
The Symbolic Term Abstract Domain
Patrick Cousot

Coutant Institute of Mathematical Studies, Computer Science Department
New York University
New York, NY, USA

.ic suo .@ yt unos u demcp

Abstract—We construct the abstract domain of sym-
bolic terms ordered by subsumption by abstraction of
the powerset of ground terms ordered by inclusion.

Index Terms—Abstract interpretation, Abstract do-
main, Symbolic term, Subsumption.

I. Introduction

In mathematical logic, Jacques Herbrand introduced
ground terms [1, Ch. 1]1 to denote a basic mathematical
object (for example, 0) or operation on objects (such
as +(1, 2)) as well as symbolic terms that is terms with
variables (where the variables x are unknowns standing
for any ground term [1, Ch. 2]) (for example, +(1, x)).

Gordon Plotkin [3], [4] and John Reynolds [5] proved
that the set of symbolic terms form a complete lattice with
the less general/subsumption partial order ⪯ν on terms.
For example, +(1, 2) ⪯ν +(1, y) ⪯ν +(x, y) ⪯ν z.

Symbolic terms are of interest in various areas of Com-
puter Science such as refutation theorem-proving based on
the resolution rule of inference [6], [7], satisfiability modulo
theories [8], symbolic execution [9], type inference [10],
[11], logic and constraint programming [12]–[16], [17]–[19],
pointer analysis in imperative [20] or logic languages [21],
and so on.

In [22], we showed that Hindley’s monotypes with vari-
ables [23] as well as Milner’s polymorphic types [10] are
abstractions of sets of Church’s monotypes [24]. Thanks
to restrictions on types (for example, no union type) and
on the language (for example, the two branches of a condi-
tional must have the same type), the set of monotypes of
a lambda-expression is exactly represented by a monotype
with variables. In that case the abstraction is exact. This
is no longer the case for polymorphic types, for which a
widening is needed (all recursive calls must have the same
type).

Generalizing this initial point view, our objective is to
study the complete lattice of symbolic terms by abstrac-
tion of the powerset of ground terms.

This material is based upon work supported by DARPA under
Agreement No. HR00112020022. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the United States
Government or DARPA.

1English translation in [2].

II. The complete lattice of ground terms
The signature 𝗙 defines a set of function symbols f \n

(f for brevity), each one with an arity n, that is, a
fixed number of parameters (0 for constants). The round
parentheses “(”, “)” and comma “,” do not belong to 𝗙.
f \n, g\n, h\n ∈ 𝗙\n signature n ⩾ 0

f, g, h ∈ 𝗙 =
∪
n∈N

𝗙\n

We assume that the signature 𝗙 has at least two different
function symbols. Ground terms denote uninterpreted
functional expressions.
𝘁 ∈ 𝗧 ::= ground terms

f \0 constants of arity 0

| f \n(𝘁1, . . . , 𝘁n) term of arity n ∈ N+

The set 𝗧 of all ground terms is called the Herbrand
universe with signature 𝗙.

Sets of ground terms form a complete lattice partially
ordered by inclusion
⟨℘(𝗧), ⊆, ∅, 𝗧, ∪, ∩⟩ sets of ground terms (1)

III. Terms with variables
A term with variables (also called symbolic term)

abstracts a set of terms. For example the set of
ground terms {+(0, 1),+(0,+(1, 1)),+(0,+(1,+(1, 1))),
+(0,+(1,+(1,+(1, 1))))), . . .} can be abstracted by the
term +(0, α) with variable α. The abstraction can be very
imprecise. For example {0,+(0, 1)} would be abstracted
by variable α which concretization is the set of all ground
terms. So the abstraction is precise enough only for set of
terms with adequate regularity properties.
α, β, γ ∈ Vt term variables
𝞽 ∈ 𝝩ν ::= terms with variables (2)

f \0 constants
| f \n(𝞽1, . . . , 𝞽n) term of arity n ∈ N

| α term variable

The round parentheses “(”, “)”, comma “ , ”, and variables
α ∈ Vt do not belong to 𝗙.

We write varsJ𝞽K for the free variables of a term 𝞽.
varsJαK ≜ {α} α ∈ Vt (3)

varsJf(𝞽1, . . . , 𝞽n)K ≜
n∪

i=1

varsJ𝞽iK

https://en.wikipedia.org/wiki/Jacques_Herbrand

By default “term” means “term with or without variables”
and we say “ground term” for “term without variable”
and “symbolic term” for “term with variables.” The tag ν

means “with variables”.

Example 1. Type expressions in OCaml [25] are terms
with variables (using a quote 'ident to stand for the type
variable named ident, the infix notation -> for the function
type, and the postfix notation list for lists)

List.map;;
- : ('a -> 'b) -> 'a list -> 'b list = <fun>

In prefix notation that would be
->(->(α, β), ->(list(α), list(β))).

The syntactic replacement 𝞽[α ← 𝞽′] on terms with
variables 𝞽 replaces all instances of a variable α in the
term 𝞽 by another term with variables 𝞽′.

α[α← 𝞽′] ≜ 𝞽′ (4)
β[𝞽′ ← α] ≜ β when β ̸= α

f(𝞽1, . . . , 𝞽n)[α← 𝞽′] ≜ f(𝞽1[α← 𝞽′], . . . , 𝞽n[α← 𝞽′])

IV. Term assignments
An assignment maps variables to ground terms.

𝟈 ∈ 𝝦ν ≜ Vt → 𝗧 assignment (5)

An assignment can be homomorphically extended to a
term with variables, as follows.

𝟈(f(𝞽1, . . . , 𝞽n)) ≜ f(𝟈(𝞽1), . . . , 𝟈(𝞽n)) (6)

The intuition is that 𝟈 ∈ 𝝩ν → 𝗧 is the evaluation 𝟈(𝞽) of
term 𝞽 by replacing variables α of 𝞽 by their value 𝟈(α)
which is a ground term. Variable assignment 𝟈[α← 𝘁] can
be used to change the value of a variable α to 𝘁

𝟈[x← v](x) ≜ v (7)
𝟈[x← v](y) ≜ 𝟈(y) when x ̸= y

We use the same notation for syntactic replacement
(4) and variable assignment (7) because of the following
lemma 1 showing that instantiation of syntactic replace-
ment and environment assignment commute.

Lemma 1. 𝟈(𝞽[α← 𝞽′]) = 𝟈[α← 𝟈(𝞽′)](𝞽).
Proof of lemma 1. By structural induction on 𝞽.
• If 𝞽 = α then, by (4), 𝟈(𝞽[α ← 𝞽′]) = 𝟈(𝞽′[α ← α]) =
𝟈(𝞽′) while, by (7), 𝟈[α ← 𝟈(𝞽′)](𝞽) = 𝟈[α ← 𝟈(𝞽′)](α)
= 𝟈(𝞽′), as required;

• If 𝞽 = β ̸= α then, by (4), 𝟈(𝞽[α ← 𝞽′]) = 𝟈(𝞽′[α ←
β]) = 𝟈(β). This is equal to 𝟈[α ← 𝟈(𝞽′)](𝞽) = 𝟈[α ←
𝟈(𝞽′)](β) = 𝟈(β), by (7);

• Otherwise, 𝞽 = f(𝞽1, . . . , 𝞽n) so that, by (4), (6), ind.
hyp., and (6) again, 𝟈(𝞽′[α← 𝞽]) = 𝟈(f(𝞽1, . . . , 𝞽n)[α←
𝞽′]) = f(𝟈(𝞽1[α ← 𝞽′]), . . . , 𝟈(𝞽n[𝞽′ ← α])) =
f(𝟈[α ← 𝟈(𝞽′)](𝞽1), …, 𝟈[α ← 𝟈(𝞽′)](𝞽n)) = 𝟈[α ←
𝟈(𝞽′)](f(𝞽1, . . . , 𝞽n)) = 𝟈[α← 𝟈(𝞽′)](𝞽). �

Let us call 𝟈(𝞽) the ground instance of 𝞽 for the assign-
ment 𝟈. Unless it is reduced to a variable, a term with
variables cannot have the same instance as any one of its
variables (this is known as occur-check).

Lemma 2. For all variables α ∈ varsJ𝞽K of a term with
variables 𝞽 ∈ 𝝦ν \ Vt, there is no assignment 𝟈 ∈ 𝝦ν ≜
Vt → 𝗧 such that 𝟈(α) = 𝟈(𝞽).
Proof of lemma 2. Since 𝞽 ∈ 𝝦ν \ Vt, we have
𝞽 = f1(𝞽11, . . . , fn(𝞽n1 , . . . , α, . . . , 𝞽nmn), . . . , 𝞽1m1)
where f i ∈ 𝗙mi with mi > 0, i ∈ [1, n]. By (6),
we have 𝟈(𝞽) = f1(𝞽11, . . . , fn(𝞽n1 , . . . , 𝟈(α), . . . , 𝞽nmn)
= f1(𝞽11, . . . , fn(𝞽n1 , . . . , f1(𝞽11, . . . , fn(𝞽n1 ,
. . . , 𝟈(α), . . . , 𝞽nmn), . . . , 𝞽nmn) = …. So 𝟈(𝞽) is an infinite
object not in 𝝦ν . �

V. The symbolic abstraction
The symbolic abstraction abstracts a set of ground

terms into a term with variables. The symbolic abstraction
is easily defined by its concretization, that is, it’s set of
ground instances.

ground(𝞽) ≜ {𝟈(𝞽) | 𝟈 ∈ 𝝦ν} (8)
ground(⦱ν) ≜ ∅

Since all terms with variables 𝞽 ∈ 𝝦ν have a nonempty
concretization ground(𝞽), we add the empty term ⦱ν ̸∈ 𝝦ν

to denote the empty set ∅ with 𝟈(⦱ν) = ⦱ν .

Remark 1 (the symbolic abstraction is relational). An
important remark on the definition of ground in (8) is that
all instances 𝟈(α) of a variable α in a term with variables
𝞽 are the same in a given instance 𝟈(𝞽) of the term. For
example, f(a, b) ̸∈ ground(f(α, α)) when a ̸= b. However,
two terms with variables equal up to variable renaming
have the same concretization. Therefore, the names at-
tributed to the same instances of variables in terms with
variables do not matter. For example, ground(f(α, α)) =
ground(f(β, β)) = {f(𝘁, 𝘁) | 𝘁 ∈ 𝗧}.

VI. The Herbrand symbolic abstract domain
The symbolic abstract domain is an abstraction of the

complete lattice of ground term properties (1).

A. The subsumption partial order
We define the preorder ⪯ν on terms with variables,

called subsumption, as the inclusion of sets of their ground
instances. (This will be shown to be equivalent to the
classical definition in theorem 2.)

(𝞽 ⪯ν 𝞽′) ≜ (ground(𝞽) ⊆ ground(𝞽′)) (9)

This is a preorder ⟨𝝩ν ∪ {⦱ν}, ⪯ν⟩ with infimum ⦱ν . For
example f(a, b) ⪯ν f(α, b) ⪯ν f(α, β) ⪯ν γ.

Lemma 3. Observe that for all terms with variables 𝞽, 𝞽′ ∈
𝝩ν , we have 𝞽 ⪯ν 𝞽′ if and only if ∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν .
𝟈(𝞽) = 𝟈′(𝞽′).
Proof of lemma 3. The case of ∅ is trivial. Otherwise,

𝞽 ⪯ν 𝞽′

⇔ ground(𝞽) ⊆ ground(𝞽′) Hdef. (9) of ⪯νI
⇔ {𝟈(𝞽) | 𝟈 ∈ 𝝦ν} ⊆ {𝟈′(𝞽′) | 𝟈′ ∈ 𝝦ν}Hdef. (8) of groundI
⇔ ∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(𝞽) = 𝟈′(𝞽′) Hdef. ⊆I �

The corresponding equivalence relation is ≃ν . The quo-
tient is a partial order ⟨PH, ⪯≃ν⟩ where

𝞽 ≃ν 𝞽′ ≜ 𝞽 ⪯ν 𝞽′ ∧ 𝞽′ ⪯ν 𝞽 (10)
PH ≜ (𝝩ν ∪ {⦱ν})/≃ν

≜ {[𝞽]≃ν | 𝞽 ∈ 𝝩ν ∪ {⦱ν}}
[𝞽]≃ν ⪯≃ν [𝞽′]≃ν ≜ ∃𝞽 ∈ [𝞽]≃ν , 𝞽′ ∈ [𝞽′]≃ν . 𝞽 ⪯ν 𝞽′

For example f(α, α) ≃ν f(β, β) and [f(α, α)]≃ν =
{f(γ, γ) | γ ∈ Vt}. More generally, equivalent terms are
equal up to variable renaming.

Lemma 4. A renaming is an assignment ρ ∈ Vt ⤖ Vt

between variables extended to terms with variables by (6),
that is ρ(f(𝞽1, . . . , 𝞽n)) = f(ρ(𝞽1), . . . , ρ(𝞽n)). Equivalent
terms have a bijective renaming of their variables and
reciprocally, that is, ∀𝞽, 𝞽′ ∈ 𝝩ν . (𝞽 ≃ν 𝞽′) ⇔ (∃ρ ∈
varsJ𝞽K⤖ varsJ𝞽′K . ρ(𝞽) = 𝞽′).
Proof of lemma 4. (⇒) Assume 𝞽 ≃ν 𝞽′ are equivalent so
that, by def. ≃ν and lemma 3, ∀𝟈 . ∃𝟈′ . 𝟈(𝞽) = 𝟈′(𝞽′)
and ∀𝟈′ . ∃𝟈 . 𝟈(𝞽) = 𝟈′(𝞽′). Let us define a relation ρ ∈
℘(varsJ𝞽K× varsJ𝞽′K), starting from ∅ as follows.
• If 𝞽 is a variable α and 𝞽′ is not then 𝞽 ̸≃ν 𝞽′ so 𝞽′ must

be a variable β and we let ⟨α, β⟩ ∈ ρ.
• It 𝞽 = f(𝞽1, . . . , 𝞽) then 𝞽 ≃ν 𝞽′ implies that ∀n ∈ [1, n] .
𝞽k ≃ν 𝞽′k, so by structural induction, there is a relation
ρk ∈ ℘(varsJ𝞽kK× varsJ𝞽′kK) so we take ρ =

∪n
k=1 ρk.

We have to prove that ρ is a function. By contradiction, if
ρ is not a function then there is a variable α of 𝞽 and two
variables β and γ of 𝞽′ with at least one which is not α,
say γ. Then instances of γ in 𝞽′ cannot be replicated with
α in 𝞽 so the two terms cannot be equivalent. Now if ρ
is not injective there there are two variables β and γ of 𝞽
with only one correspondent α of 𝞽, so again the instances
of β and γ cannot be matched with α. Finally, if ρ is
not surjective, then there is a variable γ with arbitrary
instantiations in 𝞽′ with no correspondent in 𝞽, which
again prevents equivalence. In conclusion, ρ is a bijection.

(⇐) Conversely let ρ ∈ varsJ𝞽K ⤖ varsJ𝞽′K be such
ρ(𝞽) = 𝞽′. Given any 𝟈 ∈ 𝝦ν , define 𝟈′(α) ≜ 𝟈(ρ−1(α)),
α ∈ Vt. Let us show, by structural induction on α, that
𝟈(𝞽) = 𝟈′(𝞽′).
• If 𝞽 = α then ρ ∈ varsJ𝞽K ⤖ varsJ𝞽′K and ρ(𝞽) = 𝞽′

imply that 𝞽′ = β is the variable β = ρ(𝞽). It follows
that 𝟈′(𝞽′) = 𝟈′(β) ≜ 𝟈(ρ−1(β)) = 𝟈(α) = 𝟈(𝞽);

• Otherwise, 𝞽 = f(𝞽1, . . . , 𝞽n) so that ρ(𝞽) =
ρ(f(𝞽1, . . . , 𝞽n)) = f(ρ(𝞽1), . . . , ρ(𝞽n)) = 𝞽′ im-
plies that 𝞽′ = f(𝞽′1, . . . , 𝞽′n) with 𝞽′1 = ρ(𝞽i),
i ∈ [1, n]. It follows, by (6) and ind. hyp., that

𝟈′(𝞽′) = 𝟈′(f(𝞽′1, . . . , 𝞽′n)) = f(𝟈′(𝞽′1), . . . , 𝟈′(𝞽′n)) =
f(𝟈(𝞽1), . . . , 𝟈(𝞽n)) = 𝟈(f(𝞽1), . . . , 𝞽n)) = 𝟈(𝞽). �
The comparison of equivalence classes is equivalent to

the comparison of the representatives of these classes.

Lemma 5. [𝞽1]≃ν ⪯≃ν [𝞽2]≃ν ⇔ 𝞽1 ⪯ν 𝞽2.

Proof of lemma 5.
[𝞽1]≃ν ⪯≃ν [𝞽2]≃ν

⇔ ∃𝞽′1 ∈ [𝞽1]≃ν , 𝞽′2 ∈ [𝞽2]≃ν . 𝞽′1 ⪯ν 𝞽′2 Hdef. (10) of ⪯≃νI
⇔ ∃𝞽′1, 𝞽′2 . 𝞽′1 ≃ν 𝞽1 ∧ 𝞽′2 ≃ν 𝞽2 ∧ 𝞽′1 ⪯ν 𝞽′2 Hdef. [𝞽]≃νI
⇔ ∃𝞽′1, 𝞽′2 . 𝞽1 ⪯ν 𝞽′1 ∧ 𝞽′1 ⪯ν 𝞽′2 ∧ 𝞽′2 ⪯ν 𝞽2 ∧ 𝞽′1 ⪯ν

𝞽1 ∧ 𝞽2 ⪯ν 𝞽′2 Hdef. ≃νI
⇔ 𝞽1 ⪯ν 𝞽2H(⇒) transitivity

(⇐) choosing 𝞽′1 = 𝞽1, 𝞽′2 = 𝞽2, and reflexivityI�
B. The symbolic abstraction function

The abstraction of {f(a, a), f(b, b), f(c, c)} is
f(α, α) since the parameters of f are equal while
{f(a, b), f(b, a), f(a, a)} is f(β, γ) since the parameters
of f are not always related. The abstraction function
must select variables so as to identify equal parameters
on all instances of f . For this purpose, we encode sets
as families, for example, sequences ⟨f(a, a), f(b, b),
f(c, c)⟩ and ⟨f(a, b), f(b, a), f(a, a)⟩. In the first case,
the subterms all yield ⟨a, b, c⟩ which is abstracted by a
variable say α. In the second case we get ⟨a, b, a⟩ encoded
by β and ⟨b, a, a⟩ which is different so is encoded by a
different variable γ. Notice that the variable name does
not matter and that the order in the sequences does not
matter either (so sets of ground terms encoded differently
as index families will have the same abstraction, up to
variable renaming via a bijection between variables; see
lemma 6).

We arbitrarily define a scheme to name sets of ground
terms by a unique variable thanks to an injective function

𝞶 ∈ (∆→ 𝗧)↣ Vt (naming scheme) (11)

assigning a variable 𝞶({𝘁i | i ∈ ∆}) to any arbitrary family
of ground terms {𝘁i | i ∈ ∆}. Injectivity ensures unique-
ness, that is, different families of terms are abstracted by
different variables.

The abstraction is called the least common generaliza-
tion (lcg).

lcg[𝞶](∅) ≜ ⦱ν (12)
lcg[𝞶]({fi(𝘁1i , . . . , 𝘁ni

i) | i ∈ ∆}) ≜
if ∀i, j ∈ ∆ . fi = fj = f ∧ ni = nj = n then

letT k = lcg[𝞶]({𝘁ki | i ∈ ∆}), k = 1, . . . , n in
f(T 1, . . . , Tn)

else 𝞶({fi(𝘁1, . . . , 𝘁ni) | i ∈ ∆})

If all the terms in the family have the same structure
then the abstraction proceeds recursively else the family is

abstracted by a variable. Equalities between all subterms
of the family are preserved by the abstraction since the
families of these subterms are abstracted by the same
variable when they have different structures.

Example 2. Assume that 𝞶(⟨a, b⟩) = α and 𝞶(⟨b, a⟩) = β,
then

lcg[𝞶](⟨f(g(a, a), h(b, b), a, b), f(g(b, b), h(a, a), b, a)⟩)
= f(lcg[𝞶](⟨g(a, a), g(b, b)⟩), lcg[𝞶](⟨h(b, b),

h(a, a)⟩), lcg[𝞶](⟨a, b⟩), lcg[𝞶](⟨b, a⟩))
= f(g(lcg[𝞶](⟨a, b⟩), lcg[𝞶](⟨a, b⟩)), h(lcg[𝞶](⟨b,

a⟩), lcg[𝞶](⟨b, a⟩)), lcg[𝞶](⟨a, b⟩), lcg[𝞶](⟨b, a⟩))
= f(g(𝞶(⟨a, b⟩), 𝞶(⟨a, b⟩)), h(𝞶(⟨b, a⟩), 𝞶(⟨b, a⟩)), 𝞶(⟨a,

b⟩), 𝞶(⟨b, a⟩))
= f(g(α, α)), h(β, β), α, β) �
Lemma 6. The definition (12) of the symbolic abstraction
lcg[𝞶] is independent of the naming scheme 𝞶. If 𝞶, 𝞶′ ∈
(∆→ 𝗧)↣ Vt then ∀T ∈ ℘(𝗧) . lcg[𝞶](T) ≃ν lcg[𝞶′](T).
Proof of lemma 6. Since 𝞶 ∈ (∆→ 𝗧)↣ Vt is injective, it
has a left inverse (improperly) denoted 𝞶−1 such that 𝞶−1 ◦

𝞶 = 1℘(𝗧) is the identity on ℘(𝗧) (encoded as families
∆→ 𝗧). Define ρ ≜ 𝞶′ ◦ 𝞶−1. Given T ∈ ℘(𝗧), let us show
that ρ(lcg[𝞶](T)) = lcg[𝞶′](T), by structural induction and
case analysis on the def. (12) of lcg[𝞶].
1) If T = ∅ then ρ(lcg[𝞶](T)) = ρ(lcg[𝞶](∅)) = ⦱ν =

lcg[𝞶′](∅) = lcg[𝞶′](T);
2) Else, if lcg[𝞶](T) = 𝞶(T) then lcg[𝞶′](T) = 𝞶′(T) so

that ρ(lcg[𝞶](T)) = ρ(𝞶(T)) = 𝞶′ ◦ 𝞶−1 ◦ 𝞶(T) = 𝞶′ ◦

1℘(𝗧)(T) = 𝞶′(T) = lcg[𝞶′](T);
3) Otherwise, T = {f(𝘁1i , . . . , 𝘁ni) | i ∈ ∆}, so that by

ind. hyp., ρ(T k
𝞶) = ρ(lcg[𝞶]({𝘁k | i ∈ ∆})) =

lcg[𝞶′]({𝘁k | i ∈ ∆}) = T k
𝞶′ , k = 1, . . . , n.

Therefore, by (6), ρ(lcg[𝞶](T)) = ρ(f(T 1
𝞶 , . . . , T

n
𝞶)) =

f(ρ(T 1
𝞶), . . . , ρ(T

n
𝞶)) = f(T 1

𝞶′ , . . . , T
n
𝞶′) = lcg[𝞶′](T).

If α ∈ varsJlcg[𝞶′](T)K then case 1. of the above proof
shows that α = lcg[𝞶′](T ′) = 𝞶′(T ′) for some T ′ ∈ ℘(𝗧)
and therefore ρ(lcg[𝞶](T ′)) = ρ(𝞶(T ′)) = 𝞶′ ◦ 𝞶−1 ◦

𝞶(T ′) = 𝞶′ ◦ 1℘(𝗧)(T
′) = 𝞶′(T ′) = α, proving that

ρ ∈ varsJlcg[𝞶](T)K↠ varsJlcg[𝞶′](T)K is surjective.
If α1, α2 ∈ varsJlcg[𝞶](T)K then case 1. of the above

proof shows that α1 = lcg[𝞶](α1) = 𝞶(α1) and α2 =
lcg[𝞶](α2) = 𝞶(α2) for some α1, α2 ∈ ℘(𝗧). Assume that
ρ(α1) = ρ(α2). Then we have 𝞶′ ◦ 𝞶−1(α1) = 𝞶′ ◦ 𝞶−1(α2)
that is 𝞶′ ◦ 𝞶−1(𝞶(α1)) = 𝞶′ ◦ 𝞶−1(𝞶(α2)), which implies
𝞶′(α1) = 𝞶′(α2) since 𝞶−1 ◦ 𝞶 = 1℘(𝗧). It follows that
α1 = α2 since 𝞶′ is injective. Therefore α1 = 𝞶(α1) =
𝞶(α2) = α2, proving that ρ is injective.

It follows that ρ ∈ varsJlcg[𝞶](T)K ⤖ varsJlcg[𝞶′](T)K is
bijective so that lcg[𝞶](T) ≃ν lcg[𝞶′](T) by lemma 4. �

We now want to identify a Galois connection with ab-
straction lcg[𝞶] and concretization ground. Several prelim-
inary results are needed. First, the symbolic abstraction
lcg[𝞶] is ⪯ν-increasing.

Lemma 7. Let ∆ ⊆ ∆′ be index sets and 𝘁 ∈ ∆′ → 𝗧 (and
therefore {𝘁i | i ∈ ∆} ⊆ {𝘁i | i ∈ ∆′}). Then lcg[𝞶]({𝘁i |
i ∈ ∆}) ⪯ν lcg[𝞶]({𝘁i | i ∈ ∆′}).

Proof of lemma 7. By lemma 3, we must prove that ∀𝟈 ∈
𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(lcg[𝞶]({𝘁i | i ∈ ∆})) = 𝟈′(lcg[𝞶]({𝘁i |
i ∈ ∆′})). Given any 𝟈, let us define 𝟈′ such that, for any
{𝘁i | i ∈ ∆′} ∈ ∆′ → 𝗧, we have (including the case of
constants when n = 0 or m = 0)

• If {𝘁i | i ∈ ∆} = {f(𝘁1i , . . . , 𝘁ni) | i ∈ ∆} and ∃j ∈
∆′ \∆ . 𝘁j = g(𝘁′1j , . . . , 𝘁′mj) with g ̸= f then

𝟈′(𝞶({𝘁i | i ∈ ∆′})) ≜ 𝟈(lcg[𝞶]({𝘁i | i ∈ ∆}))

• Otherwise, {𝘁i | i ∈ ∆′} = {f(𝘁1i , . . . , 𝘁ni) | i ∈ ∆′}, in
which case

𝟈′(𝞶({𝘁i | i ∈ ∆′})) ≜ 𝟈(𝞶({𝘁i | i ∈ ∆}))

Let us show that 𝟈(lcg[𝞶]({𝘁i | i ∈ ∆})) = 𝟈′(lcg[𝞶]({𝘁i |
i ∈ ∆′})), by structural induction on lcg[𝞶]({𝘁i | i ∈ ∆}).
There are two cases.
• If lcg[𝞶]({𝘁i | i ∈ ∆}) is a variable α = 𝞶({𝘁i | i ∈ ∆})

then ∃j, k ∈ ∆ . 𝘁j = f(𝘁1j , . . . , 𝘁
nj

j)∧𝘁k = g(𝘁1k, . . . , 𝘁nk

k)∧
f ̸= g. By (12), since 𝘁j , 𝘁k ∈ {𝘁i | i ∈ ∆′}, lcg[𝞶]({𝘁i |
i ∈ ∆′}) is a variable β = 𝞶({𝘁i | i ∈ ∆′}). By our
definition of 𝟈′, we have 𝟈(lcg[𝞶]({𝘁i | i ∈ ∆})) = 𝟈(α)
= 𝟈′(β) = 𝟈′(lcg[𝞶]({𝘁i | i ∈ ∆′})));

• Otherwise {𝘁i | i ∈ ∆′} = {f(𝘁1i , . . . , 𝘁ni) | i ∈ ∆′} and
then

𝟈(lcg[𝞶]({𝘁i | i ∈ ∆}))
= 𝟈(lcg[𝞶]({f(𝘁1i , . . . , 𝘁ni) | i ∈ ∆})) H∆ ⊆ ∆′I
= 𝟈(f(lcg[𝞶]({𝘁i1 | i ∈ ∆}), . . . , lcg[𝞶]({𝘁in | i ∈ ∆})))Hdef. (12) of lcg[𝞶]I
= f(𝟈(lcg[𝞶]({𝘁i1 | i ∈ ∆})), . . . , 𝟈(lcg[𝞶]({𝘁in | i ∈ ∆}))H(6)I
= f(𝟈′(lcg[𝞶]({𝘁i1 | i ∈ ∆′})), . . . , 𝟈′(lcg[𝞶]({𝘁in | i ∈

∆′})) Hind. hyp.I
= 𝟈′(f(lcg[𝞶](⟨𝘁i1, i ∈ ∆′⟩)), . . . , lcg[𝞶]({𝘁in | i ∈ ∆′}))H(6)I
= 𝟈′(lcg[𝞶](⟨𝘁i, i ∈ ∆′⟩)) Hdef. (12) of lcg[𝞶]I �
Let us prove that the abstraction of a set of terms over

approximates any term of the set.

Lemma 8. Let ∆ be a nonempty set and 𝘁 ∈ ∆→ 𝗧 be a
family of terms. Then ∀j ∈ ∆ . 𝘁j ⪯ν lcg[𝞶]({𝘁i | i ∈ ∆})
that is ∀j ∈ ∆ . ∃𝟈′ ∈ 𝝦ν . 𝘁j = 𝟈′(lcg[𝞶]({𝘁i | i ∈ ∆})).

Proof of lemma 8. By lemma 3, we must prove that ∀j ∈
∆ . ∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(𝘁j) = 𝟈′(lcg[𝞶]({𝘁i | i ∈ ∆})),
By 𝘁j ∈ 𝗧 has no variable so ∀𝟈 ∈ 𝝦ν . 𝟈(𝘁j) = 𝘁j . It
follows that we have to prove that ∀j ∈ ∆ . ∃𝟈′ ∈ 𝝦ν .
𝘁j = 𝟈′(lcg[𝞶]({𝘁i | i ∈ ∆})).

For any element of j be of ∆, let us define 𝟈′(β) ≜ 𝘁′j
for all β = 𝞶({𝘁′i | i ∈ ∆}) and {𝘁′i | i ∈ ∆} ∈ ∆→ 𝗧.

The proof that 𝘁j = 𝟈′(lcg[𝞶]({𝘁i | i ∈ ∆})) is by
structural induction on lcg[𝞶]({𝘁i | i ∈ ∆}) ∈ 𝝩ν .
• If lcg[𝞶]({𝘁i | i ∈ ∆}) is a ground term a ∈ 𝗙0 then, by

(12), ∀i ∈ ∆ . 𝘁i = a so 𝘁j = a = 𝟈′(a) = 𝟈′(lcg[𝞶]({𝘁i |
i ∈ ∆})).

• If lcg[𝞶]({𝘁i | i ∈ ∆}) is a variable α = 𝞶({𝘁i | i ∈
∆}) then, by (12), there exist i, k ∈ ∆ such that 𝘁i =
f(𝘁i,1, . . . , 𝘁i,n) and 𝘁k = g(𝘁k,1, . . . , 𝘁k,m) with f ̸= g.
Then, by def. 𝟈′, 𝟈′(α) = 𝘁j .

• Otherwise, by (12), we have ∀i ∈ ∆ . 𝘁i =
f(𝘁i,1, . . . , 𝘁i,n), so by structural induction hypothesis,
∀ℓ ∈ [1, n] . 𝘁j,ℓ = 𝟈′(lcg[𝞶]({𝘁i,ℓ | i ∈ ∆})). Therefore
𝘁j = f(𝘁j,1, …, 𝘁j,n) = f(𝟈′(lcg[𝞶]({𝘁i,1 | i ∈ ∆})), …,
𝟈′(lcg[𝞶]({𝘁i,n | i ∈ ∆}))) = 𝟈′(f(lcg[𝞶]({𝘁i,1 | i ∈ ∆})),
…, lcg[𝞶]({𝘁i,n | i ∈ ∆})) = 𝟈′(lcg[𝞶]({f(𝘁i,1, …, 𝘁i,n) | i ∈
∆})) = 𝟈′(lcg[𝞶]({𝘁i,1 | i ∈ ∆)}). �
The following corollary shows that the symbolic ab-

straction is an over approximation of properties of ground
terms, that is, ground ◦ lcg[𝞶]() is extensive.

Corollary 1. If ∆ is a nonempty set and {𝘁i | i ∈ ∆} ∈
∆→ 𝗧, then {𝘁i | i ∈ ∆} ⊆ ground(lcg[𝞶]({𝘁i | i ∈ ∆})).

Proof of corollary 1.
{𝘁i | i ∈ ∆} ⊆ ground(lcg[𝞶]({𝘁i | i ∈ ∆}))

⇔ {𝘁i | i ∈ ∆} ⊆ {𝟈(lcg[𝞶]({𝘁i | i ∈ ∆})) | 𝟈 ∈ 𝝦ν}Hdef. (9) of groundI
⇔ ∀j ∈ ∆ . ∃𝟈 ∈ 𝝦ν . 𝘁j = 𝟈(lcg[𝞶]({𝘁i | i ∈ ∆})) Hdef. ⊆I
which is true by lemma 8. �

The following corollary shows that the abstraction of
the concretization of a term with variables looses no
information.

Corollary 2. For all 𝞽 ∈ 𝝩ν . ground ◦ lcg[𝞶] ◦

ground(𝞽) = ground(𝞽).
Proof of corollary 2. By corollary 1 (where ground(𝞽) =
{𝘁i | i ∈ ∆}), ground(𝞽) ⊆ ground ◦ lcg[𝞶] ◦ ground(𝞽). It
remains to prove that

ground ◦ lcg[𝞶] ◦ ground(𝞽) ⊆ ground(𝞽)
⇔ {𝟈(lcg[𝞶] ◦ ground(𝞽)) | 𝟈 ∈ 𝝦ν} ⊆ {𝟈′(𝞽) | 𝟈′ ∈ 𝝦ν}Hdef. (8) of groundI
⇔ ∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(lcg[𝞶] ◦ ground(𝞽)) = 𝟈′(𝞽)Hdef. ⊆I
which holds by lemma 8. �
C. The symbolic term Galois connection

In order to take into account the equivalence of terms
with variables up to variable renaming (see lemma 4), we
reason on the quotient partial order of terms ⟨PH, ⪯≃ν⟩.
We extend the concretization (8) and the abstraction (12)
to equivalence classes as follows.

lcg≃ν [𝞶]({𝘁i | i ∈ ∆}) ≜ [lcg[𝞶]({𝘁i | i ∈ ∆})]≃ν (13)
ground≃ν ([𝞽]≃ν) ≜ ground(𝞽).

Theorem 1. For any naming scheme 𝞶 ∈ (∆→ 𝗧)↣ Vt,

⟨℘(𝗧), ⊆⟩ −−−−−−−−→−→←−−−−−−−−−
lcg≃ν [𝞶]

ground≃ν

⟨PH, ⪯≃ν⟩ (14)

This definition of the Galois retraction is independent of
the choice of the naming scheme 𝞶. �
Proof of theorem 1. By def. of a Galois connection, we
must prove that for all families of terms {𝘁i | i ∈ ∆} ∈
℘(𝗧) and term with variables 𝞽′ ∈ 𝝩ν ∪ {⦱ν},

lcg≃ν [𝞶]({𝘁i | i ∈ ∆}) ⪯≃ν [𝞽′]≃ν ⇔
{𝘁i | i ∈ ∆} ⊆ ground≃ν ([𝞽′]≃ν).

This is obvious for ∆ = ∅ since lcg≃ν [𝞶](∅) = ⦱ν which is
the infimum. Otherwise, we have

lcg≃ν [𝞶]({𝘁i | i ∈ ∆}) ⪯≃ν [𝞽′]≃ν

⇔ [lcg[𝞶]({𝘁i | i ∈ ∆})]≃ν ⪯≃ν [𝞽′]≃νHdef. (13) of lcg≃ν [𝞶]I
⇔ lcg[𝞶]({𝘁i | i ∈ ∆}) ⪯ν 𝞽′ Hdef. (10) of ⪯≃ν and ≃νI
⇔ ground ◦ lcg[𝞶]({𝘁i | i ∈ ∆}) ⊆ ground(𝞽′)Hdef. (9) of ⪯ν I
⇔ {𝘁i | i ∈ ∆} ⊆ ground(𝞽′)H(⇒) by corollary 1 and transitivity;

(⇐) By lemma 7, lcg[𝞶] is increasing. By def.
(9) of ⪯ν , ground is increasing. Their composi-
tion is increasing so ground ◦ lcg[𝞶]({𝘁i | i ∈ ∆})
⊆ ground ◦ lcg[𝞶] ◦ ground(𝞽′) = ground(𝞽′) by
corollary 2. I

⇔ {𝘁i | i ∈ ∆} ⊆ ground≃ν ([𝞽′]≃ν)Hdef. (13)) of ground≃ν I
Moreover ground≃ν is injective so (14) is a Galois retrac-
tion (also called Galois insertion).

By lemma 6, if 𝞶, 𝞶′ ∈ (∆ → 𝗧) ↣ Vt then ∀T ∈ ℘(𝗧) .
lcg[𝞶](T) ≃ν lcg[𝞶′](T) so that this definition of the Galois
retraction (14) is independent of the choice of the naming
scheme 𝞶. �

In a Galois connection ⟨C, ⩽⟩ −−−→−→←−−−−
α

γ
⟨A, ⊑⟩, α =

α ◦ γ ◦ α. It follows immediately that ⟨ground≃ν (PH),

⊆⟩ −−−−−−−−→−→←←−−−−−−−−−
lcg≃ν [𝞶]

ground≃ν

⟨PH, ⪯≃ν⟩ is a Galois isomorphism, an
essential remark for completeness in typing [22].

D. The symbolic abstract domain is a complete lattice
By [26, Theorem 4.1], the image of a complete lattice

by an upper closure operator is a complete lattice. This
extends to a Galois retraction ⟨C, ⩽⟩ −−−→−→←−−−−

α

γ
⟨A, ⊑⟩ since

γ ◦ α is an upper closure operator, α is surjective so
that γ(A) and α(C) are isomorphic, α = α ◦ γ ◦ α,
and α preserves existing joins. Therefore, the terms with
variables form a complete lattice since they are the image
of the complete lattice of properties of ground terms by
the Galois retraction (14).

Corollary 3 (symbolic abstract domain). For any nam-
ing scheme 𝞶 ∈ (∆ → 𝗧) ↣ Vt, ⟨PH, ⪯≃ν ,
[⦱ν]≃ν , [α]≃ν , LCG≃ν , GCI≃ν ⟩ is a complete lattice
where α ∈ Vt, the least upper bound is LCG≃ν (S) ≜
lcg≃ν [𝞶](

∪
ground≃ν (S)) (binary lcg for symbolic terms

and lcg≃ν for term classes), and the greatest lower bound
is GCI≃ν (S) ≜ lcg≃ν [𝞶](

∩
ground≃ν (S)) (binary gci and

gci≃ν). This characterization of the lattice operations is
independent of the naming scheme 𝞶 which is used.

Proof of corollary 3. Since ⟨℘(𝗧), ⊆, ∅, 𝗧, ∪
,
∩
⟩ is a

complete lattice and (14) is a Galois retraction, it fol-
lows that, for any naming scheme 𝞶 ∈ (∆ → 𝗧) ↣
Vt, its image lcg≃ν [𝞶](℘(𝗧)) = PH by lcg≃ν [𝞶] is also
a complete lattice ⟨PH, ⪯≃ν , [⦱ν]≃ν , [α]≃ν , LCG≃ν ,
GCI≃ν ⟩ where the infimum is lcg≃ν [𝞶](∅) = [⦱ν]≃ν ,
the supremum is lcg≃ν [𝞶](𝗧) = [𝞶(⟨𝘁, 𝘁 ∈ 𝗧⟩)]≃ν ≃ν

[α]≃ν , α ∈ Vt, the least upper bound is LCG≃ν (S) ≜
lcg≃ν [𝞶](

∪
ground≃ν (S)) and the greatest lower bound

is GCI≃ν (S) ≜ lcg≃ν [𝞶](
∩

ground≃ν (S)).
By lemma 6, if 𝞶, 𝞶′ ∈ (∆ → 𝗧) ↣ Vt then ∀T ∈ ℘(𝗧) .

lcg[𝞶](T) ≃ν lcg[𝞶′](T) so that this characterization of
the lattice operations is independent of the choice of the
naming scheme 𝞶. �

We use lcg≃ν (respectively gci≃ν) for the binary version
of LCG≃ν (respect. GCI≃ν).

Observe that ground terms [𝘁]≃ν ∈ PH belongs to
the abstract domain and abstract the concrete property
{𝘁} of being that ground term. Then lcg≃ν [𝞶]({𝘁}) =
LCG≃ν ({[𝘁]≃ν}), because, by (14), we have

LCG≃ν ({[𝘁]≃ν})
≜ lcg≃ν [𝞶](

∪
ground≃ν ({[𝘁]≃ν}))

= lcg≃ν [𝞶](
∪

ground≃ν ({[𝘁]≃ν}))
= lcg≃ν [𝞶](

∪
ground≃ν ({𝘁}))

= lcg≃ν [𝞶](
∪
{𝘁})

= lcg≃ν [𝞶](𝘁).
This explains why the abstraction and the lub in the
complete lattice have been given the same name.

VII. The classical definition of the subsumption
partial order using substitutions

The subsumption preorder ⪯ν is classically defined syn-
tactically, using substitutions [7, pp. 180–188] (instead of
(9)) [3]–[5]. We show that this classical syntactic definition
is equivalent to the semantic definition (9) based on the
interpretation of terms with variables as properties of
ground terms.

A. Substitutions
The same way that assignments (5) record ground values

of variables, we use substitutions to record symbolic values
of some variables, so substitutions are partial functions

ϑ ∈ ˚ ≜ Vt ↛ 𝝩ν (15)

mapping variables α in its domain dom(ϑ) to terms with
variables ϑ(α).

A substitution is extended to a total function ϑ ∈
Vt → 𝝩ν and homomorphically to terms with variables,
as follows

ϑ(α) ≜ α when α ̸∈ dom(ϑ) (16)
ϑ(f(𝞽1, . . . , 𝞽n)) ≜ f(ϑ(𝞽1), . . . , ϑ(𝞽n))

Observe that the substitution is carried out simultaneously
on all variable occurrences.

The empty substitution 𝜺 is totally undefined, that is
dom(𝜺) = ∅. It’s total extension is the identity ∀α ∈ Vt .
𝜺(α) = α. By structural induction on terms with variables,
we have ∀𝞽 ∈ 𝝩ν . 𝜺(𝞽) = 𝞽.

B. The classical characterization of the subsumption pre-
order using substitutions

The following theorem 2 shows that the syntactic and
semantic definitions of subsumption are equivalent. It
follows that the subsumption lattice of [3]–[5], [27] is the
complete lattice considered in corollary 3 since the partial
order is the same (although defined differently).

Theorem 2. ∀𝞽1, 𝞽2 ∈ 𝝩ν . [𝞽1]≃ν ⪯≃ν [𝞽2]≃ν ⇔ ∃ϑ ∈ ˚ .
ϑ(𝞽2) = 𝞽1.

Proof of theorem 2. Let us first show that for all 𝞽1, 𝞽2 ∈
𝝩ν ,

(∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(𝞽1) = 𝟈′(𝞽2))⇔ (17)
(∃ϑ ∈ ˚ . ϑ(𝞽2) = 𝞽1) (18)

(⇐) Choose 𝟈′ = λα .𝟈(ϑ(α)) so that, by structural
induction on terms with variables, ∀𝞽 ∈ 𝝩ν . 𝟈′(𝞽) =
𝟈(ϑ(𝞽)). Then ϑ(𝞽2) = 𝞽1 implies 𝟈(ϑ(𝞽2)) = 𝟈(𝞽1) and
so 𝟈′(𝞽2) = 𝟈(𝞽1).
(⇒) We assume that ∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(𝞽1) = 𝟈′(𝞽2).
The structural proof is by cases on the pair ⟨𝞽1, 𝞽2⟩ ordered
lexicographically. It consists in constructing ϑ given 𝟈 and
𝟈′.
• 𝞽1 = a ∈ 𝗙0

– 𝞽2 = b ∈ 𝗙0. If b ̸= a, the hypothesis is false and
the implication is true. Otherwise b = a and any
substitution has ϑ(𝞽1) = ϑ(a) = a = ϑ(𝞽2).

– 𝞽2 = β ∈ Vt. Any substitution s.t. ϑ(β) = a has
ϑ(𝞽2) = ϑ(β) = a = 𝞽1.

– 𝞽2 = g(𝞽′′1 , . . . , 𝞽′′m), g ∈ 𝗙m. ∀𝟈,𝟈′ . 𝟈(𝞽1) ̸= 𝟈′(𝞽2)
so that the hypothesis is false and the implication is
true.

• 𝞽1 = α ∈ Vt

– 𝞽2 = b ∈ 𝗙0. If 𝟈(α) ̸= b, the hypothesis is false and
the implication is true. Otherwise 𝟈(α) = b.

– 𝞽2 = β ∈ Vt. Any substitution such that ϑ(β) = α
will do.

– 𝞽2 = g(𝞽′′1 , . . . , 𝞽′′m), g ∈ 𝗙m. Since we assume that the
signature 𝗙 has at least two different function sym-
bols, there is a term 𝞽 with this different symbol at

the root. For 𝟈 such that 𝟈(α) = 𝞽 there is no 𝟈′ such
that 𝟈(α) = 𝞽 = 𝟈′(𝞽2) = g(𝟈′(𝞽′′1), . . . , 𝟈′(𝞽′′m)). In
that case, the hypothesis is false and the implication
is true.

• 𝞽1 = f(𝞽′1, . . . , 𝞽′n), f ∈ 𝗙n

– 𝞽2 = b ∈ 𝗙0. ∀𝟈,𝟈′ . 𝟈(𝞽1) ̸= 𝟈′(𝞽2) so the hypothesis
is false and the implication is true.

– 𝞽2 = β ∈ Vt. Simply choose ϑ(β) = 𝞽1.
– 𝞽2 = g(𝞽′′1 , . . . , 𝞽′′m), g ∈ 𝗙m. The hypothesis

that 𝟈(𝞽1) = 𝟈′(𝞽2), that is f(𝟈(𝞽′1), . . . , 𝟈(𝞽′n)) =
g(𝟈′(𝞽′′1), . . . , 𝟈′(𝞽′′m)), implies that f = g, m = n, and
∀i ∈ [1, n] . 𝟈(𝞽′j) = 𝟈′(𝞽′′j). So, by structural ind.
hyp., ∃ϑj . ϑj(𝞽′′j) = 𝞽′j that is 𝞽1 = f(𝞽′1, . . . , 𝞽′n) =
f(ϑ1(𝞽′′1), . . . , ϑn(𝞽′′n)). We now have to define ϑ such
that ϑ(𝞽2) = 𝞽1.
∗ For the variables α that do not occur in 𝞽2, we

choose ϑ(α) = α;
∗ For variables α that occur once or more in 𝞽2, say

in 𝞽′′j and 𝞽′′k , j, k ∈ [1, n], we have
𝞽′′j = f1

j (. . . f
mj

j (. . . , α, . . .) . . .)

𝞽′′k = f1
k (. . . f

mk

k (. . . , α, . . .) . . .)

There are two subcases:
· If for all occurrences, the substitutions are iden-

tical, we choose ϑ(α) = ϑj(α) = ϑk(α);
· Otherwise, ∃α, j ̸= k . ϑj(α) ̸= ϑk(α)

2

and so ϑj(𝞽′′j) ̸= ϑk(𝞽′′k). Therefore,
∃𝟈 . 𝟈(ϑj(𝞽′′j)) ̸= 𝟈(ϑk(𝞽′′k)). By hypothesis, ∃𝟈′ .
𝟈(𝞽1) = 𝟈′(𝞽2) so 𝟈(𝞽1) = f(𝟈(𝞽′1), . . . , 𝟈(𝞽′n))
= f(𝟈(ϑ1(𝞽′′1)), . . . , 𝟈(ϑn(𝞽′′n))) =
f(𝟈′(𝞽′′1), . . . , 𝟈′(𝞽′′n)) = 𝟈′(𝞽2). If follows
that 𝟈(𝞽′j) = 𝟈(ϑj(𝞽′′j)) = 𝟈′(𝞽′′j) and 𝟈(𝞽′k)
= 𝟈(ϑk(𝞽′′k)) = 𝟈′(𝞽′′k). For the term 𝞽′′j , we
have 𝟈′(𝞽′′j) = f1

j (. . . f
mj

j (. . . ,𝟈′(α), . . .) . . .) =
𝟈(ϑj(𝞽′′j)) = f1

j (. . . f
mj

j (. . . ,𝟈(ϑj(α)), . . .) . . .)
and so 𝟈′(α) = 𝟈(ϑj(α)). Similarly, for the term
𝞽′′k , we get 𝟈′(α) = 𝟈(ϑk(α)). It follows that
𝟈(ϑj(α)) = 𝟈(ϑk(α)), a contradiction. This case
is therefore impossible.

In conclusion, in all cases which are possible, the hypothe-
sis ∀𝟈 . ∃𝟈′ . 𝟈(𝞽1) = 𝟈′(𝞽2) implies that ∃ϑ ∈ ˚ . ϑ(𝞽2) =
𝞽1. It follows that

[𝞽1]≃ν ⪯≃ν [𝞽2]≃ν

⇔ 𝞽1 ⪯ν 𝞽2 Hlemma 5I
⇔ ground(𝞽1) ⊆ ground(𝞽2) Hdef. (9) of ⪯νI
⇔ {𝟈(𝞽1) | 𝟈 ∈ 𝝦ν} ⊆ {𝟈′(𝞽2) | 𝟈′ ∈ 𝝦ν} H(8)I
⇔ ∀𝟈 ∈ 𝝦ν . ∃𝟈′ ∈ 𝝦ν . 𝟈(𝞽1) = 𝟈′(𝞽2) Hdef. ⊆I
⇔ ∃ϑ ∈ ˚ . ϑ(𝞽2) = 𝞽1 H(17)I �

VIII. Conclusion
We have shown that a concrete program property repre-

sented by a set of ground terms can be over-approximated
2An example is f(α, β) ⪯̸ν f(α, α) with ϑ1(α) = α and ϑ2(α) = β.

by a term with variables. Of course a concrete property
P represented by a set of terms with variables can be
overapproximated by the term with variables LCG≃ν (P)
(this is Galois connection of the homomorphic abstraction
α(X) ≜

⊔
{h(x) | x ∈ X} of a set X, where h is the

identity). The complete lattice structure follows from the
fact that the image of a complete lattice by a Galois
retraction is a complete lattice [26, Theorem 4.1]. This
approach yields algorithms together with their soundness
proof by abstraction preservation [28, section 48.8].

We have shown that this semantic construction yields
the same subsumption partial order defined syntactically
by Gordon Plotkin [3], [4] and John Reynolds [5].

One can avoid variables by representing a term with
variables as a rooted directed acyclic graph (DAG) that is
the term syntax tree where the leaf nodes that have the
same variable are joined [29] (mathematically represented
by a tree and an equivalence relation between leaves that
have the same variable). The lattice structure of symbolic
terms generalizes to rooted order-sorted feature (OSF)
graphs [30], [31].

References
[1] J. Herbrand, “Recherches sur la théorie de la démonstration,”

Thèse, Université de Paris, 1930, ch. V of “Écrits logiques”, Jean
Van Heijenoort (Ed.), Presses Universitaires de France, 1968,
pp. 35–143.

[2] ——, “Investigations in proof theory,” Thesis, Université de Pa-
ris, 1930, ch. V of “Logical Writings”, Warren D. Goldfarb (Ed.),
Springer Netherlands, 1971, pp. 44–202, English translation of
[1].

[3] G. D. Plotkin, “A note on inductive generalization,”
in Machine Intelligence, D. Meltzer, B.; Michie, Ed.
Edinburgh University Press, 1970, vol. 5, pp. 153––
163. [Online]. Available: http://homepages.inf.ed.ac.uk/gdp/
publications/MI5_note_ind_gen.pdf

[4] ——, “A further note on inductive generalization,”
in Machine Intelligence, D. Meltzer, B.; Michie, Ed.
Edinburgh University Press, 1971, vol. 6, pp. 101––
124. [Online]. Available: http://homepages.inf.ed.ac.uk/gdp/
publications/MI6_further_note.pdf

[5] J. C. Reynolds, “Transformational systems and the algebraic
structure of atomic formulas,” in Machine Intelligence,
D. Meltzer, B.; Michie, Ed. Edinburgh University
Press, 1970, vol. 5, pp. 135––151. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf

[6] J. A. Robinson, “A machine-oriented logic based on the resolu-
tion principle,” J. ACM, vol. 12, no. 1, pp. 23–41, 1965.

[7] ——, Logic: Form and Function – The Mechanization of De-
ductive Reasoning, ser. Artificial Intelligence. Elsevier North-
Holland, 1979.

[8] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli,
“Satisfiability modulo theories,” in Handbook of Satisfiability,
ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, 2009, vol. 185, pp. 825–885.

[9] J. C. King, “Symbolic execution and program testing,” Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, 1976.

[10] R. Milner, “A theory of type polymorphism in programming,”
J. Comput. Syst. Sci., vol. 17, no. 3, pp. 348–375, 1978.

[11] L. Damas and R. Milner, “Principal type-schemes for functional
programs,” in POPL. ACM Press, 1982, pp. 207–212.

[12] A. Colmerauer, “Prolog in 10 figures,” Commun. ACM, vol. 28,
no. 12, pp. 1296–1310, 1985.

[13] R. A. Kowalski, “The early years of logic programming,” Com-
mun. ACM, vol. 31, no. 1, pp. 38–43, 1988.

[14] A. Colmerauer and P. Roussel, “The birth of prolog,” in HOPL
Preprints. ACM, 1993, pp. 37–52.

http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI6_further_note.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI6_further_note.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf

[15] L. Sterling and E. Shapiro, The Art of Prolog - Advanced
Programming Techniques, 2nd Ed. MIT Press, 1994.

[16] K. L. Clark and S. Åke Tärnlund, Logic Programming. Aca-
demic Press, New York, NY, US, 1982.

[17] R. Barbuti, R. Giacobazzi, and G. Levi, “A general framework
for semantics-based bottom-up abstract interpretation of logic
programs,” ACM Trans. Program. Lang. Syst., vol. 15, no. 1,
pp. 133–181, 1993.

[18] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-
García, “Program development using abstract interpretation
(and the ciao system preprocessor),” in SAS, ser. Lecture Notes
in Computer Science, vol. 2694. Springer, 2003, pp. 127–152.

[19] P. Cousot, R. Cousot, and R. Giacobazzi, “Abstract interpreta-
tion of resolution-based semantics,” Theor. Comput. Sci., vol.
410, no. 46, pp. 4724–4746, 2009.

[20] B. Steensgaard, “Points-to analysis in almost linear time,” in
POPL. ACM Press, 1996, pp. 32–41.

[21] K. Muthukumar and M. V. Hermenegildo, “Determination of
variable dependence information through abstract interpreta-
tion,” in NACLP. MIT Press, 1989, pp. 166–185.

[22] P. Cousot, “Types as abstract interpretations,” in POPL. ACM
Press, 1997, pp. 316–331.

[23] J. R. Hindley, Basic Simple Type Theory, ser. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press,
2008.

[24] A. Church, “A formulation of the simple theory of types,” J.
Symb. Log., vol. 5, no. 2, pp. 56–68, 1940.

[25] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon, “The OCaml system, release 4.10, Documentation
and user’s manual,” 2020, institut National de Recherche
en Informatique et en Automatique. [Online]. Available:
http://caml.inria.fr/pub/docs/manual-ocaml/

[26] M. Ward, “The closure operators of a lattice,” Annals of Math-
ematics, vol. 43, no. 2, pp. 191–196, 1942.

[27] G. P. Huet, “Confluent reductions: Abstract properties and
applications to term rewriting systems: Abstract properties and
applications to term rewriting systems,” J. ACM, vol. 27, no. 4,
pp. 797–821, 1980.

[28] P. Cousot, Principle of Abstract Interpretation. MIT Press,
2021.

[29] M. Paterson and M. N. Wegman, “Linear unification,” J. Com-
put. Syst. Sci., vol. 16, no. 2, pp. 158–167, 1978.

[30] H. Aït-Kaci, “A lattice theoretic approach to computation based
on a calculus of partially ordered type structures (property in-
heritance, nets, graph unification),” PhD thesis, Computer and
Information Science Dept., University of Pennsylvania, 1984.

[31] H. Aït-Kaci, A. Podelski, and S. C. Goldstein, “Order sorted
feature theory unification,” J. Log. Program., vol. 30, no. 2, pp.
99–124, 1997.

http://caml.inria.fr/pub/docs/manual-ocaml/

	Introduction
	The complete lattice of ground terms
	Terms with variables
	Term assignments
	The symbolic abstraction
	The Herbrand symbolic abstract domain
	The subsumption partial order
	The symbolic abstraction function
	The symbolic term Galois connection
	The symbolic abstract domain is a complete lattice

	The classical definition of the subsumption partial order using substitutions
	Substitutions
	The classical characterization of the subsumption preorder using substitutions

	Conclusion
	References

