AN INTRODUCTION TO A MATHEMATICAL THEORY OF
GLOBAL PROGRAM ANALYSIS

Patrick M. Cousot

Laboratoire d'Informatique
U.s.Mm.G., BP.53
38041 Grenoble Cedex

France

{(March 1877)

1. INTRODUCTION

Performing compile-time optimization of programs (Aho & Ullmanl73],
Oranguart et al.[/5], Cocke & Schwartz[89]1, Hechtl75], Schaefer[737, Wulf
et al.l75]) involves an analysis of the program (the determination and col-
lection of informatiorn which is distributed throughout the program (Ullman
(751} followed by a transformation of the program (the application of those
program transformation rules which according to the previous analysis can

be shown to lead to an equivalent but improved transfaormed program).

Attaché de Recherche au C.N.R.S., Laboratoire Associé No. 7.

This work was partially supported by IRIA-SESORI grant 76-160.

This paper informally exposes and examplifies the abstract inter—
pretation of programs (Cousot[77al), a lattice theoretic model which

in particular i1s suitable to treat all global program analysis problems.

2. DETERMINATION OF INVARIANT PROPERTIES OF PROGRAMS

Roughly speaking, global program analysis requires the determination,
for each program point m of an invariant property PTT known to hold each
time control reaches 7 during execution, independently of the path taken

to reach the program point .

Example : a fairly simple case of program analysis and optimization occurs
when constant computations are evaluated at compile time (Kam & Ullman[767,
Kam & Ullman[77], Kildalll737], Reif & Lewis[771).

Consider the following skeletal program

{1}
while do
{2}
(b t=2*a, d :=d+1, e := e-al;
{3}
(a t=b-a, c :=e+d);
{4}
od;

I we can determine that the set P, of variable states at program point

{2} is
P ={<a=1, b=2,c=3, d=3+i, e=-1i>| i > 0}

we have shown that a, b and ¢ have constant values at program point {2} during

execution. End of Example.

3. FINDING INVARIANT PROPERTIES AS SOLUTION TO A SYSTEM OF EQUATIONS

According to the semantics of the utilized programming language,
the assertion P, associated with program point {i} is a function i
of the other assertions P;, ..., Pn associated with the various points
{1},.... {n} of the program. Therefore the desired properties P,,..., P

n
must be one of the solutions to a system of mutually recursive eguations

X, = f, (X
X
n
abbreviated in X = F(X].

1
-+
3
>
—-
>

Example : The set P,, P,, P,, P, of variable states are related in the

example program as follows

T
n

1 {<a=1, b=2, c=3, d=3, e=0>}

)
{

2 = P u Py

1
N
%
al}
Q.

1}

P, = P,(b: d+1, e :=e-a)

o
il

P.la:=b-a, ¢ :=e+d)

4 3

Since all variables have been initialized at program point {1} their
values in P; are numerical constants. We would give the undefined value
@ to uninitialized variables, and input variables would be initialized

by a formal constant. The set union ogperator u represents the effect of
paths converging. Finally, if P = {<x =0, Y =Bi>| i e I} then Plx := 2%y)
denotes the evaluation of "x :=2xy" for all variable states in P which

leads to {<x = 2%B. y::6i>| i e I}. End of Example.

4. EXISTENCE OF A LEAST SOLUTION TO THE SYSTEM OF EQUATIONS

Let L be the set of properties to which belong Py,.... Pn. L is

partly ordered by an ordering relation £ which enablesus to compare some
properties in L. Moreover, the functions Fi are Order—preserving (synony-

. ¥i e T1,n]

mously monotone or igsotone), that is by defimition if P, < Pa

then £, (P1. ..o, PL) S F(PL, .. LLP! Y.

'
n

For the system of equations X = F(XJ,

preserving function from the set Ln ordered by <"

this implies that F is an order-

in itself. Hence

known lattice-theoretic thecrems can be applied (Tarski[55]) to prove

that the equations X = F{X) have always a solution, (or synonymously

F has always a fZxpoint, that is there exits some P ¢ L™ such that

P = F(P)).

Example : P,».-.,P, belong to the set L of sets of variable states.

The ordering relation < is simply set inclusion c. L is a complete lattice

(Birkhoff[737) which infimum is the empty set @, which supremum is

{<a=a, b=B, c=v, d=6, e=¢e> [f(a,B.v.8.e) eMu)%}.The least upper bound

operation is set union u whereas the greatest lower bound operation is set

intersection n.

The monotony of the functions {i reflects canservation‘of information.

The larger is the set P7T of possible variable states at some program point

T , the larger will be the set Pﬁ,, at point w'

End of Example.

In general the number of fixpoints of F is infinite. Fortunately, it

can be shown that there exists a unique least fixpoint P of F (such that

P =F(P) and if X = F(X) then P < X).

immediate successor of T.

Consequently, the set of desired

properties P1""’Pn can be uniquely characterized as the least solution

of a system of equations X = F(X) associated with the program.

Example : The least solution of the system of equations is

S]

e

e

-i> | i
-i-1> |

-i-1>

FPI ={<a=1, b=2, c=3, d=3, e=0>}
PZ = {<a=1, b=2, c=3, d=1i+3,
Py ={<a=1, b=2, c=3, d=1i+4,

| Py = {<a=1, b=2, c=3, d=1i+4,

\%

-

0}
> 0}
> 0}

Another possible {but not least solution) is given by

P, = {<a=1, b=2, =3, d=1+3, e=-1i>|1i > 0}
U
i, d=1, e=0>]1i ¢ (N y{Q})}

1l
[}
o

1l
(en]
0

i

{<a

1

However the least solution is preferable since it is the join over all
paths solution. It can be interpreted informally as the calculation of
the information P7T available at each program point 7 when this point is
reached during execution by following any of the possible paths leading

to m. End of Fxample.

5. UNDECIDABILITY OF THE PROBLEM OF COMPUTING THE LEAST SOLUTION

The problem of mechanically computing the least solution P ¢ L"
of the equations X = F(X]) 1is in general undecidable (Kam & Ullman[77],
Reif & Lewisl77]) so that there does not exist an algorithm which for
arbitrary L and F will compute the least fixpoint of F. This does not
rule out neither finding algorithms for particular F and L nor computing
an approximation of the exact least solutions cof unsolvable systems of

equations.

Example : Since the least solution of our system of eguations involves

infinite sets, 1t can be thought that their construction might eventually
be impossible by a finite process. However, we can try to determines some
{(but not necessarily all) constants of a program. Therefore we can appro-

ximate
P, = {<a=1, b=2, c=3, d=1i+3, e = -i> li > 0}
by a set of variable states such as

5; ={<a=1,b=2,c=v,d=6, e=¢e>| (y,6,€) ¢ (N v {Q})%}

More generaslly any 52 such that P2 c 52 would be a correct approximation
of FP,, since Eé would include at least (if not at most) the set P, of all
possible states which can occur during any execution of the program. Now
5& can be given a finite representation and computed at compile-time.

End of example.

6. SYSTEM OF APPROXIMATE EQUATIONS

When confronted with a system of equations X = F({X) in a concrete
space (L", <™) which least solution P cannot be computed, we can find
an asbtract space [[ﬂ, <M corresponding to (", <" and an approximate
system of eguations X = F(X) corresponding to X = F(X) such that the

least fixpoint P of F correctly approximatesP, (Cousotl77a]).

The correspondence between L and L is established by an abstraction func-—
tton A : L >~ L and a concretization function [: L > L which are order-

preserving and such that X = & L(X)) and X < LC (X)) for any X and X.

Example : We can approximate a set of variable states such as

P ={<w=1, x=0, y=4, z=3>, <w=1, x=0, y=2, z=5>,
<w=1, x=0, y=Q, z=7>}
by <w={1}, x={0,2}, y=1{2,4.Q}, z={3,5,7}>. The approximation is that
we have lost the information concerning the relations among'variables (such
as "y+z =7 when y is initialized”]). Again since we are interested only by
the fact that w is an always initialized constant equal to 1, we can make
a further abstraction and use the approximation P ={w » 1} which gets rid
of the exact values of non-canstants (y,z) and ignores those constants
(x) which may eventually be uninitialized for some program paths.
L is therefore the set of partial functions from the setvof variables
vV = {a,b,c,d,e} in IN. We represent elements of [-by their graph, that is
a set of couples (variable ~ value). For the sake of completeness, let us

add to L an infimum denoted 1 corresponding to the empty set @ of L, and a

supremum T corresponding to {<a=o0o,..., e=e>]| (a,...,e) ¢ (N u {R})°} in
L.
We have

dw) =1

A{<x=1, y=2>, <x=1, y=3>}) = {x > 1}

Ai{<x =1, y=2>, <x=0, y=3>}) =71

() =12

[{x > 1}) = {<x=1, y=BR>|B e (N u {Q})}
[(T) = {<x=0a, y=8] (a,B) ¢ (IN u {Q})2}

The ordering < of L is the inclusion > of function graphs, extended
T

. ¥X ¢ L. For example, carresponding to the following

inequalities in L

il
=

{<x=1, y=2, z=0>, <x=1, y=2, z=1>}
c
o {<x =1, y=2, z=0>, <x=1, y=2, z=1>, <x=1, y=3, z=1>}
S

{<x=1, y=2, z=0>, <x=1, y=2, z=1>,

<x=1, y=3, z=1>, <x=0, y=2, z=1>}

we would have in L :

A
—~
X
v
PULN
—
N
.._‘

1< {x>1, y~>2}<
End of example.

In order for the abstract system of equations X = F(X) to correctly simulate
the unsolvable concrete system X = F(X) , F must be chosen so that its least
fixpoint P is a correct approximation of P the least fixpoint of F. Such
conditions for the choice of F are given in Cousot[77a].

In order that P < [[Ej it is sufficient to choose the ?i such that for any

[Pl,...,P) of L we have
n
PP P) < LFLCAP), cen, AP

Intuitively, instead of computing ?i[Pl,...,Pn] on concrete properties
Pl,...,Pn, one can as well apply the corresponding function ¥i on the abstract
properties a(Pl],...,a(PnJ, take the concrete form of the result

[(?&(aIPlJ,..., a(PnD] which leads to a correct approximation of the exact

P _J.

computations f. (P, ..
i1 n

Example : The computation of

p

i

fox=1,y=wfoa>0}u{x=1y=6|8<0}
o> |ae (N - {0})}

I

= {<x =1, vy
is correctly approximated by P' such that P ¢ P’

P!

il

COAH{<x=1, y=a>]a >0} nd{<x=1, y=8>|8 < 0}))
Ci{x > 1} n {x -1}

Ci{x -1}

{<x=1, y=o>]aec (IN v {Q}}

i

It

It

The same way, the computation of
Plx <« 2*%x, y < y+x]

where
P={wx=1, y=a>|az0}

is correctly approximated by

CLAPIx «2@x, y <y @x))

C{x » 1} x « 28 x, vy «y@x)}

1}

({x >2®1, v >Q & x})
L({x » 2}
{<x=2, y= u>l ae (IN u {Q})}

> {<x=2, y=a>|a > 0}

The system of abstract equations will be

5& ={a>1,b->2,c+3,d->3, e > 0}
P, = P F’l+

53 =P,(b:=2®ma, d:=d @1, e:=e B a)
P =P.(a:=b Ba, c:=e® d)

5

3

The operator n is the intersection of function graphs extended by 1 n X = X
and TnX =71, W e L. The operators® , @ , 8 are extensions of the usual
arithmetic operators =+, +, - which result is undefined (Q) whenever one of

their arguments is undefined.

The least solution to the above system of abstract equations is
P.={a>1,b>2,¢c+3,d>3, e >0}

P, =P, =P, ={a~>1, b2}

Eé, P4, P, correspond to the concrete property

{<a=1, b=2,c=v, d=6, e=e> | ¥(y,8,e) ¢ (IN v D3}

which includes the concrete properties P,, P,, P,.

End of example.

7. COMPUTING THE LEAST SOLUTION TO THE SYSTEM OF EQUATIONS

7.1 SUCCESSIVE APPROXIMATIONS

The interest of reasoning on the abstract space of properties
and on the system X = F(X) is that L and F can be chosen so that the
least fixpoint of F can be algorithmicly computed. The known algorithms
are of two types : "iterative” algorithms typified for constant propaga-
tion by (Kildalll[733, Kam & Ullman{76]17777) and "elimination” algorithms
typified by (Reif & Lewis[771). The most general of these two approaches

are the "iterative” methods. Intuitively they are akin to Jacobi's method

for solving systems of numerical eqguations by successive approximations.

The least solution P to the system of equations X = F(X) is computed as
the limit 1lim FK[XOJ of a sequence X,, X; = F({Xy), X, = F(X;) = Fz[XOJ,
fro0

o Xpom POX

approximation X, must be chosen such that X, < F(X;]) and X, < P. Therefore

] = FK[XOJ,... of successive approximations. The initial

the infimum 1" of L" is always a convenient choice. (Hypothesis on L and
F ensuring the existence of the limit, and the proof (related to Kleene
[52]'s first recursion theorem)} that this limit is the least fixpoint may

be found in a.o., Scott[72]).

Ekample : For solving the eguations of paragraph 6 the initial approxima-

tion 1s chosen to be the infimum

Initialization 1
P =P =P = p =
2,1 3,1 4,1 L

The sequence of approximations 1s then constructed by successively replacing

the current values of E&, Eé, Pa’ P, in the right hand side of the equations,

until stabilization.

Step 2

P ={a+>1,b-+2,c+3,d>3, - 0}

{fa>1,b>2,¢c+3,d~>3, e >0}

10

=P (b :=2®a, d:=d@®@1, e :=e B a)
={a+1,b>2®1,c>3,d->381, e >081}

={a>1,b>2,c>3,d->4, g » -1}

=P (a :=bBa, c:=e@®d)

={a~>1, b>2,c~>3,d->4,¢e > -1}

step 3

il
1l
—~
W
¥
-
o
¥
N

.
O
¥
w
O
¥
w
®
¥
(am)
—

o
Il
Rl
D
Y

={a>1,b-»>2,c+3,d~>3,¢e2~>0}n
fa»1, b>2, c>3, d>4, 2 > -1}
={a~+>1, b->2, c >3}

Tf
It
ol
o
il
N
&
o
a

= d @1, e =2 @ a)

]
—~
a0}
¥
N
O
¥

281, c~»3,d>081, 8 >0 1}

1

-
jni}
¥
o
v

2, c+3,d~>0, e >0}

={a~>1, b->2,c >3}

P =P (a :=hB8a, c :=e @d)

1)
—~
jal]
v
N
@
o
v
o

c > Q@0

Step 4
ElL+={a—>1,b~>2,c—>3,d—>3,e+0}
P =P npP
2,4 1,4 4,3
={a~>1,b~>2,¢+3,d+>3,e->0n{a~+1,b>2}
={a~>1, b~ 2}
_;,q = Ez,g[b =2®Ba,d:=d®1, e :1=¢e 08 a)
={a~>1, b~»> 2}
P = p (a :=bBa, c:=e@®d)
4,4 3,4

I
=
D
¥
LY
.
a
¥
N
—

11

A last step 5, would prove stabilization, that is E& =P , P =P ,

P P = P
4

-
il
0
U
i

3,5 3,4 4 5

s 3

S

The final result is that "a&” and 'b” have been found to be constants,
whereas "c" has not been discovered. Recall this is a conseguence of our
choice to use the approximate equations. This choice was motivated by our
feeling that we could not solve the system of exact equations given at
paragraph 3. For example, solving iteratively by successive approximations,
we would try to built the infinite sets of the least solution given at para-
graph 4, by successively adding an element to a set initially empty.This

process would converge only after infinitely many steops. End of example.

7.2 CONVERGENCE OF THE ITERATES

Notice that the initial approximation X, in the sequence X, Xiseoos

X satisfies X, < F(X;) = X, Since F is monotone this implies that

kPt

FIX,) < FIX,) that is X; € X,. By recurrence on k, we have in general

XK < XK+1 and by transitivity X0 le <vee < Xk < ... so that the sequence

of successive approximations is an increasing chain. The iteration process
eventually converges after m steps if Xm = Xm—z' On the contrary it diverges
when the seguence of successive approximations is an infinite strictly in-
creasing chain. Therefore the most widely used hypothesis to insure con-

vergence of iterative methods is that L must satisfy the ascending chain

condition (every strictly increasing chain in L is finite).

Example : In our example, any strictly increasing chain in L is of the form

of the following one
L<{fa>a, b~>R,.e., e >l < v <{a>a, b>B<{a>a} <

For a program with m variables, the maximal length of a strictly increa-
sing chain in L is m+2. Let n be the number of equations, the maximal
length of strictly increasing chains in L™ is nx (m+2). Hence the trivial
constants of the program are found in at most n x (m+2) + 1 steps. (This
worst case analysis is given to prove convergence, but is largely bigger
that the average case. For example we converged in 5 steps whereas the

maximum is 4 % (5+2)+1 = 28). End of example.

12

When the system of equations X = F(X), in L" cannot be solved iteratively,
one can approximate its least solution. We illustrated "structural appro-
ximation” which consists in simulating the iteratively unsolvable system

of equations in a space satisfying the ascending chain condition. Alter-

natively, "computational approximation” can be used either to truncate the
infinite seguence of successive approximations which leads to a lower ap-
proximation of the limit or to compute an upper approximation of the limit

in a finite number of steps, (Cousotl76], Cousotf77al).

7.3 ACCELERATING THE CONVERGENCE OF THE ITERATES

We defined the sequence Koo Xisunes XK"" of successive approxima-
tions by X = FxX™) (K = 0,1.2,...) which can be detailed as
+ k K
R N S)
i i n
(k = 0,1,2,]
i=1,2, >N

However (under our hypothesis on F and L) any chaotic iteration method
would converge to the least solution, this signifies that one can arbi-
trarily determine at each step which are the components of the system of
eguations which will evolve and in what order (as long as no component

is forgotten indefinitely].

Example : When solving the equations we used the Gauss-Seidel iteration

method
k+1 ko k
N A , X
A PP P,
1 1 1 1-1 1
AR V. S YOS
n n n-1’ 'n

which consists in continually reinjecting in the computations the results
of the computations themselves. This reduces the memory congestion and

accelerates the convergence. End of example.

13

Among the possible iterating order which can be used to solve the equa-
tions, some converge more rapidly than others. The question of optimal
order of iteration has not yet received a conceptual answer. (Such an
order has been shown to exist for a particular class of equations (Ken-
nedyl751, Tarjan[75]1) and can sometimes be algorithmicly constructed

(Aho & Ullman{751)3.

Note : When the iterating order which is used to solve the equations
corresponds to the program control graph the successive approximations

can be intuitively understood as a symbolic execution of the program. In
this symbolic execution local abstract properties are used in place of

the actual execution enviromment and operations of the language are inter-
preted as specified by the eqguations which define the transformation of a
property when passing through an elementary instruction. Each step in this
symbolic execution process corresponds to the evaluation of an equation.
Yet, all possible paths are followed pseudo-parallely and eventually mer-
ged together at Jjunction points. This was the way iterative methods were
first understood (e.g. Kildalll731, Schwartz[75], Sintzoffl72], Urschler
[74], Wegbreitl75bl). End of note.

8. CONCLUSION AND HISTORICAL SURVEY

We informally exposed a mathematical theory of globael analysis of
programs using a simple example concerning the compile time determinstion
of constant computations. The model is typical of the "fixpecint epproach”

to analysis of programs.

By "fixpoint appreoach” we refer to the whole of technigues for de-
termining properties of programs which take as starting point the fact
that these properties can be defined as the least fixpocint of a system of
equations which is associated in a rather natural way with the program.
This approach has been recently recognized (Cousot[77a].Cousctl77c]) to pro-
vide a unified understanding of apparently unrelated works such as global

data flow analysis, type checking (Cousotl(77bl, Jones & Muchnickl761],

14

Sintzoff[72], Tenenbaum[74]), denotational semantics of programming
languages (references in Scottl76]), program proving (e.g. Manna et
al.[73]), determination of weak properties of programs (Cousotl767,
Karrl75], Karr[76], Sintzoff[72], Wegbreit[75b]), evaluation of pro-

gram performance (e.g. Kennedy & Zucconil77], Weghreit{75a]), etc.

In the domain of global data flow analysis the use of lattices,
systems of eqguations and fixpoint computations remained for a long
time implicit, in particular reasonings about the system of eguations
where replaced by tracing the program flow graph. However all classi-

cal algorithms can be understcod in light of the fixpoint approvach.

The early methods used to solve the equations of data analysis pro-
blems where akin to Gaussian elimination, (Allen[70], Allen[71], Allen
& Cockel[72]1, Cocke[70]). The technigque is limited to a restricted class
of recursive equations (corresponding to "reducible” programs (Hecht &
Ullman[72], Hecht & Ullman[747, Kasvanov[73], Tarjan[741) which are a
frequent but not general case) and to a restricted class of data flow
problems. This so called "interval analysis" approach was further exten-
ded to deal with wider classes of program graphs angd data flow problems
(e.g. Graham & Wegman[781], Kennedy[71]). However, in general direct me-
thods for solving the eguations (Fong & al.[75], Fongl77], Kennedy &
Zucconil[77], Reif & Lewis[77]) are application dependent and cannot be

easily generalized to arbitrary data flow analysis problems.

More recently iterative methods akin to Jacobi’s successive approxi-
mations appeared in the literature (Backhousel768], Cousotl78], Hecht &
Ullmen[75], Kam & Ullman[76], Kam & Ullman[77], Kildall[73], Morel &
Renvoisel 74], Schwartz[75], Ullman[73], Urschler[74], Wegbreit[7551).
They are more general than direct methods since even when convergence is
not naturally guaranteed it can be enforced by using "computational” ap-
proximation technigues (Cousot{77a]). It is often argued that iterative
approaches are more expensive than direct methods. On the contrary the
comparisons for given problems are inconclusive (Hecht & Ullman[75],
Kennedyl 761) because the hypothesis which are necessary to allow the use
of direct methods also imply that the number of iterates will be small

(Kam & Ullman[781, Graham & Wegman[76], Tarjan[75], Ullman[75]).

15

We hope to have clearly shown that the central problem in global
progran analysis is to solve a system of equations in a space appro-
priately chosen for modelling the properties to be gathered about the
program. Mathematicians have spend centuries in studying the resolution
of systems of real equations, very efficient methods have been dis-
covered. Only very few work has been done on systems of equations de-
fined on discrete domains. Hence considerable progress could be made

in the near future.

9. BIBLIOGRAPHY

Aho & Ullman[73]
A.V. Aho, and J.D. Uliman, The theory of parsing, translation and
compiling, vol. II : compiling, Prentice-Hall, Englewood Cliffs,
N.J., 1973,

Aho & Ullman[75]
A.V. Aho, and J.D. Ullman, Node listings for reducible flow graphs,
Proc. 7th Annual ACM Symp. on Theory of Computing, May 1375, 177-185.

Allenl[70]
F.E. Allen, Control flow analysis, SIGPLAN Notices, vol. 5, 1970,
1-9.

Allen[71]
F.E. Allen, A basis for program optimization, Proc. IFIP Cong. 71,
vol. 1, North-Holland Pub. Co., Amsterdam, 13971, 381-330.

Allen & Cockel[72]
F.E. Allen, and J. Cocke, Graph theoretic constructs for program con-
trol flow analysis, IBM. Res. Rep. RC3933, T.J. Watson Res. Center, York-
town Heights, N.J., July 1872.

Backhouse[76]
R.C. Backhouse, An improved iterative algorithm for global data flow
analysis, Tech. Rep. mo. 3, Dept. of compbuter Sci., Heriot-Watt Universi-
ty, Edinburgh, May 1976.

Birkhoffl[73]
G. Birkhoff, Lattice theory, AMS Coll. Pub., Vol. XXV, 3rd ed., Pro-
vidence, R.I., 1973.

Branguart et al.[76]
P. Branquart, J.P. Cardinal, J. Lewi, J.P. Delescaille, M. Vanbegin,
An optimized translation process and its application to ALGOL 88,
Springer-Verlag, 13976.

Cockel70]
J. Cocke, Global common subexpression elimination, SIGPLAN Notices,

val. 5, no. 7, July 1870, 20-24.

16

Cocke & Schwartz[69]
J. Cocke, and J.T. Schwartz, Programming Languages and their compilers,
New York University, N.Y., 198B9.

Cousotl[761]
P.M. Cousot, and R. Cousot, Static determination of dynamic properties
of programs, Proc. of the 2nd Int. Symp. on Programming, B. Robinet
(Ed.}, Dunod, Paris, April 1378. [Also in MOL-Bulletin, nao. 5,
P.M. Cousot (Ed.), IRIA, Rocquencourt, France, Sept. 1976, 27-52].

Cousotl77a]
P.M. Cousot, and R. Cousot, Abstract interpretation : a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints, Conf. Rec. of the 4th ACM Symp. on Principles of Program-
ming Languages, Los Angeles, Calif., Jan. 1877, 238-252.

Cousotl77b]
P.M. Cousot, and R. Cousot, Static determination of dynamic properties
of generalized type unions, Proc. of the ACM Conf. on Language Design
for Reliable Software, Raleigh, North-Carolina, March 1977.

Cousot[77c]
P.M. Cousot, and R. Cousot, Towards a universal model for static analy-
sis of programs, Res. Rep. Submitted for Publication, March 13977.

Fongl77]
A. Fong, Generalized common subexpressions in very high level languages,
Conf. Rec. of the 4th ACM Symp. on Principles of Programming Languages,
Los Angeles, Jan. 1977, 48-57.

Fong et al.[75]
A. Fong, J. Kam, and J.D. Ullman, Application of lattice algebra to
loop aptimization, Conf. Rec. of the 2nd ACM Symp. on Principles of
Programming Languages, Palo Alto, Calif., Janv. 1875, 1-9.

Graham & Wegman[76]
S.L. Graham, and M. Wegman, A fast and usually linear algorithm for
global flow analysis, Journal of the ACM, vol. 23, no. 1, Jan. 1876,
172-202.

Hecht[75]
M.S. Hecht, A theoretical foundation for global program improvement,
American Elsevier, 1975.

Hecht & Ullman[72]
M.S. Hecht, and J.D. Ullman, Flow graph reducibility, SIAM J. Comput.,
vol. 1, no. 2, June 1972, 188-202.

Hecht & Ullman[74]
M.S. Hecht, and J.D. Ullman, Characterizations of reducible flow graphs,
Journal of the ACM, vol. 21, no. 3, July 1874, 367-375.

Hecht & Ullman[75]
M.S. Hecht, and J.D. Ullman, A simple algorithm for global flow analysis
problems, SIAM J. Computing, vol. 4, 1975, 518-532.

17

Jones & Muchnick[76]
N.D. Jones, and S.S5. Muchnick, Binding time optimization in program-
ming languages : some thoughts toward the design of an ideal lan-
guage, Conf. Rec. of the 3rd ACM Symp. on Principles of Programming
Languages, Atlanta, Jan. 1978, 77-94,

Kam & Ullman[76]

J.B. Kam, and J.D. Ullman, Global data flow analysis and iterative
algorithms, Journal of the ACM, vol. 23, no. 1, Jan. 1976, 158-171.

Kam & Ullman(77]
J.B. Kam, and J.D. Ullman, Monoctone data flow analysis frameworks,
Acta Informatica, vol. 7, 1877, 305-317.

Karr[75]
M. Karr, Gathering information about programs, Mass. Computer Associates,
Inc., CAID-7501-0611, July 1875.

Karr[76]
M. Karr, Affine relationship among variables of a program, Acta Infor-
matica, val. 6, 1976, 133-151.

Kasvanov[73]
V.N. Kasvanov, Some properties of fully reducible graphs, Inf. Proc.
Letters, vol. 2, no. 4, 1873, 113-117.

Kennedy[71]
K.W. Kennedy, A global flow analysis algorithm, Int. J. of Computer Math.,

vol. 3, Dec. 13971, 5-15.

Kennedy[75]
K.W. Kennedy, Node listings applied to data flow analysis, Conf. Rec.
of the 2nd ACM Symp. on Principles of Programming Languages., Palo Alto,
Calif., Jan. 1975, 10-21.

Kennedyl[76]
K.W. Kennedy, A comparison of two algorithms for global data flow ana-
lysis, SIAM J. Computing, Vol. 1, March 1875, 158-180.

Kennedy & Zucconil[77]
K.W. Kennedy, and L. Zucconi, Applications of a graph grammar for
program control flow analysis, Conf. Rec. aof the 4th ACM Symp. on Prin-
ciples of Programming Languages, Los Angeles, Calif., Jan. 1977, 72-85.

Kildall[73]
G.A. Kildall, A unified approach to global program optimization. Conf.
Rec. of the ACM Symp. on Principles of Programming Languages, Boston,
Mass., Oct. 1973, 194-206.

Kleene[52]
5.C. Kleene, Introduction to metamathematics, North-Holland Pub. Co.,
Amsterdam, 1852.

Manna et al.[73]
Z. Manna, S. Ness, and J. Vuillemin, Inductive methods for proving pro-
perties of programs, Communications of the ACM, vol. 16, 4391-502.

Morel & Renvoise[74]
E. Morel, and C. Renvoise, Etude et réalisation d'un optimizeur global,
Th. de 3ieme cycle, U. of Paris VI, June 1374.

18

Reif & Lewis[77]
J.H. Reif, and H.R. Lewis, Symbolic evaluation and the global value
graph, Conf. Rec. of the 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, Calif., Jan. 1977, 104-118.

Rosen[77]
B.K. Rosen, Applications of high level control flow, Conf. Rec. of the
4th ACM Symp. on Programming Languages, Los Angeles, Calif., Jan. 1977,
38-47.

Schaefer{ 73]
M. Schaefer, A mathematical theory of global program optimization,
Prentice-Hall, Englewood Cliffs, N.J., 1973.

Schwartz[75]
J.T. Schwartz, Automatic data structure choice in a language of very
high level, Communications of the ACM, vol. 18, no. 12, Dec. 1975,
722-728.

Scott[72]
B. Scott, Continuous lattices, Proc. 1971 Dalhousie Conf., Lecture
notes in Math., vol. 274, Springer-Verlag, New-York, 1872, 97-136.

Scott[76]
D. Scott, Data types as lattices, SIAM J. Computing, vol. 5, no. 3,
Sept. 1976, 522-587.

Sintzoff[/2]
M. Sintzoff, Calculating properties by valuations on specific models,
Proc. ACM Conf. on Proving Assertions about Programs, SIGPLAN Notices,
vol. 7, no. 1, 1972, 203-207.

Tarjan[74]
R. Tarjan, Testing flow graph reducibility, J. Comp. Sys. Sciences,
val. 9, 1874, 355-365.,

Tarjan[75]
R.E. Tarjan, Solving path problems on directed graphs, STAN-CS-75-528,
Computer Sci. Dept., Stanford U., 13875.

Tarjan[76]
R.E. Tarjan, Iterative algorithms for global flow analysis., Tech.
Report CS 76-545, Computer Science Dept., Stanford U., Feb. 1978.

Tarskil 55]
A. Tarski, A lattice-theoretical fixpoint theorem and its applications,
Pacific J. Math., vol. 5, 1855, 285-309.

Tenenbaum[74]
AM. Tenenbaum, Type determination for very high level languages, N50-3,
Courant Inst. of Math. Sci., New York U., Oct. 1974.

Uliman[73]
J.D. Ullman, Fast algorithms for the elimination of common subexpressions.,
Acta Informatica, vol. 2, no. 3, 1973, 181-213.

Ullman[75]
J.0. Ullman, Data flow analysis, Second USA-Japon Computer Conference,
Montvale, (N.J.] : AFIPS Press, 1975.

19

Urschler[74]
G. Urschler, Complete redundant expression elimination in flow dia-
grams, IBM Research Report RC 4985, T.J. Watson Research Center, York-
town Heights, N.Y., Aug. 1974.

Wegbreit[75a]
B. Wegbreit, Mechanical program analysis, Communications of the ACM,
vol. 18, no. 8, Sept. 1975, 528-539.

Weghreit[75b]
B. Weghreit, Property extraction in well-founded property sets, IEEE
Trans. on Soft. Eng., vol. SE-1, no. 3, Sept. 1975, 270-285.

Wulf et al.[75]
W.A. Wulf, R.K. Johnson, C.C. Weinstock, S.0. Hobbs, and C.M. Geschke,
The design of an optimizing compiler, American Elsevier, New York,
1975.

\

