Notes for September 23 class -- Procedural noise based texture

Here are some of the links we looked at in class:

 

We watched the video Carlitopolis  

Homework

  • Feel free to continue working on your ray tracer from last week's assignment, if you feel you haven't finished it yet to your satisfaction.

  • For homework due before class next Wednesday, September 30, add the below code into your fragment shader, and then do something fun and cool and interesting with procedural textures, using the noise(), fractal() and/or turbulence() functions.

     

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); }
vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; }
vec3 fade(vec3 t) { return t*t*t*(t*(t*6.0-15.0)+10.0); }
float noise(vec3 P) {
   vec3 i0 = mod289(floor(P)), i1 = mod289(i0 + vec3(1.0));
   vec3 f0 = fract(P), f1 = f0 - vec3(1.0), f = fade(f0);
   vec4 ix = vec4(i0.x, i1.x, i0.x, i1.x), iy = vec4(i0.yy, i1.yy);
   vec4 iz0 = i0.zzzz, iz1 = i1.zzzz;
   vec4 ixy = permute(permute(ix) + iy), ixy0 = permute(ixy + iz0), ixy1 = permute(ixy + iz1);
   vec4 gx0 = ixy0 * (1.0 / 7.0), gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
   vec4 gx1 = ixy1 * (1.0 / 7.0), gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
   gx0 = fract(gx0); gx1 = fract(gx1);
   vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0), sz0 = step(gz0, vec4(0.0));
   vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1), sz1 = step(gz1, vec4(0.0));
   gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5);
   gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5);
   vec3 g0 = vec3(gx0.x,gy0.x,gz0.x), g1 = vec3(gx0.y,gy0.y,gz0.y),
        g2 = vec3(gx0.z,gy0.z,gz0.z), g3 = vec3(gx0.w,gy0.w,gz0.w),
        g4 = vec3(gx1.x,gy1.x,gz1.x), g5 = vec3(gx1.y,gy1.y,gz1.y),
        g6 = vec3(gx1.z,gy1.z,gz1.z), g7 = vec3(gx1.w,gy1.w,gz1.w);
   vec4 norm0 = taylorInvSqrt(vec4(dot(g0,g0), dot(g2,g2), dot(g1,g1), dot(g3,g3)));
   vec4 norm1 = taylorInvSqrt(vec4(dot(g4,g4), dot(g6,g6), dot(g5,g5), dot(g7,g7)));
   g0 *= norm0.x; g2 *= norm0.y; g1 *= norm0.z; g3 *= norm0.w;
   g4 *= norm1.x; g6 *= norm1.y; g5 *= norm1.z; g7 *= norm1.w;
   vec4 nz = mix(vec4(dot(g0, vec3(f0.x, f0.y, f0.z)), dot(g1, vec3(f1.x, f0.y, f0.z)),
                      dot(g2, vec3(f0.x, f1.y, f0.z)), dot(g3, vec3(f1.x, f1.y, f0.z))),
                 vec4(dot(g4, vec3(f0.x, f0.y, f1.z)), dot(g5, vec3(f1.x, f0.y, f1.z)),
                      dot(g6, vec3(f0.x, f1.y, f1.z)), dot(g7, vec3(f1.x, f1.y, f1.z))), f.z);
   return 2.2 * mix(mix(nz.x,nz.z,f.y), mix(nz.y,nz.w,f.y), f.x);
}
float noise(vec2 P) { return noise(vec3(P, 0.0)); }
float fractal(vec3 P) {
   float f = 0., s = 1.;
   for (int i = 0 ; i < 9 ; i++) {
      f += noise(s * P) / s;
      s *= 2.;
      P = vec3(.866 * P.x + .5 * P.z, P.y + 100., -.5 * P.x + .866 * P.z);
   }
   return f;
}
float turbulence(vec3 P) {
   float f = 0., s = 1.;
   for (int i = 0 ; i < 9 ; i++) {
      f += abs(noise(s * P)) / s;
      s *= 2.;
      P = vec3(.866 * P.x + .5 * P.z, P.y + 100., -.5 * P.x + .866 * P.z);
   }
   return f;
}