local assertion attached to program point ' holds and control goes
from point I' to [” then the assertion attached to I must hold, so that (according
to definition 2.1 of 1) we obtain the following verification conditions:

-

Istan(tr, O, 8t, tr, €O, 8t') = I (11, cO, st, 11, 0, ()
[{100p (LT, CO, St, tT', €O, St') A t1’ Fnil] = Iy o0p(tr, co, st, If(tr'), co’, (tr'.st"))

[/ 00p (LT, €O, St tT', €O/, St') A tr' =nil A st ()] =
Iy oop(tr, co, st, rg(hd (st')), co’ + 1, tl(st"))

I oop(tr, CO, st tr', €O', 8t) A tr' =nil A st'=()] = I (t, cO, S, t/, O’ + 1, st').
i sh

— Finally, the local assertion attached to the program exit point must imply
the input-output specification:

inisn (tr, €O, St tr', co’, 5t') = [co’ = tips(tr)].

Observe that these local verification conditions are equivalent to the follow-
ing global one:
(VseS.I(s,5))

A(Vs, s, s"eS.[I(s,8)At(s, s")]=1(s,s")).

(i) According to Floyd [7], “proofs of termination are dealt with by showing
that each step of the program decreases some entity which cannot decrease
indefinitely”. Therefore we associate with each point [of the program a function
Ji of the values tr, co, st of the program variables Tr, Co, St taking its values
in the well-founded set (w, <):

Jstar (L1, cO, St)=size(tr) + 1
Jioop(tr, €O, St) =size(tr) + Sum(size - rg, st)

Srinisn (1, €O, 5t) =0

Sometime = Always + Recursion = Always 7

where
size(tr)=if tr=nil then 1 else 1 + size(lf(tr)) + size(rg(tr))

and show that after each execution of a command (i.e. after each transition
(<L, tr, co’, st'D, (7, tr”, co”, st”))) the current value of the f;.-function associated
with the exit state <[, tr”, co”, st’’> is less than the prior value of the f,-function
associated with the entrance state (I, tr', co’, st'>:

Jstar (t1, €', 8U) > fi g0p (tT”, cO”, st)

because [tr"=tr' Aco’' =0 Ast"=()]

Jroop (L', €O', St) > fr o0p (1", €O, L)
' because [tr' +=nil A tr” =1f(tr') A co” =co’ ast” =(tr".st')]
or [tr'=nil ast' () A tr'"=rg(hd(st") Aco” =
co'+ 1 ast”=tl(st')]

Jroop(tr’, €0’ 8t') > feinian (tr”, cO”, st”)
3 because [tr'=nil ast'=() atr’"=tr' Aco”"=co'+1 ast"=st'].
Then each transition decreases the entity 7' = f({I', tr', co’, st'>)=f.(tr, co’, st').

(iii) When programs contain partial operations, a proof of absence of runtime
errors must show that they do not lead to undefined results. If we use the
convention that states on which partial operations would lead to undefined
results have no successors by the transition relation ¢ then a proof of absence
of run-time errors amounts to a proof that accessible states which are not final
ones do have at least one successor. The same way total correctness of parallel
programs excludes global permanent deadlocks. Again in such a case we must
prove the absence of blocking states (that is to say states with no possible
SUCCESSOT).

Since program 2.1 (.ontams no partial operation, it obviously never leads
to a blocking state so that for I'e {Start, Loop} we have:

I1,,(tr, co, st, tr', co’, st'y =3I, tr’, co”, st .t ({I', tr’, co’, st'>, {I", tr", co”, st).

2. To sum up (i), (i) and (iii), Floyd’s verification ‘conditions are equivalent
to (2) choosing

1
J(y', L tr, co, st (It co', st) =[(I=Start) = (y' = f (I, tr', co’, st'>)
A (<, tr, co, st), (I, tr, o', st'h))]. O

Observe that in induction principle (2) the entlty v which is decreased by
each program step depends on the current state s but also on the initial state
s. The dependence of 7’ on s is a necessity as shown by the following:

Example 3.2. (Termination functions). If we choose S=w, (s, s")=[s"=s"+1]
and Y (s, s)=[s'=2s] there are no well-founded class (v, <) and termination
function fe(S—w) such that t(s’, s”) implies f(s")<Xf(s") since otherwise
Vxew.(f(x+ 1)< f(x)).

8 P. Cousot and R. Cousot

However we can prove that y is inevitable for ¢S, t) using (2) with '=w
and J(y, s, 8)=[y'=2s—5)As<s'<25]. [

We use the class Ord of ordinals as an abstraction of common properties
of well-founded classes. Roughly speaking, the ordinals are obtained by ex-
tending the sequence of natural numbers: 0<l1<2.. <w<wil<
042< .. <oio=wx2<ox2il<ox2il2< ... <oxX2io=
wX3<wx34l< .. <oxw< ... Let us recall [13] that for all ordinals
o, feOrd we have a={fecOrd: f<a} and f<uo if and only if fex. Let X be
a class of ordinals. Sup X = U X will denote the least upper bound of X and
Sup® X will denote the least strict upper bound of X. Ordinal addition -+
and multiplication % correspond to operations on well-orderings. a4 is
ordered by first putting all elements of « in their natural order and then adjoining
the elements of f§ in their natural order. Consequently, if o< f then yda<y+p
whereas o4y < 7. o X f is ordered by substituting a copy of « for each element
of f so that (o x f, <) is isomorphic to (« x 8, <,) where the right le)ncourdphic
ordering <, on ax f is defined by <y', x'> <, ¢y, x) if and only if (x'<x)
(x'=xAy <y).

“If (W, <) is a well-founded class, the rank function p on Wis defined by
transfinite recursion as:

p()=Sup” {p(y): ¥ <y}.

Then obviously by transfinite induction on W, p(y) is an ordinal for every y
and y'<y implies p(y") < p(y).

We can now show that Floyd’s use of a global invariant Te(SxS—{ut,
ff}) and a termination function f&(S x S — W) on a well-founded class (W, <)
Is equivalent to induction principle (2).

On one hand, we define I'=Sup™ {p(f(s, 5):s, €S} and J(y, s, §)=
LI(s,s) Ay =p(f(s.s)]so thatf(s,s”) < f(s,s") impliesy” = p(f(s,s") < p(f (5,5) =7".

On the other hand, we choose (W, <) as (I', <) and define f(s, s')=0 if there
is no y'el” such that J(y' 5, s) holds or else f(s, s)=n{y'el: J(y, s, 5')} is the
smallest y'el” such that J(y, s, s') holds. I(s, s) is chosen as [y’ el.J(y, s, s)]-
It follows that I(s, s) A t(s, s”) 1rnpiics dy'er . J(y,s,s') whence J(f(s, s), s, 5')
so that by (2) we have 39"<f(s, 5').J(y", s, 5) and therefore I(s,s”) and
f(s,8")< f(s, s') hold.

When the nondeterminism ofr is bounded, we may prove strong termination
using I'=. Then J(y, s, &) means that if execution starts in state s and reaches
state s’ then, a goal state s such that Y (s, s”) holds will be reached in at most
7" steps. When the nondeterminism of ¢ is unbounded, we may only be able
to prove weak inevitability using well-founded classes (W, <) of order type
Sup{p(y): ye W} greater than w. Such an example is provided by Dijkstra [6]:

Example 3.3 (Weak termination). The following program (where X, and Y. denote
natural constants):

XoY=Xx Y.
do X >0— X, ¥=X — 1, any natural number
[¥>0- Y=Y—-1

od

Sometime = Always + Recursion = Always 9

does not enjoy the property of strong termination, because for X .>0 no upper
bound for Ycan be given.
This program can be represented as a transition system:

S=oxw
t((x, ¥, (0, YD) =(x>0 A X =x— 1)V (y>0 A X' =x Ay =y—1)).

Weak termination of this program follows from the fact that #({x, ¥}, {x, ¥ D)=
{x, ¥ ,< {x, y» when the left lexicographic ordering ,< is defined by
(X'<x)v(x'=xny <y

Equivalently and more abstractly, since (wxw, ,<) is isomorphic to
(o x w, <) for the isomorphism F({x, y>)=(w x x)+y we can apply induction
principle (2) choosing:

'1{1(<x3 _'_I,">, L E y’>)= [x’ =0 A y* =0]

I'=wxw
. J(', 90, XL y0) =y = (@ x x') 4+ ¥].

So as to prove (F.2.a) we observe that when x>0 and x'=x—1 we have y'<m
so that wxx'jJy=ox(x—1)iy<eox(x—1)to=mxxZwXxxiy When
y>0, x’=x and y'=y—1 we have y—1<y so that oxx'iy=wxx+|
—D<wxx+y. O

When considering unbounded nondeterminism, we shall subsequently misuse
terms relevant to bounded nondeterminism. However the analogy is often a
good support for intuition as in “J(y, s,) implies that if execution goes on
from state s, a goal state s satisfying (s, s”) will be reached in at most ¢
steps™.

It is proved in Cousot and Cousot [4] that induction principle (2) is sound
i.e. (2)=-(1) and semantically complete i.e. (1)=-(2).

4. The “Sometime” Induction Principle Generalizing Burstall’s Intermittent
Assertions Proof Method

Burstall’s total correctness proof method for sequential programs [2] was gener-
alized to inevitability proofs for nondeterministic transition systems ¢S, ¢» and
formalized by a number of strongly equivalent induction principles in Cousot
and Cousot [5], the one we shall subsequently use being:

[34e€0rd, (A — (SxS—{tt,ff}),ned, AcOrd, 3)
Te(AxSxS—{tt,ff})). 2
(B.1) 0=y
(B.2) A(Vied.VseS.30eA.1,(3,s,s))

10 P. Cousot and R. Cousot

(B.3) A(Vied, s s'eS, d ed.
I,(0,s,5)=
(B.3.a) [(Fs"eS.t(s,s")AVs"eS.[t(s, ") =
(30" <8 .1,(8", 55N
(B.3.b) v <A.V¥s"eS.[0,.(s,5")=(Td" <d'.1,(6",55)])
(B.3.c) v 8, (s, s ;

The above induction principle (3) consists in proving a theorem of inevitabili-
ty of ¢ for a transition system (S, t) by proving a number of inevitability
theorems for 6;, ZeA, one of these being y (B.1). If for the moment, we ignore
(B.3.b) we observe that (B.2) corresponds to (F.1) and (B.3) to (F.2) so that
the inevitability of each 0, Ae A can simply be established using induction princi-
ple (2). However (B.3.b) introduces the possibility of using “already” proved
theorems for ;. when proving the inevitability theorem for 0,. Since A'</
and (4, <) is a well-ordering we take precautions for avoiding circular proofs.
By (B.3) we prove that a descendant s of an initial state s which is not a
final state must have a successor state s and all its successor states must be
closer to the goal . In (B.3.a) we consider all successors s” of current state
s after a single execution step as described by t. In (B.3.b) we consider all
successors s” of current state s’ after zero or more steps as described by the
inevitability theorem for ;.. In both cases the successor state s is closer to
the goal since 6" <d'. Notice that the existence of at least one successor state
s” when the goal is not yet reached must be established in (B.3.a) whereas
it has already been proved in (B.3.b) (when 0. was shown to be inevitable).

This induction principle is a generalization of Burstall’s intermittent asser-
tions method for proving total correctness of sequential programs. The proof
of each inevitability theorem for 8, starts from (B.2) and proceeds by successive
deductions by “hand-simulation” (B.3.a) or using “a little induction” (B.3.b)
(ie. by referring to theorems for 6., < 1) until the theorem for 0, can be deduced
(B.3.c). Burstall left implicit the fact that valid proofs should be finite. This
is guaranteed in induction principle (3) by the presence of & belonging to the
well-ordering (4, <). Also, Burstall's method makes use of “induction upon
data™ Up to an isomorphism, this is modelled in induction principle (3) by
induction upon ordinals 1€ 4. This is better shown by means of examples:

Example 4.1 (Weak termination). Continuing example 3.3, we can prove that
YCx, p3, (X, y))=[x'=y'=0] is inevitable for S=wxa,t((x y),
XY))=[x>0Ax'=x—1)v(y>0Ax"=x Ay =y—1)] using Burstall’s proof
method.

By induction on pairs {x, y>€w x w ordered by the left lexicographic order-
ing ,<, we prove that execution starting from initial state {x, y)> inevitably
reaches a final state (x', y') such that x'=y'=0. This is obvious when x=y=0
choosing {x', y')=<{x, y). Else a transition t({x, y), {x', ¥'>) leads to a state
(X', ¥ satisfying (x',y') ,< {x, y)> so that by induction going on from
(X', y') execution inevitably reaches a state {x, y""> such that x”"=y"=0.

In induction principle (3), Burstall’s induction upon data <{x, y)ew xw
ordered by ,< is expressed in a problem independent manner using induction
upon ordinals ieA naturally ordered by <. This is equivalent up to the

Sometime = Always + Recursion = Always 11

isomorphism A=wmxxiy. Observe that Burstall’s theorem “for all
{x, yyem % @, execution starting from ¢x, y) inevitably reaches a state (x", y">
such that x"=y"=0" is used inductively in its proof for a given instance
{x', "> of {x, y>. In induction principle (3) this symbolic logic sentence is trans-
posed to a set theoretic interpretation (itself presented using first-order logic
sentence). More precisely, for each given state {x, y>em x ® or equivalently
for each Aew % m, we state that 0, ({x, y>, {x", y))=[A=wx x L y)=(x"=)y'=0)]
is inevitable for {8, t>. Hence we consider inevitability theorems for 0,, Aem x w,
each of which is an instance. of Burstall’s symbolic theorem for the value of
{x, y» such that A=w x x4 y. Then the recursive use of Burstall’s theorem
in its inductive proof can be interpreted as the use of previously proved inevita-
bility theorems for 0, with A'<4 in the inevitability proof for #,. Finally it
is implied in Burstall’s proof that once a proof has been done for each given
initial state {x, y», we can conclude for all {x, y>ew xw. This is expressed
in induction principle (3) by the use of 0, ({x, y), (X, yD)=[x'=y'=0] the inevi-
tability of which results from the inevitability of one of the 0,, lew x .

It follows that Burstall’s proof consists, up to a morphism, in applying induc-
tion principle (3) choosing A=wxwi1, t=wxw, 0.=y, 0,({x, y>, {x, ¥
=[(l=wxx+y)=(x'=y =0)] for lew xw and I defined by cases as follows
(we indicate after each case which verification condition of (3) is satisfied): for
Aewxm, I,(2,{x, y), <X, y))=[A=wxxty)=(x'=xAy'=y)] (B2, if A=0
then B.3.c else B.3.a with 6"=1), I,(1, {x, y), {x, yD)=[(A=wxx+y>0)=
t({x, y0.£x", v>)] (B3b with A=wxx'+) and §"=0),1,(0,s, s)=0,(s,s)
B3 L (2,5 8)=1F (B3, {1 x> 4x, vD)= [=x A y'=)i] (B2 B3biwith
M=wxx+4yand 6"=0), I.(0, s, s)=0_(s,5) (B.3.c). [

Example 4.2 (Proof of the tree traversing program using the “sometime” induction
principle). Burstall’s total correctness proof of program 2.1 [2] can be rephrased
using proof charts (formally defined in Cousot and Cousot [5] and generalizing
Lamport’s proof lattices [10]). Arrows = from A to By, ..., B, mean that A
implies B; v ... v B,. We write 4 — B to state that B derives from 4 by “hand-
simulation” and 4 Ama— B if B derives from A4 using “a little induction”. More-
over

A
/ \ 1 \ A
AANTIB A A B isabbreviated as _IV &
| | : p
e D

Assertions usually contain free variables denoting values of program vari-
ables at different time instants. For example, tr, co, st denote the initial values
of Tr, Co, St and tr’, co’, st’ their current values. We let

|tr|=if tr =nil then 0 else 1 + [If(tr)| 4 |rg(tr)]

denote the weight of tree tr.

12 P. Cousot and R. Cousot

Theorem 0. (by induction on |tr|

[tr'=tr A co’=co Ast'=st] at Loop

Hand-simulation

[tr'=If(tr) A co’ =co A st'=(tr.st)] at Loop
: Theorem 0 (since |If(tr)| < |tr])
[tr'=nil A co’=co + tips(If(tr)) — 1 A st'=(tr.st)] at Loop
Hand-simulation

[tr'=rg(tr) A co’=co +tips(If(tr)) A st'=st] at Loop
<

f Theorem 0 (since |tg(tr)| < |tr|)

[tr'=nil A co’=co+tips(tr)— 1 A st'=st] at Loop

Theorem 1.

[tr'=tr A co'=co A st’=st] at Start

Hand-simulation
[tr'=tr Aco’'=0Ast'=()] at Loop
Theorem 0
[tr'=nil A co’=tips(tr)— 1 A st'=()] at Loop

Hand-simulation

[co’ =tips(tr)] at Finish

— The proof of Theorem i, i=0, 1 starts from an assumption of the form:
[tr'=trA co’=co A st =st] at L

and proceeds by successive deductions of intermittent assertions by hand-simula-
tion, by application of a previously proved theorem or by inductive application
of Theorem i. This proof must be finite so that the graph underlying the corre-
sponding proof chart (PC;) must have a finite number of vertices n;. Moreover
proof charts exactly corresponding to Burstall’s intermittent assertions method
do not contain cycles. Consequently, every path in the graph is of finite length.
It follows that each intermittent assertion appearing in (PC,) is at a finite maxi-
mal distance de[0, n[from the exit vertex of (PC)). (d is the maximum number
of deductions before concluding from the intermittent assertion). Hence this
intermittent assertion can be written in the form:

[tr'=f,(tr) A co' = g,(tr, co) A st’ = hy(tr, st)] at L,

Sometime = Always + Recursion = Always 13

and should be understood as a shorthand for the more precise: “if execution
of the program reaches control point L with values tr, co, st of the variables
Tr, Co, St then execution will inevitably reach program point L, with values
tr', co’, st’ of Tr, Co, St such that tr' = f(tr), co’ = g,(tr, co) and st’ = h,(tr, st)”.

The proof chart (PC) itself can be expressed in relational form when grouping
these intermittent assertions into disjunctive form:

PC; (&', {l, tr, co, st), {I', tr',co’, st'))=

=1
[(I= (\/ [8'=dnal'=Lynatr' = f(tr) Aco’ =g,(tr, co) A st’ = hy(tr, st)})]

d=0
More precisely we have:

PC,(8', (I, tr,co, st), {I', tr',co’,st’))=
[(I=Loop)=
([6'=4 Al'=Loop atr'=traco'=co ast' =st]
v [§=3Al'=Loop A tr'=If(tr) A co’=co A st' =(tr.st)]
v [=2nal'=Loop A tr'=nil A co’=co +tips(If{tr)) — 1 A st’=(tr.st)]
v[d=1Al'=Loopa tr'=rg(tr) A co’ =co +tips(If(tr)) A st'=st]
v [6'=0Al'=Loop A tr' =nil A co’ =co+tips(tr) — 1 A st'=st])]

PC, (0", {I, tr,co, st), {I', tr',co’,st'))=
[(I=Start)=
([6'=3 A l'=Start atr' =tr A co’=co A st’=st]
v[d=2al=Loopatr'=traco’=0nast'=()]
v[§'=1Al=Loopntr'=nil aco' =tips(tr)—1 ast'=()]
v [6'=0 A I'=Finish A co’ = tips(tr)])].

. In the proof of Theorem I for program 2.1 we use Theorem 0 and in the
proof of Theorem 00 for a tree tr, we assume that Theorem 0 holds for trees
tr’ such that 1tr |{|tr| Hence the proof is by induction along the well-ordering
< on {l {10} x w} defined by (0, n)<1 for all new and (0, n')<(0, n) if and
only if n' <n. Burstdll [2] speaks of “induction on data” and does not explicitly
take into account the order in which theorems should be proved because he
implicitely relies upon the mathematical culture of his readers to avoid errors
such as circular proofs.

Induction principle (3) ensures that induction is used correctly because an
inevitability theorem for ¢, can be used in the inevitability proof of 6, only
il the inevitability of ;. has been proved before that of 8, i.e. ' <. All particular
cases such as inductive or mutually inductive proofs of theorems in Burstall’s
method can be taken into account by a suitable choice of the well-ordering
(4, <). Up to an isomorphism we can always choose A€0rd.

For example, instead of the well-ordering (W, <) where W= {1} U {{0} x w}
we can use (4, <) where A=Sup{p(x): xe W}=w+1 up to the isomorphism
pe(W— Ord) defined by p(x)=Sup™{p(y): y<x} so that p(1)=w and p(0, n)=n.

. The reader can now check that Burstall’s proof [2] of program 2.1 exactly
consists in applying induction principle (3) with:

14 P. Cousot and R. Cousot

A=wi1l
0, (<L tr, co, st), I, tr, co’, st'D) =
([(A= A l=Start)=(I'=Finish A co’ = tips(tr))]

[(tr|=A<w A l=Loop)=(I'=Loop A tr' =nil A co’=co + tips(tr)— 1 A
st'=st)])
=
A=35
1,00, {I, tr, co, st), (I, tr', co’, st'>) =

([(A=w)=PC (&', (I, tr,co,sty, I tr', co’, st'D)]

Allltr|=A<w)=PCy(d', {I tr, co,st), I, tr', co’, st'D)])

For example, from

L 3, <L, tr, co, stp, <1, tr', co’, st'>)
. =[(I=Loop)=(I'=Loop tr'=If(tr) A co’=co a st’ =(tr.st))]
we checked that |tr’|=|1f(tr)| <|tr| and using theorem
O (K1, ', €0, st (17, tr”, co”, st)
=[(I'=Loop)=(I"=Loop A tr" =nil A co” =co’ +tips(tr)—1 A st” =st')]
we derived
[(l=Loop)=(I"=Loop A tr" =nil A co” = co +tips(If(tr)) — 1 A st” =(tr.st))]
=Iy(2, <1, tr, co, st), (I, tr", co”, st")).
Also from
I (2, (L tr, co, st), I tr', co’, st'))
=[(I=Loop)=(I'=Loop A tr'=nil A co’=co + tips(If(tr)) — 1 A st’ =(tr.st))]
and
t({Loop, nil, co’, (tr.st)>, (Loop, rg(tr), co’ + 1, st))
we derived
[(l=Loop)=>(I"=Loop A tr" =rg(tr) A co” =co + tips(If(tr)) A st” =st)]
=1, (1, (L, tr, co, st), <I', tr', co’, st"))

the one difference is that program 2.1 is total, so that absence of run-time
errors and more generally of blocking states (I,(d', s, s)=3s"eS.1(s', s")) need
not be explicitly checked. [

Induction principle (3) is sound (since (3)=-(1)) and semantically complete

(since (1)=(3)) even when we choose dew instead of AcOrd in (3) (see the
proofs in Cousot and Cousot [5]).

Sometime = Always + Recursion = Always 15
5. Sometime = Always + Recursion

As shown by example 4.1 a major difference between Burstall’s [2] method
(and its followers such as Owicki and Lamport [14] or Manna and Pnueli
[11] who present proofs using proof lattices) and induction principle (3) is that
Burstall insists upon a finite presentation of proofs (equivalently this consists
in considering proof charts without cycles and Aew instead of A€0rd in (3))
whereas (3) only insists upon well-foundedness. In particular, (3) can be presented
using proof charts with cycles along which some entity (modelled by 6 in induc-
tion principle (3)) has to be strictly decreased.

The importance of this remark is to point out that when conveniently general-
ized into induction principle (3), Burstall’s method contains Floyd's method
(more precisely induction principle (2)) as a particular case. This is because
in induction principle (3) we can choose A=1={0}, =y, =0 so that (B.1)
is always true and (B.3.b) never applies, in which case (3) exactly amounts to
(2).

The clear advantage of induction principle (3) over (2) is that (3) introduces
the possibility of inductive proofs not present in (2). This clearly formalizes
Burstall’s [2] remark that “recursive” proofs can be retained for iterative ver-
sions of recursive programs.

This point can be illustrated pictorially using the total correctness proofs
3.1 and 4.2 of program 2.1. We represent an execution trace of the program
as:

where s, is an initial state and there is a transition t(s;, s;,,) from state s;
to state s;, ,. The fact that I(s;, s;) is true will be represented as:

I

With Floyd’s method (3.1) properties of execution traces are specified by 1

whereas with Burstall’'s method (4.2) a description by the #,, Ae A is much more
precise since it retains the underlying recursive structure of the program:

16 P. Cousot and R. Cousot

Much more importantly, using (3) a proof can be successively decomposed
into independent subproofs whereas (2) requires a global proof. To illustrate
this point we represent the fact that state s; can be reached from state s, in
at most o steps as:

With Floyd’s method (3.1), the global invariant J(y', s, s) relates the current
state s” to the initial state s and provides a bound 7' on the number of steps
before reaching the final state s”:

With Burstall’s method (4.2), the same idea is applied to each 0, ieA but

for the fact that subtraces can be recursively hence more abstractly described
by the 0,., ' < 1:

Sometime = Always + Recursion = Always 17

A traditional “separation of concern” argument in favour of induction princi-
ple (2) is the usual decomposition of (2) into partial correctness, termination,
absence of blocking states proofs. As noticed by Gries [8] all parts of the com-
plete proof are packed together in Burstall's method. However this is only a
matter of presentation of (3) which can be easily remedied since the decomposi-
tion into independent partial correctness termination, absence of blocking states
(and interference freeness checks for partitioned transition systems) proofs is
applicable to (2) but as well to the proof for each 8;, le A in (3).

6. Sometime = Always

Since (2)<=>(1)<==>(3), induction principles (2) and (3) are equivalent. This means
that when a proof exists by one method, a proof must exist by the other method.
However from a practical point of view it has sometimes been regarded as
a challenge to use (2) on a program which has a “natural” proof by (3) (see
Manna and Waldinger [12] and Gries [8]). We now prove a stronger equivalence
result which shows that this challenge can always be met because a proof of
(3) can be systematically rephrased into a proof by (2) and viceversa. The trans-
formation between the two proofs is very similar to recursion elimination in
programs and recursive presentation of iterative programs. Hence naturally,
we do not claim that this transformation preserves the naturalness of the proofs
(so we do for programs).

6.1. Always=>Sometime

As observed at paragraph 5, (3) contains (2) as a particular case (choosing
A=1={0}, O,=y, n=0) so that a proof by (2) is (up to minor details) also
a proof by (3).

However we need the more powerful theorem 6.1.1 to make a fair comparison
between Burstall’s and Floyd’s methods. This is because, as also observed at

18 P. Cousot and R. Cousot

paragraph 5, Burstall's method more precisely corresponds to the case dew
instead of 4€0rd in (3).

Since Floyd [7] and Burstall [2] use the principle of mathematical induction
only in the form of ordinary induction principles for natural numbers, one
can claim that we should add the restrictions 'ew in (2) and A€w in (3). Then
the following theorem shows that a proof by Floyd’s method using only natural
numbers can be rephrased into a proof by Burstall’s method also using only
natural numbers:

Theorem 6.1.1. Given <S,t), if we have proved that I'ew, Je((I' xS x S)—
{tt, ff}) satisfy (F.1) and (F.2) then, rephrasing this proof, we can find Aew,
0e(A—>(SxS—{tt,ff}), ned, Adew, le(Ad—(AxSxS— {1t ff}) satisfying:
(B.1), (B.2) and (B.3).

Proof. The intuition of the proof is to simulate J(y, s, s) in (2) by
Op_,—1(s, 8") in (3):

Ji¥y'.,s.8")

s Sr E”
AR s IR s S 5
SRR e e T BT e R =

More precisely, we choose A=I'+1=1{0,...T}, n=I, 0,=y (B.1), 4=3=
10, 1, 2}, I.(2, 5, $)=/ff (B.3), I,(1, s, s)=[s=57 (B.2 and B.3.b with 2'=1I—1
and 0" =0 since J(0, s, s') = (s, 5') by F.2), 1,(0, s, s')=0,(s, ') (B.3.c), for A<T,
0,05, 8)=3y' <(T'—=2).J (¢, 5, 5], 1,25, 5)=[s=s] (B2 and B3.b with V=
A=1 and ¢"=1), I,(1,s,s)=[Fy =(I'—1).J(y, s 5)] (B3.c by F.2.b or B3.a
with 6" =0 by F.2.a), I,(0, s, s')=0,(s, s') (B.3.c). (Verification conditions satisfied
by the I, 2e A have been indicated between parentheses). []

If the nondeterminism is unbounded and induction is restricted to natural
numbers the Floyd’s method is net complete (Dijkstra [6]). In this case induction
principle (2) is therefore not semantically complete with I'ew. The same way,
(3) is not semantically complete with 4.

However, considering I'e Ord in (2) and A €Ord in (3) as respective generaliza-
tions of Floyd’s and Burstall’s methods, we claim that a proof by Floyd’s method
can be always rephrased into a proof by Burstall’s method. This is a consequence
of the following Theorem 6.1.2. (where (3) is still restricted to finitely presented
proofs i.e. Aew):

Theorem 6.1.2. Given (S, 1), if we have proved that I'eOrd, Je((I' xS x S)—
{tt, ff'}) satisfy (F.1) and (F.2) then, rephrasing this proof, we can find AeOrd,
Oe(d—(SxS—{it, [f}), ned, Aew, Te(d—>(AxSxS—{tt, fI}) satisfying
(B.1), (B.2) and (B.3).

Sometime = Always + Recursion = Always 19

Proof. Since substraction cannot be generalized from natural numbers to ordin-
als, we cannot extend the proof of Theorem 6.1.1.
The basic proof idea is now to choose @, in (3) as follows:

Uis,s")

where the ordinal A records (s, y')> that is where the computation started and
when it will be finished.

By the counting principle (an equivalent of the axiom of choice) there is
an ordinal 7 and a bijection b that maps = onto S x I'. Hence we can define
se(r=S) and ye(m— I') such that b({s(4), p(4)))=4 for all Lem.

Choose

. A=ni1(=nu{n})
. 050, 8)=([A=m A (s, s")] v[A<m A (J(p(4), (),)= (s(4), s")])
. A=3
12,8, 8) =]
I.(1,s 8)=[3yel.J(y, 5, 5) A5 =5]
I,(0,s, sY=(s,s')

For all A< (or equivalently iem),

12,8, 8)=[J(p(A), s(4), s)=(s=5")]
IJ.(]-a S, S’) = [J(E()']y 5(;‘-)1 S] :'(t(s's Sr] AT dj@ [’:‘.'J’ S)]]
(05, 559 =850 =]

6.2. Sometime = Always

As a consequence of the following, Theorem 6.2.1, a proof by Burstall’s method
can be rephrased into a proof by Floyd’s method. Not surprisingly the technique
is analogous to the transformation of a recursive program into an equivalent
iterative one (by a compiler using a run-time stack). To turn this comparison
into a caricature this is also analogous to the replacement of all theorems (and
their proofs) in a mathematical book by a single proposition (and its proof)!

Theorem 6.2.1. If we have proved that AeOrd, Oe(A—(S xS — {tt, ff})), meA,
Ae0rd, Ie(A x S x S — {tt, ff })) satisfy (B.1), (B.2) and (B.3) for a transition system
(S, t), then rephrasing this proof, we can find I'eOrd, Je((I' x S x S)— {tt, ff})
satisfying (F.1) and (F.2).

Proof. (This rather long proof is illustrated by example 6.1 below).
(a) We define §me(A —(S x S — A)) such that dm(2A)(s, ') is the smallest o
such that I,(5, s, s') holds if 36€4.1,(, s, §'); otherwise om(2)(s, s') is 0.

20 P. Cousot and R. Cousot

(b) We let HSe(d—(SxSxS—{tt, ff}) and LIe(A—>(SxSxAxS—
{tt, ff'})) be

HS(A)(s, 8", s")=[1,(0m(A)(s,5), 5, s) A E(s, 5”) A
VSHFES I{S SFH)$L30H(<(>m(;) S ‘S I (5”!,3 5”!)})]

LI(A)(s, s, A, ") =[1,(06m(A)(s,8), 5,8V AL <ANO,.(,5) A
Vs"eS.(0,(s,8")=[36" <dm(l)(s,s).1;(5", s, s)]

Informally, HS(A)(s, s, s”") means that in the proof of inevitability for 6, it can
be shown by “hand-simulation” that if execution starts in state s and later
on reaches state s’ then execution of a program step may lead to s” (and all
such states are closer to the final state). Similarly, LI(A)(s, s, ', s”) means that
in the proof of inevitability for 6, it can be shown by “a little induction” that
if execution starts in state s and later on reaches state s’ then according to
the inevitability theorem for @,. it may lead to state s” (and all such states
are closer to the final state). (Whenever ¥ded. —|I ;(9, s, 8') we have in particular
—1,(0, s, 5") so that by definition of dm(2)(s, s'), HS(A)(s, s’,s”) and LI(A)(s,
s, /', §") do not hold).
(c) We define the relation > on 4 x S x S such that

</:|'l7 81, ‘S’l > >'- <’]“2 » 32, S’2>
if and only if

[(Ra=241 Asy =5, A HS(21)(51, 54 53))
V(A=A Asy=5; AT <Ay . LI (51, 85 & SV (Ay<2y)].

(d) The relation > on 4 x S x § is well-founded.

By reductio ad absurdum, if there were an infinite chain such that Vi=0.({4;,
Siy 8i»><{ i+ 15 Si+ 15 Si4 1) then by (c) and (b) the chain <(A;, dm(4)(s;, s)>, i=0
would be strictly decreasing for the left lexicographic ordering on pairs of ordin-
als, a contradiction.

(e) It follows from (d) that we can define 6e(A4 — (S x S — Ord)) by transfinite
recursion such that for all Ae4, s, s'eS we have:

a(A)(s,s)=Sup{at1: —16,(s, s};\[[ﬂs eS.(HS(A)(s, 5, 8") na=a(2)(s,s")]
v[31’<,1 @s"eS. LIQ)(s, &, 4, s"
na=Sup{o(2)(s,s"): LIA)(s, s, X, s")} +a(X)(s,)N}

Intuitively, assume that an execution starting in state s reaches state s* and
that we have proved that from state s’ execution will inevitably reach some
ﬁnal state s’ satisfying 0,(s, s"). Then a(A)(s, s") is defined so that there are

“at most ¢ (4)(s, &') steps” between s and 5. If 0,(s, s') holds no further step
is necessary so that o(4)(s, s)=0. Else the inevitability proof has been done
using “hand-simulation” or “a little induction” or both. If HS(2)(s, s’, s”') holds
then (by induction) s will be reached “in at most a=g()(s, s') steps” from
s" hence “in at most o4 1 steps™ from s’ since t(s, s”) holds. A supremum
is obtained by considering all possible states s":

Sometime = Always + Recursion = Always 21

If LI(A)(s,s, 4, s") holds then the situation is similar but for the fact that
8;.(s, s") holds (instead of £(s', s")):

glXie,s) al(A)s,g")

Co—mmsm S E s e >

f

Considering all possible states s” we have “at most Sup{o(4)(s,s"):

(A)(s, 8, X', s”)} steps™ between any such state s” and the final state s™'. More-
over there are “at most o(2)(s, s') steps” between s’ and s”. Hence there are
“at most a=Sup{a(A)(s, s”): LI(A)(s, s, A, s")} + a(X)(s', §') steps” between s" and
§". Since this o corresponds to a given A', we than consider the supremum
of these o for all possible A’ adding 1 not to rule out the case when 0, is
identity.

We choose:

6 J(@.s s)=[3ne(w~0), Ae(n—>/l] SoES, ..., 5,€8, Xe(n—1—0rd).

((so=5) A (Ag=m) A (5,=5")
AVie(n~0).3s'eS. LI(A;—)(Si—1, Sis A1,)
AI}{"_i(am'[f'n—i} n—hsn]ssn—]ssn]
AVie(n~0).710; (si, Si+1)
AVie(n~0).Z;_ =Sup{a (4 1)(si—1,8"): LI (A— 1) (i 15 Si5 4> 8”)}
A?=2‘0+ +Zn 2+g i = 1) n—IsSn]]]
(g I'=Sup*{y'eOrd:3s,seS.J(Y,s, 5}
J(y, s, s") is chosen so as to express that “if execution starts in state s and

later on reaches state s* then it will inevitably lead “in at most ' steps™ to
a final state s” satisfying (s, s”)”

22 P. Cousot and R. Cousot

Formula (f) can be informally explained using the following diagram:

Observe that we may have s;=s; . ; (or s}, =s}) or else there is a transition
between s; and s, (or s} ; and s) (corresponding to the use of “hand-simula-
tion”) or else a similar diagram should be recursively drawn between s; and
Si+1 (or 57’y and s{) (corresponding to the use of “a little induction™).

In the inevitability proof of 6, i=0, ... , n—2 it has been shown that starting
from state s;, satisfying intermittent assertmn I; (Om(2)(s;, 8;), i, 8;) execution
will lead to state s;,, such that I, (6m()(s;, 5;4 ,), iy 5 +1) holds Applying the
inevitability theorem for 0, , at thls point, it has been shown that execution
will inevitably lead to some :,tdte 8¢+ such that 8, _ (s;;, s},) holds and sat-
isfies intermittent assertion I, {5m()l}(s St 1)y Sis ;+1) Therefore LI(A)(s;, Sis1s
Ai4 1, Si+ 1) holds. Next it has been derived from the last intermittent assertion
that I, (6m(4)(s;, s¥), s;, s¥) holds, which implies @, .(s;, si) and terminates the
mewtabﬂny proof for ¢;,. Moreover execution goes from s/, , to s{ “in at most

){sl, S .+1) steps” hence “in at most X; steps” when considering all possible
Stales St &

Sometime = Always + Recursion = Always 23

Using a more dynamic view where inevitability theorems are proved when
needed, we can understand that for proving the inevitability of 6, from s,
we proved that s, is reachable from s, and then started the inevitability proof
of ,, from s,. For this new proof, we showed that s, is reachable from s,
and started the inevitability proof of 6,, from s,. We proceeded on “recursively”
in this way, up to s,. After “recursion elimination”, J expresses a relation be-
tween s, and s, obtained by “stacking” the relationships between s; and s;.
already proved in all unfinished recursive subproofs used to get from s, to
s,. The distance between s, and the final state s is measured when returning
from finished subproofs.

Finally, in the proof of 6, , it was proved that starting from state s,
execution will lead to state s,=s and from s, “in at most o(4,—)(s,—1, S,)
steps” to s, _ .

We conclude that if execution starts from s=s, and reaches s, ..., S,_1,
s,=s then “in at most " steps” it will go through states s,_i, ..., s, sy such
that i (s, sg) holds.

(h) Proof of (F.1).

By (B.2), VseS.ddeAd.I.(d, s, s) so that by (a) we have VseS.I (dm(m)(s, s),
s, 5) which implies VseS.J(a(n)(s. s), s, s) when choosing n=1, A, =m, so=5,=5.

The proof of (F.2) can be decomposed into the following lemmas:

() Vied, s, seS.(I,(dmA)(s, s), s, 8)=[Is"eS.t(s, s") v 0,(s, 5]

By reductio ad absurdum assume I,(dm(2)(s,s),s.s’), 10,(s,s") and
Vs"eS.—t(s, s”). The contradiction is that we can built inductively a strictly
decreasing chain 4, 4,, 4,, ... of ordinals as follows:

. Since I,(dm(2)(s, §'), s, §') is true but neither (B.3.a) nor (B.3.c) apply, (B.3.b)
implies the existence of A,<A1 such that Vs"eS.[0;(s,s")=3d"
<ém(2)(s, 8").1,(8", s,5")]. By (B.2) and (a), I, (dm(4,)(s,s), s, s") holds and
we cannot have 0, (s, s') since otherwise 36" <dm(A)(s, 8').1,(d", s, s') contrary
to (a).

. Assume that we have built a finite strictly decreasing sequence 4, Ay, ...,
A 1=0 such that I; (6m()(s',), 5", ') A—10,,(s', §') holds. It can be prolonged
by 4;,,<4; because neither (B.3.a) nor (B.3.c) apply, so that (B.3.b) im-
plies the existence of some /;.;<4; such that Vs"eS.[0,, (s,5")
=30"<om(A)(s, 5").1;,(0", 5", 5")] hence 10,, (s, s"). Moreover I, (dm(4;+,)
(s, 5), 8, s') follows from (B.2) and (a). Q.E.D.

G) Vyel,s seS.[(J, s, s)A(s, s))=3Is"eS.t(s, s)].

When J(y', s, s') holds we have I, _ (6m(A,-,)(s,—1, S,), S,—1, 8,). Moreover
0, (s,—1, s, holds when n>1 but also when n=1 because i/ (s, s')=0,(s, 5
=0, (S0, 51). Now (j) follows from (i). Q.E.D.

(k) Vied, deAd, s s'eS.[I;(4,s, s)=3s"€S.6,(s, s)].

By transfinite induction on A, assume (k) holds for all A'<A. We show that
(k) holds for 4 by reductio ad absurdum ie. assuming Vs"eS.710,(s, s”). We
have I,(dq, s, 55) with d,=0 and si=5s". Assume we have built a chain d,> ...
>0, with I,(dy, s, s3). Since 716, (s. s;) it follows from (B.3.a) or (B.3.b) and the
induction hypothesis that 36, ., <dy, Si+1.1,(0;+ 1, 8 Sp+1). The contradiction

24 P. Cousot and R. Cousot
is that, in this way, we can built an infinite strictly decreasing chain of ordin-
als. Q.E.D.

() Vyel, s, s, s"eS.[[J(, s) ATY(s,)AL, s =Ty <y . J(y", s, s].

Assuming [J(y, s, s) A (s, s)at(s',s")] we have by () that s,=s,
Ly, (Om(Ay—)(Sn- 15 Sp)s Su—1> 5,) and =10, (s, , s,) where n is the number of
the innermost of all unfinished recursive subproofs used to get from s to s.
Since (B.3.c) does not apply, only two cases have to be considered:

Case 1. If 5" is considered in the inevitability proof for 0;,_,. we have:

o PR, [S

Cmmmmmm e

(B.3.a) applies to [, 1(()m()n_ (s
some A'< 4, such that 0,.(s,, s”).

In the first case we have HS(4, ,)(s,_;,5,s”) and in the second
LI(Ay-)(sn-1,8, A, 8"). In both cases we observe that (b) implies
I, (0m(Z,—)(Sy—1,8") Sy_1,5”) and from —0;, ,(5,—1, ') and (e) we derive
6(’1»—1](3"— 12 Sr)>o—(’1u— 1)(Sn— 1s S”}'

Case 1.1. 718, _ (s,-1,5") (s" is not a final state for 0, (so that s” s
in the above diagram)).

We have just shown that o(4,_()(s,_1, 8)>0(4,_;)(s,—;. ") hence 7
=Zot o 2,240y 1)(Sn-1,) <ZoF . +25_ 340 NSy,)=y I
we let J[;' ,8,5") be J(y, s, 5') with ¢, s substituted for y’, s’ we have 3" <y’ A
J(y", s, 5").

Case 1.2. 0;,_ (s,-1, ") (s” is a final state for 0, (so that s"=s/_, in the
above diagram)).

Let [be the smallest natural number such that I<n and 0, (s, s”) holds
so that if />0 then we have =10, (s;,_;, s”). Intuitively, this is the case when

s" is a final state for 6, ,...,0;. So, getting from s’ to s causes the end
of unfinished recursive subproofs for 8, ..., 0, used to get from s to s':

Su—1s Sp)y Su— 15 5,) Or (B.3.b) applies to it for

n—1

o

Sometime = Always + Recursion= Always 25

<=—->

First observe that by (e), we have a(2)(s;, s")=0forj=1,n—1.

Let us show that I, (dm(4)(s;, s, 84, s") holds for j=max(I—1,0), ... , n—1.
The case j=n—1 has already been considered. If max(0, /[—1)<j<n—1 then
J(y', s, ') implies 35" eS. LI(4))(s, Sj+1> 411, 5"") hence (b), 0;,..(s;41,5") and
(a) imply I, ,(om(2,)(s;, s"), 87, 8").

Case 1.2.1. 1>0 hence n>1 (end of the Inevitability subproofs for it ek
;)

Define J(y", s, 5) by formula (f) choosing n=1, A, ..., At—1, 505 - 58— and
205 --- s 21—, as defined by J(7, s, §),s;=s" and y"'=X,4i ... +2 ,40(d_)
(-1, 8"). Then J(y",s,s”) holds because we have already proved that
Ly Om(A—) (si— 15 8), 81— 1, 8) i true and =60, (s, 4, s;) follows from the defi-
nition of [and s,. 2

From o(4,-,)(s,-4, S)>0(Ay—1)(8,_1, 5)=0 we derive it LB
0(Ay—1)(S,— 1, 8)>0. We know that 0,,(s;, ") holds and J(y,s, s') implies
ds;'€S. LI(A— 1)(s;— 1, 8, 4y, 5}') hence by (b) we have LI(4,_,)(s,_ 1581, 41, 87). By
definition of X,_, we derive that 2y 1Z20(A4-y) (8,4, 8"). If follows that he—
(Zo+ .. 4—5;—2-]-9':—1(&1—0[5;—1, SNS(Zo+ ... +2- 42)
<@o+ ... 42424+ ... -f—Z;;—z'i‘O'[An—l)(Sn—lsS(Dz?’(‘

Case 1.2.2. [=0 (end of the inevitability proof for).

Intuitively, this is the case when s” is a final state for 0, _,....,0,,=v so
that the whole proof is finished. Therefore the above diagram becomes:

26 P. Cousot and R. Cousot

Define J(y", s, s”) by formula (f) choosing n=1, l,=m, sy=s,s;=s" and
P =0(4o)(s, s")=0. J(3", s, s”) holds because it amounts to 1,,(0m(4o)(s0, 8"),
S0, 8"'). Moreover J(y, s, 5s") implies that y'=24 ... +2, >+ 0(4,—1)(5,— 1)
Hence a(4,_)(s,—1, 8)>0(4,-1)(s,_1, s”) implies ' >0=7".
Case 2. 5" is not explicitely considered in the inevitability proof for 0, , because
a subtrace s's” ... s; has been handled in the inevitability subproof for ;-
A number of inevitability subproofs for 6, ,0;,. . may have been started
at s’ so as to use the inevitability of 8, , ,i=n, ..., n+K—1 in the inevitability
proof for ;. Ultimately, in the inevitability proof for 0, . the transition
t(s', 5"") has been handled by “hand-simulation™:

Intuitively we get ¢’ <9’ such that J(y", s, s") holds from what is specified
by J(y, s, s") and by recording the above diagram (where all inevitability proofs
for 0, ,...,0, . are started at s’ and possible useless @, such that 6,.(s’, §')

or 0,.(s, s") holds are omitted).

. First, we formally define 0, , ..., 0, _:

In this case (B.3.b) applies to I, (6m(4,—)(S,— 1. S,). 8y—15 8,) for some A’
<A, such that —0,.(s,, s). If we define 1, as A, then we have A,<1,_,
and Vs"€S.[0,, (s, s")= 36" <om(A,—1)(s,—1, 8- L;, (6”5 512 8] It fol-
lows that =0, (s,, s,) since otherwise 36" <dm(A,—;)(S,— 15 5,)-15, (6" Sp—1s
5,) in contradiction with the definition (a) of m(4,_)(s,— . s,). Moreover (B.2)
implies I; (6m(4,)(Sys Su)s S Sp)-

Sometime = Always + Recursion = Always 27

Assume that we have built a chain 4,,,< ... <4,<4,-, with k=0 such
that
Vie(k+1).[(Vs"eS.[0,,, (8, s") =3 <dm(Ays - 1)(Su—xp» Sn)-

1).,,, it {5;!: S;r—xs’s Sm)) AT 61,, b J(Sn‘ Sn) M I.J.“ i J_({SJ?’I()L" + j}(sm -sn)-s Sy, Sn):L

where fcj:ffj:.’ then 1 else 0 fi. If (B.3.b) applies to I; (0m(A,+.)(S, Su) S,
s,) then there exists A, .., <A, such that Vs"eS.[0; ., (s, s")=3"
<om(A,+0)(S,, 8,).15,,,(0" s,,8")] hence —6, . . (s.5,) by (a) and
L irs OM (it 1)(S0n 820 Sa:5,) bY (B2).

Since the chain of ordinals 4,. ..., A4,,, ... is strictly decreasing it must
be finite so that there is a greatest k written K for which (B.3.b) does not
apply to I, (dm(d, g)(s,,5,), Sy 8,). (B3.c) is also not applicable be-
cause 0; (s,, s,) is not true. It follows that (B.3.a) is applicable so that
HS(Ay+x)(Sn> Sy» ") holds. Moreover 3Isy, ;4 1€S. LI(Ans)(Su=ic;15 Sus Aust s 15
Su+j+1) follows from I, (Sm(Ay)(Sp—rr1s Sl Su—i; 1 Sa) fOr j=—1,..., K—1
and (k).

¢

. Then we define y" and J(y", s, s) according to formula (f) out of 3 and
J (78 80

Since 710, (s,, s") there is a greatest natural number [such that 0<I<K
and 40, (s,, s”). Define J(y", s,5") by formula (f) where n is n+I+1; 4;,
Jjen+14+1); s;, je(n+1); 2;, je(n—1) are defined as above whereas s'=s,
=81 = s = Nt S ra =8 5 2y=Sup{a(d) (5, 8 LEA) 5y S1aqs A s S
j=n—1,...,nti—land y"'=254 ... + 2, 1404)(Sutrs Suti+1)

. Next we have to prove that J(y", s, s”) holds:

Observe that we have already proved that Vi=n, ..., n+l ..., n+K,
38 €S LE(A) Eie 1S Aend) candl Nasna.., onsRl=1 w0 ThEEKE—=1.
—10,,(s;, 5;41). Moreover we have =10, _ (S,+;, Sy+;+1) by definition of L 5,4,
and s,.;. . Also I; (6m(4,+)(Su+15 Susi+1)s Susts Sutr+1) holds because it is
implied by HS (4, x)(Sy, 54, 5”') when [=K orelse [<K and 0, . (s,,s”) implies
30".1;,, (6", 5,—xp,,»8") hence by (a) I, _ (6m(4,)(s,,S"); 5,,8") is true. We

+1

conclude that J(y", s, 5") holds.

. Finally, let us show that 3" <y':

We have shown that for all j=—1,..., K—1 there is some s, ;., such
that L‘{{j'n+jj{sn—h:j 15 8y ’J"n+j+ 1!".6:+j+ 1] = LI{’:l'rH-j}(xn-l-j? Sn-}-j-‘.— 1s)"r|+j+ 12 S::ﬂ‘—j+ 1}
holds. Moreover Vi=1, ..., n+1[we have =10, (s;, 5;1,) so that by (e) it follows
that J(’;l'u‘--j}(‘sﬂ+jﬂ Su!—j+ l)> Sllp {G[Rn+j)(5n+j! Sm): LI[’;"H+J‘)(SH+}: Srr+j+ 12)"n+.j+ 1
S! i } +g()"n+j+l)(sn+j+ &l Su-’r_j+ I)=En-l-j+o—()m+j-!- 1)(‘5‘:r+j-l- E] Sn+j-|-|} fOT' ﬂl])1=
—1, ..., l—1. Thanks to this inequality and s, j+,=5,4 ., forj=—1, ..., [-2,
we ge{ G()"n—l)(sn—l'- S")>Z‘"_ 1 -i—ﬂ'(/:l.")(fi", Sp+ I}> gl }‘Z"u— | + aiie _."Z‘n-H— 1 +
0 (A)(Sus s Susy) I 1=K then HS(4,,)(s,. S,,), 8,4,=5,, 10, (s, s") and
(e) imply (A, +)(Susps Sur)=>0(A,) (5,41 87). Otherwise /<K and we have
=10, . (85:08.) EI(Ae) (585 A 1587) iSus—=8y 80 that byii(e) e (L) (st
Sut 1) =Lt 1) (S5 Su) > (A,) (S, 8V =Ly 1) (5441, 7). In both cases we conclude
that W=t v X sd el)68 >0 ik e Rt
Zusi-1+0(Aas) (84> 8)=7". Q.E.D.

To conclude, (F.2) is an immediate consequence of (j) and (1). [J

28 P. Cousot and R. Cousot

Example 6.1. (Illustration of the proof of Theorem 6.2.1). The transition system
(8§, t> corresponding to the following program (taken from Dijkstra [6]):
doodd (X)and X=3 > X:=X+1
O even(X)and X =2 — X:=X/2
od

is defined by:

. S is the set of integers,
ot X)=[(odd(x) AxZ=3 Ax'=x+1)v(even(x) A x=2 A X =x/2)].

A proof that ¥(x, x)=[x'=1] is inevitable is given by the following proof
chart (where x denotes the initial value and x' the current value of program
variable X):

Theorem. (by induction on x (when x> 1))

odd(x)ax'=3

[even(x) A x=2 A X =Xx] [odd(x) A xZ=3 A x"=x]

Handsimulation Handsimulation
[even(x) A x=2 A x'=x/2] [odd{x)ax=3ax'=x+1]
T Theorem (since x/2 < x) Handsimulation

+

[odd(x) A x=3 A x' =(x+1)/2]
Z

Theorem
(since(x+1)/2<x)

0=y
. 0%, X)=[(A=A(x))=(x'=1)] when i<® and A(x)=if x=<1 then 0 else x—1

fi
. T=w
. 4=4
CIL00, x, X =[0=1Arx=x)v(=0AXx"=1)]
(0, x, X =[(A=A(x)=((6=3AX'=x)v(6=2At(x, X)) v(d=1Aodd(x) A
2(x, x)Nv (6=0Ax"=1))].

(a) By definition of dme(A — (S x § — A)) we have:

om(A)(x,x)=3 iff[l<oAax=x"Ax'>1]

=2 iff[A<oat(x,x)Aax'>1]

iff[(A=wAax=x">1)v{i<oaodd(x)at?(x, x)ax >1)]

1
0 otherwise

Sometime = Always + Recursion = Always 29

(b) By definition of HS we have:
HS(w)(x, x", x")=[x=x" A t(x,x")Ax"=Z1]
and when 4 <,

HS(A)(x, %', x) = [[(x=x") v (A (A= 2(x))=(odd (x) v X" < 1)]) v
(Odd(x) A tz(x, XA [2=4(x))= "= D] A t(x, x")]

The same way for LI:
Li(w)(x,x, A, x")=[x'=x>1Al=A(x)Ax"£1]
and when A<,

LI(A)(x, x', A, x")
=[[(x=x)vt(x,x)v(odd(x) A2 (x, XD]AX'>TAA> A =A(x) Ax"=1]

(Observe that when (B.3.a) and (B.3.b) are both true (e.g. when x=x'=2 and
x"=1) so are HS(4)(x, x, x") and LI(A)(x, x', A, x") because there is no means
of knowing whether hand-simulation or mductlon has been used in the proof).

() We can now determine o(A)(x, x'). Because LI(A)(x, x, A, x") implies
0,(x, x") hence a(A)(x, x')=0, formula (¢) amounts to:

a(A)(x, x)=Sup{a+1: 718,(x, x') A ([HS(A)(x, X', x") A or=a (1) {x x")]v
[34' <4, x"eS.LI(A)(x, x', X, x'') n a=a(A) (x], x)])}-

As in the proof of Theorem 6.2.1, it is not necessary to look for a direct (non-
recursive) definition of ¢ because we shall only need the following properties:

- 1% X)= [0, (x,) A HSROD(x, x, Jl}]==*[t7(/1{x])(‘c x')<a(4(x))(x, x)]
. [even(x) A t(x, x') ;\r(x XY= [10,,0(x, X))
AHS(AX)) (X, x' x)z\—|9,m(x')
A3x" . LI(A(x) (x x'y A(x'), x = [e (AN, x) <o (4N, x)
<a(A(x))(x, x)]

. Lodd(x) A t(x, x) A t(x, x")]=[Ex"". LI(A(x))(x, x", A(x"), x”’)vf)ux}(x x"))
AHS(?(x))(x x5 x")] = [(o (A")N(x", x") <o-(;1{x])(x \c”}va(i(})(x", x")=0)
AG(A(X)(x, x")<a(A(x)(x, x)]=[c(A(x") (x x")<a(i x) {k x')]

: [odd(x YAt (x, X)At(x, XY= [0 (X, X Al:fS(ﬂ()») (o 0t o)
A0, 0 (x, X)

A X" LIA(x)(x, X', A(x), x")] = [0 (A(x)(x", x") <a(Z(x))(x, x)].
(f) In the definition ofJ{} X, x') the case n=1 reduces to [(x=x'vx'Z1)A

7' =0 (w)(x, x")]. Otherwise n>1 and for all ie(n~0) we have X;_, =0 because

LI(A;—y)(si—y, Sis A; 8”) implies s” <1 whence a(4;_)(s;_, s")=0. Moreover

/. 1s a function of s because Ao=w and LI(4;_,)(s;_1, S;, A;, s) implies A;= A(s;)

for all ie(n ~0). When i=1, this also implies so =5, =x>1. When i(2, ... ,n—1)

30 P. Cousot and R. Cousot

the terms 3s;'€S. LI(A;—)(si-1, 8;, A, 57) are of the form:

A(Si—) A AS;>TA[(s;2 g =5) VE(si— 1, 5) v (0dd(s;—) A 2 (5;- 1, 5:))]
=s5;> 1A [leven(s;—) At(s;i— 1, 5)) v (odd(s;—) A L7 (s;— 1, 8))]

because s;_; =s; or s;=s;_, +1 (when odd(s;_;) A t(s;_,, 5;)) are not compatible
with A(s;—;)>A(s) As;>1. The term —8, (s;, s;5;) amounts to s;,,>1 for
ie(n~0). It follows that:

J, %, x)=[x=x"vx' Z=1) Ay =0c(w)(x, x)]
v[dn>1,se(n+1-8).x=5,=5,>1A5,=x">1
AVie(2, ... ,n—1).[(even(s;_) At(s;_y,$;)
v (odd(s;—) A L2 (s5;— 1, 59)]
AL(—1 =5V 1(S0—1,5) v (0dd (5, 1) A (5,1, 5,)]
AV =0 (85— 1))(Sa—155u)]

If-we let t'(x, x') be [(even(x) A t(x, x')) v (odd(x) A t*(x, x'))] this can be written
more simply as:

J,x,x)=[Ax"eS.t' ¥(x, x")A(x'>1)=
[(x"=x)vi(x", x)v(odd(x") At (x", x V] A ¥ =0 (AN, x)]

where t'* is the reflexive transitive closure of t'.

Observe that this formula captures the essence of the proof by Burstall’s
method which consists in considering one step for even states and two steps
for odd states. It remains to show that J(y', x, x) satisfies (F.1) (this is obvious)
and (F.2). Obviously, if —1/(x, x') then x'>1 whence 3x"eS.1(x/, x"'). But also
if t(x', x"') then four cases have to be considered:

I xX'=x" then ¢'*(x,x")Aat(x,x") implies J(a(A(x)(x/, x"), x,,x”) and
(U)X, X") <o (A", X),

. Ifeven(x”) and t(x", x') then t'*(x, x") A (even(x") A t(x", x')) A t(x', x") implies
" (x, X)At(x, x"") hence J(a(A(x)(x, x""), x, x") and a(A(x))(x, x")
<a(AX)K", x),

. If odd(x"”) and t(x"”, x') then t"*(x, x”) A (odd(x") A £(x", x) A t(x, x'")) implies
£'%¥ (e, XY A(x" =) hence Ja(A(x")) (", %), 00, %) vand o (A(ec)) (e X
<a(A(x")(x", x),

. Ifodd(x") and £*(x", x') then t*(x, x") A (odd (x"') A t*(x", X)) A t(x', x") implies
t*(x, x)at(x, %) hence J(a(AG))(x, x)x,) and @ a(A(x)N(E, X
<a(A") (", X).

The translation technique used in the proof of Theorem 6.2.1 has to be
very general. Hence for particular examples the resulting “always” invariant
may not be the simplest one that can be imagined. In the above example, the
invariant:

JOL,xx)=if x'Z1 theny' =
elsifeven(x’) theny'=x"—1
elsey'=x'4+1fi

would be much more understandable. So we do not pretend that this general
translation technique preserves “naturalness” of proofs. [J

Sometime = Always + Recursion = Always 3l

7. Conclusion

We have formalized and generalized Floyd’s and Burstall’s inevitability proof
methods in such a way that the “always” induction principle is a particular
case of the “sometime” induction principle. This is not a definitive advantage
for the “sometime” method since we have also proved that any proof by one
method can be systematically rewritten into a proof by the other method. The
advantage of “sometime” over “always™ is the ability to decompose the proof

of

a theorem into independent proofs of lemmas. However the principle of sepa-

ration of concerns has been clearly adhered to in most presentations of the
“always”™ induction principle. The same approach can be applied to the “some-
time” induction principle. This should lead to a different explanation of Burstall’s
proof method, a necessary step before concluding that “sometime” is always
better than “always”™.

Acknowledgements: We wish to thank the anonymous referees for their helpful comments.

References

(]

fad

un

-1

b

12.

13.
14.

. Back, R.J.: Semantics of unbounded nondeterminism, in Proc. 7th ICALP, LNCS 85, pp. 51-63.

Berlin, Heidelberg, New York: Springer 1980

. Burstall, R.M.: Program proving as hand simulation with a little induction. Information Processing

74, pp. 308-312. Amsterdam: North-Holland 1974

. Cousot, P, Cousot, R.: Induction principles for proving invariance properties of programs. In:

Tools and notions for program construction. (D. Neel, ed.), pp. 75-119. Cambridge: University
Press 1982

. Cousot, P.. Cousot, R.: “A la Floyd” induction principles for proving inevitability properties

of programs. In: Algebraic methods in semantics. (M. Nivat, J.C. Reynolds, eds.), pp. 277-312.
Cambridge: University Press 1985

. Cousot, P, Cousot, R.: “A la Burstall” induction principles for proving inevitability properties

of programs, Research Report LRIM-83-08, Univ. of Metz, France, 1983

. Dijkstra, E.W.: A sequel to EWD 592, EWD 600, Burroughs Corp., Nuemen, The Netherlands
1977
. Floyd, R.: Assigning meaning to programs. In: Proc. Symp. Appl. Math., 19. (Schwartz J.T.

(ed.)). Am. Math. Soc., pp. 19-32, Providence, 1967

. Gries, D.: Is SOMETIME ever better than ALWAYS? ACM TOPLAS, 1, 258-265 (1979)

Keller, R.M.: Formal verification of parallel programs, 19, 371-384 (1976)

. Lamport, L.: Proving the correctness of‘multiprocess programs, IEEE Trans. Soft. Eng., 3, 125-143

(1977)

. Manna, 7., Pnueli, A.: How to cook a temporal proof system for your pet language, ACM

POPL. 10, 141-154 (1983)

Manna, 7., Waldinger, R.: Is SOMETIME sometimes better than ALWAYS? Intermittent asser-
tions in proving program correctness, 21, 159-172 (1978)

Monk, J.D.: Introduction to set theory, New York: McGraw-Hill 1969

Owicki, S, Lamport, L.: Proving liveness properties of concurrent programs. ACM TOPLAS
4, 455-495 (1982)

Received December 5, 1983/August 18, 1986

