
SOAP 2021
10th ACM SIGPLAN International Workshop on the State of the Art in Program Analysis

Dynamic abstract interpretation

Patrick Cousot

NYU, New York
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Tuesday, June 22th, 2021

“Dynamic abstract interpretation” – 1/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://pldi21.sigplan.org/home/SOAP-2021
http://cs.nyu.edu/~pcousot
https://cs.nyu.edu/~pcousot/

Interval arithmetics

• In scientific computing a real number is represented by a float (floating point number) [IEEE,
1985].

• Because of rounding errors, the floating point computation represents an uncertain real
computation.

• Ramon E. Moore [Moore, 1966; Moore, Kearfott, and Cloud, 2009] invented “interval
arithmetic” to put bounds on rounding errors in floating point computations.

• This guarantees that the uncertain real computation is between floating point bounds

• We show that “interval arithmetic” is a sound abstract interpretation of the program
semantics (on reals).

• Maybe the first dynamic analysis of programs.

en.wikipedia.org/wiki/Interval_arithmetic

“Dynamic abstract interpretation” – 2/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://en.wikipedia.org/wiki/Interval_arithmetic
https://cs.nyu.edu/~pcousot/

Abstract interpretation

“Dynamic abstract interpretation” – 3/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Interval abstraction

concrete abstraction abstract concretization concrete
property property overapproximation

{1.0/9.0, 1.0/7.0, 1.0/3.0} −−− 𝛼 → [0.11110, 0.33334] −−− 𝛾 → {0.11110, ..., 1.0/9.0, ..., 0.14286⋯ ,
..., 1.0/7.0, ..., 1.0/3.0, ..., 0.33334}

∈ ℘(R) ∈ F × F ∈ ℘(R)

“Dynamic abstract interpretation” – 4/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Galois connection

Concrete properties

Abstract properties

𝛼

𝛼

𝛾

𝛾

𝛾

𝛼

(BMPJT DPOOFDUJPOܹਔ
 ֕ܺ ÷÷÷Ҿҽ÷÷÷૓૕ ܹਓ
 ऀܺ

i%ZOBNJD BCTUSBDU JOUFSQSFUBUJPOw o ��� o ª 1� $PVTPU
 /:6
 $*.4
 $4
 5VFTEBZ
 +VOF ��UI
 ����

(BMPJT DPOOFDUJPOܹਔ
 ֕ܺ ÷÷÷Ҿҽ÷÷÷૓૕ ܹਓ
 ऀܺ

i%ZOBNJD BCTUSBDU JOUFSQSFUBUJPOw o ��� o ª 1� $PVTPU
 /:6
 $*.4
 $4
 5VFTEBZ
 +VOF ��UI
 ����

𝛼 ∘ 𝛾

𝛾 ∘ 𝛼
c

a

⟨𝒞 , ⊑⟩ −−−→←−−−𝛼
𝛾
⟨𝒜 , ⪯⟩

𝛼(𝑐) ⪯ 𝑎 ⇔ 𝑐 ⊑ 𝛾(𝑎)

“Dynamic abstract interpretation” – 5/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Galois retraction/insertion

Concrete properties

Abstract properties

𝛼

𝛼

𝛾

𝛾

𝛼

(BMPJT DPOOFDUJPOܹਔ
 ֕ܺ ÷÷÷Ҿҽ÷÷÷૓૕ ܹਓ
 ऀܺ

i%ZOBNJD BCTUSBDU JOUFSQSFUBUJPOw o ��� o ª 1� $PVTPU
 /:6
 $*.4
 $4
 5VFTEBZ
 +VOF ��UI
 ����

(BMPJT DPOOFDUJPOܹਔ
 ֕ܺ ÷÷÷Ҿҽ÷÷÷૓૕ ܹਓ
 ऀܺ

i%ZOBNJD BCTUSBDU JOUFSQSFUBUJPOw o ��� o ª 1� $PVTPU
 /:6
 $*.4
 $4
 5VFTEBZ
 +VOF ��UI
 ����

𝛼 ∘ 𝛾

𝛾 ∘ 𝛼
c

a

⟨𝒞 , ⊑⟩ −−−→⟶←−−−−−𝛼
𝛾
⟨𝒜 , ⪯⟩

𝛼(𝑐) ⪯ 𝑎 ⇔ 𝑐 ⊑ 𝛾(𝑎) ∧ 𝛼 surjective

“Dynamic abstract interpretation” – 6/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Interval abstraction

“Dynamic abstract interpretation” – 7/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Values

• Programs compute on values V.

• Values V can be the set of

• R of reals.
• F of floats 1

• P𝑖 of float intervals

For simplicity, we assume that execution stops in case of error (e.g. when dividing by zero
or returning NaN).

Properties

• Properties are sets of values e.g. {𝑥 ∈ V ∣ 𝑥 > 0} is “to be positive”

• A semantics is the strongest property of executions

1We include ±infinity but exclude NaN, −0, +0 for simplicity of the presentation, not hard to handle.

“Dynamic abstract interpretation” – 8/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Interval abstraction

• The interval abstraction abstracts a set of numerical values, possibly unbounded, by their
minimum and maximal values.

• The interval abstraction is

𝛼𝑖(𝑆) ≜ [min 𝑆,max 𝑆]
𝛾𝑖([𝑥, 𝑥]) ≜ {𝑧 ∈ R ∣ 𝑥 ⩽ 𝑧 ⩽ 𝑥}

Example 1 In interval arithmetics, a real is abstracted by the pair of enclosing floats.
This is also the abstraction of the set of reals between these two floats �

“Dynamic abstract interpretation” – 9/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Abstract domain of numerical intervals

• We let the abstract domain of float intervals be

P𝑖 ≜ {∅} ∪ {[𝑥, 𝑥] ∣ 𝑥, 𝑥 ∈ F ⧵ {−∞,∞} ∧ 𝑥 ⩽ 𝑥}∪ {[−∞, 𝑥] ∣ 𝑥 ∈ F ⧵ {−∞}} ∪ {[𝑥,∞] ∣ 𝑥 ∈ F ⧵ {∞}}

where the empty interval ⊥𝑖 = ∅ can be encoded by any [𝑥, 𝑥]with 𝑥 < 𝑥 (e.g. normalized to
[∞, −∞]).

• The intervals [−∞, −∞] ∉ P𝑖 and [∞,∞] ∉ P𝑖 are excluded.

• The partial order ⊑𝑖 on P𝑖 is interval inclusion ⊥𝑖 ⊑𝑖 ⊥𝑖 ⊑𝑖 [𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] if and only if
𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦.

• This is a complete lattice ⟨P𝑖, ⊑𝑖, ∅, [−∞, +∞], ⨅𝑖, ⨆𝑖⟩

• We have the Galois retraction

⟨℘(R), ⊆⟩ −−−−→⟶←−−−−−−𝛼𝑖
𝛾𝑖 ⟨P𝑖, ⊑𝑖⟩ (2)

“Dynamic abstract interpretation” – 10/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Abstract domain of numerical intervals

• We let the abstract domain of float intervals be

P𝑖 ≜ {∅} ∪ {[𝑥, 𝑥] ∣ 𝑥, 𝑥 ∈ F ⧵ {−∞,∞} ∧ 𝑥 ⩽ 𝑥}∪ {[−∞, 𝑥] ∣ 𝑥 ∈ F ⧵ {−∞}} ∪ {[𝑥,∞] ∣ 𝑥 ∈ F ⧵ {∞}}

where the empty interval ⊥𝑖 = ∅ can be encoded by any [𝑥, 𝑥]with 𝑥 < 𝑥 (e.g. normalized to
[∞, −∞]).

• The intervals [−∞, −∞] ∉ P𝑖 and [∞,∞] ∉ P𝑖 are excluded.

• The partial order ⊑𝑖 on P𝑖 is interval inclusion ⊥𝑖 ⊑𝑖 ⊥𝑖 ⊑𝑖 [𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] if and only if
𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦.

• This is a complete lattice ⟨P𝑖, ⊑𝑖, ∅, [−∞, +∞], ⨅𝑖, ⨆𝑖⟩

• We have the Galois retraction

⟨℘(R), ⊆⟩ −−−−→⟶←−−−−−−𝛼𝑖
𝛾𝑖 ⟨P𝑖, ⊑𝑖⟩ (2)

“Dynamic abstract interpretation” – 10/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Abstract domain of numerical intervals

• We let the abstract domain of float intervals be

P𝑖 ≜ {∅} ∪ {[𝑥, 𝑥] ∣ 𝑥, 𝑥 ∈ F ⧵ {−∞,∞} ∧ 𝑥 ⩽ 𝑥}∪ {[−∞, 𝑥] ∣ 𝑥 ∈ F ⧵ {−∞}} ∪ {[𝑥,∞] ∣ 𝑥 ∈ F ⧵ {∞}}

where the empty interval ⊥𝑖 = ∅ can be encoded by any [𝑥, 𝑥]with 𝑥 < 𝑥 (e.g. normalized to
[∞, −∞]).

• The intervals [−∞, −∞] ∉ P𝑖 and [∞,∞] ∉ P𝑖 are excluded.

• The partial order ⊑𝑖 on P𝑖 is interval inclusion ⊥𝑖 ⊑𝑖 ⊥𝑖 ⊑𝑖 [𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] if and only if
𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦.

• This is a complete lattice ⟨P𝑖, ⊑𝑖, ∅, [−∞, +∞], ⨅𝑖, ⨆𝑖⟩

• We have the Galois retraction

⟨℘(R), ⊆⟩ −−−−→⟶←−−−−−−𝛼𝑖
𝛾𝑖 ⟨P𝑖, ⊑𝑖⟩ (2)

“Dynamic abstract interpretation” – 10/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Soundness

• Given parameters 𝑥 ∈ [𝑥, 𝑥], 𝑦 ∈ [𝑦, 𝑦], … the interval computation of a function 𝑓 ∈ I𝑛 → I

must return a sound interval [𝑓, 𝑓]which contains all possible results for all possible values of
the parameters.

{𝑓(𝑥, 𝑦,…) | 𝑥 ∈ [𝑥, 𝑥] ∧ 𝑦 ∈ [𝑦, 𝑦] ∧ …} ⊆ [𝑓, 𝑓]

• The smaller interval, the better! 𝛼𝑖 is the best/most precise abstraction.

• Formally, the soundness condition is

𝛼𝑖({𝑓(𝑥, 𝑦,…) | 𝑥 ∈ 𝛾𝑖([𝑥, 𝑥]) ∧ 𝑦 ∈ 𝛾𝑖([𝑦, 𝑦]) ∧ …}) ⊑𝑖 [𝑓, 𝑓]

“Dynamic abstract interpretation” – 11/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Soundness

• Given parameters 𝑥 ∈ [𝑥, 𝑥], 𝑦 ∈ [𝑦, 𝑦], … the interval computation of a function 𝑓 ∈ I𝑛 → I

must return a sound interval [𝑓, 𝑓]which contains all possible results for all possible values of
the parameters.

{𝑓(𝑥, 𝑦,…) | 𝑥 ∈ [𝑥, 𝑥] ∧ 𝑦 ∈ [𝑦, 𝑦] ∧ …} ⊆ [𝑓, 𝑓]

• The smaller interval, the better! 𝛼𝑖 is the best/most precise abstraction.

• Formally, the soundness condition is

𝛼𝑖({𝑓(𝑥, 𝑦,…) | 𝑥 ∈ 𝛾𝑖([𝑥, 𝑥]) ∧ 𝑦 ∈ 𝛾𝑖([𝑦, 𝑦]) ∧ …}) ⊑𝑖 [𝑓, 𝑓]

“Dynamic abstract interpretation” – 11/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Soundness

• Given parameters 𝑥 ∈ [𝑥, 𝑥], 𝑦 ∈ [𝑦, 𝑦], … the interval computation of a function 𝑓 ∈ I𝑛 → I

must return a sound interval [𝑓, 𝑓]which contains all possible results for all possible values of
the parameters.

{𝑓(𝑥, 𝑦,…) | 𝑥 ∈ [𝑥, 𝑥] ∧ 𝑦 ∈ [𝑦, 𝑦] ∧ …} ⊆ [𝑓, 𝑓]

• The smaller interval, the better! 𝛼𝑖 is the best/most precise abstraction.

• Formally, the soundness condition is

𝛼𝑖({𝑓(𝑥, 𝑦,…) | 𝑥 ∈ 𝛾𝑖([𝑥, 𝑥]) ∧ 𝑦 ∈ 𝛾𝑖([𝑦, 𝑦]) ∧ …}) ⊑𝑖 [𝑓, 𝑓]

“Dynamic abstract interpretation” – 11/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Syntax and trace semantics of programs

“Dynamic abstract interpretation” – 12/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Syntax

x,y,… ∈ V variable (V not empty)
A ∈ A ∶∶= 0.1 | x | A1 − A2 arithmetic expression
B ∈ B ∶∶= A1 < A2 | B1 nand B2 boolean expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl ∶∶= Sl S | 𝜖 statement list
P ∈ P ∶∶= Sl program
S ∈ Pc ≜ S ∪ Sl ∪ P program component

The float constant 0.1 is 0.000(1100)∞ in binary so has no exact finite binary representation. It is
approximated as 0.10000000149011611938476562500….

“Dynamic abstract interpretation” – 13/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Program labelling

Unique labelling to designate (sets of) program points ℓ ∈ L:

atJSK the program point at which execution of S starts;

afterJSK the program exit point afterS, at which execution of S is supposed to nor-
mally terminate, if ever;

escapeJSK a boolean indicating whether or not the program component S contains
a break ; statement escaping out of that component S;

break-toJSK the program point at which execution of the program component S goes
to when a break ; statement escapes out of that component S;

breaks-ofJSK the set of labels of all break ; statements that can escape out of S

“Dynamic abstract interpretation” – 14/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Example of program labelling

S
⏞⏞⏞

while ℓ0 (⋯)

S𝑏
⏞⏞⏞
{ ℓ1

S1
⏞⏞⏞⋯ ℓ2

S2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞break ;⋯ ℓ3

S3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞break ;

S4
⏞⏞⏞⋯ } ℓ5

S5
⏞⏞⏞⋯

ℓ0 = atJSK = afterJS4K
ℓ1 = atJS1K = atJS𝑏K
ℓ2 = atJS2K = afterJS1K
ℓ3 = atJS3K
ℓ5 = atJS5K = break-toJS𝑏K = afterJSK
escapeJS𝑏K = tt breaks-ofJS𝑏K = {ℓ2, ℓ3},
escapeJSK = ff,
inJS𝑏K = {ℓ1,… , ℓ2,… , ℓ3,…}
inJSK = labxJS𝑏K = {ℓ0, ℓ1,… , ℓ2,… , ℓ3,…},
labxJSK = {ℓ0, ℓ1,… , ℓ2,… , ℓ3,… , ℓ5}

“Dynamic abstract interpretation” – 15/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix traces

• Program label: ℓ ∈ L (locates next step to be executed in the program)

• Environment: 𝜌 ∈ EvV ≜ V → V assigns values 𝜌(x) ∈ V to variables x ∈ V .

• State: ⟨ℓ, 𝜌⟩ ∈ SV ≜ (L × EvV)
• Trace: finite or infinite sequence 𝜋 ∈ S+∞V of states

• Example: ⟨ℓ1, {x→ 1}⟩⟨ℓ2, {x→ 2}⟩⟨ℓ4, {x→ 2}⟩
• Trace concatenation: ⌢⋅

𝜋1𝜎1 ⌢⋅ 𝜎2𝜋2 undefined if 𝜎1 ≠ 𝜎2
𝜋1 ⌢⋅ 𝜎2𝜋2 ≜ 𝜋1 if 𝜋1 ∈ S+V is infinite
𝜋1𝜎1 ⌢⋅ 𝜎1𝜋2 ≜ 𝜋1𝜎1𝜋2 if 𝜋1 ∈ T+ is finite

• In pattern matching, we sometimes need the empty trace ∋. For example if 𝜎𝜋𝜎′ = 𝜎 then
𝜋 = ∋ and 𝜎 = 𝜎′.

“Dynamic abstract interpretation” – 16/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Evaluation of expressions

• Evaluation of an arithmetic expression (parameterized by V = R or V = F, later intervals)

𝓐VJ0.1K𝜌 ≜ 0.1V (1)
𝓐VJxK𝜌 ≜ 𝜌(x)

𝓐VJA1 − A2K𝜌 ≜ 𝓐VJA1K𝜌 −V 𝓐VJA2K𝜌
• For example −F is the difference found on IEEE-754 machines and must take rounding mode

(and the machine specificities [Monniaux, 2008]) into account.

• Evaluation of a Boolean expression (B ≜ {tt, ff}):

𝓑VJA1 < A2K𝜌 ≜ 𝓐VJA1K𝜌 <𝓐VJA2K𝜌 (4)
𝓑VJB1 nand B2K𝜌 ≜ 𝓑VJB1K𝜌 ↑𝓑VJB2K𝜌

where < is strictly less than on reals and floats while ↑ is the “not and” boolean operator.

“Dynamic abstract interpretation” – 17/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Evaluation of expressions

• Evaluation of an arithmetic expression (parameterized by V = R or V = F, later intervals)

𝓐VJ0.1K𝜌 ≜ 0.1V (1)
𝓐VJxK𝜌 ≜ 𝜌(x)

𝓐VJA1 − A2K𝜌 ≜ 𝓐VJA1K𝜌 −V 𝓐VJA2K𝜌
• For example −F is the difference found on IEEE-754 machines and must take rounding mode

(and the machine specificities [Monniaux, 2008]) into account.

• Evaluation of a Boolean expression (B ≜ {tt, ff}):

𝓑VJA1 < A2K𝜌 ≜ 𝓐VJA1K𝜌 <𝓐VJA2K𝜌 (4)
𝓑VJB1 nand B2K𝜌 ≜ 𝓑VJB1K𝜌 ↑𝓑VJB2K𝜌

where < is strictly less than on reals and floats while ↑ is the “not and” boolean operator.

“Dynamic abstract interpretation” – 17/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix trace semantics (cont’d)

• A prefix trace describes the beginning of a computation

• Assignment S ∶∶= ℓ x = A ; (where atJSK = ℓ)
𝓢∗VJSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ (2)

{⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐VJAK𝜌]⟩ ∣ 𝜌 ∈ Ev}

“Dynamic abstract interpretation” – 18/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix trace semantics (cont’d)

• Break statement S ∶∶= ℓ break ; (where atJSK = ℓ)
𝓢∗VJSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ (3)

{⟨ℓ, 𝜌⟩⟨break-toJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev}

“Dynamic abstract interpretation” – 19/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix trace semantics (cont’d)

• Conditional statement S ∶∶= if ℓ (B) S𝑡 (where atJSK = ℓ)
𝓢∗VJSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} (5)

∪ {⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌⟩ ∣𝓑VJBK𝜌 = ff}
∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣𝓑VJBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ 𝓢∗VJS𝑡K}

• If the conditional statement S is inside an iteration statement, and S𝑡 has a break, the
execution goes on at the break-toJSK after the iteration.

“Dynamic abstract interpretation” – 20/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix trace semantics (cont’d)

• Statement list Sl ∶∶= Sl′ S (where atJSK = afterJSl′K)
𝓢∗VJSlK ≜ 𝓢∗VJSl′K ∪ (7)

𝓢∗VJSl′K ⌢⋅ 𝓢∗VJSK (3)

𝓢 ⌢⋅ 𝓢′ ≜ {𝜋 ⌢⋅ 𝜋′ ∣ 𝜋 ∈ 𝓢 ∧ 𝜋′ ∈ 𝓢′ ∧ 𝜋 ⌢⋅ 𝜋′ is well-defined}

• 𝜋′ ∈ 𝓢∗VJSK starts atJSK = afterJSl′K so, by def. ⌢⋅ , the trace 𝜋 ∈ 𝓢∗VJSl′K must terminate to be
able to go on with S.

“Dynamic abstract interpretation” – 21/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix trace semantics (cont’d)

• Empty statement list Sl ∶∶= 𝜖 (where atJSlK ≜ afterJSlK)
𝓢∗VJSlK ≜ {⟨atJSlK, 𝜌⟩ ∣ 𝜌 ∈ Ev}

“Dynamic abstract interpretation” – 22/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Prefix trace semantics (cont’d)

• Iteration statement S ∶∶= while ℓ (B) S𝑏 (where atJSK = ℓ)
𝓢∗VJwhile ℓ (B) S𝑏K = lfp⊆𝓕∗VJwhile ℓ (B) S𝑏K (8)

𝓕∗VJwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev} (a)

∪ {𝜋2⟨ℓ′, 𝜌⟩⟨afterJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑VJBK 𝜌 = ff ∧ ℓ′ = ℓ} (b)

∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑VJBK 𝜌 = tt ∧
⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗VJS𝑏K ∧ ℓ′ = ℓ}

(c)

(a) either the execution observation stop atJwhile ℓ (B) S𝑏K = ℓ, or
(b) after a number of iterations, control is back to ℓ, the test is false, and the loop is exited, or

(c) after a number of iterations, control is back to ℓ, the test is true, and the loop body is executed

(This includes the termination of the loop body afterJS𝑏K = atJwhile ℓ (B) S𝑏K = ℓ)
“Dynamic abstract interpretation” – 23/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Maximal trace semantics

• Maximal trace semantics

𝓢+VJSK ≜ {𝜋⟨ℓ, 𝜌⟩ ∈ 𝓢∗VJSK ∣ (ℓ = afterJSK) ∨ (escapeJSK ∧ ℓ = break-toJSK)}
𝓢∞V JSK ≜ lim(𝓢∗VJSK)

• Limit

lim𝒯 ≜ {𝜋 ∈ T∞ ∣ ∀𝑛 ∈ N . 𝜋[0..𝑛] ∈ 𝒯 }.

“Dynamic abstract interpretation” – 24/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

“Dynamic abstract interpretation” – 25/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

• We have defined the value semantics 𝓢∗V of the language (its executions on reals are not
implementable/too costly to implement2)

• Next, we define the interval abstraction 𝛼̊P𝑖 of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is 𝛼̊P𝑖(𝓢∗V) (its executions on interval
float abstractions of reals are not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗
P𝑖

of the language (executions on float intervals)

• By construction 𝛼̊P𝑖(𝓢∗V) Ť̊
𝑖 𝓢∗

P𝑖
, so the interval semantics is a sound abstraction of the value

semantics

2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic abstract interpretation” – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

• We have defined the value semantics 𝓢∗V of the language (its executions on reals are not
implementable/too costly to implement2)

• Next, we define the interval abstraction 𝛼̊P𝑖 of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is 𝛼̊P𝑖(𝓢∗V) (its executions on interval
float abstractions of reals are not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗
P𝑖

of the language (executions on float intervals)

• By construction 𝛼̊P𝑖(𝓢∗V) Ť̊
𝑖 𝓢∗

P𝑖
, so the interval semantics is a sound abstraction of the value

semantics

2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic abstract interpretation” – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

• We have defined the value semantics 𝓢∗V of the language (its executions on reals are not
implementable/too costly to implement2)

• Next, we define the interval abstraction 𝛼̊P𝑖 of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is 𝛼̊P𝑖(𝓢∗V) (its executions on interval
float abstractions of reals are not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗
P𝑖

of the language (executions on float intervals)

• By construction 𝛼̊P𝑖(𝓢∗V) Ť̊
𝑖 𝓢∗

P𝑖
, so the interval semantics is a sound abstraction of the value

semantics

2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic abstract interpretation” – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

• We have defined the value semantics 𝓢∗V of the language (its executions on reals are not
implementable/too costly to implement2)

• Next, we define the interval abstraction 𝛼̊P𝑖 of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is 𝛼̊P𝑖(𝓢∗V) (its executions on interval
float abstractions of reals are not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗
P𝑖

of the language (executions on float intervals)

• By construction 𝛼̊P𝑖(𝓢∗V) Ť̊
𝑖 𝓢∗

P𝑖
, so the interval semantics is a sound abstraction of the value

semantics

2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic abstract interpretation” – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

• We have defined the value semantics 𝓢∗V of the language (its executions on reals are not
implementable/too costly to implement2)

• Next, we define the interval abstraction 𝛼̊P𝑖 of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is 𝛼̊P𝑖(𝓢∗V) (its executions on interval
float abstractions of reals are not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗
P𝑖

of the language (executions on float intervals)

• By construction 𝛼̊P𝑖(𝓢∗V) Ť̊
𝑖 𝓢∗

P𝑖
, so the interval semantics is a sound abstraction of the value

semantics

2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic abstract interpretation” – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Objective

• We have defined the value semantics 𝓢∗V of the language (its executions on reals are not
implementable/too costly to implement2)

• Next, we define the interval abstraction 𝛼̊P𝑖 of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is 𝛼̊P𝑖(𝓢∗V) (its executions on interval
float abstractions of reals are not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗
P𝑖

of the language (executions on float intervals)

• By construction 𝛼̊P𝑖(𝓢∗V) Ť̊
𝑖 𝓢∗

P𝑖
, so the interval semantics is a sound abstraction of the value

semantics
2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic abstract interpretation” – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Interval arithmetics

“Dynamic abstract interpretation” – 27/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

How real computations are performed?

• Floating point arithmetics: floating point number representing an uncertain real 𝑥

• Interval arithmetics: the computation is performed with the two ends of a float interval [𝑥, 𝑥]
with 𝑥 ∈ [𝑥, 𝑥].

• This is an abstraction of a trace semantics on reals

• Handling tests:

• real computation: only one branch taken
• float computation: only one branch taken, but could be the wrong one
• interval computation: one or both alternatives taken (hence one real trace can be

abstracted into interval several traces).

“Dynamic abstract interpretation” – 28/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

How real computations are performed?

• Floating point arithmetics: floating point number representing an uncertain real 𝑥
• Interval arithmetics: the computation is performed with the two ends of a float interval [𝑥, 𝑥]

with 𝑥 ∈ [𝑥, 𝑥].
• This is an abstraction of a trace semantics on reals

• Handling tests:

• real computation: only one branch taken
• float computation: only one branch taken, but could be the wrong one
• interval computation: one or both alternatives taken (hence one real trace can be

abstracted into interval several traces).

“Dynamic abstract interpretation” – 28/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

How real computations are performed?

• Floating point arithmetics: floating point number representing an uncertain real 𝑥
• Interval arithmetics: the computation is performed with the two ends of a float interval [𝑥, 𝑥]

with 𝑥 ∈ [𝑥, 𝑥].
• This is an abstraction of a trace semantics on reals

• Handling tests:

• real computation: only one branch taken
• float computation: only one branch taken, but could be the wrong one
• interval computation: one or both alternatives taken (hence one real trace can be

abstracted into interval several traces).

“Dynamic abstract interpretation” – 28/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Constants

• If the program contains a constant 𝑐, its interval is [𝑐, 𝑐].
• However, the compilation may introduce an error i.e. rounding error for a float that must be

taken into account.

• For example, the decimal 0.1 is 0.000(1100)∞ in binary so has no exact binary representation
on finitely many bits.

“Dynamic abstract interpretation” – 29/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Addition and substraction

[𝑥, 𝑥] ⊕𝑖 ∅ = ∅ ⊕𝑖 [𝑥, 𝑥] = [𝑥, 𝑥] ⊖𝑖 ∅ = ∅ ⊖𝑖 [𝑥, 𝑥] = ∅
[𝑥, 𝑥] ⊕𝑖 [𝑦, 𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦]
[𝑥, 𝑥] ⊖𝑖 [𝑦, 𝑦] = [𝑥 − 𝑦, 𝑥 − 𝑦]
⊖𝑖[𝑥, 𝑥] = [−𝑥, −𝑥]

• We assume that −∞+ −∞ = −∞, −∞+ 𝑧 = −∞,∞+ 𝑧 = ∞, and∞+∞ = ∞ for any 𝑧 ∈ I.
• For example, [10,∞] ⊖𝑖 [−∞, 5] = [10 − 5,∞ − (−∞)] = [5,∞].
• For floating point numbers, the lower bound is rounded towards −∞ and the upper bound

towards∞.

• This implies that the computed value is always included in the concretization of the interval
value.

• Interval arithmetic is imprecise does not identify different occurrences of the same variable.

“Dynamic abstract interpretation” – 30/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Multiplication

[𝑥, 𝑥] ⊗𝑖 ∅ = ∅ ⊗𝑖 [𝑥, 𝑥] = ∅
[𝑥, 𝑥] ⊗𝑖 [𝑦, 𝑦] = [min(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥 𝑦),max(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥 𝑦)]

which reduces to [𝑥𝑦, 𝑥 𝑦]when the lower bounds 𝑥 and 𝑦 are greater that zero.

“Dynamic abstract interpretation” – 31/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Algebraic properties

• The interval operations have some of the usual algebraic properties of arithmetic operations

(𝑥 ⊕𝑖 𝑦) ⊕𝑖 𝑧 = 𝑥 ⊕𝑖 (𝑦 ⊕𝑖 𝑘𝑧) associativity
(𝑥 ⊖𝑖 𝑦) ⊖𝑖 𝑧 = 𝑥 ⊖𝑖 (𝑦 ⊖𝑖 𝑧)
𝑥 ⊕𝑖 𝑦 = 𝑦 ⊕𝑖 𝑥 commutativity
𝑥 ⊗ 𝑦 = 𝑦 ⊗𝑖 𝑥

𝑥 ⊕𝑖 [0, 0] = 𝑥 neutral element
𝑥 ⊗𝑖 [1, 1] = 𝑥

• However distributivity does not hold. We have

𝑥 ⊗𝑖 (𝑦 ⊕𝑖 𝑧) ⊑𝑖 (𝑥 ⊗𝑖 𝑦) ⊕𝑖 (𝑥 ⊗𝑖 𝑧) subdistributivity

“Dynamic abstract interpretation” – 32/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Conditions (cont’d)

• Although when computing with I only one branch of a conditional will be taken, interval
computation with P𝑖 may have to take both.

• This gives, in the worst-case, an exponential number of cases to consider.

• In most interval arithmetic libraries, this case raises an exception that stops execution, which
is a further coarse abstraction of the abstract semantics presented here.

• See e.g. www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/interval.htm
and www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/comparisons.htm.

“Dynamic abstract interpretation” – 33/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/interval.htm
https://www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/comparisons.htm
https://cs.nyu.edu/~pcousot/

Conditions (cont’d)

• Although when computing with I only one branch of a conditional will be taken, interval
computation with P𝑖 may have to take both.

• This gives, in the worst-case, an exponential number of cases to consider.

• In most interval arithmetic libraries, this case raises an exception that stops execution, which
is a further coarse abstraction of the abstract semantics presented here.

• See e.g. www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/interval.htm
and www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/comparisons.htm.

“Dynamic abstract interpretation” – 33/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/interval.htm
https://www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/comparisons.htm
https://cs.nyu.edu/~pcousot/

Conditions (cont’d)

• The boolean comparison operators 𝑥� 𝑦 take two intervals for 𝑥 and 𝑦 and return two
intervals for 𝑥 and 𝑦 such that the comparison may hold (and cannot hold outside these
intervals).

[𝑥, 𝑥] ⊜𝑖 [𝑦, 𝑦] ≜ ⟨∅, ∅⟩ if 𝑥 < 𝑦 or 𝑦 < 𝑥
≜ ⟨[max(𝑥, 𝑦),min(𝑥, 𝑦)], [max(𝑥, 𝑦),min(𝑥, 𝑦)]⟩ otherwise

[𝑥, 𝑥] ⧀𝑖 [𝑦, 𝑦] ≜ ⟨∅, ∅⟩ if 𝑥 ⩾ 𝑦
≜ ⟨[𝑥,min(𝑥, 𝑦)], [max(𝑥, 𝑦), 𝑦]⟩ otherwise, I ≠ Z
≜ ⟨[𝑥,min(𝑥, 𝑦 − 1)], [max(𝑥 + 1, 𝑦), 𝑦]⟩ otherwise, I = Z

“Dynamic abstract interpretation” – 34/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float interval abstraction

“Dynamic abstract interpretation” – 35/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float notations

• ↰⌉⌉𝑥 (which can be −∞) is the largest float smaller than or equal to 𝑥 ∈ R (or ↰⌉⌉𝑥 = 𝑥 for 𝑥 ∈ F)

• 𝑥⌈⌈↱ (which can be∞) is the smallest float greater than or equal to 𝑥 ∈ R (or 𝑥⌈⌈↱ = 𝑥 for 𝑥 ∈ F).

• ↰⌉𝑥 is the largest floating-point number strictly less than 𝑥 ∈ F (which can be −∞)

• 𝑥⌈↱ is the smallest floating-point number strictly larger than 𝑥 ∈ F (which can be∞).

• We assume

↰⌉⌉𝑥 −F 𝑦⌈⌈↱ ⩽ ↰⌉⌉(𝑥 −V 𝑦) (V is R or F) (12)

𝑥⌈⌈↱ −F ↰⌉⌉𝑦 ⩾ (𝑥 −V 𝑦)⌈⌈↱
(x ∈ [𝑥, 𝑥] ∧ y ∈ [𝑦, 𝑦] ∧ x < y) ⇒ (x ∈ [𝑥,min(𝑥, 𝑦)] ∧ y ∈ [max(𝑥, 𝑦), 𝑦]) (13)

“Dynamic abstract interpretation” – 36/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Incorrect machine implementations

• Some machine implementations of IEEE-754 floating point arithmetics [IEEE, 1985] are
incorrect [Goldberg, 1991; Monniaux, 2008].

• For example [Monniaux, 2008, Sect. 6.1.2], we could have

(x ∈ [𝑥, 𝑥] ∧ y ∈ [𝑦, 𝑦] ∧ x < y) ⇒ (x ∈ [𝑥,min(𝑥, 𝑦⌈↱)] ∧ y ∈ [max(↰⌉𝑥, 𝑦), 𝑦]) (13.bis)

en.wikipedia.org/wiki/Pentium_FDIV_bug

“Dynamic abstract interpretation” – 37/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://cs.nyu.edu/~pcousot/

Float interval abstraction

𝛼P𝑖(𝑥) ≜ [↰⌉⌉𝑥, 𝑥⌈⌈↱] real abstraction by float interval (14)

𝛾P𝑖([𝑥, 𝑥]) ≜ {𝑥 ∈ R ∣ 𝑥 ⩽ 𝑥 ⩽ 𝑥}
𝛼̇P𝑖(𝜌) ≜ x ∈ V ↦ 𝛼P𝑖(𝜌(x)) environment abstraction

̇𝛾P𝑖(𝜌) ≜ {𝜌 ∈ V → R ∣ ∀x ∈ V . 𝜌(x) ∈ 𝛾P𝑖(𝜌(x))}
𝛼̈P𝑖(⟨ℓ, 𝜌⟩) ≜ ⟨ℓ, 𝛼̇P𝑖(𝜌)⟩ state abstraction

̈𝛾P𝑖(⟨ℓ, 𝜌⟩) ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ ̇𝛾P𝑖(𝜌)}
𝛼⃗P𝑖(𝜋1…𝜋𝑛…) ≜ 𝛼̈P

𝑖(𝜋1)… 𝛼̈P
𝑖(𝜋𝑛)… [in]finite trace abstraction

𝛾P𝑖(𝜋1…𝜋𝑛…) ≜ {𝜋1…𝜋𝑛… ∣ |𝜋| = |𝜋| ∧ ∀𝑖 = 1,… , 𝑛,… . 𝜋𝑖 ∈ ̈𝛾P
𝑖(𝜋𝑖)}

𝛼̊P𝑖(𝛱) ≜ {𝛼⃗P𝑖(𝜋) ∣ 𝜋 ∈ 𝛱} set of traces abstraction

̊𝛾P𝑖(𝛱) ≜ {𝜋 ∣ 𝛼⃗P𝑖(𝜋) ∈ 𝛱} = ⋃{𝛾P𝑖(𝜋) ∣ 𝜋 ∈ 𝛱}

Because the floats are a subset of the reals, we can use 𝛼P𝑖 to abstract both real and float traces
(i.e. V be R or F).

⟨℘(S+∞V), ⊆⟩ −−−−−→←−−−−−
𝛼̊P𝑖

̊𝛾P𝑖

⟨℘(S+∞
P𝑖
), ⊆⟩ (15)“Dynamic abstract interpretation” – 38/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

⊆ is correct by inadequate for approximation in the abstract

• Program: ℓ1 x = x − x ; ℓ2
• Concrete semantics:

𝛱 = {⟨ℓ1, x = 0.1R⟩⟨ℓ2, x = 0.0R⟩, ⟨ℓ1, x = −0.1R⟩⟨ℓ2, x = 0.0R⟩}

• Sound abstract semantics on floats:

𝛱1 = {⟨ℓ1, x = [0.09, 0.11]⟩⟨ℓ2, x = [0.00, 0.00]⟩, 𝛱 ⊆ ̊𝛾P𝑖(𝛱1)
⟨ℓ1, x = [−0.11, −0.09]⟩⟨ℓ2, x = [0.00, 0.00]⟩}

𝛱2 = {⟨ℓ1, x = [−0.11, 0.11]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
input interval

⟩⟨ℓ2, x = [−0.02, 0.20]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
interval arithmetic

⟩} 𝛱 ⊆ ̊𝛾P𝑖(𝛱2)

• 𝛱1 and𝛱2 are not comparable as abstract elements of ⟨℘(S+∞
P𝑖
), ⊆⟩

• So ⊆ does not allow over approximating𝛱1 by𝛱2!

“Dynamic abstract interpretation” – 39/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the concrete

• Concrete semantics:

𝛱 = {⟨ℓ1, x = 0.1R⟩⟨ℓ2, x = 0.0R⟩, ⟨ℓ1, x = −0.1R⟩⟨ℓ2, x = 0.0R⟩}

• Sound abstract semantics on floats:

𝛱1 = {⟨ℓ1, x = [0.09, 0.11]⟩⟨ℓ2, x = [0.00, 0.00]⟩, 𝛱 ⊆ ̊𝛾P𝑖(𝛱1)
⟨ℓ1, x = [−0.11, −0.09]⟩⟨ℓ2, x = [0.00, 0.00]⟩}

𝛱2 = {⟨ℓ1, x = [−0.11, 0.11]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
input interval

⟩⟨ℓ2, x = [−0.02, 0.20]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
interval arithmetic

⟩} 𝛱 ⊆ ̊𝛾P𝑖(𝛱2)

• By comparison in the concrete,𝛱1 is more precise than𝛱2, written𝛱1 ⊑̊
𝑖 𝛱2

𝛱1 ⊑̊
𝑖 𝛱2 ≜ ̊𝛾P

𝑖(𝛱1) ⊆ ̊𝛾P
𝑖(𝛱2) (16)

= ∀𝜋1 ∈ 𝛱1 . ∀𝜋 ∈ 𝛾P
𝑖(𝜋1) . ∃𝜋2 ∈ 𝛱2 . 𝜋 ∈ 𝛾P

𝑖(𝜋2)

“Dynamic abstract interpretation” – 40/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract (cont’d)

• We express ⊑̊𝑖 in the abstract, without referring to te concretization 𝛾P𝑖

• We define𝛱 Ť̊𝑖 𝛱′ so that the traces of𝛱′ have the same control as the traces of𝛱 but
intervals are larger (and𝛱′ may contain extra traces due to the imprecision of interval tests).

• Ť̊𝑖 is Hoare preorder [Winskel, 1983] on sets of traces.

[𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] ≜ 𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦 (18)

𝜌 ⊑̇𝑖 𝜌′ ≜ ∀x ∈ V . 𝜌(x) ⊑𝑖 𝜌′(x)

⟨ℓ, 𝜌⟩ ⊑̈𝑖 ⟨ℓ′, 𝜌′⟩ ≜ (ℓ = ℓ′) ∧ (𝜌 ⊑̇𝑖 𝜌′)

𝜋 ⊑⃗𝑖 𝜋′ ≜ (|𝜋| = |𝜋′|) ∧ (∀𝑖 ∈ [0, |𝜋|[. 𝜋𝑖 ⊑̈
𝑖 𝜋′𝑖)

𝛱 Ť̊𝑖 𝛱′ ≜ ∀𝜋 ∈ 𝛱 . ∃𝜋′ ∈ 𝛱′ . 𝜋 ⊑⃗𝑖 𝜋′

Lemma 6 (𝛱 Ť̊𝑖 𝛱′) ⇒ (𝛱 ⊑̊𝑖 𝛱′). �

“Dynamic abstract interpretation” – 41/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract (cont’d)

• We express ⊑̊𝑖 in the abstract, without referring to te concretization 𝛾P𝑖

• We define𝛱 Ť̊𝑖 𝛱′ so that the traces of𝛱′ have the same control as the traces of𝛱 but
intervals are larger (and𝛱′ may contain extra traces due to the imprecision of interval tests).

• Ť̊𝑖 is Hoare preorder [Winskel, 1983] on sets of traces.

[𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] ≜ 𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦 (18)

𝜌 ⊑̇𝑖 𝜌′ ≜ ∀x ∈ V . 𝜌(x) ⊑𝑖 𝜌′(x)

⟨ℓ, 𝜌⟩ ⊑̈𝑖 ⟨ℓ′, 𝜌′⟩ ≜ (ℓ = ℓ′) ∧ (𝜌 ⊑̇𝑖 𝜌′)

𝜋 ⊑⃗𝑖 𝜋′ ≜ (|𝜋| = |𝜋′|) ∧ (∀𝑖 ∈ [0, |𝜋|[. 𝜋𝑖 ⊑̈
𝑖 𝜋′𝑖)

𝛱 Ť̊𝑖 𝛱′ ≜ ∀𝜋 ∈ 𝛱 . ∃𝜋′ ∈ 𝛱′ . 𝜋 ⊑⃗𝑖 𝜋′

Lemma 6 (𝛱 Ť̊𝑖 𝛱′) ⇒ (𝛱 ⊑̊𝑖 𝛱′). �
“Dynamic abstract interpretation” – 41/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract (cont’d)

• Strictly weaker

• Example:

𝛱1 = {⟨ℓ1, x = [0.0, 1.0]⟩,
⟨ℓ1, x = [1.0, 2.0]⟩}

𝛱2 = {⟨ℓ1, x = [0.0, 0.5]⟩,
⟨ℓ1, x = [0.5, 2.0]⟩}

• 𝛱1 ⊑̊
𝑖 𝛱2 (same concrete traces)

• 𝛱1 /̊Ť𝑖 𝛱2 (no inclusion of abstract traces)

• 𝛱2 /̊Ť𝑖 𝛱1

“Dynamic abstract interpretation” – 42/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Soundness and calculational design

• Value (real/float) concrete semantics: 𝓢∗VJSK
• Interval abstract semantics: 𝓢∗

P𝑖
JSK

• Soundness: all value (real/float) traces are included in the interval traces:

𝛼̊P𝑖(𝓢∗VJSK) Ť̊𝑖 𝓢∗
P𝑖

JSK
⇒ 𝛼̊P𝑖(𝓢∗VJSK) ⊑̊𝑖 𝓢∗

P𝑖
JSK Hlemma 6I

⇒ ̊𝛾P𝑖(𝛼̊P𝑖(𝓢∗VJSK)) ⊆ ̊𝛾P𝑖(𝓢∗
P𝑖

JSK) Hdef. ⊑̊𝑖I
⇒ 𝓢∗VJSK ⊆ ̊𝛾P𝑖(𝓢∗P𝑖JSK) HGalois connection ⟨℘(S+∞V), ⊆⟩ −−−−−→←−−−−−

𝛼̊P𝑖

̊𝛾P𝑖

⟨℘(S+∞
P𝑖
), ⊆⟩, (15)I

• Calculational design:

• Calculate 𝛼̊P𝑖(𝓢∗VJSK)
• Over approximate by Ť̊𝑖 to eliminate all concrete operations

“Dynamic abstract interpretation” – 43/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Soundness and calculational design

• Value (real/float) concrete semantics: 𝓢∗VJSK
• Interval abstract semantics: 𝓢∗

P𝑖
JSK

• Soundness: all value (real/float) traces are included in the interval traces:

𝛼̊P𝑖(𝓢∗VJSK) Ť̊𝑖 𝓢∗
P𝑖

JSK
⇒ 𝛼̊P𝑖(𝓢∗VJSK) ⊑̊𝑖 𝓢∗

P𝑖
JSK Hlemma 6I

⇒ ̊𝛾P𝑖(𝛼̊P𝑖(𝓢∗VJSK)) ⊆ ̊𝛾P𝑖(𝓢∗
P𝑖

JSK) Hdef. ⊑̊𝑖I
⇒ 𝓢∗VJSK ⊆ ̊𝛾P𝑖(𝓢∗P𝑖JSK) HGalois connection ⟨℘(S+∞V), ⊆⟩ −−−−−→←−−−−−

𝛼̊P𝑖

̊𝛾P𝑖

⟨℘(S+∞
P𝑖
), ⊆⟩, (15)I

• Calculational design:

• Calculate 𝛼̊P𝑖(𝓢∗VJSK)
• Over approximate by Ť̊𝑖 to eliminate all concrete operations

“Dynamic abstract interpretation” – 43/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Calculational design of the
float interval trace semantics

“Dynamic abstract interpretation” – 44/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an arithmetic expression semantics

• Let V be R or F.

𝓐P𝑖J1K𝜌 ≜ 1P𝑖 where 1P𝑖 = [1.0, 1.0] and 1.0 ∈ F
𝓐P𝑖J0.1K𝜌 ≜ 0.1P𝑖 where 0.1P𝑖 ≜ [↰⌉⌉0.1V , 0.1V⌈⌈↱]

𝓐P𝑖JxK𝜌 ≜ 𝜌(x)
𝓐P𝑖JA1 − A2K𝜌 ≜ 𝓐P𝑖JA1K𝜌 ⊖P𝑖 𝓐P𝑖JA2K𝜌 where [𝑥, 𝑥] ⊖P𝑖 [𝑦, 𝑦] ≜ [𝑥 −F 𝑦, 𝑥 −F 𝑦]

(with rounding towards −∞/∞) is such that

𝛼P𝑖(𝓐VJAK𝜌) ⊑𝑖 𝓐P𝑖JAK𝛼̇P𝑖(𝜌). (21)

• 𝓐P𝑖JAK is ⊑̇𝑖-increasing (but does not preserves least upper bounds).

“Dynamic abstract interpretation” – 45/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Proof
𝛼I(𝓐VJ0.1K𝜌)

= 𝛼I(0.1V) Hdef. 𝓐V in (1)I
= [↰⌉⌉0.1V , 0.1V⌈⌈↱] Hreal abstraction by float interval in (14)I
≜ 𝓐IJ0.1K(𝛼I(𝜌)) Hby defining 𝓐IJ0.1K𝜌 ≜ [↰⌉⌉0.1V , 0.1V⌈⌈↱]I
𝛼I(𝓐VJxK𝜌)

= 𝛼I(𝜌(x)) Hdef. 𝓐V in (1)I
= 𝛼I(𝜌)(x) Hdef. environment abstraction in (14)I
≜ 𝓐IJxK(𝛼I(𝜌)) Hby defining 𝓐IJxK𝜌 ≜ 𝜌(x)I
𝛼I(𝓐VJA1 − A2K𝜌)

= 𝛼I(𝓐VJA1K𝜌 −V 𝓐VJA2K𝜌) Hdef. 𝓐V in (1)I
= [↰⌉⌉(𝓐VJA1K𝜌 −V 𝓐VJA2K𝜌), (𝓐VJA1K𝜌 −V 𝓐VJA2K𝜌)⌈⌈↱] Hvalue abstraction by float interval in (14)I
⊑𝑖 [↰⌉⌉(𝓐VJA1K𝜌) −F (𝓐VJA2K𝜌)⌈⌈↱), (𝓐VJA1K𝜌)⌈⌈↱ −F ↰⌉⌉(𝓐VJA2K𝜌)] H(18) and hyp. (12)I
⊑𝑖 let [𝑥, 𝑥] =𝓐IJA1K𝛼I(𝜌) and [𝑦, 𝑦] =𝓐IJA2K𝛼I(𝜌) in [𝑥 −F 𝑦, 𝑥 −F 𝑦]HBy ind. hyp. [↰⌉⌉𝓐VJA𝑖K𝜌,𝓐VJA𝑖K𝜌⌈⌈↱] = 𝛼I(𝓐VJA𝑖K𝜌) ⊑𝑖𝓐IJA𝑖K𝛼I(𝜌), 𝑖 = 1, 2.I
= 𝓐IJA1K𝛼I(𝜌) −I 𝓐IJA2K𝛼I(𝜌) Hby defining [𝑥, 𝑥] −I [𝑦, 𝑦] ≜ [𝑥 −F 𝑦, 𝑥 −F 𝑦]I
≜ 𝓐IJA1 − A2K𝛼I(𝜌) Hby defining 𝓐IJA1 − A2K𝜌 ≜𝓐IJA1K𝜌 −I 𝓐IJA2K𝜌I
Approximation:

𝛼I({𝜌(x) − 𝜌(y) ∣ 𝜌 ∈ 𝛾I(𝜌)}) ⊑𝑖 𝜌(x) −I 𝜌(y)
“Dynamic abstract interpretation” – 46/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an assignment semantics

• S ∶∶= ℓ x = A ;
• Concrete semantics on reals (V = R) or float (V = F):

𝓢∗VJSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvV} ∪ (2)
{⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐VJAK𝜌]⟩ ∣ 𝜌 ∈ EvV}

• Abstract semantics on intervals (V = P𝑖)

𝓢∗
P𝑖

JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvP𝑖} ∪
{⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐P𝑖JAK𝜌]⟩ ∣ 𝜌 ∈ EvP𝑖}

• Same traces except for computing on intervals rather than values

“Dynamic abstract interpretation” – 47/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Proof
We can now abstract the semantics of real (V=R) or float (V=F) assignments by float intervals.
𝛼I([ℓ x = A ;])

= {𝛼I(𝜋) ∣ 𝜋 ∈ [ℓ x = A ;]} Hset of traces abstraction (14)I
= {𝛼I(𝜋) ∣ 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐VJAK𝜌]⟩ ∣ 𝜌 ∈ EvV}} Hdef. [ℓ x = A ;] in (2)I
= {⟨ℓ, 𝛼I(𝜌)⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝛼I(𝜌)⟩⟨afterJSK, 𝛼I(𝜌[x←𝓐VJAK𝜌])⟩ ∣ 𝜌 ∈ EvV} Hdef. (14) of trace abstractionI
= {⟨ℓ, 𝛼I(𝜌)⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝛼I(𝜌)⟩⟨afterJSK, 𝛼I(𝜌)[x← 𝛼I(𝓐VJAK𝜌])⟩ ∣ 𝜌 ∈ EvV} Hdef. (14) of environment abstractionI
Ť̊𝑖{⟨ℓ, 𝛼I(𝜌)⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝛼I(𝜌)⟩⟨afterJSK, 𝛼I(𝜌)[x←𝓐IJAK𝛼I(𝜌)]⟩ ∣ 𝜌 ∈ EvV} Hdef. (18) of Ť̊𝑖 and (21)I
Ť̊𝑖{⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} ∪ {⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐IJAK𝜌]⟩ ∣ 𝜌 ∈ EvI} H{𝛼I(𝜌) ∣ 𝜌 ∈ EvV} ⊆ EvI by (14) for environment abstractionI
≜ 𝓢∗I Jℓ x = A ;K Hby defining 𝓢∗I Jℓ x = A ;K as in (2) for V=II
Approximation Ť̊𝑖:

• value 𝓐V to interval arithmetic 𝓐I

• value to interval environments

“Dynamic abstract interpretation” – 48/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an arithmetic expression semantics

• A test is true or false for V = R and V = F
• For intervals a test is imprecise (e.g. < is handled as ⩽), may yield a split, and overlap.

• The abstract interpretation 𝓑P𝑖JBK of a boolean expression B is defined such that

let ⟨𝜌tt , 𝜌ff⟩ =𝓑P𝑖JBK𝛼̇P𝑖(𝜌) in (22)

𝛼̇P𝑖(𝜌) ⊑̇𝑖 𝜌tt if 𝓑VJBK𝜌 = tt
𝛼̇P𝑖(𝜌) ⊑̇𝑖 𝜌ff if 𝓑VJBK𝜌 = ff

and (⟨𝜌tt , 𝜌ff⟩ =𝓑P𝑖JBK𝜌) ⇒ (𝜌tt ⊑̇𝑖 𝜌 ∧ 𝜌ff ⊑̇𝑖 𝜌)
• No concrete state passing the test is omitted in the abstract, and

• The postcondition 𝜌tt or 𝜌ff is stronger than the precondition 𝜌 (no side effects)

“Dynamic abstract interpretation” – 49/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float interval abstraction of a conditional

• Conditional statement S ∶∶= if ℓ (B) S𝑡 (where atJSK = ℓ)3
𝓢∗
P𝑖

JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvP𝑖} (5bis)

∪ {⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌ff⟩ ∣ ∃𝜌tt .𝓑P𝑖JBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌ff ≠ ∅̇}
∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌tt⟩𝜋 ∣ ∃𝜌ff .𝓑P𝑖JBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ≠ ∅̇ ∧

⟨atJS𝑡K, 𝜌tt⟩𝜋 ∈ 𝓢∗P𝑖JS𝑡K}
• Most libraries raise an error exception in case of split (or chose only one branch).

𝓢∗
P𝑖

JSK ≜ ⋯
∪ {⟨ℓ, 𝜌⟩𝜋 ∣ ∃𝜌tt , 𝜌ff .𝓑P𝑖JBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ̇⊓𝑖 𝜌ff ≠ ∅̇ ∧ 𝜋 ∈ S+∞P𝑖 }

3We assume that ̇𝛾I(∅̇) = ∅.
“Dynamic abstract interpretation” – 50/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an iteration

• Iteration statement S ∶∶= while ℓ (B) S𝑏 (where atJSK = ℓ)
𝓢∗
P𝑖

Jwhile ℓ (B) S𝑏K = lfp⊆𝓕∗
P𝑖

Jwhile ℓ (B) S𝑏K (8bis)

𝓕∗
P𝑖

Jwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ EvP𝑖}
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨afterJSK, 𝜌ff⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧

∃𝜌tt .𝓑P𝑖JBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌ff ≠ ∅̇ ∧ ℓ′ = ℓ}
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌tt⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧

∃𝜌ff .𝓑P𝑖JBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ≠ ∅̇ ∧
⟨atJS𝑏K, 𝜌tt⟩𝜋3 ∈ 𝓢∗P𝑖JS𝑏K ∧ ℓ′ = ℓ}

“Dynamic abstract interpretation” – 51/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Abstraction to a transition system

“Dynamic abstract interpretation” – 52/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Abstraction to a transition system

• Abstraction to a transition system

𝛼𝑡(𝜋) ≜ {⟨𝜎1, 𝜎2⟩ ∣ ∃𝜋1, 𝜋2 . 𝜋 = 𝜋1𝜎1𝜎2𝜋2}
𝛼𝑇(𝛱) ≜ ⋃

𝜋∈𝛱
𝛼𝑡(𝜋)

• Provides a small-step operational semantics of the program (specifying an implementation)

• We used trace abstractions so there is no need for [bi-]simulations, etc. in the proof of
correctness of the implementation

“Dynamic abstract interpretation” – 53/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Improving precision

“Dynamic abstract interpretation” – 54/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Affine arithmetic (cont’d)

• Interval arithmetic is imprecise.

• For example, if 𝑥 ∈ [1, 4] then 𝑥 − 𝑥 ∈ [1 − 4, 4 − 1] = [−3, 3] instead of [0, 0].
• The problem as that the arguments of functions cannot be correlated by a cartesian

abstraction.

• So we have to independently take into consideration all possible values of variables within
their interval of variation.

• And the problem cumulates over time along traces.

• Several solutions have been proposed to solves this imprecision problem [Nedialkov,
Kreinovich, and Starks, 2004].

“Dynamic abstract interpretation” – 55/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Affine arithmetic (cont’d)

• Interval arithmetic is imprecise.

• For example, if 𝑥 ∈ [1, 4] then 𝑥 − 𝑥 ∈ [1 − 4, 4 − 1] = [−3, 3] instead of [0, 0].
• The problem as that the arguments of functions cannot be correlated by a cartesian

abstraction.

• So we have to independently take into consideration all possible values of variables within
their interval of variation.

• And the problem cumulates over time along traces.

• Several solutions have been proposed to solves this imprecision problem [Nedialkov,
Kreinovich, and Starks, 2004].

“Dynamic abstract interpretation” – 55/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Affine arithmetic (cont’d)

• One of them, affine arithmetics [Comba and Stolfi, 1993; Stolfi and Figueiredo, 2003],
represents an interval 𝑥 ∈ [𝑥, 𝑥] by

𝑥 = 𝑎0 + 𝑎1𝜖𝑥 where 𝑎0 = 𝑥+𝑥2 , 𝑎1 = 𝑥−𝑥2 , and 𝜖𝑥 ∈ [−1, 1] is a fresh auxiliary variable.

[]

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

• Then 𝑥 − 𝑥 = (𝑎0 + 𝑎1𝜖𝑥) − (𝑎0 + 𝑎1𝜖𝑥) = 0 + 0𝜖𝑥, as required.

“Dynamic abstract interpretation” – 56/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Affine arithmetic (cont’d)

• One of them, affine arithmetics [Comba and Stolfi, 1993; Stolfi and Figueiredo, 2003],
represents an interval 𝑥 ∈ [𝑥, 𝑥] by

𝑥 = 𝑎0 + 𝑎1𝜖𝑥 where 𝑎0 = 𝑥+𝑥2 , 𝑎1 = 𝑥−𝑥2 , and 𝜖𝑥 ∈ [−1, 1] is a fresh auxiliary variable.

[]

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

�{M2 �`Bi?K2iB+ U+QMiǶ/V
Ç PM2 Q7 i?2K- �{M2 �`Bi?K2iB+b (*QK#� �M/ aiQH}- RNNjc aiQH} �M/ 6B;m2B`2/Q-

kyyj)- `2T`2b2Mib �M BMi2`p�H ਙ ó <ਙ
 ਙ> #vਙ � ਃ� � ਃ�૭ਙ r?2`2 ਃ� � ਙ�ਙ� - ਃ� � ਙ÷ਙ� - �M/ ૭ਙ ó <÷�
 �> Bb � 7`2b? �mtBHB�`v p�`B�#H2bX
Ç h?2M ਙ ÷ ਙ � 	ਃ� � ਃ�૭ਙ
 ÷ 	ਃ� � ਃ�૭ਙ
 � � � �૭ਙ- �b `2[mB`2/X

ǳ*?X jk- .vM�KB+ BMi2`p�H �M�HvbBbǴ Ĝ 83f3j Ĝ Ü SX *QmbQi- Lul- *AJa- *a

• Then 𝑥 − 𝑥 = (𝑎0 + 𝑎1𝜖𝑥) − (𝑎0 + 𝑎1𝜖𝑥) = 0 + 0𝜖𝑥, as required.

“Dynamic abstract interpretation” – 56/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Affine arithmetic (cont’d)

• In general a program involves several variables so we have an affine form
𝑥 = 𝑎0 + 𝑎1𝜖1 + 𝑎2𝜖2 + · · · + 𝑎𝑛𝜖𝑛.

• This implies 𝑥 ∈ [𝑎0 − 𝑑, 𝑎0 + 𝑑]where 𝑑 = ∑𝑛𝑖=1 |𝑎𝑖| is the total deviation of 𝑥.
• This is, by interval arithmetic, the smallest interval that contains all possible values of 𝑥,

assuming that each 𝜖𝑖 ranges independently over the interval [−1, +1].

• For𝑚 variables, the affine constraints determine a zonotope [McMullen, 1971], a
center-symmetric convex polytope in R𝑚, whose faces are themselves center-symmetric [Beck
and Robins, 2015, Ch. 9].

Example of zonotope: octagonal zonogon

• As was the case for interval arithmetic, zonotope arithmetic is an abstract interpretation of the
real/float semantics (used in Fluctuat).
en.wikipedia.org/wiki/Zonohedron#Zonotopes

“Dynamic abstract interpretation” – 57/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://en.wikipedia.org/wiki/Fluctuat
https://en.wikipedia.org/wiki/Zonohedron#Zonotopes
https://cs.nyu.edu/~pcousot/

Affine arithmetic (cont’d)

• In general a program involves several variables so we have an affine form
𝑥 = 𝑎0 + 𝑎1𝜖1 + 𝑎2𝜖2 + · · · + 𝑎𝑛𝜖𝑛.

• This implies 𝑥 ∈ [𝑎0 − 𝑑, 𝑎0 + 𝑑]where 𝑑 = ∑𝑛𝑖=1 |𝑎𝑖| is the total deviation of 𝑥.
• This is, by interval arithmetic, the smallest interval that contains all possible values of 𝑥,

assuming that each 𝜖𝑖 ranges independently over the interval [−1, +1].
• For𝑚 variables, the affine constraints determine a zonotope [McMullen, 1971], a

center-symmetric convex polytope in R𝑚, whose faces are themselves center-symmetric [Beck
and Robins, 2015, Ch. 9].

Example of zonotope: octagonal zonogon

• As was the case for interval arithmetic, zonotope arithmetic is an abstract interpretation of the
real/float semantics (used in Fluctuat).
en.wikipedia.org/wiki/Zonohedron#Zonotopes

“Dynamic abstract interpretation” – 57/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://en.wikipedia.org/wiki/Fluctuat
https://en.wikipedia.org/wiki/Zonohedron#Zonotopes
https://cs.nyu.edu/~pcousot/

Conclusion

“Dynamic abstract interpretation” – 58/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Conclusion

• Interval arithmetics in scientific computing put bounds on rounding errors in floating point
arithmetic [Moore, 1966].

• It is an abstract interpretation of the trace semantics and can be computed at runtime for one
trace at a time.

• Tests may have to consider many executions, which can be quite inefficient (and often
considered an error in practice).

• A further abstract yields the static interval analysis (by joining states on paths at each
program point to get invariants).

• More generally, this provides a framework for dynamic analysis (their static over
approximation, and the combination of the two).

• Soundness guarantee!

“Dynamic abstract interpretation” – 59/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Bibliography

“Dynamic abstract interpretation” – 60/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Bibliography I

Beck, Matthias and Sinai Robins (2015). Computing the Continuous Discretely: Integer-Point
Enumeration in Polyhedra. 2nd ed. Undergraduate Texts in Mathematics. Springer.

Comba, João Luiz Dihl and Jorge Stolfi (1993). “Affine Arithmetic and Its Applications to
Computer Graphics.”. IEEE SIBGRAPI., pp. 9–18.

Goldberg, David (1991). “What Every Computer Scientist Should Know About Floating–Point
Arithmetic.”. ACMComput. Surv. 23.1, pp. 5–48.

IEEE (1985). IEEE Standard for Binary Floating–Point Arithmetic. American National Standards
Institute, Institute of Electrical, and Electronic Engineers, ANSI/IEEE Standard 754-1985.

McMullen, Peter (1971). “On Zonotopes.”. Trans. Amer. Math. Soc. 159, pp. 91–110.
Monniaux, David (2008). “The Pitfalls of Verifying Floating–Point Computations.”. ACM Trans.

Program. Lang. Syst. 30.3, 12:1–12:41.
Moore, Ramon E. (1966). Interval Analysis. Prentice Hall.

“Dynamic abstract interpretation” – 61/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

Bibliography II

Moore, Ramon E., R. Baker Kearfott, and Michael J. Cloud (Mar. 2009). Introduction to Interval
Analysis. Society for Industrial and Applied Mathematics.

Nedialkov, Nedialko S., Vladik Kreinovich, and Scott A. Starks (2004). “Interval Arithmetic, Affine
Arithmetic, Taylor Series Methods: Why, What Next?.”. Numerical Algorithms. 37.1–4,
pp. 325–336.

Stolfi, Jorge and Luiz Henrique De Figueiredo (2003). “An Introduction to Affine Arithmetic.”.
Tend. Mat. Apl. Comput., SBMAC. 4.3, pp. 297–312.

Winskel, Glynn (1983). “A Note on Powerdomains and Modality.”. In.FCT. Vol. 158. Lecture Notes
in Computer Science. Springer, pp. 505–514.

“Dynamic abstract interpretation” – 62/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

https://cs.nyu.edu/~pcousot/

The End, Thank you

The slides are available at:
http://cs.nyu.edu/ pcousot/publications.www/slidesPCousot-SOAP-2021.pdf

“Dynamic abstract interpretation” – 63/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th , 2021

http://cs.nyu.edu/~pcousot/publications.www/slidesPCousot-SOAP-2021.pdf
https://cs.nyu.edu/~pcousot/

