
1

© 2005, Denis Zorin

Hirerarchical transformations

© 2005, Denis Zorin

Building the arm

Start: unit square

Step 1: scale to the
correct size

2

© 2005, Denis Zorin

Building the arm
step 2: translate
to the correct
position

step 3: add
another unit
square

step 4: scale the
second box

step 5: rotate the
second box

step 6: translate
the second box

© 2005, Denis Zorin

Hierarchical transformations

Positioning each part of a complex object
separately is difficult
If we want to move whole complex objects
consisting of many parts or complex parts of
an object (for example, the arm of a robot)
then we would have to modify
transformations for each part
solution: build objects hierarchically

3

© 2005, Denis Zorin

Hierarchical transformations

Idea: group parts hierarchically,
associate transforms with each
group.

whole robot = head + body +
legs + arms
leg = upper part + lower part
head = neck + eyes + ...

© 2005, Denis Zorin

Hierarchical transformations

Hierarchical representation of an object is a
tree.
The non-leaf nodes are groups of objects.
The leaf nodes are primitives (e.g. polygons)
Transformations are assigned to each node,
and represent the relative transform of the
group or primitive with respect to the parent
group
As the tree is traversed, the transformations
are combined into one

4

© 2005, Denis Zorin

Hierarchical transformations

robot S1 , T1

head body right
arm

left
arm

right
leg

left
leg

upper
part

lower
part

nose eyes

Thead

Tnose

© 2005, Denis Zorin

Transformation stack

To keep track of the current transformation,
the transformation stack is maintained.
Basic operations on the stack:

push: create a copy of the matrix on the top
and put it on the top
pop: remove the matrix on the top
multiply: multiply the top by the given matrix
load: replace the top matrix with a given
matrix

5

© 2005, Denis Zorin

Transformation stack example

TO draw the robot, we use manipulations with the
transform stack to get the correct transform for
each part. For example, to draw the nose and
the eyes:

stack empty

load S1
mult. T1

S1 S1T1

© 2005, Denis Zorin

Transformation stack example

push mult. Thead

S1T1S1T1 S1T1

S1T1 S1T1Thead

mult. Tnose

S1T1

S1T1Theadpush

S1T1Thead

S1T1

S1T1Thead

S1T1TheadTnose

Draw the nose

6

© 2005, Denis Zorin

Transformation stack example

push

S1T1

S1T1Theadpop

S1T1

S1T1Thead

S1T1TheadTeyes

Draw the
eyes

S1T1

S1T1Thead

S1T1Thead

pop

S1T1

S1T1Theadpop

S1T1

Draw
body etc...

mult. Teyes

© 2005, Denis Zorin

Transformation stack example
Sequence of operations in the (pseudo)code:
load S1 ; mult T1;

push; mult. Thead;

push;

mult Tnose; draw nose;

pop;

push;

mult. Teyes; draw eyes;

pop;

pop;

...

7

© 2005, Denis Zorin

Animation

The advantage of hierarchical transformations is
that everything can be animated with little effort.

General idea: before doing a mult. or load, compute
transform as a function of time.
time = 0;
main loop {

draw(time);
increment time;

}

draw(time) {
...
compute Rarm(time)
mult. Rarm
...
}

© 2005, Denis Zorin

Perspective transformations

8

© 2005, Denis Zorin

Transformation pipeline

Modelview: model (position objects) + view (position the camera)

Projection: map viewing volume to a standard cube

Viewport: map the square [-1,1]x[-1,1]
in normalized device coordinates to the screen

Perspective division: project 3D to 2D

© 2005, Denis Zorin

Coordinate systems

x

z
x

z

Eye coordinates
World coordinates

World coordinates - fixed initial coord system;
everything is defined with respect to it

Eye coordinates - coordinate system attached to
the camera; in this system camera looks down
negative Z-axis

9

© 2005, Denis Zorin

Positioning the camera

Modeling transformation: reshape the object,
orient the object, position the object with
respect to the world coordinate system
Viewing transformation: transform world
coordinates to eye coordinates
Viewing transformation is the inverse of the
camera positioning transformation
Viewing transformation should be rigid:
rotation + translation
Steps to get the right transform: first, orient

the camera correctly, then translate it

© 2005, Denis Zorin

Positioning the camera
Viewing transformation is the inverse of the camera

positioning transformation:

zworld

xworld
zeyexeye

Camera positioning: translate by
Viewing transformation (world to eye):

(tx, tz)

xeye = xworld − tz

zeye = xworld − tx

10

© 2005, Denis Zorin

Look-at positioning

Find the viewing transform given the eye (camera)
position, point to look at, and the up vector

Need to specify two transforms: rotation and
translation.
translation is easy
natural rotation: define implicitly using a
point at which we want to look and a vector
indicating the vertical in the image (up vector)

can easily convert the eye point to the direction
vector of the camera axis; can assume up vector
perpendicular to view vector

© 2005, Denis Zorin

Look-at positioning

Problem: given two pairs of perpendicular unit
vectors, find the transformation mapping the
first pair into the second

u

l

c

v =
l − c

|l − c|
World coords

Eye coords

11

© 2005, Denis Zorin

Look-at positioning

R

⎡⎣ 0
0
−1

⎤⎦ = v R

⎡⎣ 10
0

⎤⎦ = v × u R

⎡⎣ 01
0

⎤⎦ = u

Determine rotation first,
looking how coord vectors change:

R

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = R = [v × u u − v], ,

© 2005, Denis Zorin

Look-at positioning

T =

⎡⎢⎢⎣
1 0 0 cx
0 1 0 cy
0 0 1 cz
0 0 0 1

⎤⎥⎥⎦
Recall the matrix for translation:

Now we have the camera positioning matrix, TR

To get the viewing transform, invert: (TR)−1 = R−1T−1

R−1 = [v × u u − v]T =

⎡⎣ (v × u)T

uT

−vT

⎤⎦
For rotation the inverse is the transpose!

12

© 2005, Denis Zorin

Look-at viewing transformation

T−1 =

⎡⎢⎢⎣
1 0 0 −cx
0 1 0 −cy
0 0 1 −cz
0 0 0 1

⎤⎥⎥⎦ = [ex ey ez − c]

V = R
− 1 T

−1 =

⎡⎢⎢⎣
(v × u)T −(v × u .

c)

uT −(u.

c)

−vT (v. c)
[0, 0,0] 1

⎤⎥⎥⎦

© 2005, Denis Zorin

Positioning the camera in OpenGL

imagine that the camera is an object and
write a sequence of rotations and translations
positioning it
change each transformation in the sequence
to the opposite
reverse the sequence
Camera positioning is done in the code
before modeling transformations
OpenGL does not distinguish between
viewing and modeling transformation and
joins them into the modelview matrix

13

© 2005, Denis Zorin

Space to plane projection

c =

⎡⎣ 00
0

⎤⎦ v =

⎡⎣ 0
0
−1

⎤⎦

Proj(p) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

px
py
pz
1

⎤⎥⎥⎦

In eye coordinate system
y

z c

p
v

Image plane

P r o j (p) =

⎡⎣ − p x / p z

− p y / p z

−1

⎤ ⎦

projecting to the plane
z = -1

© 2005, Denis Zorin

Visibility

Objects that are closer to the camera occlude the
objects that are further away

All objects are made of planar polygons
A polygon typically projects 1 to 1
idea: project polygons in turn ; for each
pixel, record distance to the projected
polygon
when writing pixels, replace the old color with
the new one only if the new distance to
camera for this pixel is less then the
recorded one

14

© 2005, Denis Zorin

Z-buffering idea

Problem: need to compare distances for each
projected point
Solution: convert all points to a coordinate
system in which (x,y) are image plane coords
and the distance to the image plane increases
when the z coordinate increases
In OpenGL, this is done by the projection
matrix

© 2005, Denis Zorin

Z buffer

Assumptions:
each pixel has storage for a z-value, in addition
to RGB
all objects are “scanconvertible” (typically are
polygons, lines or points)

Algorithm:
initilize zbuf to maximal value
for each object

for each pixel (i,j) obtained by scan conversion
if znew(i,j) < zbuf(i,j)

zbuf(i,j) = znew(i,j) ;
write pixel(i,j)

15

© 2005, Denis Zorin

Z buffer

What are z values?
Z values are obtained by applying the projection

transform, that is, mapping the viewing frustum
to the standard cube.

Z value increases with th distance to the camera.
Z values for each pixel are computed for each pixel

covered by a polygon using linear interpolation
of z values at vertices.

Typical Z buffer size: 24 bits (same as RGB
combined).

© 2005, Denis Zorin

Viewing frustum

Volume in space that will be visible in the image

α n f

y

z

r is the aspect ratio of
the image width/height

16

© 2005, Denis Zorin

Projection transformation

Maps the viewing frustum into a standard cube
extending from -1 to 1 in each coordinate

(normalized device coordinates)

3 steps:
change the matrix of projection to keep z:

result is a parallelepiped
translate:

parallelepiped centered at 0
scale in all directions:

cube of of size 2 centered at 0

© 2005, Denis Zorin

Projection transformation

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

px
py
pz
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

px
py
1
−pz

⎤⎥⎥⎦

Proj(p) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

px
py
pz
1

⎤⎥⎥⎦change so that we keep z:

the homogeneous result corresponds to

the last component increases monotonically with z!

⎡⎣−px/pz−p y/pz
−1/pz

⎤⎦

17

© 2005, Denis Zorin

Projection transformation
⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦ maps the frustum to an
axis-aligned parallelepiped

z1/n
1/f

r tan
α

2

tan
α

2

already centered in (x,y), center in z-direction and scale:

T =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0

0 0 1 −
1

2

µ
1

f
+
1

n

¶
0 0 0 1

⎤⎥⎥⎥⎥⎦ S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

r tan α
2

0 0 0

0
1

tan α
2

0 0

0 0
2³

1
n −

1
f

´ 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

© 2005, Denis Zorin

Projection transformation

Combined matrix, mapping frustum to a cube:

P = ST

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

r tan α
2

0 0 0

0
1

tan α
2

0 0

0 0
f + n

n − f
2

fn

n − f
0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

To get normalized image plane coordinates
(valid range [-1,1] both) , just drop z in the result
and convert from homogeneous to regular.
To get pixel coordinates, translate by 1,
and scale x and y (Viewport transformation)

18

© 2005, Denis Zorin

Transformation pipeline

Modelview: model (position objects) + view (position the camera)

Projection: map viewing volume to a standard cube

Viewport: map the square [-1,1]x[-1,1]
in normalized device coordinates to the screen

Perspective division: project 3D to 2D

