Hirerarchical transformations

© 2005, Denis Zorin

Building the arm

Start: unit square

Step 1: scale to the
correct size

/a |

© 2005, Denis Zorin

Building the arm

step 2: translate step 3: add step 4: scale the
to the correct another unit second box
pOSitiOﬂ square

N | .

step 6: translate

step 5: rotate the
the second box

second box

© 2005, Denis Zorin

Hierarchical transformations

m Positioning each part of a complex object
separately is difficult

m If we want to move whole complex objects
consisting of many parts or complex parts of
an object (for example, the arm of a robot)
then we would have to modify
transformations for each part

m solution: build objects hierarchically

© 2005, Denis Zorin

Hierarchical transformations

o o Idea: group parts hierarchically,
associate transforms with each

group.

whole robot = head + body +
legs + arms

leg = upper part + lower part
head = neck + eyes + ...

© 2005, Denis Zorin

Hierarchical transformations

m Hierarchical representation of an object is a
tree.

B The non-leaf nodes are groups of objects.
B The leaf nodes are primitives (e.g. polygons)

m Transformations are assigned to each node,
and represent the relative transform of the
group or primitive with respect to the parent

group

B As the treeis traversed, the transformations
are combined into one

© 2005, Denis Zorin

Hierarchical transformations

Th ead

head |body| right | [left
T leg leg

right || left
arm |[]arm

ARYAN

|”039| |eyes| upper | | lower
part part

© 2005, Denis Zorin

Transformation stack

To keep track of the current transformation,
the transformation stack is maintained.
Basic operations on the stack:

m push: create a copy of the matrix on the top
and put it on the top

B pop: remove the matrix on the top
m multiply: multiply the top by the given matrix

m load: replace the top matrix with a given
matrix

© 2005, Denis Zorin

Transformation stack example

TO draw the robot, we use manipulations with the

—_

stack empty

© 2005, Denis Zorin

load S,

mult. T,

—_—

transform stack to get the correct transform for
each part. For example, to draw the nose and
the eyes:

STy

Transformation stack example

STy

S1T1Thead

push

S1T1Thead

S, Ty

© 2005, Denis Zorin

push

mult.

T

nose

STy

SlTl mult. Thead SlTlThead

SlTl-I-headT

nose

SlTlThead

STy

S, Ty

Draw the nose

Transformation stack example

SlTlThead SlTlTheadT

eyes

pop S1T1Thead pUSh S1T1Thead mult. Teyes SlTlThead

S, T, ST, S, T,
Draw the - D
S,T,T raw
eyes pop 171 nead | POP_ body etc...
S,T, ST,

© 2005, Denis Zorin

Transformation stack example

Sequence of operations in the (pseudo)code:
load S; ; mult T,;
push; mult. T,..4;
push;
mult T,,e>; draw nose;
pop;
push;
mult. T..s; draw eyes;
pop;
pop;

@ 2005, Denis Zorin

Animation

The advantage of hierarchical transformations is
that everything can be animated with little effort.

General idea: before doing a mult. or load, compute
transform as a function of time.

time = 0; draw(time){
main loop {
) compute R, (time)
draw(time); mult. R,

increment time; }

© 2005, Denis Zorin

Perspective transformations

© 2005, Denis Zorin

Transformation pipeline

o Modelview Projection
hatrix Matrix

Viewport
Transformation

h4

Yy

Z

W eve clip normalzed device window
coordinates coordinates coordinates coordinates

object
coordinates

Modelview: model (position objects) + view (position the camera)
Projection: map viewing volume to a standard cube

Perspective division: project 3D to 2D

Viewport: map the square [-1,1]x[-1,1]

in normalized device coordinates to the screen

© 2005, Denis Zorin

Coordinate systems

X
Eye coordinates >
World coordinates

World coordinates - fixed initial coord system;
everything is defined with respect to it

Eye coordinates - coordinate system attached to
the camera; in this system camera looks down
negative Z-axis

© 2005, Denis Zorin

Positioning the camera

m Modeling transformation: reshape the object,
orient the object, position the object with
respect to the world coordinate system

m Viewing transformation: transform world
coordinates to eye coordinates

B Viewing transformation is the inverse of the
camera positioning transformation

m Viewing transformation should be rigid:
rotation + translation

m Steps to get the right transform: first, orient
the camera correctly, then translate it

© 2005, Denis Zorin

Positioning the camera

Viewing transformation is the inverse of the camera
positioning transformation:
f_H
- }wworld

Camera positioning: translate by (tx, tz)

Viewing transformation (world to eye):
Teye = Tyorld — L=

Zeye = Tyorld — t«

© 2005, Denis Zorin

Look-at positioning

Find the viewing transform given the eye (camera)
position, point to look at, and the up vector

m Need to specify two transforms: rotation and
translation.

H translation is easy

m natural rotation: define implicitly using a
point at which we want to look and a vector
indicating the vertical in the image (up vector)

can easily convert the eye point to the direction
vector of the camera axis; can assume up vector
perpendicular to view vector

© 2005, Denis Zorin

Look-at positioning

Problem: given two pairs of perpendicular unit
vectors, find the transformation mapping the
first pair into the second

u
Eye coords
C

l—c ™. World coords

© 2005, Denis Zorin

10

Look-at positioning

Determine rotation first,
looking how coord vectors change:

1
0| =vXu R
0

© 2005, Denis Zorin

Look-at positioning

Recall the matrix for translation:
0 0 cg
1 0 ¢
01
0 0

S oo

1

Now we have the camera positioning matrix, TR
To get the viewing transform, invert: (TR)" ' =R 'T*
For rotation the inverse is the transpose!

(vx u)T

Rl=pwxuu —v)T = u”
T

© 2005, Denis Zorin

11

Look-at viewing transformation

1 0 0 —c
Tt = 8 (1) (1) :Z =les €y €2 — |
0 0 0 1
(vx u)! —(vxwu-c)
T
_ p—1lp—1 _ u —(u-c)
[0,0,0] 1

© 2005, Denis Zorin

Positioning the camera in OpenGL

B imagine that the camerais an object and
write a sequence of rotations and translations

positioning it

B change each transformation in the sequence

to the opposite
B reverse the sequence

m Camera positioning is done in the code
before modeling transformations

m OpenGL does not distinguish between

viewing and modeling transformation and

joins them into the modelview matrix

© 2005, Denis Zorin

12

Space to plane projection

projecting to the plane
z=-1

) 10 0 0 Da
—Px/P= . 01 0 0 »
Proj(p) = [py/pz} Projo) = | o o 1 o pf.i
-1 00 -1 0 1
© 2005, Denis Zorin
Visibility

Objects that are closer to the camera occlude the
objects that are further away

m All objects are made of planar polygons
m A polygon typically projects 1to 1

Hm idea: project polygons in turn ; for each
pixel, record distance to the projected

polygon

® when writing pixels, replace the old color with
the new one only if the new distance to
camera for this pixel is less then the
recorded one

© 2005, Denis Zorin

13

Z-buffering idea

m Problem: need to compare distances for each
projected point

m Solution: convert all points to a coordinate
system in which (x,y) are image plane coords
and the distance to the image plane increases
when the z coordinate increases

® In OpenGL, this is done by the projection
matrix

© 2005, Denis Zorin

Z buffer

Assumptions:

m each pixel has storage for a z-value, in addition
to RGB

m all objects are “scanconvertible” (typically are
polygons, lines or points)

Algorithm:
initilize zbuf to maximal value

for each object
for each pixel (i,j) obtained by scan conversion
if znew(i,j) < zbuf(i,j)
zbuf(i,j) = znew(i,)) ;
write pixel(i,j)

© 2005, Denis Zorin

14

Z buffer

What are z values?

Z values are obtained by applying the projection
transform, that is, mapping the viewing frustum
to the standard cube.

Z value increases with th distance to the camera.

Z values for each pixel are computed for each pixel
covered by a polygon using linear interpolation
of z values at vertices.

Typical Z buffer size: 24 bits (same as RGB
combined).

© 2005, Denis Zorin

Viewing frustum

Volume in space that will be visible in the image

ris the aspect ratio of
the image width/height

n f

\u\ﬂ\
© 2005, Denis Zorin

15

Projection transformation

Maps the viewing frustum into a standard cube
extending from -1 to 1 in each coordinate

(normalized device coordinates)

_—Q -~

3 steps:
change the matrix of projection to keep z:
result is a parallelepiped
translate:
parallelepiped centered at 0
scalein all directions:
cube of of size 2 centered at 0

© 2005, Denis Zorin

Projection transformation

10 0 0 Pz
L o1 0 o0 P, :
change Proj(p) = 00 1 0 p’: so that we keep z:
00 -10 1
PR R
01 0 O Dy _ Dy
00 0 1 p. | 1
00 -1 0 1 —pz |

the homogeneous result corresponds to _pyl//pz
L — Pz

|—pe /D=]

the last component increases monotonically with z!

© 2005, Denis Zorin

16

Projection transformation

[1 0 0 01
10 1 0 0] maps the frustum to an
l o o o 1 | axis-aligned parallelepiped
Lo o -1 0] \l
..... /T tan 3
"""" 1i
V4
tan' S
ran2

already centered in (x,y), center in z-direction and scale:
1

100 0 proey o0
010 0 o 0 0
T= 1/1 1 S= tan &
001 —= = 2
000 1 (*-7)
0 0 0 1

© 2005, Denis

N

orin

Projection transformation

Combined matrix, mapping frustum to a cube:

1
e o o]
"1 0 0} | rtang |
S 0 == 0 0
00 0 1 2
00 -1 0 0 o L1En o fn
B n—f n—f
0 0 —1 0

To get normalized image plane coordinates
(valid range [-1,1] both), just drop z in the result
and convert from homogeneous to regular.

To get pixel coordinates, translate by 1,
and scale x and y (Viewport transformation)

© 2005, Denis Zorin

Transformation pipeline

o Modelview Projection
hatrix Matrix

Viewport
Transformation

®
Y
Z
W eve clip normalzed device window
coordinates coordinates coordinates coordinates
object

coordinates

Modelview: model (position objects) + view (position the camera)
Projection: map viewing volume to a standard cube

Perspective division: project 3D to 2D

Viewport: map the square [-1,1]x[-1,1]
in normalized device coordinates to the screen

© 2005, Denis Zorin

18

