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1 Introduction

Imperative and functional programming are very often separate worlds, even in languages like OCaml
[18] which combines both styles. Most programmers definitely prefer one style to the other. This
reflects in semantics mostly denotational for functional and operational for imperative. This also
reflects on verification, mostly Turing/Floyd/Naur/Hoare for invariance and Turing/Floyd/Manna-
Pnueli variant/convergence function for termination of imperative languages while Scott proof
method is preferred for functional programming.

We show that after appropriate generalization the principles underlying the verification of these
programming styles boils down to the same unified verification (hence analysis) methods.

2 Basic notions in denotational semantics

The denotational semantics of first-order functions 𝑓 ∈ D → D⊥ uses a complete partial order
(cpo) ⟨D⊥, ⊑, ⊥, ⊔⟩ where ⊥ denotes non-termination and D⊥ = D ∪ {⊥} is the flat domain ordered
by ⊥ ⊑ ⊥ ⋤ 𝑑 ⊑ 𝑑 for all 𝑑 ∈ D. ⊔ is the least upper bound (lub) in D⊥. This is extended
pointwise to ⟨D → D⊥, ⊑̇, ⊥̇, ⊔̇⟩ by 𝑓 ⊑̇ 𝑔 if and only if ∀𝑑 ∈ D . 𝑓(𝑑) ⊑ 𝑔(𝑑), ⊥̇ ≜ 𝜆 𝑥 .⊥, and
⨆̇
𝑖∈Δ
𝑓𝑖 ≜ 𝜆𝑥 . ⨆

𝑖∈Δ
𝑓𝑖(𝑥). First-order functions 𝑓 are defined recursively 𝑓(𝑥) = 𝐹(𝑓)𝑥 as least fixpoints

𝑓 = lfp ⊑̇ 𝐹 of continuous transformers 𝐹 ∈ (D → D⊥) 𝑢𝑐−−−→ (D → D⊥). The iterates of 𝐹 from 𝑓 are
𝐹0(𝑓) = 𝑓 and 𝐹𝑖+1(𝑓) = 𝐹(𝐹𝑖(𝑓)). 𝐹 is continuous if and only iff for every denumerable increasing
chain 𝑓0 ⊑̇ 𝑓1 ⊑̇ … ⊑̇ 𝑓𝑖 ⊑̇ …, ⨆̇

𝑖∈N
𝐹(𝑓𝑖) = 𝐹( ⨆̇

𝑖∈N
𝑓𝑖). Continuity implies monotonically increasing

(𝑓 ⊑̇ 𝑔 ⇒ 𝐹(𝑓) ⊑̇ 𝐹(𝑔)). Since 𝐹0(⊥̇) = ⊥̇ and 𝐹 is monotonically increasing, it follows that the
iterates of 𝐹 from ⊥̇ form an increasing chain. Then continuity guarantees that lfp ⊑̇ 𝐹 = ⨆̇

𝑖∈N
𝐹𝑖(⊥̇)

is the limit of the iterates 𝐹𝑖(⊥̇) of 𝐹 from ⊥̇. By def. of ⊑̇ and ⊔̇, (lfp ⊑̇ 𝐹)𝑥 = 𝑦 if and only if
∃𝑖 ∈ N . (∀𝑗 < 𝑖 . 𝐹𝑗(⊥̇)(𝑥) = ⊥) ∧ (∀𝑗 ⩾ 𝑖 . 𝐹𝑗(⊥̇)(𝑥) = 𝑦).
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Example 1 (while iteration). The iteration W = while (B) S operating on a vector 𝑥 ∈ D of values
of variables has denotational semantics JWK = lfp ⊑̇ 𝐹W where 𝐹W(𝑓)𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝑓(𝑆(𝑥)) ), 𝐵 ∈ D→
{tt, ff} is the semantics of boolean expression B, 𝑆 ∈ D→ D⊥ that of statement S (which, by structural
induction, may contain conditionals and inner loop), and ( tt ? 𝑎 : 𝑏 ) = 𝑎 and ( ff ? 𝑎 : 𝑏 ) = 𝑏 is the
conditional. The iterates of 𝐹W from ⊥̇ are
𝐹0W (⊥̇)𝑥 = ⊥
𝐹1W (⊥̇)𝑥 = 𝐹W(𝐹0W (⊥̇))𝑥 = (¬𝐵(𝑥) ? 𝑥 : ⊥ )
𝐹2W (⊥̇)𝑥 = 𝐹W(𝐹1W (⊥̇))𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝐹1W (⊥̇)(𝑆(𝑥)) ) = (¬𝐵(𝑥) ? 𝑥 : (¬𝐵(𝑆(𝑥)) ? 𝑆(𝑥) : ⊥ ) )

= (¬𝐵(𝑥) ? 𝑥 : ⊥ ) ⊔ (𝐵(𝑥) ∧ ¬𝐵(𝑆(𝑥)) ? 𝑆(𝑥) : ⊥ )
…

𝐹𝑛W (⊥̇)𝑥 =
𝑛−1
⨆
𝑖=0

(
𝑖−1
⋀
𝑗=0
𝐵(𝑆𝑗(𝑥)) ∧ ¬𝐵(𝑆𝑖(𝑥)) ? 𝑆𝑖(𝑥) : ⊥ ) Hwhere 𝑆0(𝑥) ≜ 𝑥, 𝑆𝑖+1(𝑥) ≜ 𝑆(𝑆𝑖(𝑥)), and ⋀∅ = ttI

…

(lfp⊑ 𝐹W)𝑥 = ⨆
𝑛∈N
𝐹𝑛W (⊥̇)𝑥 = ⨆

𝑛∈N

𝑛−1
⨆
𝑖=0

(
𝑖−1
⋀
𝑗=0
𝐵(𝑆𝑗(𝑥)) ∧ ¬𝐵(𝑆𝑖(𝑥)) ? 𝑆𝑖(𝑥) : ⊥ ) Hwhere ⨆∅ = ⊥I

= ⨆
𝑛∈N

(
𝑛−1
⋀
𝑗=0
𝐵(𝑆𝑗(𝑥)) ∧ ¬𝐵(𝑆𝑛(𝑥)) ? 𝑆𝑛(𝑥) : ⊥ )

Note that in the lub, at most one condition is true, none if the iteration does not terminate.
Moreover, if (lfp⊑ 𝐹W)𝑥 ≠ ⊥, then, by def. ⊔, ∃𝑗 ∈ N . (lfp⊑ 𝐹W)𝑥 = 𝐹

𝑗
W (⊥̇)𝑥 and so ¬𝐵(𝐹𝑊𝑗(⊥̇)𝑥) holds

proving ¬𝐵(lfp⊑ 𝐹W). ⊓⊔

3 Termination specification

The termination of function 𝑓 ∈ D → D⊥ on a termination domain 𝑇 ∈ ℘(D) can be specified as
𝑓 ∈ P𝑇 where P𝑇 ≜ {𝑓 ∣ ∀𝑥 ∈ 𝑇 . 𝑓(𝑥) ≠ ⊥}. So P𝑇 is the property of functions that terminate on
domain 𝑇.

Example 2 (termination). For imperative program, the termination problem is usually solved by
the Turing [29]/Floyd [12]/Manna-Pnueli [20] variant/convergence function method. For first-order
functions, one can consider Jones size-change termination method [13,17]. ⊓⊔

4 Fixpoint induction principle

In case ⟨D⊥, ⊑, ⊥, ⊔, ⊓⟩ is a complete lattice (e.g. by adding a supremum ⊤ as in Scott’s original
papers [27]), we can make proofs by fixpoint induction. [7, 3.4.1] and [23, (2.3)] observed that
fixpoint induction directly follows from Tarski’s fixpoint theorem [28].

Theorem 1 (Tarski fixpoint theorem [28]) A monotonically increasing function 𝐹 ∈ 𝐿 ↗⟶𝐿
on a complete lattice ⟨𝐿, ⊑, ⊥, ⊤, ⊓, ⊔⟩ has a least fixpoint lfp⊑ 𝐹 = ⨅{𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥}.

Fixpoint induction relies on properties of 𝐹 above its least fixpoint i.e. the 𝑥 ∈ 𝐿 such that 𝐹(𝑥) ⊑ 𝑥
and therefore lfp⊑ 𝐹 ⊑ 𝑥.
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Theorem 2 (Fixpoint induction) Let 𝐹 ∈ L ↗⟶L be a monotonically increasing function
on a complete lattice ⟨L, ⊑, ⊥, ⊤, ⊓, ⊔⟩ and 𝑃 ∈ L. We have

lfp⊑ 𝐹 ⊑ 𝑃 ⇔ ∃𝐼 ∈ L . 𝐹(𝐼) ⊑ 𝐼 (2.a)
∧ 𝐼 ⊑ 𝑃 (2.b) ⊓⊔

𝐽 ∈ L is called an invariant of 𝐹 when lfp⊑ 𝐹 ⊑ 𝐽 and an inductive invariant when satisfying 𝐹(𝐽) ⊑ 𝐽.
Soundness (⇐) states that if a statement is proved by the proof method then that statement is

true. Completeness (⇒) states that the proof method is always applicable to prove a true statement.
Proof (of Th. 2). By Tarski fixpoint Th. 1, lfp⊑ 𝐹 = ⨅{𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥}.

Soundness (⇐): If 𝐼 ∈ L satisfies 𝐹(𝐼) ⊑ 𝐼 then 𝐼 ∈ {𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥} so by definition of the glb
⨅, lfp⊑ 𝐹 = ⨅{𝑥 ∈ 𝐿 ∣ 𝐹(𝑥) ⊑ 𝑥} ⊑ 𝐼 ⊑ 𝑃 by (2.b).

Completeness (⇒): If lfp⊑ 𝐹 ⊑ 𝑃 then take 𝐼 = lfp⊑ 𝐹 then 𝐼 = 𝐹(𝐼) so 𝐹(𝐼) ⊑ 𝐼 by reflexivity and
𝐼 ⊑ 𝑃 by hypothesis, proving ∃𝐼 ∈ L . 𝐹(𝐼) ⊑ 𝐼 ∧ 𝐼 ⊑ 𝑃. ⊓⊔

Usually, proofs are done using logics of limited expressive power so completeness is relative
to the existence of a logic formula expressing the stronger invariant 𝐼 = lfp⊑ 𝑓 [5,6]. In Th. 2, we
consider invariants to be sets in order to make expressivity a separate problem.

The fixpoint induction principle Th. 2 has been used to justify invariance proof methods
for small-step operational semantics/transition systems, including their contrapositive, backward,
etc. variants [9]. It can also be used with a denotational semantics.
Example 3 (Partial correctness of the factorial). Define 𝐹!(𝑓) ≜ 𝜆 𝑛 . ( 𝑛 = 0 ? 1 : 𝑛 × 𝑓(𝑛 − 1) ). Let
us prove that lfp ⊑̇ 𝐹! ⊑̇ 𝑓! ≜ 𝜆 𝑛 . (𝑥 ⩾ 0 ? 𝑛! : ⊥ ) where 𝑛! is the mathematical factorial function.
Applying Th. 2 with 𝐼 = 𝑃 = 𝑓! so that (2.b) holds, we have
𝐹!(𝑓!)𝑛

= ( 𝑛 = 0 ? 1 : 𝑛 × 𝑓!(𝑛 − 1) ) Hdef. 𝐹!I
= ( 𝑛 = 0 ? 𝑓!(𝑛) : 𝑓!(𝑛) ) Hdef. 𝑓!I
⊑ 𝑓!(𝑛) Hdef. conditional and ⊑ reflexiveI
so 𝐹!(𝑓!) ⊑̇ 𝑓! by pointwise def. of ⊑̇, proving (2.a). By definition of ⊑̇, we have ∀𝑛 ∈ Z . (lfp ⊑̇ 𝐹!)𝑛 ≠
⊥ ⇒ lfp ⊑̇ 𝐹!(𝑛) = 𝑓!(𝑛) i.e. if a call (lfp ⊑̇ 𝐹!)𝑛 terminates then it returns 𝑛!. Obviously this is a partial
correctness proof since e.g. the proof does not exclude that lfp ⊑̇ 𝐹! = 𝜆 𝑛 .⊥ ⊑̇ 𝑓!! ⊓⊔
Notice that if 𝑃 = lfp⊑ 𝑓, fixpoint induction requires to prove that 𝑓(lfp⊑ 𝑓) ⊑ lfp⊑ 𝑓 and lfp⊑ 𝑓 ⊑ 𝑃.
So to prove lfp⊑ 𝑓 ⊑ 𝑃, we have to prove lfp⊑ 𝑓 ⊑ 𝑃! In that case fixpoint induction cannot help. In
general, we have to prove lfp⊑ 𝐹 ⋤ 𝑃 but nevertheless the only inductive invariant might be lfp⊑ 𝐹,
as shown below where 𝑃 is not inductive.
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In such cases fixpoint induction is not useful but it is possible to reason on the iterates of 𝐹, as
shown in Sect. 8.
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5 Impossibility to prove termination by fixpoint induction with a
denotational semantics

One can use a function 𝑃 ∈ D → D⊥ to specify a termination domain dom(𝑃) ≜ {𝑥 ∈ D ∣ 𝑃(𝑥) ≠
⊥}. However, by definition of ⊑̇, lfp ⊑̇ 𝐹 ⊑̇ 𝑃 means that lfp ⊑̇ 𝐹 terminates less often that 𝑃 that
is dom(lfp ⊑̇ 𝐹) ⊆ dom(𝑃). This is not a specification of definite termination but of definite non-
termination. So fixpoint induction can be used to prove non-termination but not termination. Of
course 𝑃 ⊑̇ lfp ⊑̇ 𝐹 would do but this is not what fixpoint induction is intended to prove. Considering
the order-dual of Th. 2 will not work either (although it would work for greatest fixpoints) since,
in general, gfp ⊑̇ 𝐹 ≠ lfp ⊑̇ 𝐹.

Example 4 (Termination/total correctness of the factorial). Continuing Ex. 3, termination of the
factorial lfp ⊑̇ 𝐹! where 𝐹!(𝑓) ≜ 𝜆 𝑛 . ( 𝑛 = 0 ? 1 : 𝑛 ×𝑓(𝑛 − 1) ) is 𝑓! ⊑̇ lfp ⊑̇ 𝐹! where 𝑓! ≜ 𝜆 𝑛 . (𝑥 ⩾ 0 ? 𝑛! :
⊥ ) but this is not provable by fixpoint induction Th. 2. ⊓⊔

6 Iteration induction principle

As observed by [19,21,26], iteration induction directly follows from Kleene/Scott’s fixpoint theorem
below (which we used in Sect. 2 with L = D → D⊥). (Th. 3 is often attributed to Stephen Cole
Kleene, after its first recursion theorem [16, p. 348] and appears in [2].)

Theorem 3 (Kleene/Scott iterative fixpoint theorem [26]) If 𝐹 ∈ L 𝑢𝑐−−−→ L is an upper con-
tinuous function on a cpo ⟨L, ⊑, ⊥, ⊔⟩ then 𝐹 has a least fixpoint lfp⊑ 𝐹 = ⨆

𝑛∈N
𝐹𝑛(⊥).

Since 𝐹0(⊥) = ⊥ is the infimum and 𝐹 is upper continuous hence monotonically increasing, the
iterates ⟨𝐹𝑛(⊥), 𝑛 ∈ N⟩ form a non-empty, infinite, denumerable, and maximally increasing chain
which is either first strictly increasing and then stationary (when the iterates converge in finitely
many steps) or else is strictly increasing.

Remark 1. Th. 3 generalizes to chain-𝛼-complete posets (where every 𝛼-chain that is increasing
chain of cardinality less than or equal to 𝛼 has a lub) and 𝛼-continuous functions (preserving the
lubs of 𝛼-chains), and to monotonically increasing functions on complete lattices, using transfinite
iterations 𝐹0(⊥) = ⊥, 𝐹𝛿+1 = 𝐹(𝐹𝛿) for successor ordinals and 𝐹𝜆 = ⨆𝛿<𝜆 𝐹𝛿 for limit ordinals less
than or equal to 𝛼 [22], respectively all ordinals [8]. Th. 3 is then a corollary for the first infinite
ordinal 𝛼 = 𝜔. ⊓⊔

Iteration induction relies on properties of 𝐹 below its least fixpoint. It is usually referred to as
Scott induction or De Bakker and Scott or computational induction and formalized as

“If P ∈ ℘(D) is an admissible predicate, ⊥̇ ∈ P, and ∀𝑑 ∈ P . 𝐹(𝑑) ∈ P then lfp⊑ 𝐹 ∈ P”. (4)

The predicate P is said to be admissible [19] or inclusive [25, p. 118] if and only if it holds for an
increasing enumerable chain, it also holds for its limit, that is for all increasing enumerable chains
𝐹0 ⊑ 𝐹1 ⊑ … ⊑ 𝐹𝑖 ⊑ …, if ∀𝑖 ∈ N . 𝐹𝑖 ∈ P then ⨆

𝑖∈N
𝐹𝑖 ∈ P.
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7 Impossibility to prove termination by iteration induction

The termination specification of functions 𝑓 ∈ D → D⊥ is the set P ≜ {𝑓 ∈ D → D⊥ ∣ ∀𝑥 ∈ D .
𝑓(𝑥) ∈ D} = D→ D of all functions that always terminate on the domain D of their argument. To
prove lfp ⊑̇ 𝐹 ∈ P by structural induction (4) requires ⊥̇ ∈ P, which is not true since, unless D = ∅,
∀𝑥 ∈ D . ⊥̇(𝑥) = ⊥ ∈ D is false. So Scott’s iteration induction principle is incomplete since it cannot
be used to prove termination.

8 Generalized iteration induction principle

This incompleteness calls for a generalization of iteration induction where the characterization Q
of the iterations differs from that of their limit P.

Example 5. For the factorial of Ex. 3, the iterates 𝐹𝑛! (⊥̇), 𝑛 ∈ N are partial functions (characterized
by Q) while the limit 𝑓! is a total function on D = N (characterized by P). ⊓⊔
Let 𝐹 ∈ 𝑆 → 𝑆 and ⟨𝑥𝑖, 𝑖 ∈ Δ⟩ be a family of elements of 𝑆. The family is non-empty if and
only if Δ ≠ ∅. It is infinite when the cardinality of Δ is greater than or equal to that of N. It is
denumerable if and only if Δ ⊆ N (up to an isomorphism). It is a ⊑-increasing chain if and only if
∀𝑖, 𝑗 ∈ Δ . (𝑖 ⩽ 𝑗) ⇒ (𝑥𝑖 ⊑ 𝑥𝑗). It is a strictly increasing chain if and only if ∀𝑖, 𝑗 ∈ Δ . (𝑖 < 𝑗) ⇒ (𝑥𝑖 ⋤ 𝑥𝑗).
It is in 𝑆′ ⊆ 𝑆 if and only if ∀𝑖 ∈ Δ . 𝑥𝑖 ∈ 𝑆′. The sequence ⟨𝑥𝑖, 𝑖 ∈ N⟩ is 𝐹-maximally increasing
when it is infinite (hence non-empty), denumerable, iterating 𝐹 (i.e. ∀𝑖 ∈ N . 𝑥𝑖+1 = 𝐹(𝑥𝑖)), and
either strictly increasing (i.e. ∀𝑖, 𝑗 ∈ N . (𝑖 < 𝑗) ⇒ (𝑥𝑖 ⋤ 𝑥𝑗)) or is first strictly increasing and then
stationary (i.e. ∃𝑘 ∈ N . ∀𝑖, 𝑗 ∈ N . (𝑖 < 𝑗 ⩽ 𝑘) ⇒ (𝑥𝑖 ⋤ 𝑥𝑗) ∧ (𝑘 ⩽ 𝑖) ⇒ (𝑥𝑘 = 𝑥𝑖)).

Theorem 5 (Iteration induction) Let 𝐹 ∈ L 𝑢𝑐−−−→ L be a continuous function on a cpo ⟨L,
⊑, ⊥, ⊔⟩ and P ∈ ℘(L).

lfp⊑ 𝐹 ∈ P⇔ ∃Q ∈ ℘(L) . ⊥ ∈ Q (5.a)
∧ ∀𝑥 ∈ Q . 𝐹(𝑥) ∈ Q (5.b)
∧ for any 𝐹-maximally ⊑-increasing chain ⟨𝑥𝑖, 𝑖 ∈ N⟩ in Q, (5.c)

⨆
𝑖∈N
𝑥𝑖 ∈ P ⊓⊔

The proof below shows that the hypotheses (a), (b), and (c) are necessary only for the iterates of
𝐹. The soundness proof shows that Q is a valid property of the iterates of 𝐹 from ⊥ while P is
a property of their least upper bound, that is of the fixpoint. Offering the possibility of choosing
Q ≠ P is essential to solve the incompleteness problem of Scott induction (4) mentioned in the
above Sect. 7. But of course Th. 5 can be used with Q = P so that it is a generalization of Scott
induction (4) and a proof that (4) is sound.

Condition (5.c) corresponds to the “admissible predicates” in Scott induction. However, (5.c) is
requested for maximally ⊑-increasing chains only since requiring it for all increasing chains would
amount to Scott induction (4). The quantification over chains iterating 𝐹 in (5.c) can be relaxed
since this condition could also be imposed by an appropriate choice of Q.

Proof (of Th. 5). Soundness (⇐): Let 𝐹𝑖+1(⊥) = 𝐹(𝐹𝑖(⊥)) be the iterates of 𝐹 from 𝐹0(⊥) = ⊥.
𝐹0(⊥) ∈ Q by (5.a). By recurrence, ∀𝑖 ∈ N . 𝐹𝑖(⊥) ∈ Q by (5.b). 𝐹 is continuous hence monotonically
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increasing so ⟨𝐹𝑖(⊥) ∈ Q, 𝑖 ∈ N⟩ is a ⊑-increasing enumerable chain iterating 𝐹. If it is finite then
𝐹0(⊥) ⊏ 𝐹1(⊥) ⊏ … ⊏ 𝐹𝑛−1(⊥) = 𝐹𝑛(⊥) = … = … for some 𝑛 ∈ N proving that the chain is 𝐹-
maximally increasing in Q. So, by (5.c), lfp⊑ 𝐹 = 𝐹𝑛−1(⊥) = ⨆𝑖∈N 𝐹𝑖(⊥) ∈ P. Otherwise, the chain is
infinite and strictly increasing so 𝐹-maximally increasing in Q. By Th. 3 and (5.c), we conclude
that lfp⊑ 𝐹 = ⨆𝑖∈N 𝐹𝑖(⊥) ∈ P.

Completeness (⇒): Let 𝐹𝑖+1(⊥) = 𝐹(𝐹𝑖(⊥)) be the iterates of 𝐹 from 𝐹0(⊥) = ⊥. Choosing Q =
{𝐹𝑖(⊥) ∣ 𝑖 ∈ N}, we have (5.a) and (5.b). By Th. 3, ⟨𝐹𝑖(⊥) ∈ Q, 𝑖 ∈ N⟩ is a ⊑-increasing chain in Q.
It is enumerable and the only 𝐹-maximally increasing one so {𝑥𝑖 ∈ Q ∣ 𝑖 ∈ N} = {𝐹𝑖(⊥) ∈ Q ∣ 𝑖 ∈ N}.
By Th. 3, lfp⊑ 𝐹 = ⨆𝑖∈N 𝐹𝑖(⊥). By hypothesis, lfp⊑ 𝐹 ∈ P, and so ⨆𝑖∈N 𝐹𝑖(⊥) = ⨆𝑖∈N 𝑥𝑖 ∈ P, proving
(5.c). ⊓⊔

Remark 2. The same way that the inductive invariant in fixpoint induction need not necessarily be
the strongest possible one, Q need not necessarily be the strongest possible one Q = {𝐹𝑖(⊥) ∣ 𝑖 ∈ N}
in Th. 5, as used in the completeness proof. An example is L = {⊥, 𝑎, 𝑏, 𝑐} with ⊥ ⋤ 𝑎 ⋤ 𝑏 ⋤ 𝑐,
𝐹(⊥) = 𝐹(𝑎) = 𝑎, 𝐹(𝑐) = 𝐹(𝑏) = 𝑏, and P = {𝑎, 𝑏}. Take Q = {𝑎, 𝑏, 𝑐} so that the only 𝐹-maximally
⊑-increasing chains in Q are ⊥𝑎𝜔, 𝑎𝜔, and 𝑏𝜔 which lubs 𝑎 and 𝑏 belong to P, proving lfp⊑ 𝐹 ∈ P. ⊓⊔

Remark 3. Following Rem. 1, Th. 5 generalizes to 𝛼-continuous functions on chain-𝛼-complete
posets and monotonically increasing functions on complete lattices, with Th. 5 holding for 𝛼 = 𝜔.

⊓⊔

Example 6 (Hoare logic). Let JWK = lfp ⊑̇ 𝐹W be the denotational semantics of the iteration W =
while (B) S where 𝐹W(𝑓)𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝑓(𝑆(𝑥)) ) as defined in Ex. 1. Given 𝑃,𝑄 ∈ ℘(D), Hoare
notation for partial correctness [14] is ⦃𝑃⦄ W ⦃𝑄⦄ denoting ∀𝑥 ∈ 𝑃 . (JWK𝑥 ≠ ⊥) ⇒ (JWK𝑥 ∈ 𝑄). Hoare
partial correctness rule for the while iteration is

⦃𝐼 ∩ 𝐵⦄ S ⦃𝐼⦄
⦃𝐼⦄ W ⦃𝐼 ∩ ¬𝐵⦄

(6)

[25, Sect. 6.6.6, p. 115] proves the soundness of the Hoare partial correctness rule for the while
iteration based on its denotational semantics. The ad-hoc proof proceeds by induction on the
semantics of the loop iterates and, assuming termination, passes to the limit. Formally, this consists
in proving soundness by applying Th. 5, as follows.

Take Q ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐼 . 𝑓(𝑥) ≠ ⊥ ⇒ 𝑓(𝑥) ∈ 𝐼}.
⊥̇ ∈ Q by def. Q, proving (5.a).
Assume that 𝑓 ∈ Q. To prove (5.b), we must show that the premiss of Hoare rule (6) implies that
𝐹W(𝑓) ∈ Q.

If 𝑥 ∈ 𝐼 and ¬𝐵(𝑥) then obviously 𝑥 ∈ 𝐼. Otherwise if 𝑥 ∈ 𝐼∩𝐵(𝑥) and 𝐹W(𝑓)𝑥 ≠ ⊥ then ⦃𝐼∩𝐵⦄ S ⦃𝐼⦄
implies 𝑆(𝑥) ∈ 𝐼 so if 𝑆(𝑥) ≠ ⊥ then 𝑓(𝑆(𝑥)) ∈ 𝐼 since 𝑓 ∈ Q proving that 𝐹W(𝑓)𝑥 = 𝑓(𝑆(𝑥)) ∈ 𝐼 that is
𝐹W(𝑓) ∈ Q.

Let ⟨𝑓𝑖 ∈ Q, 𝑖 ∈ N⟩ be any 𝐹W-maximally ⊑-increasing enumerable chain. Assume that 𝑥 ∈ 𝐼 and
( ⨆̇
𝑖∈N
𝑓𝑖)𝑥 ≜ ⨆𝑖∈N 𝑓𝑖(𝑥) ≠ ⊥. By def. lub ⊑, ∃𝑗 ∈ N . ⨆𝑖∈N 𝑓𝑖(𝑥) = 𝑓𝑗(𝑥) ≠ ⊥. Since 𝑓𝑗 ∈ Q, 𝑓𝑗(𝑥) ∈ 𝐼,

proving ⨆𝑖∈N 𝑓𝑖(𝑥) ∈ 𝐼 that is ⨆̇
𝑖∈N
𝑓𝑖 ∈ Q which is (5.c).

By Th. 5, we conclude that JWK = lfp⊑ 𝐹W ∈ Q so ∀𝑥 ∈ 𝐼 . JWK(𝑥) ≠ ⊥ ⇒ JWK(𝑥) ∈ 𝐼. Moreover, if
(lfp⊑ 𝐹W)𝑥 ≠ ⊥ then ¬𝐵(lfp⊑ 𝐹W), as shown in Ex. 1, proving ⦃𝐼⦄ W ⦃𝐼 ∧ ¬𝐵⦄.

Obviously, this rule is incomplete since 𝐼 may not be inductive (so, for completeness, [5,6] has
to ensure that 𝐼 is inductive and use the consequence rule). ⊓⊔
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9 Proving total correctness by generalized iteration induction

By completeness, the termination of lfp ⊑̇ 𝐹 on a termination domain 𝑇 ∈ ℘(D) can always be proved
by generalized iteration induction Th. 5, if lfp ⊑̇ 𝐹 ∈ P𝑇 does hold.

Example 7 (Total correctness II). Continuing Ex. 3, let us define PN ≜ {𝑓 ∈ N → N⊥ ∣ ∀𝑛 ∈ N .
𝑓(𝑛) ≠ ⊥} and apply Th. 5 to prove that prove that lfp⊆ 𝐹! ∈ PN (which, together with Ex. 3, shows
that lfp⊆ 𝐹! = 𝑓!).

Let us define ∀𝑖 ∈ N . Q𝑖 ≜ {𝑓 ∈ N → N⊥ ∣ ∀𝑛 ∈ [0, 𝑖[ . 𝑓(𝑛) ≠ ⊥ ∧ ∀𝑛 ⩾ 𝑖 . 𝑓(𝑛) = ⊥} and
Q ≜ ⋃
𝑖∈N
Q𝑖.

We have ⊥̇ ∈ {⊥̇} = Q0 ⊆ Q, proving (5.a).
Assume that 𝑖 ∈ N and 𝑓 ∈ Q𝑖. We have
𝐹!(𝑓)

= 𝜆 𝑛 . ( 𝑛 = 0 ? 1 : 𝑛 × 𝑓(𝑛 − 1) ) Hdef. 𝐹! in Ex. 3I
⇒ 𝐹!(𝑓)0 ≠ ⊥ ∧ ∀𝑛 − 1 ∈ [0, 𝑖[ . 𝐹!(𝑓)(𝑛) ≠ ⊥ H𝑓 ∈ Q𝑖I
⇒ 𝐹!(𝑓) ∈ Q𝑖+1 Hdef. Q𝑖+1I

It follows, by def. of Q, that if 𝑓 ∈ Q then 𝑓 ∈ Q𝑖 for some 𝑖 ∈ N and therefore 𝐹!(𝑓) ∈ Q𝑖+1 ⊆ Q,
so that (5.b) holds.

Let ⟨𝑓𝑛, 𝑛 ∈ N⟩ be 𝐹!-maximally increasing chain of elements of 𝑄. So, by def. Q, we have
𝑓0 ∈ Q𝑗0 , 𝑓1 ∈ Q𝑗1 , …, 𝑓𝑛 ∈ Q𝑗𝑛 , 𝑓𝑛+1 ∈ Q𝑗𝑛+1 , ….

Assume that the chain is stationary at some rank 𝑖 such that 𝑓0 ⋤ 𝑓𝑖−1 ⋤ … ⋤ 𝑓𝑖 = 𝑓𝑖+1 = ….
Then 𝑓𝑖 ∈ Q𝑗 for some 𝑗 ∈ N. So 𝑓𝑖+1 = 𝑓𝑖 ∈ Q𝑗 and 𝑓𝑖+1 = 𝐹!(𝑓𝑖) ∈ Q𝑗+1, a contradiction since
Q𝑗 ∩Q𝑗+1 = ∅.1

It follows that the chain 𝑓0 ⋤ 𝑓1 ⋤ … ⋤ 𝑓𝑛 ⋤ … is strictly increasing and we have 𝑗0 < 𝑗1 < … <
𝑗𝑛 < 𝑗𝑛+1 < … so 𝑗𝑛+1 > 𝑛 + 1. Since 𝑓𝑛+1 ∈ Q𝑗𝑛+1 , 𝑓𝑛+1(𝑛) ≠ ⊥.

To prove that ⨆̇
𝑖∈N
𝑓𝑖 ∈ PN, assume by contradiction, that ∃𝑛 ∈ N . ( ⨆

𝑖∈N
𝑓𝑖)𝑛 = ⊥ so, by def. ⊔̇,

∃𝑛 ∈ N . ∀𝑖 ∈ N . 𝑓𝑖(𝑛) = ⊥. In particular 𝑓𝑛+1(𝑛) = ⊥, a contradiction.
We have proved (5.c) hence lfp⊆ 𝐹! ∈ PN, that is ∀𝑛 ∈ N . (lfp⊆ 𝐹!)𝑛 ≠ ⊥. ⊓⊔

A much simpler way of proving termination of lfp⊆ 𝐹! for positive parameters is to observe that
parameters strictly decreases on recursive call and remains positive which can be done only a finite
number of times since ⟨N, <⟩ is well-founded. Such termination proofs using a variant/convergence
function are formalized in Th. 10. Th. 11 shows that this proof is equivalent to the above proof
based on Th. 5.

10 Parameter dependency

The fact that the evaluation of 𝑓(𝑥) = 𝐹(𝑓)𝑥 for parameter 𝑥 ∈ D where 𝑓 = lfp⊑ 𝐹 makes a recursive
call to 𝑓(𝑦) with parameter 𝑦 ∈ D, written 𝑥 𝐹⟼𝑦, is usually defined syntactically.
1 Notice that with our choice of Q, this is not necessarily true for chains that are not 𝐹W-iterations.
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Example 8. Define 𝑓(𝑛) = 𝐹(𝑓)𝑛 ≜ ( 𝑛 ∈ [0, 1] ? 0 : 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) ). A call of 𝑓 for 𝑛 ∉ [0, 1] will
recursively call 𝑓(𝑛 − 1) and 𝑓(𝑛 − 2) in the expression 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2). So 𝐹⟼ = {⟨𝑛, 𝑛 − 1⟩, ⟨𝑛,
𝑛 − 2⟩ ∣ 𝑛 ∈ Z ⧵ [0, 1]}:

!1

0 1

2

3
…

-4

-3

-2 -1

…
…
…

4

…

… ⊓⊔

Since we don’t want to provide a specific syntax for defining 𝐹, we have to define the call relation
𝐹⟼ semantically. We let 𝑓[𝑦 ← 𝑑] ∈ D→ D⊥ be the function 𝑓 except for paramater 𝑦 for which

it has value 𝑑 ∈ D⊥.

𝑓[𝑦 ← 𝑑](𝑦) ≜ 𝑑
𝑓[𝑦 ← 𝑑](𝑧) ≜ 𝑓(𝑧) when 𝑧 ≠ 𝑦

The call relation is semantically defined as follows.

𝑥 𝐹⟼𝑦 ≜ let𝑓 = lfp ⊑̇ 𝐹 and 𝑓′(𝑧) = (𝑓(𝑧) = ⊥ ? 0 : 𝑓(𝑧) ) in (7)
𝐹(𝑓′[𝑦 ← ⊥])𝑥 = ⊥ ∧ 𝐹(𝑓′)𝑥 ≠ ⊥

For simplicity, we assume 𝐹 to be always well-defined so choosing 𝑓′(𝑧) = 0 can never lead to a
runtime error. The idea is that forcing 𝑓 to terminate for all its parameters but for 𝑦 for which 𝑓
does not terminate, the main call to 𝑥 will not terminate so this can only come from a recursive
call to 𝑓(𝑦) (or the body of 𝐹 does not terminate independently of its recursive calls to 𝑓, which
we exclude by 𝐹(𝑓′)𝑥 ≠ ⊥).

Example 9. Continuing Ex. 8, let 𝑓(𝑛) = 𝐹(𝑓)𝑛 ≜ ( 𝑛 ∈ [0, 1] ? 0 : 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) ). The semantics
is 𝑓 = lfp⊑ 𝐹 = 𝜆 𝑛 . ( 𝑛 ⩾ 0 ? 0 : ⊥ ) and 𝑓′ = 𝜆 𝑛 . 0. We have
𝐹(𝑓′[𝑛 − 1 ← ⊥])𝑛

= ( 𝑛 ∈ [0, 1] ? 0 : 𝑓′[𝑛 − 1 ← ⊥](𝑛 − 1) + 𝑓′[𝑛 − 1 ← ⊥](𝑛 − 2) ) Hdef. 𝐹I
= ( 𝑛 ∈ [0, 1] ? 0 : ⊥ + 0 ) Hdef. 𝑓′[𝑛 − 1 ← ⊥]I
= ( 𝑛 ∈ [0, 1] ? 0 : ⊥ ) Hdef. + assumed to be strictI
Similarly 𝐹(𝑓′[𝑛 − 2 ← ⊥])𝑛 = ( 𝑛 ∈ [0, 1] ? 0 : ⊥ ). In conclusion, 𝐹⟼ = {⟨𝑛, 𝑛 − 1⟩, ⟨𝑛, 𝑛 − 2⟩ ∣ 𝑛 ∈
Z ⧵ [0, 1]}. ⊓⊔

11 Recursive non-termination

Since we are interested in the termination of recursive functions 𝑓(𝑥) = 𝐹(𝑓)𝑥, we exclude non-
termination of the function due to causes other than recursive calls in 𝐹:

Definition 1 (function body termination hypothesis).

∀𝑓 ∈ D→ D⊥ . ∀𝑥 ∈ D . (𝐹(𝑓)𝑥 = ⊥) ⇒ (∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥) (8)
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Example 10 (function body non-termination). Define 𝐹(𝑓)𝑥 = if (𝑥 = 0) 1 else while (tt) ;𝑓(0),
we have 𝐹(𝑓)1 = ⊥ since the iteration is entered and never exited so the function body termination
hypothesis (8) is not satisfied. This is because the non-termination is not due to the recursive calls
but only to the loop body.

For 𝐹(𝑓)𝑥 = 𝑓(𝑓(𝑥)), if ∀𝑥 ∈ D . 𝑓(𝑥) ≠ ⊥ is assumed to always terminate then 𝐹(𝑓)𝑥 = 𝑓(𝑓(𝑥)) ≠
⊥ does terminate, so satisfies the function body termination hypothesis (8). ⊓⊔

A recursive function definition satisfying the function body termination hypothesis (8) does not
terminate for a given parameter if and only if it makes a recursive call that does not terminate.

Lemma 9 Let 𝑓 = lfp⊑ 𝐹 where 𝐹 is continuous and satisfies the function body termination
hypothesis (8). Then 𝑓(𝑥) = ⊥ if and only if ∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥. ⊓⊔

Proof. Let 𝐹 satisfying the function body termination hypothesis (8) and 𝑓 = lfp⊑ 𝐹. We have
𝑓(𝑥) = ⊥ if and only if 𝐹(𝑓)𝑥 = ⊥ which, by (8), implies ∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥.

Conversely, let 𝑓′(𝑧) = (𝑓(𝑧) = ⊥ ? 0 : 𝑓(𝑧) ). Assume that ∃𝑦 ∈ D . 𝑥 𝐹⟼𝑦∧ 𝑓(𝑦) = ⊥. By (7),
𝑥 𝐹⟼𝑦 implies 𝐹(𝑓′[𝑦 ← ⊥])𝑥 = ⊥. Since ⊥ ⊑ 0 and 𝑓(𝑦) = ⊥, 𝑓 ⊑̇ 𝑓′[𝑦 ← ⊥] pointwise. Moreover,
𝐹 is continuous hence monotonically increasing so 𝑓(𝑥) = 𝐹(𝑓)𝑥 ⊑ 𝐹(𝑓′[𝑦 ← ⊥]) = ⊥ so 𝑓(𝑥) = ⊥
since ⊥ is the infimum. ⊓⊔

The function body termination hypothesis (8) is not restrictive. It simply means that, assuming
that all recursive calls to 𝑓 do terminate, the function body 𝐹(𝑓) must be proved to terminate.
Depending on the considered programming language, this can be done e.g. by structural induction,
using variant/convergence functions (as in Th. 10), etc. This may involve a preliminary partial
correctness proof (e.g. using Th. 2) to restrict the values that can be taken by variables.

12 Proving termination by a variant/convergence function
Following Turing [29] and Floyd [12], most termination proofs are done using a variant/convergence
function in a well-founded set which strictly decreases at each recursive call (or, equivalently, a well-
founded relation). This is the case e.g. of the “size change principle” [13]. The variant/convergence
function termination proof principle can be formulated as follows.

A relation ⟨𝐷, ⋅⩽⟩ such that ⋅⩽ ∈ ℘(𝐷×𝐷) is well-founded or Noetherian if and only if there is no
infinite strictly ⋗-decreasing chain of elements of 𝐷.

Theorem 10 (variant/convergence function proof principle for termination) Let 𝐹 ∈
(D→ D⊥) 𝑢𝑐−−−→ (D→ D⊥) be a continuous function on the cpo ⟨D→ D⊥, ⊑̇, ⊥̇, ⊔̇⟩ satisfying the
function body termination hypothesis (8), 𝑇 ∈ ℘(D), and P𝑇 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝑇 . 𝑓(𝑥) ≠ ⊥}.
Then

lfp⊑ 𝐹 ∈ P𝑇 ⇔ ∃𝐷 ∈ ℘(D) . 𝑇 ⊆ 𝐷 (10.a)
∧ ∃ ⋅⩽ ∈ ℘(𝐷 × 𝐷) . ⟨𝐷, ⋅⩽⟩ is well-founded (10.b)
∧ ∀𝑥 ∈ 𝐷 . ∀𝑦 ∈ D . (𝑥 𝐹⟼𝑦) ⇒ (𝑦 ∈ 𝐷 ∧ 𝑥 ⋗ 𝑦) (10.c) ⊓⊔

Intuitively lfp⊑ 𝐹 must terminate since, by contradiction, an infinite call sequence would create an
infinite descent along the called parameters. Completeness follows from the fact that ⋗ can be
chosen as 𝐹⟼, which is always well-founded for terminating programs. This is proved formally in
Cor. 12.
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Example 11. Continuing Ex. 8, the well-founded relation ⋖ can be chosen as follows

!1

0 1

2

3 4
……

-1-2

Termination follows from the fact that 𝐹⟼ restricted to the naturals in included in ⋗, which is
well-founded. ⊓⊔

The variant/convergence function proof principle remains sound when this semantic dependency
relation is over-approximated syntactically (but maybe not complete, as shown by 𝐹(𝑓)𝑥 ≜ ( tt ?
𝑥 : 𝑓(𝑥) ) where 𝑥 𝐹⟼ 𝑥 syntactically, but not semantically because the recursive call 𝑓(𝑥) is not
reachable).

13 Equivalence of the termination proof by generalized iteration
induction and by variant/convergence function principle

Theorem 11 Let L = D → D⊥ and 𝐹 ∈ L 𝑢𝑐−−−→ L satisfying the function body termination
hypothesis (8). There exists a termination proof by the generalized iteration induction of Th. 5
for 𝐹 if and only if there exists one by the variant/convergence function principle of Th. 10. ⊓⊔

The proof is constructive in that it shows how to construct a proof by one method knowing a proof
by the other method.

Proof. Let us first show that the existence of a termination proof of lfp⊑ 𝐹 by Th. 5 implies the
existence of a termination proof of lfp⊑ 𝐹 by Th. 10.

If lfp⊑ 𝐹 ∈ P𝑇 has been proved by Th. 5, then, as shown by the completeness proof of this
theorem, this can also be done by Th. 5 with ∀𝑖 ∈ N . Q𝑖 ≜ {𝐹𝑖} where 𝐹0 = 𝜆𝑥 .⊥ and 𝐹𝑖+1 = 𝐹(𝐹𝑖)
are the iterates of 𝐹 from 𝜆𝑥 .⊥ and Q ≜ ⋃

𝑖∈N
Q𝑖 so that (5.a) and (5.b) are satisfied. The only

𝐹-maximal ⊑-increasing enumerable chain ⟨𝑥𝑖 ∈ Q, 𝑖 ∈ N⟩ is ⟨𝐹𝑖, 𝑖 ∈ N⟩. By Th. 3, it is such that
⨆̇
𝑖∈N
𝐹𝑖 = lfp⊑ 𝐹, By hypothesis lfp⊑ 𝐹 ∈ P𝑇 and so ⨆̇

𝑛∈N
𝐹𝑖 ∈ P𝑇, proving (5.c).

Let us define 𝐷0 ≜ ∅, 𝐷𝑖 ≜ {𝑥 ∣ 𝐹𝑖−1(𝑥) = ⊥ ∧ 𝐹𝑖(𝑥) ≠ ⊥} for all 𝑖 > 0, and 𝐷 ≜ ⋃
𝑖∈N
𝐷𝑖. Let us prove

that 𝑇 ⊆ 𝐷.
By def. ⊔̇ and lfp⊑ 𝐹 = ⨆̇

𝑖∈N
𝐹𝑖, for all 𝑛 ∈ D, we have (lfp⊑ 𝐹)𝑛 ≠ ⊥ ⇔ ∃𝑖 ∈ N . 𝐹𝑖(𝑛) ≠ ⊥ ⇔

∃𝑖 ∈ N . 𝑛 ∈ 𝐷𝑖 ⇔ 𝑛 ∈ 𝐷. Since lfp⊑ 𝐹 ∈ P𝑇, for all 𝑛 ∈ 𝑇, we have (lfp⊑ 𝐹)𝑛 ≠ ⊥ ⇔ 𝑛 ∈ 𝐷, proving
𝑇 ⊆ 𝐷, that is (10.a).

Let us define 𝑥 > 𝑦 if and only if ∃𝑖 ∈ N . 𝑥 ∈ 𝐷𝑖+1 ∧ 𝑦 ∈ 𝐷𝑖. Let ⋗ be the irreflexive transitive
closure of >. Let us prove that ⟨𝐷, ⋅⩽⟩ is well-founded. By def. of ⋅⩽, for an infinite strictly decreasing
chain for ⋅⩽ there exists one 𝑥0 > 𝑥1 > 𝑥2… for <, and so there would exists 𝑥0 ∈ 𝐷𝑖0 , 𝑥1 ∈ 𝐷𝑖1 ,
𝑥2 ∈ 𝐷𝑖2 , … with 𝑖0 > 𝑖1 > 𝑖2 > … which is impossible since this chain on N cannot be infinite
decreasing. This implies (10.b).

Let 𝑥 be any 𝑥 ∈ 𝐷 and 𝑦 ∈ D satisfies 𝑥 𝐹⟼𝑦.
Since 𝑥 ∈ 𝐷, there exists 𝑖 ∈ N such that 𝑥 ∈ 𝐷𝑖. Let 𝑖 be the minimal such 𝑖. Since 𝑥 𝐹⟼ 𝑦,

we have lfp ⊑̇ 𝐹(𝑥) ≠ 𝐹(lfp ⊑̇ 𝐹[𝑦 ← ⊥])𝑥. Therefore (lfp⊑ 𝐹)𝑦 ≠ ⊥ since otherwise 𝐹(lfp ⊑̇ 𝐹[𝑦 ← ⊥]) =
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𝐹(lfp ⊑̇ 𝐹) = lfp ⊑̇ 𝐹, in contradiction with 𝐹(lfp ⊑̇ 𝐹[𝑦 ← ⊥])𝑥 ≠ lfp ⊑̇ 𝐹(𝑥). It follows that ∃𝑗 ∈ N . 𝑦 ∈
𝐷𝑗 ⊆ 𝐷.

If 𝑗 < 𝑖 then there exist 𝑧0 = 𝑦 ∈ 𝐷𝑗, 𝑧1 ∈ 𝐷𝑗+1, …, 𝑧𝑖−𝑗 = 𝑥 ∈ 𝐷𝑖 such that, by def. of 𝐷𝑘,
∀𝑘 ∈ [0, 𝑖 − 𝑗] . 𝐹𝑘−1(𝑧𝑘) = ⊥ ∧ 𝐹𝑘(𝑧𝑘) ≠ ⊥. By def. <, we have 𝑦 = 𝑧0 < 𝑧1 < … < 𝑧𝑖−𝑗 = 𝑥 proving that
𝑥 ⋗ 𝑦 ∈ 𝐷 i.e. (10.c).

Else 𝑗 ⩾ 𝑖. By def. ⊑̇ 𝐹𝑖−1(𝑥) = ⊥, 𝐹𝑖(𝑥) = 𝐹𝑗(𝑥) = (lfp ⊑̇ 𝐹)𝑥 ≠ ⊥, 𝐹𝑖−1(𝑦) = 𝐹𝑖(𝑦) = 𝐹𝑗−1(𝑦) = ⊥, and
𝐹𝑗(𝑦) = (lfp ⊑̇ 𝐹)𝑦 ≠ ⊥. Since 𝐹𝑗(𝑥) = 𝐹(𝐹𝑗−1(𝑥)) and 𝐹𝑗−1(𝑦) = ⊥, we have 𝐹𝑗(𝑥) = 𝐹(𝐹𝑗−1[𝑦 ← ⊥](𝑥))
so (lfp ⊑̇ 𝐹)(𝑥) = 𝐹((lfp ⊑̇ 𝐹)[𝑦 ← ⊥](𝑥)), a contradiction. This case is impossible and so (10.c) holds
vacuously.

Conversely, let us first show that the existence of a termination proof of 𝑓 = lfp⊑ 𝐹 by Th. 10
implies the existence of a termination proof of 𝑓 = lfp⊑ 𝐹 by Th. 5. So assume the existence of
𝐷 ∈ ℘(D) satisfying (10.a), (10.b), and (10.c).

Define Q𝑖 = {𝐹𝑖(⊥̇)} and Q ≜ ⋃
𝑖∈N
Q𝑖 so (5.a) and (5.b) do hold. It remains to prove (5.c) that is

⨆̇
𝑖∈N
𝐹𝑖(⊥̇) ∈ P𝑇. By reductio ad absurdum, assume that ∃𝑥0 ∈ 𝑇 . ( ⨆̇

𝑖∈N
𝐹𝑖(⊥̇))𝑥0 = ⊥, that is, by (10.a)

and Th. 3, 𝑥0 ∈ 𝐷 and (lfp ⊑̇ 𝐹)𝑥0 = ⊥. Assume ∃𝑥𝑗 ∈ 𝐷 . 𝑓(𝑥𝑗) = ⊥ where 𝑓 = lfp ⊑̇ 𝐹. Then, by the
function body termination hypothesis (8), Lem. 9 implies that ∃𝑥𝑗+1 . 𝑥𝑗 𝐹⟼𝑥𝑗+1 ∧ 𝑓(𝑥𝑗+1) = ⊥. In
this way, we can built an infinite sequence 𝑥0 𝐹⟼𝑥1 𝐹⟼𝑥2 𝐹⟼… such that ∀𝑗 ∈ N . (lfp ⊑̇ 𝐹)𝑥𝑗 = ⊥.
By recurrence and (10.c), this sequence is in 𝐷 and ⋗-decreasing. This is in contradiction with the
well-foundness (10.b) of ⟨𝐷, ⋅⩽⟩. ⊓⊔

Corollary 12 The variant/convergence function principle (10) is sound and complete for
proving termination. ⊓⊔

Proof. By Th. 11 and Th. 5. ⊓⊔

14 Extension to total correctness

The proof by [4] that Hoare logic does not exists for functional languages is based on the restriction
of predicates to first-order logic with program variables only. But this is no longer the case without
this restriction [11,24] and can be extended to total correctness.
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Theorem 13 (The total correctness proof principle) Let 𝐹 ∈ D 𝑢𝑐−−−→ D⊥ satisfying the
function body termination hypothesis (8) be a continuous function on the cpo ⟨D⊥, ⊑, ⊥, ⊔⟩
where ⊥ ∉ D, D⊥ = D ∪ {⊥}, ∀𝑥 ∈ D . ⊥ ⊑ ⊥ ⋤ 𝑥 ⊑ 𝑥, 𝑃 ∈ ℘(D), 𝑄 ∈ ℘(D × D), and
P𝑃,𝑄 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝑃 . ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝑄}. Then

lfp ⊑̇ 𝐹 ∈ P𝑃,𝑄 ⇔ ∃𝐷 ∈ ℘(D) . ∃𝐼 ∈ ℘(D ×D) .
𝑃 ⊆ 𝐷 (13.a)
∧ {⟨𝑥, 𝑦⟩ ∈ 𝐼 ∣ 𝑥 ∈ 𝑃} ⊆ 𝑄 (13.b)
∧ ∃ ⋅⩽ ∈ ℘(D ×D) . ⟨𝐷, ⋅⩽⟩ is well-founded (13.c)
∧ ∀𝑥, 𝑦 ∈ D . (𝑥 ∈ 𝐷 ∧ 𝑥 𝐹⟼𝑦) ⇒ (𝑦 ∈ 𝐷 ∧ 𝑥 ⋗ 𝑦) (13.d)
∧ let P𝐷,𝐼 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐷 . (𝑓(𝑥) ≠ ⊥ ⇒ ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)} in (13.e)

∀𝑓 ∈ P𝐷,𝐼 . 𝐹(𝑓) ∈ P𝐷,𝐼 ⊓⊔

Example 12 (Total correctness of the factorial). Define 𝐹!(𝑓) ≜ 𝜆 𝑛 . ( 𝑛 = 0 ? 1 : 𝑛×𝑓(𝑛−1) ), 𝑃 = N,
𝑄 = {⟨𝑛, 𝑛!⟩ ∣ 𝑛 ∈ N} So that lfp ⊑̇ 𝐹 ∈ P𝑃,𝑄 expresses that 𝐹!(𝑓)𝑛 terminates for 𝑛 ∈ N and returns
the factorial 𝑛! of 𝑛. Take 𝐷 = 𝑃 and 𝐼 = 𝑄 so that (13.a), (13.b), (13.c) are trivially satisfied since
𝐷 = N and ⟨N, ⩽⟩ is well-founded. If 𝑛 ∈ 𝐷 and 𝑛 𝐹⟼𝑦 then 𝑛 ≠ 0 and 𝑦 = 𝑛 − 1 so 𝑛 > 𝑛 − 1 ∈ 𝐷,
proving (13.d). If 𝑓 ∈ P𝐷,𝐼 and 𝑛 ∈ 𝐷 = N then 𝑓(𝑛) = 𝑛!. So 𝐹!(𝑓)𝑛 = 𝑛! since either 𝑛 = 0 and
𝐹!(𝑓)0 = 1 = 0! or 𝑛 > 0 so 𝑛 − 1 ∈ N, 𝑓(𝑛 − 1) = (𝑛 − 1)! so 𝐹!(𝑓)𝑛 = 𝑛 × (𝑛 − 1)! = 𝑛!. Therefore
𝐹!(𝑓) ∈ P𝐷,𝐼, proving (13.e). By Th. 13, lfp ⊑̇ 𝐹! ∈ P𝑃,𝑄. ⊓⊔

Proof (of Th. 13). Soundness (⇐): Take 𝑇 = 𝐷 in Th. 10. Then (13.a) implies (10.a), (13.c) implies
(10.b), and (13.d) implies (10.c). By Th. 10, this implies ∀𝑥 ∈ 𝑃 . (lfp⊑ 𝐹)𝑥 ≠ ⊥.

Ta ke L = D→ D⊥, P = Q = P𝐷,𝐼. By def. P𝐷,𝐼, ⊥̇ ∈ Q proving (5.a). By (13.d), ∀𝑓 ∈ Q . 𝐹(𝑓) ∈
Q, proving (5.b). Let {𝑓𝑖 ∈ Q ∣ 𝑖 ∈ N} be any 𝐹-maximal ⊑-increasing chain of elements of Q. If 𝑥 ∈ D
and ( ⨆̇

𝑖∈N
𝑓𝑖)𝑥 ≠ ⊥, then ( ⨆̇

𝑖∈N
𝑓𝑖)𝑥 = 𝑑 ∈ D so, by def. lub ⨆̇, there exists 𝑗 ∈ N . ( ⨆̇

𝑖∈N
𝑓𝑖)𝑥 = 𝑓𝑗(𝑥) = 𝑑.

But 𝑓𝑗 ∈ Q = P𝐷,𝐼 so ⟨𝑥, 𝑑⟩ = ⟨𝑥, ( ⨆̇
𝑖∈N
𝑓𝑖)𝑥⟩ ∈ 𝐼. If follows that ( ⨆̇

𝑖∈N
𝑓𝑖) ∈ P𝐷,𝐼 = P. By Th. 5,

lfp⊑ 𝐹 ∈ P𝐷,𝐼.
Since lfp⊑ 𝐹 ∈ P𝐷,𝐼 and ∀𝑥 ∈ 𝑃 . (lfp⊑ 𝐹)𝑥 ≠ ⊥, we conclude that lfp⊑ 𝐹 ∈ P𝑃,𝑄.

Completeness (⇒): Assume that lfp⊑ 𝐹 ∈ P𝑃,𝑄 so ∀𝑥 ∈ 𝑃 . (lfp⊑ 𝐹)𝑥 ≠ ⊥. Applying Th. 10 with
𝑇 = 𝑃, there exists 𝐷 ∈ ℘(D) satisfying (10.a), (10.b), and (10.c). Applying Th. 5 with L = D→ D⊥,
there exists Q ∈ ℘(D→ D⊥) satisfying (5.a), (5.b), (5.c). Moreover, the completeness proof of Th. 5
shows that one can choose Q = {𝐹𝑖(⊥) ∣ 𝑖 ∈ N}.

Choose 𝐼 ≜ {⟨𝑥, 𝑓(𝑥)⟩ ∈ D ×D ∣ 𝑓 ∈ Q ∨ 𝑓 = ⨆Q}, where, as shown in the completeness proof of
Th. 5, ⨆Q is well-defined and equal to lfp ⊑̇ 𝐹.

We have 𝑃 = 𝑇 ⊆ 𝐷 by (10.a), proving (13.a);
If ⟨𝑥, 𝑦⟩ ∈ 𝐼 then 𝑦 ≠ ⊥ and 𝑦 = 𝑓(𝑥) where 𝑓 ∈ Q or 𝑓 = ⨆Q. In both cases, byQ = {𝐹𝑖(⊥) ∣ 𝑖 ∈ N}

and 𝑓(𝑥) ≠ ⊥, we have 𝑦 = lfp⊑ 𝐹)𝑥 so, by hypothesis lfp ⊑̇ 𝐹 ∈ P𝑃,𝑄, if 𝑥 ∈ 𝑃, then ⟨𝑥, 𝑦⟩ ∈ 𝑄, proving
(13.b);

(10.b) is exactly (13.c);
(10.c) is exactly (13.d);
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Assume that 𝑓 ∈ P𝐷,𝐼 = {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐷 . (𝑓(𝑥) ≠ ⊥ ⇒ ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)}. Then either 𝑓 ∈ Q
so, by (5.b), 𝐹(𝑓) ∈ Q and therefore 𝐹(𝑓) ∈ P𝐷,𝐼 or 𝑓 = ⨆Q = lfp ⊑̇ 𝐹 so 𝐹(𝑓) = 𝑓 ∈ P𝐷,𝐼, proving
(13.e). ⊓⊔

15 Application to the while iteration

Manna and Pnueli [20] generalized Hoare partial correctness rule for total correctness ⦇ 𝑃 ⦈ W ⦇ 𝑄 ⦈
denoting ∀𝑥 ∈ 𝑃 . JWK𝑥 ∈ 𝑄 which is traditionally decomposed in partial correctness ⦃𝑃⦄ W ⦃𝑄⦄
and termination ∀𝑥 ∈ 𝑃 . JWK𝑥 ≠ ⊥. They rely on the idea of relating the initial and final values of
variables in 𝑄, writing 𝑃(𝑥) for 𝑥 ∈ 𝑃 ∈ ℘(D) and 𝑄(𝑥, 𝑥′) for ⟨𝑥, 𝑥′⟩ ∈ 𝑄 ∈ ℘(D × D), so that the
rule are written in the form ⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′ ⦈ where 𝑥 is the value before execution and 𝑥′ that
upon termination.
⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′ ⦈ is equivalent to lfp ⊑̇ 𝐹W ∈ P𝑃,𝑄. So, by the soundness and completeness of

Th. 13, this is equivalent to the existence of 𝐷 ∈ ℘(D) and 𝐼 ∈ ℘(D ×D) satisfying the conditions.

𝑃(𝑥) ⇒ 𝐷(𝑥) (14.a)
∧ 𝑃(𝑥) ∧ 𝐼(𝑥, 𝑦) ⇒ 𝑄(𝑥, 𝑦) (14.b)
∧ ∃ ⋅⩽ ∈ ℘(D ×D) . ⟨𝐷, ⋅⩽⟩ is well-founded (14.c)
∧ ∀𝑥 ∈ 𝐷 . 𝑆(𝑥) ∈ 𝐷 ∧ 𝑥 ⋗ 𝑆(𝑥) (14.d)
∧ ∀𝑥 ∈ 𝐷, 𝑥″ ∈ D . (𝐵(𝑥) ∧ 𝐼(𝑆(𝑥), 𝑥″) ⇒ 𝐼(𝑥, 𝑥″) (14.e)
∧ ∀𝑥 ∈ 𝐷 . ¬𝐵(𝑥) ⇒ 𝐼(𝑥, 𝑥) (14.e′)

since for (13.d), 𝑥 𝐹⟼ 𝑦 if and only if 𝑦 = 𝑆(𝑥), by def. 𝐹W(𝑓)𝑥 = (¬𝐵(𝑥) ? 𝑥 : 𝑓(𝑆(𝑥)) ) and for
(13.e/e′), given P𝐷,𝐼 ≜ {𝑓 ∈ D→ D⊥ ∣ ∀𝑥 ∈ 𝐷 . 𝑓(𝑥) ≠ ⊥ ⇒ ⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼}, we have
∀𝑓 ∈ P𝐷,𝐼 . 𝐹W(𝑓) ∈ P𝐷,𝐼
⇔ ∀𝑓 ∈ D → D⊥ . (∀𝑥 ∈ 𝐷 . (𝑓(𝑥) ≠ ⊥) ⇒ (⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)) ⇒ (∀𝑥 ∈ 𝐷 . (¬𝐵(𝑥) ? ⟨𝑥,
𝑥⟩ ∈ 𝐼 : (𝑓(𝑆(𝑥)) ≠ ⊥) ⇒ (⟨𝑥, 𝑓(𝑆(𝑥))⟩ ∈ 𝐼) )) Hdef. P𝐷,𝐼 and 𝐹WI
⇔ ∀𝑓 ∈ D→ D . (∀𝑥 ∈ 𝐷 . (⟨𝑥, 𝑓(𝑥)⟩ ∈ 𝐼)) ⇒ (∀𝑥 ∈ 𝐷 . (¬𝐵(𝑥) ? ⟨𝑥, 𝑥⟩ ∈ 𝐼 : (⟨𝑥, 𝑓(𝑆(𝑥))⟩ ∈ 𝐼) ))Hsince the ⊥ case is excludedI
⇔ (∀𝑥 ∈ 𝐷 . ¬𝐵(𝑥) ⇒ ⟨𝑥, 𝑥⟩ ∈ 𝐼) ∧ (∀𝑥 ∈ 𝐷 . (𝐵(𝑥) ∧ ⟨𝑆(𝑥), 𝑥″⟩ ∈ 𝐼) ⇒ ⟨𝑥, 𝑥′⟩ ∈ 𝐼)Hsince 𝑓 is defined by 𝐼 and letting 𝑥′ = 𝑓(𝑆(𝑥))I ⊓⊔
Rewriting (14) in Manna-Pnueli style, we get the sound and complete rule (which incorporate the
consequence rule):

𝑃(𝑥) ⇒ 𝐷(𝑥), 𝑃(𝑥) ∧ 𝐼(𝑥, 𝑦) ⇒ 𝑄(𝑥, 𝑦), (15.a/b)
∃ ⋅⩽ ∈ ℘(D ×D) . ⟨𝐷, ⋅⩽⟩ is well-founded, (15.c)
⦇𝐷(𝑥) ⦈ S ⦇𝐷(𝑥′) ∧ 𝑥 ⋗ 𝑥′ ⦈, (15.d)

⦇𝐷(𝑥) ∧ 𝐵(𝑥) ⦈ S ⦇ 𝐼(𝑥, 𝑥′) ∧ ∀𝑥″ . 𝐼(𝑥′, 𝑥″) ⇒ 𝐼(𝑥, 𝑥″) ⦈, (15.e)
∀𝑥 . 𝐷(𝑥) ∧ ¬𝐵(𝑥) ⇒ 𝐼(𝑥, 𝑥) (15.e′)

⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′) ∧ ¬𝐵(𝑥′) ⦈

(The conjunction with the post-condition ¬𝐵(𝑥′) is explained in Ex. 6).
The original Manna and Pnueli rule [20, Sect. 8.3] is slightly different, as follows.
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⦇ 𝑃(𝑥) ∧ 𝐵(𝑥) ⦈ S ⦇ 𝑃(𝑥′) ∧ 𝑄(𝑥, 𝑥′) ∧ 𝑥 ⋗ 𝑥′ ⦈, (16.i)
∀𝑥, 𝑥′, 𝑥″ . 𝑄(𝑥, 𝑥′) ∧ 𝑄(𝑥′, 𝑥″) ⇒ 𝑄(𝑥, 𝑥″), (16.ii)
∀𝑥 . 𝑃(𝑥) ∧ ¬𝐵(𝑥) ⇒ 𝑄(𝑥, 𝑥) (16.iii)

⦇ 𝑃(𝑥) ⦈ W ⦇ 𝑄(𝑥, 𝑥′) ∧ ¬𝐵(𝑥′) ⦈

As in [14], the proof rules are postulated so no soundness or completeness proof is given. A soundness
and completeness proof is provided in [1] based on Scott induction (using transfinite iterates in
absence of continuity due to the consideration of unbounded nondeterminism).

Assume the hypotheses of Manna-Pnueli inference rule (16), and define (with informal notations)

– 𝑃′ = 𝐷 ≜ 𝑃(𝑥);
– 𝑄′ = 𝐼(𝑥, 𝑦) ≜ 𝑄(𝑥, 𝑦);

so that

– (14.a) holds trivially by reflexivity;
– (14.b) holds trivially since 𝑃(𝑥) ∧ 𝐼(𝑥, 𝑦) ⇒ 𝑄′(𝑥, 𝑦). Moreover, the conjunction with the term
𝐵(𝑥′) follows from the semantics of the while iteration, as shown in Ex. 1;

– (14.c) is a side condition in Manna-Pnueli rule (there should be a convergence function 𝑢 into a
well-founded set ⟨W, ⪯⟩ with 𝑥 ⋅⩽ 𝑦 if and only if 𝑢(𝑥) ⪯ 𝑢(𝑦));

– Since ⦇ 𝑃′(𝑥) ⦈ S ⦇ 𝑄′(𝑥, 𝑥′) ⦈ denotes ∀𝑥 . 𝑃′(𝑥) ⇒ (𝑄′(𝑥, 𝑆(𝑥)) ∧ 𝑆(𝑥) ≠ ⊥) where 𝑆 = JSK is the
denotational semantics of S, (16.i) implies both
– ∀𝑥 . (𝑃(𝑥) ∧ 𝐵(𝑥)) ⇒ (𝑃(𝑆(𝑥)) ∧ 𝑥 ⋗ 𝑆(𝑥)), which is (14.d);
– and
∀𝑥 . (𝑃(𝑥) ∧ 𝐵(𝑥)) ⇒ 𝑄(𝑥, 𝑆(𝑥))

which together with (16.ii)
∀𝑥, 𝑥″ . (𝑄(𝑥, 𝑆(𝑥)) ∧ 𝑄(𝑆(𝑥), 𝑥″) ⇒ 𝑄(𝑥, 𝑥″)

yields
∀𝑥 . (𝑃(𝑥) ∧ 𝐵(𝑥) ∧ 𝑄(𝑆(𝑥), 𝑥″)) ⇒ 𝑄(𝑥, 𝑥″), which is (14.e);

– (14.e′) is exactly (16.ii).

By Th. 13, Moreover, if (lfp⊑ 𝐹W)𝑥 ≠ ⊥ then ¬𝐵(lfp⊑ 𝐹W), as shown in Ex. 1, we conclude that Manna-
Pnueli rule is sound.

Obviously Manna-Pnueli rule (16) is not complete (since 𝑄(𝑥, 𝑥′) might not be inductive), but
it can be applied to the strongest invariant and the conclusion derived by the consequence rule.

16 Conclusion

Park/fixpoint induction is useful to reason on post-fixpoints, above the least fixpoint. Scott/iteration
induction is useful to reason on iterates, below the least fixpoint. Traditional Park/fixpoint induc-
tion can prove invariance/partial correctness but not termination (at least without introducing
auxiliary variables such as bounded loop counters [15]). The traditional Scott/iteration induction
cannot prove termination either. We generalized the iteration induction principles to prove termina-
tion/total correctness. For termination they are equivalent to the Turing/Floyd termination proof
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method using variant/convergence functions (which itself is equivalent [10] to Burstall’s intermit-
tent assertions induction principle [3]). This applies both to (first-order) functional and imperative
programming. In particular, the Manna-Pnueli method for proving the total correctness of while
loops is equivalent to Scott induction for the denotational semantics of these loops.
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