
Probabilistic Abstract Interpretation

Patrick Cousot and Michael Monerau

Courant Institute, NYU and École Normale Supérieure, France

Abstract. Abstract interpretation has been widely used for verifying properties of computer
systems. Here, we present a way to extend this framework to the case of probabilistic systems.

The probabilistic abstraction framework that we propose allows us to systematically lift
any classical analysis or verification method to the probabilistic setting by separating in the
program semantics the probabilistic behavior from the (non-)deterministic behavior. This sep-
aration provides new insights for designing novel probabilistic static analyses and verification
methods.

We define the concrete probabilistic semantics and propose different ways to abstract them.
We provide examples illustrating the expressiveness and effectiveness of our approach.

1 Introduction
As programs get larger and larger, it has become untractable to verify their properties and/or
correctness by hand or testing. Formal methods have thus been developed in order to be
able to verify program properties automatically, at least in part. One of them is abstract
interpretation which has proved successful both in solving hard problems and scaling up
nicely.

When probabilities come into play, the verification of program properties is even more
difficult. Our work precisely tackles this issue, that is verifying properties of probabilistic
programs. We propose a formal, general and modular framework, extending the classical
abstract interpretation framework to take probabilities into account, allowing for crafting of
new analyses, as well as lifting of existing non-probabilistic analyses to the probabilistic
setting.

Probabilities come into play because of program randomness (such as calls to a random
number generator rand()) and input randomness (for which a distribution may be known).
Usually, all this randomness is forgotten for non-determinism. It is sound but loses a lot of
information. So our goal here is to use hypotheses on randomness to be able to infer more
precise probabilistic program properties.

The goals of having probabilistic static analyses are various, let alone the fact that we
can actually verify some probabilistic properties on the program. A couple of more original
examples of interesting applications are to enable compilers to gain access to more useful in-
formation to decide register allocations or cache/scratchpad allocations, or to provide useful
information about branching for Just In Time compilers without having to do any profiling
or execution, among many other applications.

There is a lot of work on probabilistic program construction and verification meth-
ods [13,15,19,23], probabilistic model-checking [11], probabilistic abstract model-checking
[2,27,29], probabilistic abstract interpretation [21,25,28], with, in the case of model-checking
and abstract interpretation, existing applications to biological pathways [1,3,18]. One of our
objectives is to unify and generalize these frameworks.

2 The abstract interpretation framework
Abstract interpretation is a theory of approximation. Applied to semantics of computer pro-
grams, it allows oneself for generic design of static analyses [5].

The concrete semantics S JPK of a program P is, by hypothesis, an element S JPK ∈ D,
whereD is a fixed semantics domain. It is often expressed as a least fixpoint S JPK = lfp� FP

where the concrete transformer is FP : D −→ D and � is the concrete semantic partial
order onD.

Semantic properties of programs are elements of the concrete domain 〈℘ (D) , ⊆〉 where
⊆ is logical implication. A program P is said to verify a property Γ ∈ ℘ (D) iff S JPK ∈
Γ ⇐⇒ {S JPK} ⊆ Γ, which is often undecidable or intractable so that approximations are
necessary for total automation.

A partially ordered abstract domain 〈A, v〉 is considered and linked to the concrete
domain by means of a Galois connection 〈℘ (D) , ⊆〉 −−−→←−−−α

γ
〈A, v〉 defined such that ∀P ∈

℘ (D) : ∀Q ∈ A : α(P) v Q ⇐⇒ P ⊆ γ(Q). For example the interval abstraction is 〈℘ (Z) ,
⊆〉 −−−→←−−−α

γ
〈I(Z), vI〉 with I(Z) , {⊥} ∪ {[a, b] | a 6 b}, α(∅) , ⊥, and α(S) = [min S ,max S]

when S , ∅ where minZ , −∞, maxZ , +∞, and vI is interval inclusion. In a Galois
connection one adjoint uniquely determines the other (which we often leave implicit). Galois
connections are used for the sake of simplicity although not necessary (a concretization
function γ may be sufficient [7]). The only way to know what is the meaning of verifying an
abstract property Q ∈ A is to evaluate the concretization function γ. Indeed, by definition it
means that S JPK ⊆ γ(Q), i.e. P verifies the property γ(Q).

Static analysis consists in computing an abstract semantics S JPK] of the program that is
less precise but still sound S JPK ⊆ γ(S JPK]) (and sometimes even complete for a given class
of properties when it loses no essential information for proofs). Thus the program P is said
to satisfy an abstract property Q ∈ A iff S JPK] v Q (which implies S JPK ⊆ γ(S JPK]) since
γ is increasing and ⊆ transitive). An adequate cost/precision ratio consists in choosing 〈A,
v〉 and S JPK] to be algorithmically tractable hence imprecise so incomplete but nevertheless
precise enough so that S JPK] v Q implies S JPK ⊆ γ(Q). Soundness is always guaranteed
along the way by the framework.

3 A quick review of probabilities in mathematics
Let us recall basic elements of probability theory (see e.g. [16]).

Measurable/probability space The notion of probability in mathematics relies upon the
notion of a measurable space 〈Ω, E〉.

The main ingredient is a set Ω of what we will call scenarios (sometimes also called
states or samples). Then, an event is defined as a set of scenarios (an event can be seen as a
property of scenarios: it is the set of the scenarios that make the event occur).

The second ingredient is a tribe or σ-algebra E of events. By definition, a σ-algebra
over the set Ω is a non-empty collection E ∈ ℘ (℘ (Ω)) of subsets of Ω called observable
events that includes ∅ and itself and is closed under complementation and countable unions
of its members (by applying De Morgan’s laws, the σ-algebra is also closed under countable
intersections). So ∅ and E are observable, and the countable unions of observable events are
also observable. Observable events are the events we have probabilistic information upon.

The probabilistic information upon observable events is formalized by a probability
measure on 〈Ω, E〉 which is defined as a function µ : E −→ [0, 1], with a few addi-
tional technical properties: µ(∅) = 0, µ(E) = 1 and compatibility with countable unions
µ(∪i≥1Ei) =

∑
i≥1 µ(Ei) when the 〈Ei, i ∈ N〉 are pairwise disjoint observable events (i.e. the

union of two disjoint events by the measure should be the sum of the probabilities of the
events).

A triple 〈Ω, E, µ〉 is a measured space (more precisely a probability space) where µ(E)
is the probability of an event E ∈ E (so µ is called the probability measure).

Example 1. The program repeat x = rand[1,6] until (x==6) throws a dice until getting
6. We choose Ω , N −→ {1, . . . , 6} since there can be infinitely many throws, E is the
smallest tribe such that all events Xd1,...,dk = {d ∈ Ω | ∀i ≤ k : d(i) = dk}, where k ≥ 0
and (d0, . . . , dk) is any tuple in [1, 6] with di , 6 for i < k and dk = 6, are observable and
µ(Xd1,...,dk) =

(
1
6

)k
. ut

Measurable functions To link probabilities to actual actions (i.e. depending on the result
of a random experience), measurable functions are introduced. Measurable functions are
structure-preserving functions between measurable spaces. Specifically, a function between
measurable spaces is said to be measurable if the pre-image of each measurable set is mea-
surable, analogous to the situation of continuous functions between topological spaces.

Let (Ω,E) and (F,F) be two measurable spaces. A function f : Ω −→ F is said to be
measurable iff for any observable event ∆ ∈ F we have f −1(∆) ∈ E, written f : Ω � F or
f : Ω � (F,F) or even f : (Ω,E) � (F,F).

Intuitively, f can be seen as a mapping from scenarios to actions where f (ω) is the action
occuring when in scenario ω. f is measurable when for any observable set of actions (event
∆ in F), the causes of these actions are also observable (f −1(∆) ∈ E). This definition enables
measuring any element ∆ in the target space by looking at its pre-image f −1(∆) which, by
assumption, is measurable.

Random variables If 〈Ω, E, µ〉 is a probability space and (F,F) is a measurable space, a
random variable or stochastic variable is a measurable function f : Ω � F (the term
“variable” is traditional but in fact inappropriate for a “function”). It is used to describe an
experience whose value results from a measurement on some type of random process. The
probability Pr f (∆) = Pr(f ∈ ∆) for an observable action ∆ ∈ F to take place is defined as1

Pr f (∆) = Pr(f ∈ ∆) , Pr({ω ∈ Ω | f (ω) ∈ ∆}) = µ(f −1(∆)) .
The probability distribution Pr f is called the law (or distribution) of variable f . Pr f defines
a new probability law on F derived from µ on E describing the probabilities of different
values occurring.

Example 2. Continuing Ex. 1, we assume that the dice is unbiased. So µ is easily defined
on the measurable events: µ(Xd1,...,dk) =

(
1
6

)k
. Then we consider the measurable function

X: 〈Ω, E〉 � 〈N ∪ {+∞}, ℘ (N) ∪ {N ∪ {+∞}}〉 defined by X(ω) , inf{ j | ω(j) = 6},
Pr(X = k) = Pr(

⋃
{ω | ∀i < k : ω(i) ∈ [1, 5] ∧ ω(k) = 6}) = 5k−1

(
1
6

)k
= 1

6

(
5
6

)k−1
. Note that

Pr(X = ∞) is not defined because we assumed that the non-termination is not an observable
property. Had we supposed the property was observable, this quantity would have been 0
because it can be expressed as a countable intersection of countable unions of Xd1,...,dk with
k → +∞ (and then a classical lemma from probability theory gives the conclusion). ut

Lebesgue integrals We then have the classical theory that allows us to compute Lebesgue
integrals of measurable functions f : Ω � R ∪ {±∞} on measurable spaces 〈Ω, E〉
and 〈R ∪ {±∞}, ℘ (R ∪ {±∞})〉. The (possibly infinite) Lebesgue integral is written

∫
Ω

f dµ
to emphasize that the integral is taken with respect to the measure µ (or

∫
Ω

f (ω)dµ(ω) to
explicitly name the argument ω ∈ Ω of f).

Example 3. Let us consider classical examples to grasp the intuition behind Lebesgue inte-
grals.

1 by convention f ∈ ∆ abbreviates {ω ∈ Ω | f (ω) ∈ ∆}.

If χA : Ω −→ R is the characteristic function of a set A ∈ ℘ (Ω) such that χA (ω) = 1
when ω ∈ A and χA (ω) = 0 when ω < A then

∫
Ω
χA dµ = µ(A).

In the discrete case of a simple function f (ω) ,
∑n

k=1 ck χAk
(ω) where ck ∈ R for some

finite pairwise disjoint family Ak ∈ E, we have
∫
Ω

f dµ ,
∑n

k=1 ckµ(Ak):

New York University, CIMS, Graduate Division, Computer Science, Course G22.3110-001-2011, Honors Programming Languages © P. Cousot1

f(ω)

ω

A

µ(A)

A! A" A#
c!
c"

c#

µ!
µ"

µ#

Ω = A1 ∪ A2 ∪ A3∫
Ω

f dµ = c1µ1 + c2µ2 + c3µ3 .

If f is a non-negative measurable function (possibly attaining the value ∞ at some
points), then

∫
Ω

f dµ , sup{
∫
Ω

hdµ | h is simple ∧ ∀x ∈ Ω : h(x) 6 f (x)}. ut

Expectation For a probability space 〈Ω, E, µ〉, the expectation (or expected value or mean
or first moment) of the measurable function f : Ω � R can be interpreted as the long-run
average of the results of many independent repetitions of an experiment in Ω. The expecta-
tion is the integral E(f) ,

∫
Ω

f dµ of the random variable f with respect to its probability

measure µ. It is the weighted average of all possible values that the random variable f can
take on.

Event probabilities Let 〈Ω, E, µ〉 be a probability space. The probability Pr(Φ) that a
certain event Φ ∈ ℘ (E) occurs is given by:

Pr(Φ), µ(Φ) =

∫
Ω

χ
Φ
dµ .

Distributions As we already mentioned, for all f : (Ω,E, µ) � (F,F), the distribution
of f is f (µ) : F � [0, 1] (written Pr f for brievety) such that the probability of actions
∆ ∈ F is the probability of the “parent” scenarios. We have

Pr f (∆) = Pr(f ∈ ∆) , µ(f −1(∆)) =

∫
Ω

χ
f−1(∆)

dµ =

∫
Ω

χ
∆
(f (ω))dµ(ω) .

Conditional probability It is sometimes the case that it is known that a specific event has
already occured, and you want to know what is the probability of another event to occur.
As we will see, it is typically the case when we want to estimate the probability of a pro-
gram property when inside a conditional construct: if the control flow went through the “if”
branch, then you know that the guard condition is true.

Let A, B ∈ E be two observable events in a probability space 〈Ω, E, µ〉, with Pr(B) , 0.
Then the probability of A knowing B is defined as

Pr(A | B),
Pr(A ∩ B)

Pr(B)
.

4 Probabilistic concrete semantics
Our approach relies on basic concepts of classical abstract interpretation and probability
theory that we recalled in Sect. 2 and 3.

In this section, we introduce how we describe the semantics of probabilistic programs (or
systems). It is a very general way of associating a semantics with any probabilistic system.
That is, it is not tied to a particular description of probabilities nor to a specific program-
ming language but rather allows for a precise construction of semantics for any probabilistic
situation.

4.1 Definition
We look at probabilistic systems as a superposition of (non)-deterministic systems. That is,
when a probabilistic program is run we consider that it can be any element of a specific set
of (non)-deterministic programs chosen by a random experience. It is as if all the random
choices that will be made in the subsequent execution are decided by an oracle at startup
(although a program knows only during the course of its execution about which random
choices have been made up to the current execution point and ignores the later ones2).

Definition 1 (Probabilistic semantics). A probabilistic semantics SpJPK ∈ Dp , Ω � D

of a program P is a measurable function of a probability space 〈Ω, E, µ〉 into a semantics
domainD (considered as a measurable space 〈D, O〉 with observable semantic properties in
O ⊆ ℘ (D)). ut

By observable, we mean that semantic properties in O will be the ones we eventually
have probabilistic information upon.

The meaning of the probabilistic semantics SpJPK is that when a scenario ω ∈ Ω is
picked (randomly according to µ), then the execution of the program P yields the (non)-
deterministic semantics SpJPK(ω) ∈ D. That is, ω embodies all the possible random choices
that the program will have to make during its execution. D can be any non-probabilistic
semantics domain (e.g. the powerset of maximal execution traces as in Ex. 7 below or any of
its abstractions [4] such as the prefix trace semantics in Ex. 4). This definition covers most
probabilistic models of computation found in the literature such as program semantics [17],
Markov decision processes [2,3,10,11,22,29], etc.

Example 4. Suppose the program P starts by tossing a coin x = random(1,2), and then ex-
ecutes other statements. The prefix trace semantics of P would be described by Ω = {ω1, ω2}

and SpJPK ∈ Dp = Ω � D, where D = ℘ (S+) is the set of finite sequences of states
and the observable properties are simply ℘ (D), defined as SpJPK(ω1) = { prefix traces of
P starting with x = 1 } and SpJPK(ω2) = {prefix traces of P starting with x = 2}. Then the
definition of µ would tell what is the probability of scenarios ω1 and ω2. For a non-biased
coin, µ would be defined by µ({ω1}) = 1/2, µ({ω2}) = 1/2, µ(∅) = 0, µ(Ω) = 1. ut

Example 5 (Markov chains). Markov chains can be formalized in our framework by taking
Ω = [0, 1]N (sequences of elements in [0,1]) with the uniform Lebesgue measure. For a
specific sequence un ∈ Ω, the execution of the Markov chain is as follows.

From a state s0, at step i ≥ 0, where multiple states s1, . . . , sk of the Markov chain can
be chosen for the next step and where the probability of going to state sa is pa ∈ [0, 1]. By
definition,

∑
1≤a≤k pa = 1, so [0, 1] can be divided in k segments S a each of length pa. Now,

choose si+1 = sa such that ui ∈ S a. ut

Definition 2 (Probability of a program property). The probability that a program P has
property Φ ∈ O is Pr(SpJPK ∈ Φ) = SpJPK(µ)(Φ). ut

Example 6. The semantics SpJPK ∈ Dp = ΩP � DP of P as shown in Fig. 1 can be
defined with DP , Z3 denoting the final value of the variables x, y and z and ΩP ,

{
ω ∈

{
←−x ,−→x } · {←−y ,−→y } · {←−z ,−→z , ε} · {

←−
z ,
−→
z , ε}

∣∣∣ |ω| = 3
}

where ←−x (resp. −→x) denotes the left (resp.

right) branch of the first probabilistic choice on x,←−y (resp. −→y) denotes the left (resp. right)

branch of the second probabilistic choice on y, and ←−z and −→z (resp.
←−
z and

−→
z) denotes the

2 This is usually formalized by a filtration in measure theory/probabilities.

P ω SpJPK(ω) µ({ω})

x = 1 1
2
⊕ x = 2;

y = 0 x
3
⊕ y = 1;

if (y = 0) then
z = 2 1

4
⊕ z = 4

else
z = 1 1

5
⊕ z = 3

←−x ←−y ←−z 〈1, 0, 2〉 1
2 ·

1
3 ·

1
4 = 1

24
←−x ←−y −→z 〈1, 0, 4〉 1

2 ·
1
3 ·

3
4 = 1

8

←−x −→y
←−
z 〈1, 1, 1〉 1

2 ·
1
3 ·

1
5 = 1

30

←−x −→y
−→
z 〈1, 1, 3〉 1

2 ·
1
3 ·

4
5 = 2

15
−→x ←−y ←−z 〈2, 0, 2〉 1

2 ·
2
3 ·

1
4 = 1

12
−→x ←−y −→z 〈2, 0, 4〉 1

2 ·
2
3 ·

3
4 = 1

4

−→x −→y
←−
z 〈2, 1, 1〉 1

2 ·
2
3 ·

1
5 = 1

15

−→x −→y
−→
z 〈2, 1, 3〉 1

2 ·
2
3 ·

4
5 = 4

15

Fig. 1. Program P and its probabilistic concrete semantics

left or right branch of the third (resp. fourth) probabilistic choice on z. Note that the second
probabilistic choice depends on the value of x.

We suppose that any scenario is observable, so observable properties are simply ℘ (ΩP),
and

∑
ω∈ΩP µ({ω}) = 1. The probability that z = 3 is 2

5 since Φ = {〈x, y, z〉 ∈ Z3 | z = 3} and
Pr(SpJPK ∈ Φ) = 2

15 + 4
15 = 2

5 . ut

4.2 Fixpoint semantics

This formalization allows us to give an easy definition of probabilistic semantics as fix-
points. Indeed, let Fω : D −→ D denote the fixpoint semantic transformer for the (non)-
deterministic program P(ω) such that SpJPK(ω) = lfp� Fω. Now define the lifted operator
Fp : (Ω→ D) −→ (Ω→ D) as Fp(λω . Xω) , λω . Fω(Xω). It easily follows from the
definition that SpJPK = lfp�̇ Fp. Thus, we can use the usual abstract interpretation framework
since semantics are still fixpoints.

Definition 3 (Probabilistic fixpoint semantics). Let 〈D, �〉 be a cpo, 〈Ω, E, µ〉 where
E ⊆ ℘ (Ω) is a probabilistic space, FJPK : Ω −→ D −→ D be a pointwise continuous
transformer for program P. The probabilistic fixpoint semantics of P is SpJPK , lfp�̇ FpJPK
where �̇ is the pointwise extension of � and the probabilistic transformer is FpJPK(sP)ω ,
FJPK(ω)(sP(ω)) such that FpJPK : Dp −→ Dp. ut

Lemma 1. Under the conditions of Def. 1 and 3, SpJPK , lfp�̇ FpJPK = λω . lfp� FJPK(ω)
is a probabilistic semantics. ut

Example 7 (Probabilistic maximal trace semantics). Let 〈Ω, E, µ〉 be a probability space, Σ
be a set of states, Σ+ be the non-empty finite sequences of states, Σ∗ , Σ+ ∪ {ε} where ε is
the empty trace, Σ∞ be infinite sequences of states, Σ+∞ , Σ+ ∪ Σ∞, and Σ∗∞ , Σ∗ ∪ Σ∞.
The probabilistic maximal trace semantics is S +∞

p JPK ∈ Ω � ℘ (Σ+∞). For each scenario
ω, S +∞

p JPKω describes a finite maximal or infinite execution of program P and, following [4],
can be defined in fixpoint form.

Define sequencing as X #Y , X∞∪{σsσ′ | σs ∈ X+∧ sσ′ ∈ Y} where X∞ , X∩Σ∞ and
X+ , X ∩ Σ+ and the restriction Y�X , {sσ′ ∈ Y | ∃σ : σs ∈ X+} so that X # Y = X # (Y�X).
This is extended pointwise to (X # Y)ω , X(ω) # Y(ω). For a while language, we would have
(B , {tt, ff}, ff⇒ tt)

S +∞
p JskipKω, {ss | s ∈ Σ}

S +∞
p Jx := eKω,

{
ss[x :=EJeK(ω)s]

∣∣∣ s ∈ Σ
}
3, EJeK : Ω � (Σ −→ Σ)

S +∞
p JC1;C2K, S +∞

p JC1K # S +∞
p JC2K

S +∞
p JbKω,

{
s
∣∣∣ EJbK(ω)s

}
4, EJbK : Ω � (Σ −→ B)

S +∞
p Jif b then C1 else C2K, S +∞

p JbK # S +∞
p JC1K ∪̇ S +∞

p J¬bK # S +∞
p JC2K

S +∞
p Jwhile b do CK , lfpv̇ λ X . S +∞

p JbK ∪̇ S +∞
p J¬bK # S +∞

p JCK # X

where v is the computational ordering on infinite traces of [4] (such that (X v Y) , (X+ ⊆

Y+ ∧ X∞ ⊇ Y∞) and v̇ is the pointwise extension of v. We do not specify the dependence on
ω which would also be possible as e.g. in the Semantics 2 of [17]. ut

4.3 Probabilistic concrete transformers
Observe that in Def. 3, probabilistic transformers are defined pointwise. A transformer F : Dp

−→ Dp is the lifting of the non-deterministic transformer for each scenario: for all sP ∈ Dp,
F(sP)(ω) = Fω(sP(ω)).

It follows that the different probabilistic transformers Fω do not need to share any com-
mon properties. But if they do (e.g. they describe two slightly different paths in the control
flow graph of the probabilistic program), it can be exploited by the analysis.

In particular, this framework implies the very important fact that transformers that do not
correspond to probabilistic statements have a particular form: all the Fω are the same. Indeed,
this can be understood by the fact that the evolution of the program after a particular non-
probabilistic statement does not depend on what scenario has been chosen at the beginning
of the execution.

Example 8. If the statement after x = random(1,2) is x = x+1 and has G as its trans-
former, then for any ωi, Gωi has just the effect of incrementing the value of x by one, regard-
less of the fact that x took the value 1 or 2. ut

However, the Fω are distinct in full generality (e.g. it is the case for x = random(1,2)).

4.4 Examples of probabilistic semantics
Since each possible (non)-deterministic semantics of the probabilistic program is an outcome
of a scenario, the framework totally separates the probabilistic behavior (on theΩ and µ side)
from the (non)-deterministic semantic one (located in the D part). As we will see later, it
allows for independent and fruitful abstractions.

Example 9 (Trace to transition system abstraction and profiling). For all s, s′ ∈ Σ, con-
sider the abstractions 〈Ω � ℘ (Σ+∞), ⊆̇〉 −−−−→←−−−−αs

γs
〈B, ⇐〉 where

−−−−→
reach(s) , {σsσ′ | σ ∈

Σ∗ ∧ σ′ ∈ Σ∗∞} and αs(sP) , (∃ω ∈ Ω : sP(ω) ∈
−−−−→
reach(s)) as well as 〈Ω � ℘ (Σ+∞),

⊆̇〉 −−−−−−→←−−−−−−
α〈s, s′〉

γ〈s, s′〉

〈B, ⇐〉 where −−−→succ(s, s′) , {σss′σ′ | σ ∈ Σ∗ ∧ σ′ ∈ Σ∗∞} and α〈s, s′〉(sP) ,

(∃ω ∈ Ω : sP(ω) ∈ −−−→succ(s, s′)). The property that a state s ∈ Σ is definitely reached is

3 The valuation EJeKs of a pure expression e in state s does not depend on ω when the expression e is
not random (i.e. does not use any random variable and/or statement).

4 The valuation EJbKs of a pure condition b in state s does not depend on ω when the condition b is
not random.

reach(s) , αs(S +∞
p JPK) which has probability Prs , Pr(reach(s)). The property that a tran-

sition 〈s, s′〉 ∈ Σ2 is definitely chosen is succ(s, s′) , α〈s, s′〉(S +∞
p JPK) which has probability

Pr〈s, s′〉 , Pr(succ(s, s′)). We have Prs =
∑

s′∈Σ Pr〈s, s′〉. The probability attached to a tran-
sition 〈s, s′〉 ∈ Σ2 is the probability of choosing this transition knowing that execution has
reached state s which is the conditional probability Pr〈s, s′〉|s , Pr(succ(s, s′) | reach(s)) =
Pr〈s, s′〉

Prs

when state s is reachable. In practice, this conditional probability can often be esti-

mated by statistical profiling. This probabilistic transition system is the abstract probabilistic
semantics of probabilistic programs that exhibit discrete probabilistic choices considered in
many papers such as [11,13,15,23]. ut

Example 10 (Trace to control flow graph abstraction). Continuing Ex. 7 and 9, consider the
case of states which are pairs 〈c, m〉 of a control state c ∈ Γ and a memory state m ∈ M
where Γ is finite. Consider the abstraction 〈℘ (Σ × Σ) , ⊆〉 −−−−→←−−−−αG

γG
〈℘ (Γ × Γ) , ⊆〉 of states 〈c,

m〉 by their control state c, αG(S) , {〈c, c′〉 | ∃m,m′ ∈ M : 〈〈c, m〉, 〈c′, m′〉〉 ∈ S }. The
control flow graph (CFG) abstraction αG ◦ ατ collects control transitions along traces of T .
Similar to Ex. 9, the probability attached to an arc 〈c, c′〉 ∈ Γ2 is the probability of choosing
this arc knowing that control has reached c which is the conditional probability Pr〈c, c′〉|c ,
Pr(succ(c, c′) | reach(c)) when c is reachable. Compilers construct over-approximations of
this CFG syntactically (not taking e.g. conditionals hence code unreachability into account)
and often unsoundly (e.g. considering equiprobability of branches or using profiling). ut

Ex. 11 below shows that instead of the trace semantics of Ex. 7 we could have considered as
well any denotational, predicate transformer, or axiomatic semantics in the abstract interpre-
tation hierarchy of semantics [4].

Example 11 (Probabilistic abstract semantics). Let 〈Ω, E, µ〉 be a probability space and
lfp�̇ FpJPK where Fp : Cp −→ Cp be the probabilistic concrete fixpoint semantics based
on the classical concrete semantics lfp� Fω where 〈C, �〉 is a cpo and Fω : C −→ C

for all ω ∈ Ω. Consider the classical abstraction 〈C, �〉 −−−→←−−−α
γ
〈A, v〉. Let lfpv̇ F]

p where

F]
p : Ap −→ Ap be the probabilistic abstract fixpoint semantics based on the classical

sound abstract semantics lfp� Fω � γ(lfpv F]
ω) where 〈A, v〉 is a cpo and F]

ω : A −→ A.
Then lfp�̇ Fp �̇ γP(lfpv̇ F]

p) so that the probabilistic lifting of a sound classical abstraction is
sound in the sense that in scenario ω, the abstract semantics is (lfpv̇ F]

p)(ω) = lfpv F]
ω. ut

In practice, the simple abstractions considered in Ex. 11 are not powerful enough, in partic-
ular because Ω is in general infinite and needs further abstractions and we want to consider
more general probabilistic properties as defined in next Sect. 5.

5 Probabilistic concrete collecting semantics
The concrete/abstract semantics domains introduced here are summarized in Fig. 2.

5.1 Definition
Concrete properties of programs are elements of the usual concrete domain: the powerset of
the program semantics domain, denoted by ℘

(
Dp

)
= ℘ (Ω � D). The logical implication

order is ⊆.

Definition 4 (Probabilistic concrete collecting semantics). Under the conditions of Def. 1,
the probabilistic concrete property domain is the complete lattice 〈℘

(
Dp

)
, ⊆, ∅, Dp, ∪, ∩〉.

D semantics domain
℘ (D) semantic property domain
Dp , Ω � D probabilistic semantics domain
DV

p ⊆ Dp downsized probabilistic semantic domain

℘
(
Dp

)
= ℘ (Ω � D) probabilistic property domain

℘
(
DV

p

)
⊆ ℘

(
Dp

)
downsized probabilistic property domain

℘ (D)p , Ω � ℘ (D) collecting semantics domain

℘ (D)V
p ⊆ ℘ (D)p downsized collecting semantic domain

℘
(
℘ (D)V

p

)
properties of collecting semantics domain

I⊆̇(℘ (D)V
p) downset properties of collecting semantics domain

℘
(
℘ (D)V

p

) /
≡̈

probabilistic concrete collecting semantics domain

Fig. 2. Concrete and abstract semantics domains

The probabilistic collecting semantics of a program P is its strongest probabilistic property
{SpJPK} [6]. ut

The probabilistic concrete property domain ℘
(
Dp

)
allows us to express any particular prob-

abilistic property.

Example 12 (Probability of a program property). The probabilistic property of verifying a
non-probabilistic property Γ ∈ ℘ (D) with probability at least 0.7 is:

Φ =
{
sP ∈ Dp

∣∣∣ Pr(sP ∈ Γ) ≥ 0.7
}

=

{
sP ∈ Dp

∣∣∣∣∣ ∫
Ω

χΓ(sP(ω))dµ(ω) ≥ 0.7
}
. ut

The probabilistic concrete property domain ℘
(
Dp

)
also makes it possible to express program

properties that are specifically probabilistic, as illustrated by the following examples 13 and
14.

Example 13 (Game gain expectation). Assume a gambling program P allows the owner to
win or lose some money at the end of its execution. The win or loss amount for a specific
program semantics is given by a measurable function κ : D � Z, Z having the σ-algebra
℘ (Z). Then it is straightforward to define the property that a probabilistic program is on
expectation a winning strategy:

Φ′ =
{

sP ∈ Dp

∣∣∣ E(κ ◦ sP) > 0
}

=

{
sP ∈ Dp

∣∣∣∣∣ ∫
Ω

κ(sP(ω))dµ(ω) > 0
}
. ut

Example 14 (Probabilistic temporal logics). The probabilistic µ-calculus of [22] or the linear-
time probabilistic temporal logic of [12] describe probabilistic properties of execution traces.
So their semantics can be described by (abstractions of) elements of ℘ (Ω � Σ∞). ut

Of course, we basically have no effective way to automatically compute an integral on an
arbitrary space Ω. This is not a problem since Def. 4 is a concrete semantics which is not
required to be computable nor decidable in any way. This undecidability problem will be
tackled by considering abstract semantics.

5.2 Downsizing the concrete collecting domain
Allowing semantics to be any measurable function ensures a good expressivity but may
be too precise. It is often preferable not to distinguish between similar situations. Indeed,
making concrete semantics too verbose makes abstractions less precise, because abstract

transformers take meaningless concrete semantics into account. It will become clearer when
we design abstract transformers in Sect. 6.3.

Example 15. In the case of Ex. 4 of the non-biased coin above, swapping the values of
SpJPK(ω1) and SpJPK(ω2) is impactless: both objects have exactly the same behavior. What
changes is that the scenarios do not have the same meaning in both cases: in the first case ωi

stands for the situation when x = i whereas it stands for the situation when x = 3 − i in the
other one. ut

To overcome this issue, we simply abstract away similar situations by restricting the
concrete domain to the relevant semantics. It is not possible to define relevant formally as
it depends on the specific instance of the framework. Therefore, we assume that there exists
a sanity checker: it is a characteristic function V : Dp −→ {0, 1} that decides whether a
semantics in Dp is valid, i.e. is actually of interest. The sanity checker V defines the corre-
sponding setDV

p , {sP ∈ Dp | V(sP) = 1}.

Thus, the valid/real concrete semantics domain is ℘
(
DV

p

)
instead of ℘

(
Dp

)
. Actually,

Dp is a particularDV
p with V accepting everything.

This process of downsizing a domain ℘
(
DV ′

p

)
to a domain ℘

(
DV

p

)
when DV

p ⊆ D
V ′
p

(i.e. V is more restrictive than V ′) is a simple abstraction where the abstraction αV,V ′ (S) ,
{sP ∈ S | V(sP) = 1} for S ⊆ DV ′

p simply forgets every semantics that is not in DV
p . It is a

Galois connection:

〈℘
(
DV ′

p

)
, ⊆〉 −−−−−→−→←−−−−−−−

αV,V′

γV,V′

〈℘
(
DV

p

)
, ⊆〉 .

Thus, for any sanity checker V , ℘
(
DV

p

)
is an abstraction of ℘

(
Dp

)
. The more restrictive is

the sanity checker, the more precise the subsequent abstractions will be (see the abstraction
of transformers in Sect. 6.3).

6 Probabilistic abstract semantics

We explore here three directions to abstract the probabilistic concrete collecting semantics
of Sect. 5. The first one (I) in Sect. 6.1 is to abstract on the semantics side, i.e. abstract D
(this is where it is possible to plug existing non-probabilistic analyses). The second (II) in
Sect. 6.2 is to abstract the scenario space Ω by losing some precision on the probabilistic
part of the semantics. Finally, the third axis (III) in Sect. 6.3 is to abstract the measurable
functions representing the semantics by their distributions.

It is a comprehensive description of the way to lift any non-probabilistic analysis to
the probabilistic setting. For instance, we can then obtain information such as “x ∈ [1, 4]
with probability 0.7” instead of “x is always in [1, 4]” which may not be provable without
probabilistic hypotheses.

6.1 (I) Abstracting the semantics

Given a classical abstract interpretation 〈℘ (D), ⊆〉 −−−→←−−−α
γ
〈A, v〉 such as the interval abstrac-

tion, we now describe a way to lift any such non-probabilistic analysis to the probabilistic
setting. The probabilistic properties considered in Sect. 5 belong to ℘

(
DV

p

)
⊆ ℘ (Ω � D)

where classical properties ℘ (D) on which to apply classical abstractions do not appear ex-
plicitly. So we have to abstract ℘

(
DV

p

)
into a probabilistic collecting semantics domain in

which classical properties ℘ (D) appear explicitly.

An inadequate solution An immediate solution is to take the classical collecting semantics
on each scenario, leading to measurable functions in the set ℘ (D)p , Ω � ℘ (D) where
the σ-algebra taken on ℘ (D) is the powerset of the one on D. The natural logical order
between these objects is the pointwise order

∀s, s′ ∈ ℘ (D)V
p , s ≤ s′ iff s ⊆̇ s′ .

Indeed, ≤ means that a probabilistic semantic property is more precise than another one if it
is the case on every scenario.

However, the problem is now that we cannot reason on ℘ (D)p , Ω � ℘ (D) in classi-
cal logical terms with the logical implication ⊆ because elements are not sets but functions.
And there is no simple order that works with further abstractions.

Probabilistic collecting semantics So, to express properties of these objects, as above, we
turn to the powerset ℘

(
℘ (D)p

)
= ℘ (Ω � ℘ (D)), where the implication order is the inclu-

sion order ⊆ on the sets. This leads to the consideration of properties of the pointwise col-
lecting semantics so that we can manipulate properties of semantic properties. For example,
the strongest property of a program semantics SpJPK ∈ Dp = Ω � D is

{
λω . {SpJPKω}

}
.

It is interesting to note that while this step is implicit in the non-probabilistic case5 (see
Sect. 6.2), it is essential in the probabilistic setting.

The concrete collecting domain may have to be downsized as in Sect. 5.2 by consider-
ing ℘ (D)V

p which is the restriction of ℘ (D)p to functions that are coherent with V in the
straightforward sense, i.e. any concretization verifies V .

The correspondence between the downsized probabilistic property domain and the prop-
erties of the collecting semantics domain is given by the easily proven Galois connection

〈℘
(
DV

p

)
, ⊆〉 −−−−→←−−−−αD

γD
〈℘

(
℘ (D)V

p

)
, ⊆〉

where αD and γD are defined for all S ∈ ℘
(
DV

p

)
and T ∈ ℘

(
℘ (D)V

p

)
as:

αD(S) ,
{
tP ∈ ℘ (D)V

p

∣∣∣ ∃sP ∈ S : ∀ω ∈ Ω : tP(ω) = {sP(ω)}
}

=
{
λω ∈Ω . {sP(ω)}

∣∣∣ sP ∈ S
}

γD(T) ,
{
sP ∈ DV

p

∣∣∣ ∃tP ∈ T : ∀ω ∈ Ω : sP(ω) ∈ tP(ω)
}
.

And actually, the only question we are interested in is to know whether a collecting
semantics C ∈ ℘ (D)V

p satisfies a property S ∈ ℘
(
℘ (D)V

p

)
or any more precise property, that

is C ∈ ↓ S where ↓ S ,
{
s′ ∈ ℘ (D)V

p

∣∣∣ ∃s ∈ S , s′ ⊆̇ s
}

is the downward closed set of S (or

downset) for ⊆̇. It shows that the properties of interest are downward closed sets I⊆̇
(
℘ (D)V

p

)
in ℘

(
℘ (D)V

p

)
themselves ordered by ⊆.

The correspondence between 〈℘
(
℘ (D)V

p

)
, ⊆〉 and 〈I⊆̇

(
℘ (D)V

p

)
, ⊆〉 is a straightforward

Galois connection 〈℘
(
℘ (D)V

p

)
, ⊆〉 −−−−→←−−−−α↓

γ↓
〈I⊆̇

(
℘ (D)V

p

)
, ⊆〉 defined by α↓(S) , ↓ S = {s′ ∈

℘ (D)V
p | ∃s ∈ S , s′ ⊆̇ s}, and accordingly γ↓(I) , {s | ∀s′ ∈ ℘ (D)V

p : (s′ ⊆̇ s) =⇒ s′ ∈ I}.
The proof is left to the reader.

C ∈ ↓ S can also be expressed as ∀s ∈ C : ∃s′ ∈ S : s ⊆̇ s′. This leads to define a
pre-order ⊆̈ where the Hoare preorder v̈ is defined for any v̇ as follows

∀S , S ′ ∈ ℘
(
℘ (D)V

p

)
, S v̈ S ′ iff ∀s ∈ S : ∃s′ ∈ S ′ : s v̇ s′ .

5 When Ω = {•}, ℘ (Ω � D) is isomorphic to ℘ (D), so we essentially get ℘ (℘ (D)) which, in the
classical case, is often abstracted into ℘ (D) by 〈℘ (℘ (D)) , ⊆〉 −−−−→←−−−−α∪

γ∪
〈℘ (D) , ⊆〉where α∪(P) ,

⋃
P

and γ∪(Q) , ℘ (Q), which amounts to taking initial segments for the order ⊆. See Sect. 6.2 for more
details.

To get a partial order, it is necessary to quotient by the associated equivalence relation S ≡̈
S ′ , S v̈ S ′ ∧ S ′ v̈ S . In the rest of the paper, we denote by [S]≡ , {S ′ | S ′ ≡ S } the
equivalence class of the element S for the equivalence relation ≡, or simply [S] when the
relation ≡ is obvious from the context.

We have 〈I⊆̇(℘ (D)V
p), ⊆〉 −−−−→−→←←−−−−−

α̈I

γ̈I
〈℘

(
℘ (D)V

p

) /
≡̈⊆
, ⊆̈〉meaning that the complete downset

lattice of initial segments 〈I⊆̇(℘ (D)V
p), ⊆〉 is Galois-isomorphic to the complete lattice

〈℘
(
℘ (D)V

p

) /
≡̈⊆
, ⊆̈〉 where α̈I(I) , [I]≡̈⊆ and γ̈I([S]≡̈⊆) , {s | ∃s′ ∈ S : s ⊆̇ s′}. The

proof is left to the reader.

The two visions 〈I⊆̇(℘ (D)V
p), ⊆〉 −−−−→−→←←−−−−−

α̈I

γ̈I
〈℘

(
℘ (D)V

p

) /
≡̈, ⊆̈〉 are equivalent, but we find the

“⊆̈-approach” much more intuitive for the rest of this paper. It accounts to looking at sets of
properties simply as “what may happen is over-approximated by these elements” instead of
“everything that can happen is to be found in this set”.

Example 16. Consider Ω and the interval property Γ = {λω . x ∈ [1, 10]} (i.e. the set of
mesurable functions where for each scenario ω, x is in [1, 10]) where v is interval inclu-
sion. Let the program semantics be SpJPK = {λω . x ∈ [3, 3], λω . x ∈ [7, 7]}. The fact
that program “P satisfies property Γ” is

[
SpJPK

]
v̈ [Γ], i.e. SpJPK v̈ Γ or equivalently

∀s ∈ SpJPK : ∃s′ ∈ Γ : s v̇ s′ that is ∀s ∈ SpJPK : ∃s′ ∈ Γ : ∀ω ∈ Ω : s(ω) v s′(ω)
which holds since [3, 3] v [1, 10] and [7, 7] v [1, 10]. Note that we do not have the inclusion
{SpJPK} ⊆ Γ, so the Hoare order is really what is meaningful for us. ut

In particular, a set with only > is larger than any other one. The above explanations justify
the following definition.

Definition 5 (Probabilistic concrete collecting semantics domain). The probabilistic con-
crete collecting semantics domain is

〈℘
(
℘ (D)V

p

) /
≡̈, ⊆̈〉 . ut

This will be the base domain for the abstractions we describe below, coming from the Galois
connection

〈℘
(
DV

p

)
, ⊆〉 −−−−→←−−−−αD

γD
〈℘

(
℘ (D)V

p

)
, ⊆〉 −−−−−−−→←−−−−−−−

α̈I ◦α↓

γ↓ ◦ γ̈I
〈℘

(
℘ (D)V

p

) /
≡̈⊆
, ⊆̈〉

such that lem. 2 below is satisfied.

Lemma 2. Given a probabilistic property Φ ∈ ℘ (D)V
p , we have

α̈I ◦ α↓ ◦ αD(Φ) =
[{
λω . {sP(ω)}

∣∣∣ sP ∈ Φ
}]
≡̈⊆

. ut

Proof. α̈I ◦ α↓ ◦ αD(Φ)

= α̈I ◦ α↓
({

tP ∈ ℘ (D)V
p

∣∣∣ ∃s′P ∈ Φ : ∀ω ∈ Ω : tP(ω) = {s′P(ω)}
})

Hdef. αD and ℘ (D)V
p I

= α̈I
({

sP ∈ ℘ (D)V
p

∣∣∣ ∃tP ∈ ℘ (D)V
p : ∃s′P ∈ Φ : ∀ω ∈ Ω : tP(ω) = {s′P(ω)} ∧ ∀ω ∈ Ω :

sP(ω) ⊆ tP(ω)
})

Hdef. α↓, ℘ (D)V
p and ⊆̇I

=
[{

sP ∈ ℘ (D)V
p

∣∣∣ ∃s′P ∈ Φ : ∀ω ∈ Ω : sP(ω) ⊆ {s′P(ω)}
}]
≡̈⊆

Hset theory and def. α̈II
=

[{
λω . ∅} ∪ {

λω . {s′P(ω)}
∣∣∣ s′P ∈ Φ

}]
≡̈⊆

Hsince sP(ω) ⊆ {s′
P

(ω)} implies sP(ω) = ∅ or sP(ω) = {s′
P

(ω)}I

=
[{
λω . {s′P(ω)}

∣∣∣ s′P ∈ Φ
}]
≡̈⊆

Hdef. ≡̈⊆.I ut

Example 17 (Probabilistic maximal trace collecting semantics). Continuing Ex. 7, the prob-
abilistic maximal trace semantics is S +∞

p JPK ∈ Ω � D where D , ℘ (Σ+∞) so that

the probabilistic maximal powertraces collecting semantics is S {{+∞}}p JPK , α̈I ◦ α↓ ◦

αD({S +∞
p JPK}) proving, by Lem. 2, that

S {{+∞}}p JPK =
[{
λω . {S +∞

p JPK(ω)
}}]
≡v
∈ ℘

(
Ω � ℘

(
℘

(
Σ+∞))) /

≡̈. ut

Lemma 3. A probabilistic semantics sP ∈ Dp satisfies a probabilistic property Φ ∈ ℘ (D)V
p

if and only if sP ∈ γD(Φ) if and only if α̈I ◦ α↓ ◦ αD({sP}) ⊆̈
[{
Φ
}]
≡̈⊆

. ut

The proof is straightforward from the definitions and is left to the reader.

Example 18 (Probability of trace properties). Continuing Ex. 7, the probability that the trace
semantics S +∞

p JPK satisfies an observable property Φ ∈ F ⊆ ℘ (℘ (Σ+∞)) (such as determin-
ism Φ = {{σ} | σ ∈ Σ+∞}) is given, following Sect. 3, by the distribution S +∞

p JPK(µ) : F
−→ [0, 1] such that S +∞

p JPK(µ)Φ = Pr
(
S +∞

p JPK ∈ Φ
)

= Pr
(
∀ω : S +∞

p JPK(ω) ∈ Φ
)

=

Pr
(
S +∞

p JPK(ω) ∈ {λω .Φ′ | Φ′ ⊆ Φ}) = Pr
(
S +∞

p JPK(ω) ∈ ↓{λω .Φ}) which, by Lem. 3, is

Pr
(
α̈I ◦ α↓ ◦ αD({sP}) ⊆̈

[{
↓{λω .Φ}}]

≡̈v

)
= Pr

(
α̈I ◦ α↓ ◦ αD({sP}) ⊆̈

[{
λω .Φ}]

≡̈v

)
=

∫
Ω

χ[{
λω .Φ

}]
≡̈v

(α̈I ◦ α↓ ◦ αD ◦ S +∞
p JPK(ω))dµ(ω).

ut

Semantics abstraction Now that we gained access to semantic properties, we can generalize
〈℘ (D) , ⊆〉 to any concrete domain 〈C, ≤〉. We assume that we have a Galois connection with
an abstract domainA: 〈C, ≤〉 −−−→←−−−α

γ
〈A, v〉 as mentioned above. However, it is required that

C and A are measurable spaces (as before, their σ-algebra express observable behaviors),
and that α and γ are measurable functions.

The semantics abstraction is now by composition. Thus, noting Cp = Ω � C and
Ap = Ω � A, the concrete and abstract semantics domains are 〈℘

(
Cp

) /
≡≤
, ≤̈〉 and

〈℘
(
Ap

) /
≡v
, v̈〉.

The abstraction is defined by composition in terms of elements of Cp and Ap, and it
is then lifted to powersets and equivalence classes to be coherent with the domains just
mentioned. So, for sP ∈ Cp, α ◦ sP ∈ Ap and conversely, if tP ∈ Ap, then γ ◦ tP ∈ Cp. It
defines the Galois connection

〈℘
(
Cp

) /
≡̈≤
, ≤̈〉 −−−−→←−−−−

α̈α

γ̈α
〈℘

(
Ap

)
/ ≡̈v, v̈〉

pointwise where
α̈α , λ [S] . [{

λω .α ◦ sP(ω)
∣∣∣ sP ∈ S

}]
≡̈v

γ̈α , λ [T] . [{
sP ∈ Cp

∣∣∣ ∃t ∈ T, sP ≤̇ γ ◦ t
}]
≡̈≤

(it is easy to verify that these functions are well-defined, i.e. they do not depend on the
representent picked for [S] and [T], and that they are properly measurable).

Example 19 (Set of traces to traces abstraction). Continuing Ex. 7 and 17, consider the
abstraction of sets of traces into traces 〈℘ (℘ (Σ+∞)) , ⊆〉 −−−−→←−−−−α∪

γ∪
〈℘ (Σ+∞) , ⊆〉 with α∪(S) ,⋃

S and γ∪(T) = ℘ (T) as first performed in most classical static analyses. The probabilistic
trace collecting semantics is

S {+∞}p JPK, α̈α∪ (S
{{+∞}}
p JPK) ∈ ℘

(
Ω � ℘

(
Σ+∞)) /

≡̈⊆

= α̈α∪
([{
λω . {S +∞

p JPK(ω)
}}]
≡̈⊆

)
Hdef. S {{+∞}}p JPK in Ex. 17I

=

[{
λω .α∪(sP(ω))

∣∣∣∣ sP ∈
[{
λω . {S +∞

p JPK(ω)
}}]
≡̈⊆

}]
≡̈⊆

Hdef. α̈α∪I

=
[{
λω .α∪

({
S +∞

p JPK(ω)
})}]

≡̈⊆
Hdef. ≡̈⊆I

=
[{
λω . S +∞

p JPK(ω)
}]
≡̈⊆

Hdef. α∪I ut

Example 20 (Traces to reachability abstraction). Continuing Ex. 7, 17, and 19, consider the
reachability abstraction 〈℘ (Σ+∞) , ⊆〉 −−−−→←−−−−αr

γr
〈℘ (Σ) , ⊆〉 such that αr(T) , {s ∈ Σ | ∃σ,σ′ :

σsσ′ ∈ T } collecting states along traces of T . Applying the above semantics abstraction, the
probabilistic reachability semantics is

S r
pJPK, α̈αr (S

{+∞}
p JPK) ∈ ℘

(
Ω � ℘

(
Σ+∞)) /

≡̈

= α̈αr

([{
λω . S +∞

p JPK(ω)
}]
≡̈⊆

)
Hdef. S {+∞}p JPK in Ex. 19I

=

[{
λω .αr(sP(ω))

∣∣∣∣ sP ∈
[{
λω . S +∞

p JPK(ω)
}]
≡̈⊆

}]
≡̈⊆

Hdef. α̈αrI

=
[{
λω .αr

(
S +∞

p JPK(ω)
)}]
≡̈⊆

Hdef. ≡̈⊆I

=
[{
λω . {s ∈ Σ | ∃σ,σ′ : σsσ′ ∈ S +∞

p JPK(ω)}
}]
≡̈⊆

Hdef. αrI

The probabilistic reachability semantics is therefore the downward closed set of the function
taking each scenario to the minimal reachability abstraction of its behavior. ut

Example 21 (Probability of invariance properties). Continuing the trace to reachability ab-
straction example 20, the probability that a program invariant I ∈ ℘ (Σ) holds during execu-
tion (assuming that the abstract property I is properly measurable) is

S +∞
p JPK(µ)(γr(I))

, Pr(S +∞
p JPK ∈ γr(I)) Hdef. 2 of property probabilityI

= Pr(α̈I ◦ α↓ ◦ αD(S +∞
p JPK) ⊆̈

[
{γr(I)}

]
≡̈⊆

) HLem. 3I

= Pr(α̈αr
◦ α̈I ◦ α↓ ◦ αD(S +∞

p JPK) ⊆̈ [{λω . I}]≡̈⊆) HGalois connexion αr, γrI

= Pr(S r
pJPK ⊆̈ [{λω . I}]≡̈⊆) Hdef. S r

pJPK in Ex. 20.I

Therefore we can define the invariant probability semantics SiJPK , λ I . Pr(S +∞
p JPK ∈

γr(I)) = Pr(S r
pJPK ⊆̈ [{λω . I}]). An axiomatic definition of the abstract semantics SiJPK

can be calculated from the definition of S +∞
p JPK in Ex. 7 using standard abstract interpreta-

tion techniques. For example

SiJskipKI , Pr(S +∞
p JskipK ∈ γr(I)) Hdef. SiJskipKI

= Pr({ss | s ∈ Σ} ∈ γr(I)) Hdef. S +∞
p JskipKI

= Pr(s ∈ I) =

∫
Ω

χI dµ Hdef. γr and Sect. 3I

SiJC1;C2KI , Pr(S +∞
p JC1;C2K ∈ γr(I)) Hdef. SiJC1;C2KI

= Pr(S +∞
p JC1K # S +∞

p JC2K ∈ γr(I)) Hdef. S +∞
p JC1;C2KI

= Pr(S +∞
p JC1K ∈ γr(I) ∧ S +∞

p JC2K ∈ γr(I)) Hdef. # and γrI

= Pr(S +∞
p JC1K ∈ γr(I)) × Pr(S +∞

p JC2K ∈ γr(I)) HProbability theoryI

= SiJC1KI × SiJC2KI Hdef. SiJCKI

and similarly for other commands using fixpoint abstraction [6, Th. 7.1.0.4-(3)] for loops.
ut

The series of examples 7, 17, 19, 20, and 21 shows that the probabilistic abstract interpre-
tation framework is compositional in that the abstraction of an abstraction is an abstraction.
Sec. 6.2 below makes the link with classical static analysis approaches.

6.2 (II) Abstracting the scenario space Ω
Definition The scenario space Ω is chosen arbitrarily among all the measured spaces that
could describe the random behavior at hand. Several Ω spaces could describe the same prob-
abilistic system, or we might want to “group” several scenarios together because they look
the same from the level of details we need.

Satisfyingly enough, it is possible to change the Ω space by a simple abstraction. Let Ω
be a measurable space with a distribution µ, and Ω′ be a set. Suppose there exists a surjective
mapping q : Ω � Ω′, then it is possible to abstract a probabilistic semantics expressed
over Ω by one over Ω′.

First, we define the observable events on Ω′ as the smallest set making q measurable.
We note Ap(Ω) , Ω � A for the probabilistic semantics domain over Ω and 〈A, v, t〉.
Then

〈℘
(
Ap(Ω)

) /
≡̈, v̈〉 −−−−−−→−→←−−−−−−−

αΩ,Ω′

γΩ,Ω′

〈℘
(
Ap(Ω′)

) /
≡̈, v̈〉

where
γΩ,Ω′ ,

[
λ [S] . {sP ∈ Ap

∣∣∣ ∃s′P ∈ S ′ : ∀ω ∈ Ω : sP(ω) v s′P(q(ω))
}]
≡̈v

αΩ,Ω′ ,
[
λ [S ′] . {λω′ ∈Ω′ . tω∈q−1({ω′}) s(ω)

∣∣∣ s ∈ S
}]
≡̈v

and it can be verified that these definitions do not depend on the chosen representants S and
S ′.

The law µ′ on Ω′ is the image of the law µ by q, i.e. for all measurable sets X′ ⊆
Ω′, µ′(X′) = µ(q−1(X′)).

Non-determinism as an abstraction Merging scenarios by using a surjective q that identi-
fies their image amounts to forgetting the probabilistic information on them, and seeing them
just as a “new scenario”. It means that when in the new compound scenario, the program can
actually non-deterministically be in either one of the initial scenarios. That is why all their
semantics are joined in the αΩ,Ω′ definition, and the probability of the new scenario is the
sum of the probabilities of the source ones.

Thus, non-determinism is simply expressible in our framework by theΩ-abstraction. And
while non-determinism is expressible between some scenarios, all the other probabilistic
informations about the other scenarios are kept unchanged and used. Moreover, the non-
determinism impacts as little as possible because the new compound scenario still behaves
well with respect to the rest of the semantics.

Classical abstract interpretation as an abstraction Along those lines, it is natural to find
classical abstract interpretation as a limit Ω-abstraction: forgetting all probabilistic informa-
tion in the semantics should give back the classical abstract interpretation framework.

It is exactly what happens ifΩ′ is taken as a singletonΩ• = {•}with the trivial probability
measure on it (in this case, the semantics describes anything that can happen as the join of
all possible outcomes, without knowing what is the probability for each actual behavior). We
call this abstraction the “safe abstraction”.

〈℘
(
Ap(Ω)

) /
≡̈v
, v̈〉 −−−−−−→−→←−−−−−−−

αΩ,{•}

γΩ,{•}
〈℘

(
Ap(Ω•)

) /
≡̈v
, v̈〉

where Ap(Ω•) , {•} � A is isomorphic to A, and so 〈℘
(
Ap(Ω•)

) /
≡̈v
, v̈〉 is order-

isomorphic to 〈℘ (A)
/
≡̈v
, v̈〉.

In classical abstract interpretation, we are usually just interested in properties such as
S JPK] v Q. It means that when we have a semantics that can be any element of QP ∈ ℘ (A),
we say that the most precise abstract state describing it is tQP. It amounts to applying the
following join-abstraction

〈℘ (A)
/
≡̈, v̈〉 −−−−→−→←−−−−−

αt

γt
〈A, v〉

where
αt , λ [S] .

⊔
Q∈S

Q and γt , λQ . [↓Q]≡̈ .

This Galois connection abstracts the probabilistic abstract interpretation framework back
to the classical abstract interpretation framework, an abstraction which is not always express-
ible in other more specific frameworks e.g. [24,26,25].

6.3 (III) Abstracting probabilistic semantics by distributions
Law-abstraction Starting from the abstract probabilistic semantics of Sect. 6.1

SpJPK] ∈ Ap , Ω � A, where 〈A, v〉 is a cpo,
we have the semantic properties in the domain[

↓
{
SpJPK]

}]
≡̈v
∈ ℘

(
Ap

) /
≡̈v
.

In this semantics, the dependencies between scenarios and the associated abstract seman-
tics have been preserved. But this is something that we may not desire for static analysis
because it would lead to combinatorial explosion. One solution considered in Sect. 6.2 is
to abstract the scenario space Ω. Another abstraction is to consider the distribution of the
abstract semantics, that is, the function giving the probability of any observable abstract
property. Remembering only the distribution from a measurable function is actually an ab-
straction. Note that usual probabilistic analysis tools start actually from (abstractions of) this
level of abstraction to build their analysis e.g. [1,3,13,15,21,28,29], lacking the insight and
soundness justifications that we developed above.

The order between the laws should reflect the intuition we have on lattices and logi-
cal implication. The information that we need from the distribution is actually restricted to
downward closed sets because we want to answer questions like “What is Pr(SpJPK] v Q) ?”,
which is given by the function λQ . SpJPK](µ)(↓Q) (where ↓ is this time the classical down-
ward operator in the latticeA).

Thus, we say that a law ν ∈ LA (LA denotes the set of probability laws on A, LA ⊆
℘ (A) −→ [0, 1]) is more precise than another one ν′ if it puts more weight on the bottom of
the abstract latticeA. That is, the logical order between laws onA is

ν � ν′ ⇐⇒ ∀Q ∈ A : ν(↓Q) ≥ ν′(↓Q)
The idea behind this logical order is essential to the understanding of the whole approach. As
usual, logical orders should reflect that smaller abstract properties imply greater ones. Here,
the intuition on the order ν � ν′ is that ν assigns a higher probability than ν′ to more precise
properties in 〈A, v〉, so more precise properties have better chances to hold.

Classically, it is safe to approximate x ∈ [1, 10] by x ∈ [1, 20]. It is just less precise,
because [1, 10] ⊆ [1, 20]. In the probabilistic case, the analogous situation would be “x ∈
[1, 10] is true with probability one”, approximated by “x ∈ [1, 10] with probability 1/2 and
x ∈ [1, 20] with probability 1/2”. Of course, the former situation is more precise than the
second one, and this is reflected by the � order.

Formally, the � order checks that anywhere in the lattice, the most precise law is at least
as precise as the other one, with at least as much probability.

It is interesting to note that as we mentioned before, if Ω is shrunk to a singleton Ω•, the
only valid probabilities for properties are 0 and 1, and the � order boils down to v between
abstract states and gives back the classical abstract interpretation framework.

The order � is then lifted to the powersets by using the Hoare order once again, with
N,N′ ⊆ LA

N �̈ N′ ⇐⇒ ∀ν ∈ N : ∃ν′ ∈ N′ : ν � ν′ .

In fact, we take for LA a subset of the laws on A because some laws do not have a
meaning for the semantics at hand. If a non-biased coin is tossed, it makes no sense to speak
of having tails with probability 1/3. It is not a proper abstract semantics. To circumvent this
issue, we restrict from now on LA to the elements l that have at least one corresponding
function, i.e. a function inAp such that f (µ) = l.

We are now ready to define the Galois connection that unifies all of this

〈℘
(
Ap

) /
≡̈v
, v̈〉 −−−−→←−−−−αL

γL
〈℘ (LA)

/
≡̈�
, �̈〉

where αL , λ [S]≡̈v . [
{s(µ) | s ∈ S }

]
≡̈�

and γL , λ [N]≡̈� . [
{s ∈ Ap | s(µ) ∈ N}

]
≡̈v

. As
usual, it is easily shown that these functions are well-defined regardless of the chosen repre-
sentant of the equivalence classes.

Example 22 (Probabilistic constant propagation). Consider the very simple probabilistic
program P : x = 0 2

3
⊕ x = 1 whose abstract probabilistic semantics is defined by Ω =

{ω0, ω1} and the constant propagation latticeA , {⊥,>}∪Z ordered by ∀z ∈ Z : ⊥ @ z @ >
as

SpJPK](ω0) = 0, µ({ω0}) = 2
3 , SpJPK](ω1) = 1, µ({ω1}) = 1

3 .

The strongest probabilistic program property is[
↓ SpJPK]

]
≡̈

=
[{
λω . (ω = ω0 ? {⊥, 0} : {⊥} | ω = ω1 ? {⊥, 1} : {⊥})

}]
≡̈

The order v̈ is such that e.g. [λω . {⊥, 0}]≡̈ v̈ [λω . {⊥, 0,>}]≡̈ since 0 v >. We have [{ν}]≡̈� =

αL
([
↓
{
SpJPK]

}]
≡̈

)
and ν ≺ ν′ as follows (assuming Z ⊆ (Z \ {0, 1}) ∪ {>})

-1 2 0 1
1/3 2/3

1

T

T

0 0

P {⊥,Z} {⊥, 0,Z} {⊥, 1,Z} {⊥, 0, 1,Z}

ν(↓ P) 0 2
3

1
3 1

ν′(↓ P) 0 0.5 0.2 1
ut

Example 23. The final distribution of the constant and parity analysis of a simplified version
P’ of the probabilistic program P of Ex. 6 is provided below

x = 0 2
3
⊕ x = 1;

if (x = 0) then
y = 2 1

4
⊕ y = 4

else
y = 1 1

5
⊕ y = 3

Program P’

x = 0 x = 1 y even y odd

x = 0
y even

x = 0
y odd

x = 1
y even

x = 1
y odd

2/3 1/3

1/3 2/3

1

2/3 1/3

T

T ut

Example 24. Note that it is not a paradox to have in the abstract, for example :
Pr (x ∈ [0, 10]) > Pr (x ∈ [0, 5]) + Pr (x ∈ [5, 10])

Indeed the analysis may not have managed to infer the exact value of Pr (x ∈ [0, 5]) by lack
of completeness, but only an under-estimation. ut

In practice, distributions need only to be considered for atoms of atomic lattices (x = 0,
y even 2

3
⊕ x = 1, y odd in Ex. 23) and more generally only for the join-irreducible

elements. Further examples based on sets of probability distributions are given in [21].

Law-abstraction transformers Along with the abstract domain that we just described, it is
essential to construct the corresponding abstract transformers.

They are operators that take as input a (set of) semantic properties distribution and trans-
form it according to their corresponding statement, over-approximating the concrete seman-
tics of the statement.

Let us say that a statement S has a corresponding concrete transformer FS : Dp −→ Dp

defined as FSp(λω . Xω) , λω . FSω(Xω), following Sec. 4.2.
It follows from this definition that for any s ∈ DV

p , the distribution of s is transformed by
FS in the following way, where Φ ⊆ D

Pr
(
FS(s) ∈ Φ

)
=

∫
Ω

χ
Φ

(
FSω(s(ω))

)
dµ(ω) =

∫
Ω

χ
(FSω)−1(Φ)

(s(ω))dµ(ω) (1)

i.e. to know the probability that a semantic property is verified after applying a transformer,
we measure the probability of the scenarios leading to that property after the transformation.

In the general case, this integral cannot be simplified. In particular, it cannot be expressed
generally as a function of the input distribution s only. As a consequence, there is no straight-
forward way to go from a concrete transformer to an abstract one that transforms elements
of 〈℘ (LA)

/
≡̈�
, �̈〉, other than by using the classical formula: (FS)] = α ◦ FS ◦ γ where α and

γ are the appropriate abstraction and concretization functions that link the abstract domain
to the most concrete one.

In practice, one has to design the transformers by hand, making sure that they are over-
approximations of the above mentioned optimal abstract transformers. Note that this is a
process that was made silently in the related works, but taking them as axioms without prov-
ing their soundness in respect to the concrete semantics (see e.g. Sect. 8.4 and 8.5).

We see here that the precision of the sanity checker V (see Sect. 5.2) is crucial to the
precision of the abstract transformers. Indeed, the smaller the set FS ◦ γ, the more precise
(FS)] is. It makes sense: if (FS)] has to be sound with respect to the “right” concrete seman-
tics and some “useless” ones, it is less precise than if it just has to account for the right ones.
That is why defining precise sanity checkers is so important to easily craft sound and precise
abstract transformers.

But the issue is not as problematic as it may seem. Indeed, in the vast majority of cases,
equation (1) can be further simplified to only depend upon the distribution of s.

When the transformer corresponds to a non-random statement, then by definition the
operators Fω are all equal as seen in Ex. 8, and the equation boils down to

Pr
(
FS(s) ∈ Φ

)
=

∫
Ω

χ
Φ

(
FS(s(ω))

)
dµ(ω) =

∫
Ω

χ
Φ
(FS(ω))ds(µ)(ω)

where “ds(µ)(ω)” denotes that the integral is taken according to the probability measure of
s. Thus the new distribution is now computed as a simple function of the distribution of s,
an information that is kept in the abstract state in the 〈℘ (LA)

/
≡̈�
, �̈〉 domain.

Of course, to apply to the 〈℘ (LA)
/
≡̈�
, �̈〉 domain, this process has to be lifted pointwise

to sets (and thus equivalence classes) — it is straighforward.

Example 25. Suppose that x is a random integer variable in a fixed program, the statement
x++ would have such an abstract transformer. Indeed, the action of the statement does not
depend on the actual value of x. In any scenario, it increments the value of x by one. Eval-
uating the above integral, we see that, for instance, the probability of x being 4 after the
transformer is the probability of x being 3 before, which is exactly what we expect. ut

As we just saw, it is far easier to define abstract transformers for non-random statements
than for random ones. So how should we craft transformers for random statements?

First, let us note it is a good thing that non-random transformers are seamlessly lifted
to the probabilistic case. It is certainly desirable. On the other hand, building the abstract
transformers for random statements requires more knowledge because we have to create a
function as precise as possible verifying the soundness equation, without formal indication
on how to do it. It looks pretty normal after all, because handling probabilistic behaviors
must necessarily imply more work at some point.

That being said, our experience is that in most practical instantiations of the frame-
work, there will not be that many probabilistic constructs to find transformers for (typically,
just calls to rand()-like functions). For these statements, the probabilistic behavior is well-
known, and sound abstract transformers are pretty straightforward to build.

7 Iterating in the abstract and branch prediction

The goal of this section is to show how to instrumentalize all the theory that has been de-
veloped so far to build a probabilistic static analyzer. Essentially, it boils down to building
as precise abstract transformers as possible for classic programming languages constructs
such as conditional and loops. Once this is done, it just remains to use classical abstract
interpretation based fixpoint approximation through custom iteration schemes, e.g. [9].

7.1 Conditionals

Knowing the semantic properties distribution after a conditional requires to know as pre-
cisely as possible the probability that the condition is actually true or false. It is intuitively
clear: the more a branch is likely to be executed, the more it will have an impact on the final
outcome.

Formally, assume that Q ∈ A, ls ∈ LA is the law of a semantics s ∈ DV
p , S is the

statement “if b then C1 else C2”, and assume that the probability that the condition b
is true when evaluated is fixed and equal to pb, then for any Φ ∈ ℘ (A)

JSK(ls)(Φ) = Pr(JSK(s) ∈ Φ) Hdef. distributionI

= Pr
(
JC1K(s) ∈ Φ ∧ JbK(s)

)
∨ (JC2K(s) ∈ Φ ∧ J¬bK(s))

= Pr
(
JC1K(s) ∈ Φ ∧ JbK(s)

)
+ Pr

(
JC2K(s) ∈ Φ ∧ J¬bK(s)

)
Hprobability theoryI

= pb ×Pr
(
JC1K(s) ∈ Φ | JbK(s)

)
+ (1− pb)×Pr

(
JC2K(s) ∈ Φ | J¬bK(s)

)
Hcond. prob., Sec.3I

The abstract transformer of statement S depends heavily on pb. Unfortunately, it may be the
case that the analysis cannot determine the exact value of pb. There can be two main reasons
for that

–Lack of precision: the evaluation of the condition may involve variables that we do not
have precise enough information about. Moreover, as we do not have always the optimal
abstract transfer functions, we are likely to lose precision along the way: the probability that
we know for a condition to be true is unfortunately just a minoration (because, for example,
the analyzer could show that the condition is met with probability only 0.5 instead of 0.7
by lack of completeness).

–Measurability: the condition is not probabilistic, or we do not have the necessary proba-
bilistic setting to determine it (it may have been abstracted away by an Ω-abstraction from
Sect. 6.2). Indeed, the previous calculus is valid only if the events JbK(s) (b is true) and
J¬bK(s) (b is false) are observable. Otherwise, the value of pb is not even defined.

Whatever the cause of the uncertainty may be, we end up with pb being unknown in a
set pb ∈ Pb ⊆ [0, 1]. At this point, the best is to separately analyze the branches of the condi-
tional and compute P1(Φ) = Pr

(
JC1K(s) ∈ Φ | JbK(s)

)
and P2(Φ) = Pr

(
JC2K(s) ∈ Φ | J¬bK(s)

)
.

Then the set of possible outcome distributions is {l ∈ LA | ∃p ∈ Pb : ∀Φ ∈ ℘ (A) : l(Φ) =

pP1(Φ) + (1 − p)P2(Φ)}.
In the same spirit, if P1 and/or P2 cannot be accurately determined, then their values

belong to some subsets of [0, 1] that we try to compute as precisely as possible.
This process must then be lifted to sets (and then easily to equivalence classes) to acco-

modate the abstract domain 〈℘ (LA)
/
≡̈�
, �̈〉.

7.2 Loops

As usual, loops are even more difficult to analyze. It combines the issues of evaluating con-
ditional probabilities with the need to evaluate the number and effects of iterating through
the loop.

We describe here a few strategies to design abstract transformers for while loops. There
are many others that could apply to more specific cases, but we will remain as general as
possible to give a good overview. We assume we have the statement S: “while b do C”.

The general case In the favorable case, the probability of entering the loop after i ≥ 0
iterations is known, and we denote it by ploop(i). Following the same idea than in the case of
the conditional, we have

JSK(ls)(Φ) = Pr(JSK(s) ∈ Φ) Hdef. distributionI

= Pr(JSK(s) ∈ Φ ∧ 0 iteration) + Pr(JSK(s) ∈ Φ ∧ ≥ 1 iterations) HdichotomyI
= Pr(JSK(s) ∈ Φ∧0 iteration)+Pr(JSK(s) ∈ Φ∧1 iterations)+Pr(JSK(s) ∈ Φ∧≥ 2 iterations)

HdichotomyI= . . .

=
∑
i≥0

Pr(JSK(s) ∈ Φ ∧ i iterations) Hconverges because positive terms and sum ≤ 1I

=
∑
i≥0

ploop(i) × Pr(JSK(s) ∈ Φ | i iterations) Hcond. prob.I

The nice thing here is that the computation of the iterations is separate for each number
of iterations. For i ≥ 0 iterations, the transformer of the loop is simply the composition of the
conditional evaluation and the body execution i times. The second term that accounts for the
probability that the loop actually does not terminate cannot be a priori eliminated, although
it can sometimes be ruled out if the analysis does have more information on the context.

As in the conditional case, the crux of the matter is to obtain as good evaluations as
possible for ploop(i) and the body transformer.

Non-probabilistic loops If the truth of the condition b of the loop is not a measurable
semantic property, then the analysis cannot determine what is the probability to enter the
loop. Thus ploop(i) is only known to be anything in [0, 1], and the analysis has to contain the
set of all corresponding possible probabilistic measures.

As usual, custom widening operators may have to be used to guarantee termination de-
pending on the underlying abstract domain.

An example of an ad-hoc loop transfer function We now present a particular case of a
loop transformer that may apply in a variety of cases, as an example to show how to craft
specific loop abstract transformers for specific situations.

Suppose that the analyzer knows that the loop always terminates and that ploop(i) de-
creases as i increases, but that it cannot deduce from the body of the loop how it does so. In
that case, the above equation is of no practical use. One way would be to go with the transfer
function from 7.2 as it is sound, but it can be quite imprecise.

The approach we choose here is to unroll the loop for N > 0 iterations and over-
approximate anything that can happen after. Reusing the above calculus, we have

JSK(ls)(Φ) = Pr(JSK(s) ∈ Φ) Hdef. distributionI

=
∑
i≥0

ploop(i) × Pr(JSK(s) ∈ Φ | i iterations) Hcond. proba. Sec.3I

=

N∑
i=0

ploop(i) × Pr(JSK(s) ∈ Φ | i iterations) +
∑
i>N

ploop(i) × Pr(JSK(s) ∈ Φ | i iterations)

By hypothesis, for all i > N, ploop(i) ≤ ploop(N). So we deduce that∑
i>N

ploop(i) × Pr(JSK(s) ∈ Φ | i iterations) ≤ ploop(N)

In that case, the transfer function for the first iterations is thus calculated by simply
composing the body transfer function and the conditional N times, we note it lN . Then to
take the second term into account, the set of resulting distributions is {l ∈ LA | ∀Φ ∈ ℘ (A) :
|l(Φ) − lN(Φ)| ≤ ploop(N)}. The soundness is guaranteed by the above calculus.

Note that the transformer could be made more precise because the uncertainty applies
only to properties that are impacted by the execution of the body, we do not take that into
account in the above definition.

This approach can be made even more precise as N need not be fixed in advance: the
loop can be iterated until the probability of going through it again is less than a specified
cutoff ε > 0 (so that the source of imprecision ploop(N) is tightly bounded) ; and if it is not
witnessed after a specified number of iterations Nmax, then the above mechanism is used.

8 Related work: some well-known techniques as probabilistic
abstractions

8.1 Markov chains/decision processes
Markov chains are random discrete transitions systems with a finite or countable number of
possible states such that the next state depends only on the current state and not on the past
or the future. Assuming in Ex. 7 that S +∞

p JPK is a stationary stochastic process (all executions
do terminate) on a countable state space Σ (for simplicity on the non-negative integers), the
Markov chain with the transition matrix [succ(s, s′)]s,s′∈Σ has the same steady-state behavior,

and similar short-term statistics [20, Proposition A.1.1]. In case of non-stationarity (non-
termination), alternatives are to add history (considering states in Σ′ , Σ+) or to define
Pr〈s, s′〉 , limn→∞

1
n Pr(S +∞

p JPK ∈ {σss′σ′ | σs ∈ Σ+ ∧ s′σ′ ∈ Σ+∞}}). So every process is
(almost) Markov, which justifies this standard abstraction of probabilistic program semantics
[22].

8.2 Probabilistic model checking
Probabilistic model checking [11] is often based on the Markov chain abstraction of Sect. 8.1.
The fundamental notion of probabilistic reachability for Markov decision processes can be
generalized to programs by considering the abstraction α(X), λ s . Pr(S +∞

p JPK�{s}∩γr(X) ,
∅) of the maximal trace semantics similar to Ex. 20. It is further abstracted by the probability
interval abstraction αm(X) , min{α(X)s | s ∈ Σ} and αM(X) , max{α(X)s | s ∈ Σ} which
is computable for finite systems [3, Sect. 6], [10, Sect. 3], [11, Sect. 4], or their reduced
product [29, Sect. 3], etc. However programs generally have an unbounded concrete seman-
tics so a (traditional) finite abstraction is often too imprecise [8]. This is the main reason for
considering infinitary abstractions in this paper.

8.3 Quantitative abstraction
[24,26] propose a formulation of abstract interpretation on Hilbert spaces for real or complex
quantitative abstractions of distribution-based semantics which can be reformulated using
abstraction (2) of traces (e.g. where states are sets of λ-terms and transitions are reductions
of these λ-terms). However, they do not stick to the usual soundness notion [26, Sect.5.2]:
they are interested in behaviors on expectations and the “strict” soundness that we enforced
from the beginning has to be relaxed using more permissive concretization functions.

8.4 Probabilistic strongest postcondition semantics
Following Ex. 7, we let 〈Ω, E, µ〉 be a probability space. The probabilistic semantics postu-
lated in [14] is a distribution transformer abstracting the probabilistic maximal trace seman-
tics S +∞

p JPK : Ω � Σ+∞.
Given a distribution δ ∈ LΣ of the initial states, the abstraction αs : (Ω � ℘ (Σ+∞))

−→ (LΣ −→ LΣ) of X ∈ ℘ (Σ+∞) is the distribution of the final states, if any, so that
αs(λω . X(ω))δs′ ,

∑
s∈Σ

δ(s) × Pr(∃σ : sσs′ ∈ X+) (2)

The abstract semantics is SsJPK , αs(S +∞
p JPK). For example

αs(S +∞
p JskipK)δs′ = αs({ss | s ∈ Σ})δs′ Hdef. S +∞

p JskipKI

=
∑
s∈Σ

δ(s) × Pr(s = s′) = δ(s′) Hdef. αs so that SsJskipKδ = δI

αs(S +∞
p Jif c then A else BK)δs′

=
∑
s∈Σ

δ(s) × Pr(∃σ : sσs′ ∈ {sσ′ | EJcKs ∧ sσ′ ∈ S +∞
p JAK+} ∪ {sσ′ | EJ¬cKs ∧ sσ′ ∈

S +∞
p JBK+})

Hdef. αs and S +∞
p Jif c then A else BKI

=
∑
s∈Σ

δ(s) × (Pr(EJcKs) × Pr(∃σ : sσs′ ∈ S +∞
p JAK+) + (1 − Pr(EJcKs)) × Pr(∃σ : sσs′ ∈

S +∞
p JBK+})) Hprobability lawI

=
∑
s∈Σ

δ(s) × (c × Pr(∃σ : sσs′ ∈ S +∞
p JAK+) + (1 − c) × Pr(∃σ : sσs′ ∈ S +∞

p JBK+))

Hby [14] implicitly assuming that Pr(EJcKs) = c where c ∈ R∗I

= c × αs(S +∞
p JAK)δs′ + (1 − c) × αs(S +∞

p JBK)δs′ Hdef. αsI

proving that SsJif c then A else BK = c×SsJAK+(1−c)×SsJBK pointwise and similarly
for other commands using fixpoint abstraction [6, Th. 7.1.0.4-(3)] for loops.

These theorems are, up to logical notations, the axioms postulated in [14]. The proba-
bilistic strongest postcondition abstraction in equation (2) is frequently used as collecting
semantics for forward static analysis e.g. [21] for Markov decision processes.

8.5 Probabilistic weakest precondition semantics
Whereas [14] is a forward abstraction as explained in Sect. 8.4, [15,23] is the corresponding
backward abstraction providing probabilistic weakest preconditions

αw(X)δs,
∑
s′∈Σ

Pr(∃σ : sσs′ ∈ X+) × δ(s′) (3)

The abstract semantics is SwJPK , αw(S +∞
p JPK). For example

SwJC1;C2Kδ = αw(S +∞
p JC1;C2K)δ Hdef. SwJPKI

= λ s . ∑
s′∈Σ

Pr(∃σ : sσs′ ∈ S +∞
p JC1K+ # S +∞

p JC2K+) × δ(s′) Hdef. αw and S +∞
p JC1;C2KI

= λ s . ∑
s′∈Σ

Pr(∃σ′, s′′, σ′′ : sσ′s′′ ∈ S +∞
p JC1K+ ∧ s′′σs′ ∈ S +∞

p JC2K+) × δ(s′)

Hdef. # with sσs′ = sσ′s′′σs′I

= λ s . ∑
s′∈Σ

Pr(∃σ : sσs′ ∈ S +∞
p JC1K+) ×

∑
s′′∈Σ

Pr(∃σ′′ : s′σ′′s′′ ∈ S +∞
p JC2K+) × δ(s′′)


Hconditional probababilityI

= λ s .αw(S +∞
p JC1K)(λ s′ .

∑
s′′∈Σ

Pr(∃σ′′ : s′σ′′s′′ ∈ S +∞
p JC2K+) × δ(s′′))(s) Hdef. αwI

= λ s .αw(S +∞
p JC1K)(αw(S +∞

p JC2K)(δ))(s) Hdef. αwI

= λ s . SwJC1K(SwJC2K(δ))(s) Hdef. SwJCKI

= SwJC1K ◦ SwJC2K(δ) Hdef. ◦I

which is the definition of SwJC1;C2K postulated in [15, Sect. 4]. The probabilistic choice
C1 p⊕C2 requires additional hypotheses as in Sect. 8.1 while iteration is handled by fixpoint
abstraction [6, Th. 7.1.0.4-(3)]. The probabilistic weakest precondition abstraction (3), or at
least its discrete equivalent, is frequently used as collecting semantics for backward static
analysis e.g. [22,29] for Markov decision processes and further abstracted by the probabilis-
tic intervals of Sect. 8.2.

9 Future work and conclusion
We have introduced new principles of probabilistic abstract interpretation for designing prob-
abilistic semantics and static analysis methods. The framework is very general, highly ex-
pressive so as to set forth any probabilistic and computational situation. The framework sepa-
rates probabilities (µ) from semantics (SpJPK) so the probabilistic and semantics abstractions
are self-reliant. Their abstractions can each be fine-tuned independently by easy adaptation
of standard proof and static analysis methods.

Future work includes the case of absence of a best abstraction, the study of relational law-
abstractions, improvement of branch prediction, implementation and experiments. It will

also be essential to develop precise widening operators and abstract transformers to keep
enough precision during the fixpoint calculation.

Work supported in part by the CMACS NSF Expeditions in Computing award 0926166.

References.

[1] Camporesi, F., Feret, J., Koeppl, H., Petrov, T.: Automatic reduction of stochastic rules-based models
in a nutshell. AIP, vol. 1281(2). Amer. Inst. of Physics (2010)

[2] Chadha, R., Viswanathan, M., Viswanathan, R.: Least upper bounds for probability measures and their
applications to abstractions. LNCS 5201, 264–278. Springer (2008)

[3] Coletta, A., Gori, R., Levi, F.: Approximating probabilistic behaviors of biological systems using ab-
stract interpretation. Springer 229(1), 165–182 (2009)

[4] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpre-
tation. TCS277(1–2), 47–103 (2002)

[5] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. POPL. 238–252 (1977)

[6] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. POPL. 269–282 (1979)
[7] Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic and Comp. 2(4), 511–547 (1992)
[8] Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to ab-

stract interpretation. PLILP ’92. LNCS 631, 269–295. Springer (1992)
[9] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does Astrée scale up? FMSD

35(3), 229–264 (2009)
[10] D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reduction and refinement strategies for probabilistic

analysis. PAPM-PROBMIV, LNCS 2399, 57–76. Springer (2002)
[11] Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for proba-

bilistic systems. SFM’11. LNCS 6659, 53–113. Springer(2011)
[12] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC 6(5), 512–535 (1994)
[13] Hehner, E.: Probabilistic predicative programming. MPC’2004. LNCS 3125, 169–185. Springer (2004)
[14] Hehner, E.: A probability perspective. FAC 23(4), 391–419 (2011)
[15] Katoen, J.P., McIver, A., Meinicke, L., Morgan, C.: Linear-invariant generation for probabilistic pro-

grams: Automated support for proof-based methods. SAS’2010. LNCS 6337, 390–406. Springer (2010)
[16] Klenke, A.: Probability Theory: A Comprehensive Course. Springer (2007)
[17] Kozen, D.: Semantics of probabilistic programs. JCSS22, 328–50 (1981)
[18] Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology.

PER 35(4), 14–21 (2008)
[19] McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer (2005)
[20] Meyn, S.: Control Techniques for Complex Networks. CUP(2007)
[21] Monniaux, D.: Abstract interpretation of probabilistic semantics. SAS’2000. LNCS 1824, 322–339.

Springer (2000)
[22] Monniaux, D.: Abstract interpretation of programs as Markov decision processes. SCP 58(1–2), 179–

205 (2005)
[23] Morgan, C., McIver, A., Seidel, K., Sanders, J.: Probabilistic predicate transformers. TOPLAS 18(3),

325–353 (1996)
[24] Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic lambda-calculus and quantitative program analy-

sis. JLC 15(2), 159–179 (2005)
[25] Di Pierro, A., Wiklicky, H.: Concurrent constraint programming: towards probabilistic abstract inter-

pretation. PPDP. 127–138. ACM (2000)
[26] Di Pierro, A., Wiklicky, H.: Probabilistic abstract interpretation and statistical testing. PAPM-PROBMIV,

LNCS 2399, 57–76. Springer (2002)
[27] Roy, P., Parker, D., Norman, G., de Alfaro, L.: Symbolic magnifying lens abstraction in Markov deci-

sion processes. QEST’2008. 103–112. IEEE (2008)
[28] Smith, M.: Probabilistic abstract interpretation of imperative programs using truncated normal distri-

butions. Springer 220(3), 43–59 (2008)
[29] Wachter, B., L.Zhang: Best probabilistic transformers. VMCAI. LNCS 5944, 362–379. Springer (2010)

http://cmacs.cs.cmu.edu/
http://www.nsf.gov/

