
On Abstraction in
Software Verification

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm, 75230 Paris cedex 05, France
Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot

CAV 2002 Invited Tutorial
Copenhagen, Denmark July 27-31, 2002 xxxxxx§xxx

Abstract
Our objective in this talk is to give an intuitive account of abstract interpretation theory and to present
and discuss its application to formal methods and in particular to static abstract software checking.

We start with a discussion of formal methods and computer-aided verification and motivate their
formalization by abstract interpretation. Then we informally introduce abstract interpretation and present
a few basic elements of the theory.

Abstract interpretation theory formalizes the conservative approximation of the semantics of hardware
or software computer systems. The semantics provides a formal model describing all possible behaviors
of a computer system in interaction with any possible environment. By approximation we mean the
observation of the semantics at some level of abstraction, ignoring irrelevant details. Conservative
means that the approximation can never lead to an erroneous conclusion.

Abstract interpretation theory provides thinking tools since the idea of abstraction by conservative
approximation is central to reasoning (in particular on computer systems) and mechanical tools since
the idea of an effectively computable approximation leads to a systematic and constructive formal design
methodology of automatic semantics-based program manipulation algorithms and tools.

We will present various applications of abstract interpretation theory to the design of hierarchies of
semantics, program transformations, typing, model-checking and in more details static program analysis.

We show that their always exists an abstraction into a small finite boolean domain to prove any
safety property of a single program by fixpoint/model checking. However the design of the model and
its soundness proof is logically equivalent to a formal proof. This shows that model-checking is always
feasible, that the only difficulty is to design a model and that this model can always be designed by
abstraction of the operational semantics of the program to be checked.

The whole problematics of static analysis is to automate the design of this abstract model/semantics.
For the static analysis of a full programming language, no such finite abstraction exists, so that infinite
abstract domains and widenings are needed and more powerful than finite abstractions. We finally
discuss the design of program static analyzers and report on an ongoing experience with the design of a
parametric specializable program static analyzer for safety-critical real-time embedded software.

Content
1. Motivations for formal methods . 8
2. On formal methods and computer-aided verification 16
3. Motivations for abstract interpretation . 28
4. Informal introduction to abstract interpretation 32
5. Elements of abstract interpretation . 40
6. A potpourri of applications of abstract interpretation 48
7. On the design of abstractions for software checking 112
8. On widenings . 174
9. On the design of program static analyzers . 182
10. Experience with a parametric specializable program static analyzer

190
11. Conclusion . 194

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 2 — — 4 — c© P. Cousot

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
http://floc02.diku.dk/CAV/

Motivations for
Formal Methods

— 5 —

What is (or should be) the essential
preoccupation of computer scientists?

The production of reliable software,
its maintenance and safe evolution
year after year (up to 20 even 30
years).

Computer hardware change of scale

The 25 last years, computer hardware has seen its performances
multiplied by 104 to 106;

ENIAC (5000 flops) Intel/Sandia Teraflops System (1012 flops)

— 7 —

The information processing revolution

A scale of 106 is typical of a significant revolution:
-- Energy: nuclear power station / Roman slave;

-- Transportation: distance Earth — Mars / Denmark height

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 6 — — 8 — c© P. Cousot

http://floc02.diku.dk/CAV/

Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;

• Example 1 (modern text editor for the general public):

-- > 1 700 000 lines of C 1;

-- 20 000 procedures;

-- 400 files;

-- > 15 years of development.

1 full-time reading of the code (35 hours/week) would take at least 3 months!

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 6 — — 8 — c© P. Cousot

http://floc02.diku.dk/CAV/

Computer software change of scale (cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!

— 9 —

Bugs• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;

• Bugs can be very difficult to discover in huge
software;
• Bugs can have catastrophic consequences either
very costly or inadmissible (embedded software
in transportation systems);

The estimated cost of an overflow

• 500 000 000 e;
• Including indirect costs (delays, lost markets, etc):

2 000 000 000 e;

• The financial results of Arianespace were negative in 2000,
for the first time since 20 years.

— 11 —

Responsibility of computer scientists

• The paradox is that the computer scientists do not assume any
responsibility for software bugs (compare to the automotive or
avionic industry);

• Computer software bugs can become an important societal prob-
lem (collective fears and reactions? new legislation?);

=⇒ It is absolutely necessary to widen the full set of methods
and tools used to eliminate software bugs.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 10 — — 12 — c© P. Cousot

http://floc02.diku.dk/CAV/

Capability of computer scientists

• The intellectual capability of computer scientists remains essen-
tially unchanged year after year;

• The size of programmer teams in charge of software design and
maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up;

•• So we should use computers to reason about computers!

— 13 —

Capability of Computers

• The computing power and memory size of computers double
every 18 months;

• So computer aided verification will scale up, scale up, scale up, scale up, scale up, scale up,
scale up, scale up, scale up, scale up, scale up, scale up, . . . ;
• But the size of programs grows proportionally;

• And correctness proofs are exponential in the program size;

• So computers power growth is ultimately not significant.

On Formal Methods and
Computer-Aided Verification

— 15 —

Computer Systems

Model

Environment

Program

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 14 — — 16 — c© P. Cousot

http://floc02.diku.dk/CAV/

Formal Methods

Model

Environment

Program

Specification

v

— 17 —

Deductive methods

Specification

Model

Environment

Program

v

Why does the
proof fails?

Deductive Methods, Criticism

• How to apply when lacking formal specifications (e.g. legacy
software modification)? for large programs?

• Cost of proof is higher than the cost of the software develop-
ment and testing 2;

• Only critical parts of the software can be checked formally so
errors appear elsewhere (e.g. at interfaces);

• Both the program and its proof have to be maintained (e.g.
during ten to twenty years for embedded software).

— 19 —

Software Model Checking

Finitary Model

Environment

Program

Specification

v

2 Figures of 600 person-years for 80, 000 lines of C code have been reported for the Metéor metro line 14 in Paris
developed with the B-method.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 18 — — 20 — c© P. Cousot

http://floc02.diku.dk/CAV/

Software Model Checking, Criticism

• How to apply when lacking temporal formal specifications? for
large programs?

• Ultimately finite models, state explosion;

• Proof of correctness of the model?

yes: back to deductive methods!

no: debugging aid, not formal verification;

• Both the program and its model have to be maintained;

• Abstraction is required so software model checking essentially
boils down to static program analysis.

— 21 —

Static Program Analysis

Abstract Semantics

Environment

Program

Specification

v

Program semantics abstraction

Abstract Specification

Specification
abstraction

General-PurposeStatic Program Analyzers

“The first product to automatically detect 100% of
run-time errors at Compilation Time
Based on Abstract Interpretation, PolySpace Tech-
nologies provides the earliest run-time errors detection
solution to dramatically reduce testing and debugging
costs with :
• No Test Case to Write
• No Code Instrumentation
• No Change to your Development Process
• No Execution of your Application” 3

— 23 —

Special-Purpose Static Program Analyzers

“The underlying theory of abstract inter-
pretation provides the relation to the pro-
gramming language semantics, thus en-
abling the systematic derivation of prov-
ably correct and terminating analyses.” 4

3 http://www.polyspace.com/
4 http://www.absint.com/pag/

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 22 — — 24 — c© P. Cousot

http://www.polyspace.com/
http://www.polyspace.com/product_datasheet/cverifier.htm
http://www.polyspace.com/product_datasheet/cverifier.htm
http://www.absint.com/
http://www.absint.com/wcet.htm
http://www.polyspace.com/
http://www.absint.com/pag/
http://floc02.diku.dk/CAV/

Static Program Analysis, Criticism

• Full programming languages (ADA, C), weak specifications (e.g.
absence of run-time errors);

• Can handle very large programs, prohibitive time and space
costs or unprecise;

• No user specification but residual false alarms;

• Inherent approximations wired in the analyzer, no easy refine-
ment (e.g. assertions).

— 25 —

Deductive methods

Model-checking

Static analysis

Semantics

Syntax analysis

Typing

Abstract
Interpretation

Deductive methods

Model-checking

Static analysis

Semantics

Syntax analysis

Typing

Abstract
Interpretation

— 27 —

Motivations for
Abstract Interpretation

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 26 — — 28 — c© P. Cousot

http://floc02.diku.dk/CAV/

Abstract Interpretation

• Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

• A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based for-
mal systems/program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.

— 29 —

Coping With Undecidability When
Computing on the Program Semantics

• Ask the programmer to help (e.g. proof assistants);

• Consider decidable questions only or semi-algorithms (e.g. model-
checking/model-debugging);

• Consider effective approximations to handle practical complex-
ity limitations;

The above approaches can all be formalized within the abstract
interpretation framework.

The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

— 31 —

Informal Introduction to
Abstract Interpretation

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 30 — — 32 — c© P. Cousot

http://floc02.diku.dk/CAV/

1 – Abstract Domains

• Program concrete properties are specified by the semantics of
programming languages;

• Program abstract properties are elements of abstract domains
(posets/lattices/. . .);

• Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

• The abstract properties (hence abstract semantics) are sound
but may be incomplete with respect to the concrete properties
(semantics);

— 33 —

2 – Correspondence between Concrete
and Abstract Properties

• If any concrete property has a best approximation, approxima-
tion is formalized by Galois connections (or equivalently closure
operators, Moore families, etc. 6);

• Otherwise, weaker abstraction/ concretization correspondences
are available 7;

6 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
7 P. Cousot & R. Cousot. Abstract interpretation frameworks. JLC 2(4):511–547, 1992.

3 – Semantics Abstraction

• Program concrete semantics and specifications are defined by
syntactic induction and composition of fixpoints (or using equiv-
alent presentations 8);

• The property abstraction is extended compositionally to all con-
structions of the concrete/abstract semantics, including fix-
points;

• This leads to a constructive design of the abstract semantics
by approximation of the concrete semantics 9;

— 35 —

4 — Effective Analysis/Checking/
Verification Algorithms

• Computable abstract semantics lead to effective program anal-
ysis/checking/verification algorithms;

• Furthermore fixpoints can be approximated iteratively by con-
vergence acceleration through widening/narrowing that is non-
standard induction 10.

8 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-
condition, rule-based and game theoretic form. CAV ’95, LNCS 939, pp. 293–308, 1995.

9 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83–94, 1992.
10 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction

or approximation of fixpoints. ACM POPL, pp. 238–252, 1977.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 34 — — 36 — c© P. Cousot

http://floc02.diku.dk/CAV/

Elements of
Abstract Interpretation

• P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs mo-
notones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques.
Grenoble, 21 Mar. 1978.

— 37 —

Galois Connections 11

〈P,≤〉 −−−→←−−−α

γ
〈Q,v〉

def
=

− 〈P,≤〉 is a poset

− 〈Q,v〉 is a poset

− ∀x ∈ P : ∀y ∈ Q : α(x) v y ⇐⇒ x ≤ γ(y)

11 The original Galois correspondence is semi-dual (w instead of v).

Composing Galois Connections

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,v〉 and 〈Q,v〉 −−−−→←−−−−
α2

γ2 〈R,�〉 then

〈P,≤〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈R,�〉 12

— 39 —

Function Abstraction (1)

P

Q

S

x

f(x)

g(x)

g

f
α

• If 〈P,≤〉 −−−→←−−−α

γ
〈Q,v〉 then

〈S 7→ P, ≤̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
λ f ·λx ·α(f(x))

λ g ·λ x · γ(g(x))
〈S 7→ Q, v̇〉

12 This would not be true with the original definition of Galois correspondences.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 38 — — 40 — c© P. Cousot

http://floc02.diku.dk/CAV/

Function Abstraction (2)

P

Q

x

y

α

g

f

R

S

f(x)

g(y)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

— 41 —

Fixpoint Approximation
Let F ∈ L

m7−→ L and F ∈ L
m7−→ L be respective monotone maps

on the cpos 〈L,⊥,v〉 and 〈L,⊥,v〉 and 〈L,v〉 −−−→←−−−α

γ
〈L,v〉 such

that α ◦ F ◦ γ v̇ F . Then 13:

• ∀δ ∈ O: α(Fδ) v Fδ (iterates from the infimum);

• The iteration order of F is ≤ to that of F ;

• α(lfp
v

F) v lfp
v

F ;

Soundness: lfp
v

F v P ⇒ lfp
v

F v γ(P).

13 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!

Fixpoint Abstraction
Moreover, the commutation condition F ◦ α = α ◦ F implies 14:

• F = α ◦ F ◦ γ, and

• α(lfp
v

F) = lfp
v

F ;

Completeness: lfp
v

F v γ(P) ⇒ lfp
v

F v P .

— 43 —

Systematic Design of an Abstract
Semantics

By structural induction on the language syntax, for each language
construct:

• Define the concrete semantics lfp
v

F ;

• Choose the abstraction α = κ(α1, . . . , αn)

and check 〈L,v〉 −−−→←−−−α

γ
〈L,v〉;

• Calculate F
def
= α ◦ F ◦ γ and check that F ◦ α = α ◦ F ;

• It follows, by construction, that α(lfp
v

F) = lfp
v

F .

(and similarly in case of approximation).

14 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 42 — — 44 — c© P. Cousot

http://floc02.diku.dk/CAV/

Abstract Domains
An abstraction α is a specification of an abstract domain, includ-
ing:

• the representation of the abstract properties;

• the approximation ordering lattice structure (≤, 0, 1, ∨, ∧, . . .);
• the computational ordering cpo structure (v, ⊥, t, . . .);
• the abstract operators, e.g. non-relational abstract multiplica-
tion:
-- P ⊗Q

def
= α({x× y | x ∈ γ(P) ∧ y ∈ γ(Q)}) postcondition

-- ⊗−1(R)
def
= α({〈x, y〉 | x × y ∈ γ(R)}) precondition

— 45 —

Combinations of Abstract Domains 15

Operation κ(α1, . . . , αn) Intuition
Composition αn ◦ . . . ◦ α1 Successive ab-

stractions

Duality ¬κ(¬α1, . . . ,¬αn) Contraposition 16

Reduced product α1 u . . . u αn Conjunction
Reduced power α1 7→ . . . 7→ αn Case analysis

15 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
16 P. Cousot. Semantic Foundations of Program Analysis. In Program Flow Analysis: Theory and Applications, Prentice-

Hall, pp. 303–342, 1981.

A Potpourri of Applications of
Abstract Interpretation

— 47 —

Content of the Potpourri of Applications
of Abstract Interpretation

1. Syntax . 52

2. Semantics . 56

3. Typing . 64

4. Model Checking . 80

5. Program Transformations . 92

6. Static Program Analysis . 100

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 46 — — 48 — c© P. Cousot

http://floc02.diku.dk/CAV/

Application to Syntax

• P. Cousot & R. Cousot. Parsing as Abstract Interpretation of Grammar Semantics, TCS, 2002, in
press.

— 49 —

The Semantics of Syntax

• The semantics of a grammar G = 〈N,T, P,A〉 is the set of items
[λ,X := α/γ • β] such that ∃η : ∃X := αβ ∈ P :

X

β

λ

α

η

A

γ

λ η

The Fixpoint Semantics of Syntax

S = lfp
⊆

F

F (I)
def
= {[ε, A := ε/ε • β] | A := β ∈ P}
∪ {[λ,X := αY /γδ • β] | [λ,X := α/γ • Y β] ∈ I ∧

Y := δ ∈ P}
∪ {[λ,X := αY /γξ • β] | [λ,X := α/γ • Y β] ∈ I ∧

[λγ, Y := δ/ξ • ε] ∈ I}
∪ {[λ,X := αa/γa • β] | [λ,X := α/γ • aβ] ∈ I} .

— 51 —

Syntactic Abstractions

• α`(I)
def
= {γ ∈ T? | [ε, A := α/γ • ε] ∈ I}

Language of the grammar G = 〈N,T, P,A〉
• ω = ω1 . . . ωiωi+1 . . . ωj . . . ωn input string

αω(I)
def
= {〈X := α • β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧

[ω1 . . . ωi,X := α/ωi+1 . . . ωj • β] ∈ I}
Earley’s algorithm

• αf (I)
def
= {a ∈ T | [λ,X := α/aγ • β] ∈ I}

∪ {ε | [λ,X := αβ/ε • ε] ∈ I}
FIRST algorithm

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 50 — — 52 — c© P. Cousot

http://floc02.diku.dk/CAV/

Application to Semantics

• P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Inter-
pretation. MFPS XIII, ENTCS 6, 1997. http://www.elsevier.nl/locate/entcs/volume6.html,
25 p.
• P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract
Interpretation, TCS 277(1-2):47–103, 2002.

— 53 —

Trace Semantics, intuition
Initial states

Final states of the
 finite traces

Intermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time É

‘













Least Fixpoint Trace Semantics

Traces = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is a transition step &

•−−−. . .−−−• ∈ Traces+}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is a transition step &

•−−−. . .−−−. . . ∈ Traces∞}

• In general, the equation has multiple solutions;
• Choose the least one for the computational ordering:

“more finite traces & less infinite traces”.

— 55 —

Trace Semantics, Formally
Trace semantics of a transition system 〈Σ, τ 〉:

• Σ+ def
=
⋃

n>0

[0, n[7−→ Σ finite traces

• Σw def
= [0, ω[7−→ Σ infinite traces

• S = lfp
v

F ∈ Σ+ ∪ Σω trace semantics

• F (X) = {s ∈ Σ+ | s ∈ Σ ∧ ∀s′ ∈ Σ : 〈s, s′〉 6∈ τ}
∪ {ss′σ | 〈s, s′〉 ∈ τ ∧ s′σ ∈ X} trace transformer

• X v Y
def
= (X ∩ Σ+) ⊆ (Y ∩ Σ+) ∧ (X ∩ Σω) ⊇ (Y ∩ Σω)

computational ordering

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 54 — — 56 — c© P. Cousot

http://www.elsevier.nl/locate/entcs/volume6.html
http://floc02.diku.dk/CAV/

Semantics Abstractions
1 — Relational Semantics Abstractions

〈℘(Σ+ ∪ Σω),⊆〉 −−−→−→←−−−−
α

γ
〈℘(Σ× (Σ ∪ {⊥})),⊆〉

— 57 —

1 — Relational Semantics Abstractions
(Cont’d)

• α\(X) = {〈s, s′〉 | sσs′ ∈ X ∩ Σ+}
∪ {〈s,⊥〉 | sσ ∈ X ∩ Σω}

trace to natural relational semantics

• α[(X) = {〈s, s′〉 | sσs′ ∈ X ∩ Σ+}
trace to angelic relational semantics

• α](X) = {〈s, s′〉 | sσs′ ∈ X ∩ Σ+}
∪ {〈s, s′〉 | sσ ∈ X ∩ Σω ∧ s′ ∈ Σ ∪ {⊥}}

trace to demoniac relational semantics

2 — Functional/Denotational Semantics
Abstractions

〈℘(Σ× (Σ ∪ {⊥})),⊆〉 −−−−→−→←←−−−−−
αϕ

γϕ
〈Σ 7−→ ℘(Σ ∪ {⊥}), ⊆̇〉

• αϕ(X) = λs.{s′ ∈ Σ ∪ {⊥} | 〈s, s′〉 ∈ X}
relational to denotational semantics

— 59 —

3 — Predicate Transformer Semantics
Abstractions

〈Σ 7−→ ℘(Σ ∪ {⊥}), ⊆̇〉 −−−−→−→←←−−−−−
απ

γπ
〈℘(Σ)

∪7−→ ℘(Σ ∪ {⊥}), ⊆̇〉

• απ(φ) = λP.{s′ ∈ Σ ∪ {⊥} | ∃s ∈ P : s′ ∈ φ(s)}
denotational to predicate transformer semantics

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 58 — — 60 — c© P. Cousot

http://floc02.diku.dk/CAV/

4 — Predicate Transformer Semantics
Abstractions (Cont’d)

〈℘(Σ)
∪7→ ℘(Σ ∪ {⊥}), ⊆̇〉 −−−−−→−→←←−−−−−−

α~

γ~
〈℘(Σ)

∩7→ ℘(Σ ∪ {⊥}), ⊇̇〉

α∪
↓↓

↑↑
γ∪ α∩

↓↓

↑↑
γ∩

〈℘(Σ ∪ {⊥}) ∪7→ ℘(Σ), ⊆̇〉 −−−−−→−→←←−−−−−−
α~

γ~
〈℘(Σ ∪ {⊥}) ∩7→ ℘(Σ), ⊇̇〉

• α~(Φ) = λP.¬(Φ(¬P)) dual

• α∪(Φ) = λQ.{s ∈ Σ | Φ({s}) ∩Q 6= ∅} ∪-inversion
• α∩(Φ) = λQ.{s ∈ Σ | Φ(¬{s}) ∪Q = Σ ∪ {⊥}} ∩-inversion

— 61 —

5 — Hoare Logic Semantics
Abstractions

〈℘(Σ)
∩7−→ ℘(Σ ∪ {⊥}), ⊇̇〉 −−−−→−→←←−−−−−

αH

γH
℘(Σ) ⊗ 17 ℘(Σ ∪ {⊥}), ⊇̇〉

• αH(Φ) = {〈P,Q〉 | P ⊆ Φ(Q)}
predicate transformer to Hoare logic semantics

17 Semi-dual Shmuely tensor product.

Lattice of Semantics
Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction-

restriction
infinite

demoniac
determinist
naturalangelic

τ�!

τ ∂

τ EM

τD

τPτ S τ ˚τ]τ [

τ>
τ wp

τ tHτ pH

τ wlp

τ ~+

τ+ τ ω

τ ~ω

τ gH

τ gwp

τ�?

τ \

τ∞

τ ~∞
τ

��
�* v

���
���

���
���

�: v

v

v

�
v v v v

v

6

6 6��
�1

v

v

v�����
�*

��
��
��*

��
��
��*

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY
v

vv

v

v

vv

v

v

v

v
��
��
��
��
��

��
��
��
��
��1

��
��
��1v

v

— 63 —

Application to Typing

• P. Cousot, Types as Abstract Interpretations, ACM 24th POPL, 1997, pp. 316-331.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 62 — — 64 — c© P. Cousot

http://floc02.diku.dk/CAV/

Syntax of the Eager Lambda Calculus

x,f, . . . ∈ X : variables

e ∈ E : expressions

e ::= x variable

| λx · e abstraction

| e1(e2) application

| µf ·λx · e recursion

| 1 one

| e1 − e2 difference

| (e1 ? e2 : e3) conditional

— 65 —

Semantic Domains

Ω wrong/runtime error value
⊥ non-termination

W def
= {Ω} wrong

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U 7→U] 18⊥ values

R ∈ R def
= X 7→ U environments

φ ∈ S def
= R 7→ U semantic domain

18 [U 7→ U]: continuous, ⊥-strict, Ω-strict functions from values U to values U.

Denotational Semantics with Run-Time
Type Checking

S[[1]]R def
= 1

S[[e1 − e2]]R def
= (S[[e1]]R = ⊥ ∨S[[e2]]R = ⊥ ? ⊥
| S[[e1]]R = z1 ∧S[[e2]]R = z2 ? z1 − z2

| Ω)

S[[(e1 ? e2 : e3)]]R def
= (S[[e1]]R = ⊥ ? ⊥
| S[[e1]]R = 0 ? S[[e2]]R
| S[[e1]]R = z 6= 0 ? S[[e3]]R
| Ω)

— 67 —

S[[x]]R def
= R(x)

S[[λx · e]]R def
= λ u · (u = ⊥ ? ⊥

| u = Ω ? Ω

| S[[e]]R[x←u])

S[[e1(e2)]]R def
= (S[[e1]]R = ⊥ ∨S[[e2]]R = ⊥ ? ⊥
| S[[e1]]R = f ∈ [U 7→U] ? f

(
S[[e2]]R

)

| Ω)

S[[µf ·λx · e]]R def
= lfp

v
λϕ ·S[[λx · e]]R[f←ϕ]

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 66 — — 68 — c© P. Cousot

http://floc02.diku.dk/CAV/

Standard Denotational & Collecting
Semantics

• The denotational semantics is:
S[[•]] ∈ E 7→ S

• A concrete property P of a program is a set of possible program
behaviors:

P ∈ P def
= ℘(S)

• The standard collecting semantics is the strongest concrete
property:

C[[•]] ∈ E 7→ P C[[e]]
def
= {S[[e]]}

— 69 —

Church/Curry Monotypes

• Simple types are monomorphic:

m ∈ MC, m ::= int | m1->m2 monotype

• A type environment associates a type to free program variables:

H ∈ HC def
= X 7→MC type environment

Church/Curry Monotypes (continued)

• A typing 〈H,m〉 specifies a possible result type m in a given
type environment H assigning types to free variables:

θ ∈ IC def
= HC ×MC typing

• An abstract property or program type is a set of typings;

T ∈ TC def
= ℘(IC) program type

— 71 —

Concretization Function

The meaning of types is a program property, as defined by the
concretization function γ C: 19

• Monotypes γ C
1 ∈MC 7→ ℘(U):

γ C
1(int)

def
= Z ∪ {⊥}

γ C
1(m1->m2)

def
= {ϕ ∈ [U 7→U] |

∀u ∈ γ C
1(m1) : ϕ(u) ∈ γ C

1(m2)}
∪ {⊥}

19 For short up/down lifting/injection are omitted.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 70 — — 72 — c© P. Cousot

http://floc02.diku.dk/CAV/

• type environment γ C
2 ∈ HC 7→ ℘(R):

γ C
2(H)

def
= {R ∈ R | ∀x ∈ X : R(x) ∈ γ C

1(H(x))}

• typing γ C
3 ∈ IC 7→ P:

γ C
3(〈H,m〉) def

= {φ ∈ S | ∀R ∈ γ C
2(H) : φ(R) ∈ γ C

1(m)}

• program type γ C ∈ TC 7→ P:
γ C(T)

def
=
⋂

θ∈T
γ C

3(θ)

γ C(∅) def
= S

— 73 —

Program Types

• Galois connection:
〈P, ⊆, ∅, S, ∪, ∩〉 −−−→←−−−

αC

γ C

〈TC, ⊇, IC, ∅, ∩, ∪〉

• Types T[[e]] of an expression e:

T[[e]] ⊆ αC(C[[e]]) = αC({S[[e]]})

Typable Programs Cannot Go Wrong
Ω ∈ γ C(T[[e]]) ⇐⇒ T[[e]] = ∅

Church/Curry Monotype
Abstract Semantics

T[[x]]
def
= {〈H,H(x)〉 | H ∈ HC} (VAR)

T[[λx · e]]
def
= {〈H,m1->m2〉 |

〈H[x←m1],m2〉 ∈T[[e]]}
(ABS)

T[[e1(e2)]]
def
= {〈H,m2〉 | 〈H,m1->m2〉 ∈T[[e1]]

∧ 〈H,m1〉 ∈T[[e2]]}
(APP)

— 75 —

T[[1]]
def
= {〈H, int〉 | H ∈ HC} (CST)

T[[e1 − e2]]
def
= {〈H, int〉 |

〈H, int〉 ∈T[[e1]] ∩T[[e2]]}
(DIF)

T[[(e1 ? e2 : e3)]]
def
= {〈H,m〉 |

〈H, int〉 ∈T[[e1]] ∧ 〈H,m〉 ∈T[[e2]] ∩T[[e3]]}
(CND)

T[[µf ·λx · e]]
def
= {〈H,m〉 |

〈H[f←m],m〉 ∈T[[λx · e]]}
(REC) 20

20 The abstract fixpoint has been eliminated thanks to fixpoint induction: lfpF v P ⇔ ∃I : F (I) v I ∧ I v P .

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 74 — — 76 — c© P. Cousot

http://floc02.diku.dk/CAV/

The Herbrand Abstraction to Get
Hindley’s Unification-Based Type

Inference Algorithm

〈℘(ground(T)), ⊆, ∅, ground(T), ∪, ∩〉

−−−−−−−→−→←−−−−−−−−
lcg

ground
〈T ∅/≡, ≤, ∅, [’a]≡, lcg, gci〉

where:

• T : set of terms with variables ’a, . . . ,

• lcg: least common generalization,

• ground: set of ground instances,

• ≤: instance preordering,

• gci: greatest common instance.

— 77 —

Application to Model Checking

• P. Cousot & R. Cousot, Temporal Abstract Interpretation, ACM 27th POPL, 2000, pp. 12-25.

Objective of Model Checking

1) Built a model M of the computer system;

2) Check (i.e. prove enumeratively) or semi-check (with semi-algorithms)
that the model satisfies a specification given (as a set of traces
ϕ) by a (linear) temporal formula: M ⊆ ϕ or M ∩ ϕ 6= ∅.

• The model and specification should be proved to be correct
abstractions of the computer system (often taken for granted,
could be done by abstract interpretation);

— 79 —

Abstractions in Model Checking

Main abstractions in model checking:

• Implicit abstraction: to informally design the model of refer-
ence;

• Polyhedral abstraction (with widening): synchronous, real-time
& hybrid system verification;

• Finitary abstraction (without widening): hardware & protocole
verification 21;

21 Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the
abstract.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 78 — — 80 — c© P. Cousot

http://floc02.diku.dk/CAV/

Model-checking itself is an abstraction
• Universal abstraction:

〈℘(Σ+ ∪ Σω),⊇〉 −−−−→−→←−−−−−
α∀M

γ∀M 〈℘(Σ),⊇〉

α∀M(Φ)
def
= {s | {σ ∈M | σ0 = s} ⊆ Φ}

• Existential abstraction:

〈℘(Σ+ ∪ Σω),⊆〉 −−−−→−→←−−−−−
α∃M

γ∃M 〈℘(Σ),⊆〉

α∃M(Φ)
def
= {s | {σ ∈M | σ0 = s} ∩ Φ 6= ∅}

These abstractions lead, by fixpoint approximation of the trace seman-

tics, to the classical (finite-state or nonterminating) model-checking algo-

rithms.

— 81 —

Implicit Abstraction in Model Checking

…… ……
……
……

……
……
……
……
……

……

……

— α →

…………

…… ……
……
……

……
……
……
……
……

……

……

← γ —

…………

Spurious traces: , ..., , , ;
The semantics of the µ-calculus is closed under this abstraction.

Soundness

For a given class of properties, soundness means that:

Any property (in the given class) of the abstract world
must hold in the concrete world;

— 83 —

Example for Unsoundness

ÉÉÉÉ ÉÉÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ ÉÉ ÉÉ

ÉÉ

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s s s s s s

All abstract traces are infinite but not the concrete ones!

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 82 — — 84 — c© P. Cousot

http://floc02.diku.dk/CAV/

Completeness

For a given class of properties, completeness means that:

Any property (in the given class) of the concrete world
must hold in the abstract world;

— 85 —

Example for Incompleteness

ÉÉÉÉ ÉÉÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ

ÉÉ ÉÉ ÉÉ

ÉÉ

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s s s s s s

All concrete traces are finite but not the abstract ones!

On the Completeness of Model-Checking

• Contrary to program analysis, model checking is complete;

• Completeness is relative to the model, not the program seman-
tics;

• Completeness follows from restrictions on the models and spec-
ifications (e.g. closure under the implicit abstraction);

• There are models/specifications (such as the x
µ?-calculus using

bidirectional traces) for which:
-- The implicit abstraction is incomplete (POPL’00),
-- Any abstraction is incomplete (Ranzato, ESOP’01).
in both cases, even for finite transition systems.

— 87 —

Bidirectional Traces

• 〈i, σ〉 bidirectional trace

σ ∈ Z 7−→ Σ trace

i ∈ Z present time

O i

Present

Past Future

Origin of time

σ

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 86 — — 88 — c© P. Cousot

http://floc02.diku.dk/CAV/

The reversible x
µ?-calculus (cont’d)

ϕ ::= σS
22 JσSKρ def

= {〈i, σ〉 | σi ∈ S}
| πt

23 JπtKρ def
= {〈i, σ〉 | 〈σi, σi+1〉 ∈ t}

| ⊕ϕ1
24 J⊕ϕ1Kρ def

= {〈i, σ〉 | 〈i + 1, σ〉 ∈ Jϕ1Kρ
| ϕ1

x Jϕ1
xKρ def

= {〈i, σ〉 | 〈−i, λj.σ−j〉 ∈ Jϕ1Kρ}
| ϕ1 ∨ ϕ2 Jϕ1 ∨ ϕ2Kρ def

= Jϕ1Kρ ∪ Jϕ2Kρ
| ¬ϕ1 J¬ϕ1Kρ def

= ¬Jϕ1Kρ

— 89 —

The reversible x
µ?-calculus (cont’d)

| . . .
| X 25 JXKρ def

= ρ(X)

| µX · ϕ1 JµX · ϕ1Kρ def
= lfp

⊆
λx · Jϕ1KρXx

| νX · ϕ1 JνX · ϕ1Kρ def
= gfp

⊆
λ x · Jϕ1KρXx

| ∀ϕ1 : ϕ2
26 J∀ϕ1 : ϕ2Kρ def

= {〈i, σ〉 ∈ Jϕ1Kρ |
{〈i, σ′〉 ∈ Jϕ1Kρ | σ′i = σi} ⊆ Jϕ2Kρ}

22 S ∈ ℘(Σ).
23 t ∈ ℘(Σ × Σ).
24 ⊕ is next time.
25 variable.
26 The traces of ϕ1 such that all traces of ϕ1 with same present state satisfy ϕ2.

Application to
Program Transformation

• P. Cousot & R. Cousot, Systematic Design of Program Transformation Frameworks by Abstract
Interpretation, ACM 29th POPL, 2002, pp. 178—190.

— 91 —

Principle of Online Program Transformation

Subject
program P −−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

tJPK

Subject pro-
gram seman-
tics SJPK

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[SJPK] v SJtJPKK

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(SJPK) = αO(t[SJPK]) = αO(SJtJPKK)

The syntactic transformation
approximates

the semantic transformation

Observational correctness

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 90 — — 92 — c© P. Cousot

http://floc02.diku.dk/CAV/

Principle of Online Program Transformation

Subject
program P −−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

tJPK

Subject pro-
gram seman-
tics SJPK

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[SJPK] v SJtJPKK

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(SJPK) = αO(t[SJPK]) = αO(SJtJPKK)

— 93 —

Principle of Offline Program Transformation

Subject
program

P
Static program

analysis S
→〈P, SJPK〉 Syntactic trans-

formation t
→

Transformed program
tJPK w p[t[SJPK, α(SJPK)]]

Subject
program
semantics
SJPK

S↓ p

↑↑

Semantic

abstraction α
→〈SJPK, α(SJPK)〉

p

↑↑
S

↓
w......

6.....

Semantic trans-

formation t
→

Transformed
program semantics

t[SJPK, α(SJPK)] v SJtJPKK

S↓ p

↑↑

α
O

→

←
γ
O γ O

→

α O

→
Observational
abstraction

αO(SJPK) = αO(t[SJPK],α(SJPK)) = αO(SJtJPKK)

αO

↓

γO

↑

Principle of Offline Program Transformation

Subject
program

P
Static program

analysis S
→〈P, SJPK〉 Syntactic trans-

formation t
→

Transformed program
tJPK w p[t[SJPK, α(SJPK)]]

Subject
program
semantics
SJPK

S↓ p

↑↑

Semantic

abstraction α
→〈SJPK, α(SJPK)〉

p

↑↑
S

↓
w......

6.....

Semantic trans-

formation t
→

Transformed
program semantics

t[SJPK, α(SJPK)] v SJtJPKK

S↓ p

↑↑

α
O

→

←
γ
O γ O

→

α O

→
Observational
abstraction

αO(SJPK) = αO(t[SJPK],α(SJPK)) = αO(SJtJPKK)

αO

↓

γO

↑

Program
Static
Analysis

Program
Transformation

— 95 —

Examples of Program Transformations

• Constant propagation;

• Online and offline partial evaluation;

• Slicing;

• Static program monitoring,
αO(SJtJP, MKK) = αO(SJPK) u αO(SJMK):

-- run-time checks elimination,

-- security policy enforcement,

-- proof by transformation (αO(SJPK) = αO(SJtJP, MKK)).
• Code and analysis translation 27.

27 X. Rival. D.E.A. report, 2002.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 94 — — 96 — c© P. Cousot

http://floc02.diku.dk/CAV/

Application to
Static Program Analysis 28

• P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques.
Grenoble, 21 Mar. 1978.
• P. Cousot. Semantic Foundations of Program Analysis. Ch. 10 of Program Flow Analysis: Theory
and Applications, S.S. Muchnick & N.D. Jones, pp. 303–342. Prentice-Hall, 1981.

— 97 —

What is static program analysis?

• Automatic static/compile time determination of dynamic/run-
time properties of programs;

• Basic idea: use effective computable approximations of the
program semantics;

Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;

Drawback: can only handle properties captured by the
approximation.

28 Now called software model checking !

Collecting Semantics Abstractions

〈℘(Σ+ ∪ Σω),⊆〉 −−−→−→←−−−−
α

γ
〈℘(Σ),⊆〉

Example 1: reachable states (forward analysis)
αI(X)

def
= {σi | σ ∈ X ∧ σ0 ∈ I ∧ i ∈ Dom(σ)}

Example 2: ancestor states (backward analysis)
αF (X)

def
= {σi | σ ∈ X ∧ ∃n ∈ Dom(σ) : 0 ≤ i ≤ n ∧ σn ∈ F}

— 99 —

Partitioning

• If Σ = C ×M (control and store state) and C is finite 29, we
can partition:

〈℘(C ×M),⊆〉 −−−−→−→←←−−−−−
αc

γc 〈C 7→ ℘(M), ⊆̇〉

αc(S) = λ c ∈ C · {m | 〈c,m〉 ∈ S}

• It remains to find abstractions of the store M = V 7→ D (vari-
ables to data) e.g. of [in]finite set of points of the euclidian
space.

29 use e.g. dynamic partitioning if C is infinite

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 98 — — 100 — c© P. Cousot

http://floc02.diku.dk/CAV/

Approximations of an [in]finite set of
points: From Above

x

y

{. . . , 〈19, 77〉, . . . ,
〈20, 02〉, . . .}

— 101 —

Approximations of an [in]finite set of
points: From Above

x

y

?

?

?
?

?

?

?
?

?

?

{. . . , 〈19, 77〉, . . . ,

〈20, 02〉, 〈?, ?〉, . . .}

From Below: dual 30 + combinations.

30 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).

Effective computable approximations of
an [in]finite set of points; Signs 31

x

y {
x ≥ 0

y ≥ 0

— 103 —

Effective computable approximations of
an [in]finite set of points; Intervals 32

x

y {
x ∈ [19, 77]

y ∈ [20, 02]

31 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
32 P. Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on

Programming, Dunod, 1976.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 102 — — 104 — c© P. Cousot

http://floc02.diku.dk/CAV/

Effective computable approximations of
an [in]finite set of points; Octagons 33

x

y





1 ≤ x ≤ 9

x + y ≤ 77

1 ≤ y ≤ 9

x− y ≤ 99

— 105 —

Effective computable approximations of
an [in]finite set of points; Polyhedra 34

x

y {
19x + 77y ≤ 2002

20x + 02y ≥ 0

33 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO ’2001. LNCS 2053, pp.
155–172. Springer 2001.

34 P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM POPL,
1978, pp. 84–97.

Effective computable approximations of
an [in]finite set of points; Simple

congruences 35

x

y {
x = 19 mod 77

y = 20 mod 99

— 107 —

Effective computable approximations of
an [in]finite set of points; Linear

congruences 36

x

y {
1x + 9y = 7 mod 8

2x − 1y = 9 mod 9

35 Ph. Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165–190.
36 Ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program. TAPSOFT ’91, pp.

169–192. LNCS 493, Springer, 1991.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 106 — — 108 — c© P. Cousot

http://floc02.diku.dk/CAV/

Effective computable approximations of
an [in]finite set of points; Trapezoidal lin-

ear congruences 37

x

y

{
1x + 9y ∈ [0, 77] mod 10
2x− 1y ∈ [0, 99] mod 11

— 109 —

Example of Effective Abstractions
of Infinite Sets of Infinite Trees 38

Binary Decision Graphs:

Tree Schemata:

37 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM ICS ’92.
38 L. Mauborgne. Improving the Representation of Infinite Trees to Deal with Sets of Trees. ESOP’00. LNCS 1782, pp.

275–289, Springer, 2000.

On the Design of Abstractions
for Software Checking

P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In Proc. 4th Int. Symp.
SARA ’2000, B.Y. Choueiry and T. Walsh (Eds). Horseshoe Bay, Texas, USA, 26–29 Jul. 2000, LNAI
1864. Springer-Verlag, pp. 1–25, 2000.

— 111 —

Discovery of Abstractions

• In static program analysis:
-- task of the program analyzer designer (abstract domains),
-- find a sound abstraction providing useful information for all programs,
-- essentially manual,
-- partially automated e.g. by combination & refinement of abstract do-
mains;

• In model checking:
-- task of the user (model),
-- find a sound & complete abstraction required to verify one model,
-- looking for automation (e.g. starting from a trivial or user provided
guess and refining by trial and error).

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 110 — — 112 — c© P. Cousot

http://floc02.diku.dk/CAV/

In what consists abstraction discovery?

• Understand the logical nature of the problem of finding an ap-
propriate abstraction (for proving safety properties).

— 113 —

Formalization of the
Abstraction Design Problem

Fixpoint Checking

• Model-checking safety properties of transition systems:

lfp
≤
λX · I ∨ F (X) ≤ S ?

• Program static analysis by abstract interpretation:

γ(lfp
≤
λX ·α(I ∨ F (γ(X)))) ≤ S ?

— 115 —

Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con-
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be found
in the abstract;

Partial completeness: in case of termination of the abstract
fixpoint checking algorithm, no positive answer can be missed.

Termination/resource limitation is therefore considered a separate
problem (widening/narrowing, etc.).

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 114 — — 116 — c© P. Cousot

http://floc02.diku.dk/CAV/

Practical Question

Is it possible to automatize the discovery of com-
plete abstractions?

— 117 —

Objective (Formally)

Constructively characterize the abstractions 〈α, γ〉
for which abstract fixpoint algorithms are partially
complete.

Concrete Fixpoint Checking

— 119 —

Concrete Fixpoint Checking Problem

• Complete lattice 〈L, ≤, 0, 1, ∨, ∧〉;
• Monotonic transformer F ∈ L

mon7−→ L;

• Specification 〈I, S〉 ∈ L2;

lfp
≤
λX · I ∨ F (X) ≤ S ?

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 118 — — 120 — c© P. Cousot

http://floc02.diku.dk/CAV/

Example

• Set of states: Σ;

• Initial states: I ⊆ Σ;

• Transition relation: τ ⊆ Σ× Σ;

• Transition system: 〈Σ, τ, I〉;
• Complete lattice: 〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉;
• Right-image of X ⊆ Σ by τ :

post [τ](X)
def
= {s′ | ∃s ∈ X : 〈s, s′〉 ∈ τ};

• Reflexive transitive closure of τ : τ?

— 121 —

Example (contd.)

• Safety specification: S ⊆ Σ

• Reachable states from I:

post [τ?](I) = lfp
⊆
λX · I ∪ post [τ](X) ;

• Satisfaction of the safety specification (post [τ ?](I) ⊆ S):

lfp
⊆
λX · I ∨ post [τ](X) ⊆ S ?

Concrete Fixpoint Checking
Algorithm 39

Algorithm 1

X := I ; Go := (X ≤ S);

while Go do

X′ := I ∨ F (X);

Go := (X 6= X′) & (X′ ≤ S);

X := X′;
od;

return (X ≤ S);

— 123 —

Partial correctness of Alg. 1

Alg. 1 is partially correct: if it ever terminates then it returns

lfp
≤
λX · I ∨ F (X) ≤ S.

39 P. Cousot & R. Cousot, POPL’77

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 122 — — 124 — c© P. Cousot

http://floc02.diku.dk/CAV/

Concrete Invariants

A ∈ L is an invariant for 〈F, I, S〉 if and only if I ≤ A&F (A) ≤
A & A ≤ S;

Note 1 (Floyd’s proof method): lfp
≤
λX · I ∨ F (X) ≤ S if and

only if there exists an invariant A ∈ L for 〈F, I, S〉;

Note 2: if Alg. 1 terminates successfully, then it has computed

an invariant (X = lfp
≤
λX′ · I ∨ F (X′)).

— 125 —

Dual and Adjoined
Concrete Fixpoint Checking

Galois connection

A Galois connection, written

〈L,≤〉 −−−→←−−−
f

g
〈M,v〉,

is such that:

• 〈L,≤〉 and 〈M,v〉 are posets;

• the maps f ∈ L 7→M and g ∈M 7→ L satisfy

∀x ∈ L : ∀y ∈M :f(x) v y if and only if x ≤ g(y) .

— 127 —

Concrete Adjoinedness

In general, F has an adjoint F̃ such that 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 126 — — 128 — c© P. Cousot

http://floc02.diku.dk/CAV/

Example of Concrete Adjoinedness

• τ−1 is the inverse of τ ;

• pre [τ]
def
= post [τ−1];

• Set complement ¬X
def
= Σ \X;

• p̃re [τ](X)
def
= ¬pre[τ](¬X);

〈℘(Σ),⊆〉 −−−−−−−→←−−−−−−−
post [τ]

p̃re[τ]
〈℘(Σ),⊆〉 .

— 129 —

Fixpoint Concrete Adjoinedness

〈L,≤〉 −−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
λ I · lfp≤λX · I∨F (X)

λS · gfp≤λX ·S∧F̃ (X)
〈L,≤〉

Proof:

lfp
≤
λX · I ∨ F (X) ≤ S

⇐⇒ ∃A ∈ L : I ≤ A & F (A) ≤ A & A ≤ S (1)
⇐⇒ ∃A ∈ L : I ≤ A & A ≤ F̃ (A) & A ≤ S

⇐⇒ I ≤ gfp
≤
λX ·S ∧ F̃ (X) .

The Complete Lattice of Concrete
Invariants

• The set I of invariants for 〈F, I, S〉 is a complete lattice 〈I,
≤, lfp

≤
λX · I ∨ F (X), gfp

≤
λX ·S ∧ F̃ (X), ∨, ∧〉.

— 131 —

Dual Concrete Fixpoint Checking
Algorithm 40

Algorithm 2

Y := S; Go := (I ≤ Y);

while Go do

Y ′ := S ∧ F̃ (Y);

Go := (Y 6= Y ′) & (I ≤ Y ′);
Y := Y ′;

od;

return (I ≤ Y);

40 P. Cousot, 1981; E.M. Clarke & E.A. Emerson, 1981; J.-P. Queille and J. Sifakis, 1982.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 130 — — 132 — c© P. Cousot

http://floc02.diku.dk/CAV/

Partial correctness of Alg. 2

Alg. 2 is partially correct: if it ever terminates then it returns

lfp
≤
λX · I ∨ F (X) ≤ S.

— 133 —

On (Dual) Fixpoint Checking

lfp
≤
λX · I ∨ F (X) ≤ S

if and only if

I ≤ gfp
≤
λX ·S ∧ F̃ (X).

if and only if

lfp
≤
λX · I ∨ F (X) ≤ gfp

≤
λX ·S ∧ F̃ (X)

The Adjoined Concrete Fixpoint
Checking Algorithm

Algorithm 3

X := I ; Y := S; Go := (X ≤ Y);

while Go do

X′ := I ∨ F (X); Y ′ := S ∧ F̃ (Y);

Go := (X 6= X′) & (Y 6= Y ′) & (X′ ≤ Y ′);
X := X′; Y := Y ′;

od;

return (X ≤ Y);

— 135 —

Partial correctness of Alg. 3

Alg. 3 is partially correct: if it ever terminates then it returns

lfp
≤
λX · I ∨ F (X) ≤ S.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 134 — — 136 — c© P. Cousot

http://floc02.diku.dk/CAV/

Abstract Fixpoint Checking

— 137 —

Abstract Interpretation

• Concrete complete lattice: 〈L, ≤, 0, 1, ∨, ∧〉;
• Abstract complete lattice: 〈M, v, ⊥, >, u, t〉;
• Abstraction/concretization pair 〈α, γ〉;
• Galois connection:

〈L,≤〉 −−−→←−−−α

γ
〈M,v〉.

Example: the Recurrent Abstraction
in Abstract Model-Checking

• State abstraction: h ∈ Σ 7→ Σ;

• Property abstraction: αh(X)
def
= {h(x) | x ∈ X} = post [h] 41;

• Property concretization: γh(Y)
def
= {x | h(x) ∈ Y } = p̃re[h];

• Galois connection:

〈℘(Σ),⊆〉 −−−−→←−−−−
αh

γh 〈℘(Σ),⊆〉.

• Example (rule of signs): Σ = Z so choose h(z) to be the sign
of z.

— 139 —

Example: the Sign Abstraction

- ({0})

0 +
.

-.

+

({+1,0})

({+1})

⊥ (ø)

0

({-1,+1})

({-1,0,+1})

⊥

({-1,0})

({-1})

41 Considering the function h as a relation.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 138 — — 140 — c© P. Cousot

http://floc02.diku.dk/CAV/

Abstract Fixpoint Checking
Algorithm 42

Algorithm 4

X := α(I); Go := (γ(X) ≤ S);

while Go do

X′ := α(I ∨ F (γ(X)));

Go := (X 6= X′) & (γ(X′) ≤ S);

X := X′;
od;

return if (γ(X) ≤ S) then true else I don’t know;

— 141 —

Partial correctness of Alg. 4

Alg. 4 is partially correct: if it terminates and returns “true” then

lfp
≤
λX · I ∨ F (X) ≤ S.

42 In P. Cousot & R. Cousot, POPL’77, (γ(X) ≤ S) is X v S ′ where S′ = α(S).

Dual and Adjoined
Abstract Fixpoint Checking

— 143 —

Dual Abstraction

〈L,≥〉 −−−→←−−−
α̃

γ̃
〈M,w〉.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 142 — — 144 — c© P. Cousot

http://floc02.diku.dk/CAV/

Example of Dual Abstraction (Contd.)

If

• 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;

• 〈M, v, ⊥, >, u, t, v〉 is a complete boolean lattice;

• 〈L,≤〉 −−−→←−−−α

γ
〈M,v〉;

• α̃
def
= v ◦ α ◦ ¬ and γ̃

def
= ¬ ◦ γ ◦ v

then

〈L,≥〉 −−−→←−−−
α̃

γ̃
〈M,w〉

— 145 —

Example of Dual Abstraction (Contd.)

For the recurrent abstraction in abstract model-checking αh(X)
def
= {h(x) | x ∈ X} = post [h] we have:

• 〈℘(Σ),⊆〉 −−−−−−−→←−−−−−−−
post [h]

p̃re[h]
〈℘(Σ),⊆〉;

• p̃re [h](X) = ¬pre [h](¬X) and p̃ost [h](X) = ¬post [h](¬X), so:

• 〈℘(Σ),⊇〉 −−−−−−−→←−−−−−−−
p̃ost [h]

pre[h]
〈℘(Σ),⊇〉.

Abstract Adjoinedness

〈L,≤〉 −−−→←−−−α

γ
〈M,v〉, 〈L,≤〉 −−−→←−−−

F

F̃ 〈L,≤〉 and 〈L,≥〉 −−−→←−−−
α̃

γ̃
〈M,w〉

imply:

〈M,v〉 −−−−−−−→←−−−−−−−
α◦F ◦γ̃

α̃◦F̃ ◦γ
〈M,v〉.

— 147 —

The Dual Abstract Fixpoint
Checking Algorithm

Algorithm 5
Y := α̃(S); Go := (I ≤ γ̃(Y));

while Go do

Y ′ := α̃(S ∧ F̃ (γ̃(Y)));

Go := (Y 6= Y ′) & (I ≤ γ̃(Y ′));
Y := Y ′;

od;

return if (I ≤ γ̃(Y)) then true else I don’t know;

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 146 — — 148 — c© P. Cousot

http://floc02.diku.dk/CAV/

Partial correctness of Alg. 5

Alg. 5 is partially correct: if it terminates and returns “true” then

lfp
≤
λX · I ∨ F (X) ≤ S.

— 149 —

The Particular Case of Complement
Abstraction

1. 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;

2. 〈M, v, ⊥, >, t, u, v〉 is a complete boolean lattice;

3. 〈L,≤〉 −−−→←−−−α

γ
〈M,v〉;

4. 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉;

5. F̃
def
= ¬ ◦ F ◦ ¬, α̃

def
= v ◦ α ◦ ¬ and γ̃

def
= ¬ ◦ γ ◦ v.

The Contrapositive Abstract
Fixpoint Checking AlgorithmAlg. 5 becomes:

Algorithm 6

Z := α(¬S); Go := (I ∧ γ(Z) = 0);

while Go do

Z′ := α(¬S ∨ F (γ(Z)));

Go := (Z 6= Z′) & (I ∧ γ(Z′) = 0);

Z := Z′;
od;

return if (I ∧ γ(Z) = 0) then true else I don’t know;

— 151 —

Partial correctness of Alg. 6

Alg. 6 is partially correct: if it terminates and returns “true” then

lfp
≤
λX · I ∨ F (X) ≤ S.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 150 — — 152 — c© P. Cousot

http://floc02.diku.dk/CAV/

The Adjoined Abstract Fixpoint
Checking Algorithm

Algorithm 7

X := α(I); Y := α̃(S); Go := (γ(X) ≤ S) & (I ≤ γ̃(Y));

while Go do

X′ := α(I ∨ F ◦ γ(X)); Y ′ := α̃(S ∧ F̃ ◦ γ̃(Y));

Go := (X 6= X′) & (Y 6= Y ′) & (γ(X′) ≤ S) & (I ≤ γ̃(Y ′));
X := X′; Y := Y ′;

od;

return if (γ(X) ≤ S) | (I ≤ γ̃(Y)) then true
else I don’t know;

— 153 —

Partial correctness of Alg. 7

Alg. 7 is partially correct: if it terminates and returns “true” then

lfp
≤
λX · I ∨ F (X) ≤ S.

Program Static Analysis

— 155 —

Further Requirements for
Program Static Analysis

• In program static analysis, one cannot compute γ, γ̃ and ≤ and
sometimes neither I nor S may even be machine representable;

• So Alg. 7, which can be useful in model-checking, is of limited
interest in program static analysis;

• Such problems do no appear in abstract model checking since
the concrete model is almost always machine-representable (al-
though sometimes too large).

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 154 — — 156 — c© P. Cousot

http://floc02.diku.dk/CAV/

Additional Hypotheses

In order to be able to check termination in the abstract, we as-
sume:

1. ∀X ∈ L : γ ◦ α̃(X) ≤ X;

2. ∀X ∈ L : X ≤ γ̃ ◦ α(X).

— 157 —

Example: the Recurrent Abstraction in
Abstract Model-Checking

Continuing with the abstraction of p. 140 with

α
def
= post [h] γ

def
= p̃re [h]

and α̃
def
= p̃ost [h] γ̃

def
= pre [h],

we have:
1. ∀X ∈ L : γ ◦ α̃(X) ⊆ X;

2. ∀X ∈ L : X ⊆ γ̃ ◦ α(X).

The Adjoined Abstract Fixpoint
Abstract Checking Algorithm

Algorithm 8

X := α(I); Y := α̃(S); Go := (X v Y);

while Go do

X′ := α(I) t α ◦ F ◦ γ(X); Y ′ := α̃(S) u α̃ ◦ F̃ ◦ γ̃(Y);

Go := (X 6= X′) & (Y 6= Y ′) & (X′ v Y ′);
X := X′; Y := Y ′;

od;

return if X v Y then true else I don’t know;

— 159 —

Partial correctness of Alg. 8

Alg. 8 is partially correct: if it ever terminates and returns “true”

then lfp
≤
λX · I ∨ F (X) ≤ S.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 158 — — 160 — c© P. Cousot

http://floc02.diku.dk/CAV/

Partially Complete Abstraction

— 161 —

Partially Complete Abstraction
(definition) 43

Definition 9 The abstraction 〈α, γ〉 is partially complete if,

whenever Alg. 4 terminates and lfp
≤
λX · I ∨F (X) ≤ S then the

returned result is “true”.

43 Observe that this notion of partial completeness is different from the notions of fixpoint completeness (α(lfp
≤
G) =

lfp
v
α ◦ G ◦ γ) and the stronger one of local completeness (α ◦ G = α ◦ G ◦ γ ◦ α) considered in P. Cousot & R.

Cousot, POPL’79.

Characterization of Partially Com- plete
Abstractions for Algorithm 4

Theorem 9 The abstraction 〈α, γ〉 is partially complete for
Alg. 4 if and only if α(L) contains an abstract value A such that
γ(A) is an invariant for 〈F, I, S〉.

Intuition: finding a partially complete abstraction is logically equiv-
alent to making an invariance proof.

— 163 —

The Most Abstract Partially Complete
Abstraction (Definition)

Definition 10 Themost abstract partially complete abstrac-
tion 〈α, γ〉, if it exists, is defined such that:

1. The abstract domain M = α(L) has the smallest possible car-
dinality;

2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac-
tion with the same cardinality, then there exists a bijection β

such that ∀x ∈M : γ′(β(x)) ≤ γ(x) 44.

44 Otherwise stated, the abstract values in α(L) are more approximate than the corresponding elements in α′(L).

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 162 — — 164 — c© P. Cousot

http://floc02.diku.dk/CAV/

Characterization of the Most Abstract
Complete Abstraction

Theorem 11 The most abstract partially complete abstrac-
tion for Alg. 4 is such that:

• if S = 1 then M = {>} where α
def
= λX ·> and γ

def
= λ Y · 1;

• if S 6= 1 then M = {⊥,>} where ⊥ v ⊥ @ > v > with 〈α, γ〉
such that:

α(X)
def
= if X ≤ gfp

≤
λX ·S ∧ F̃ (X) then ⊥ else >

γ(⊥)
def
= gfp

≤
λX ·S ∧ F̃ (X) (2)

γ(>)
def
= 1

— 165 —

The Least Abstract Partially Complete
Abstraction (Definition)

Definition 12 Dually, the least abstract partially complete
abstraction 〈α, γ〉, if it exists, is defined such that:

1. The abstract domain M = α(L) has the smallest possible car-
dinality;

2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac-
tion with the same cardinality, then there exists a bijection β

such that ∀x ∈M : γ(x) ≤ γ′(β(x)) 45.

45 Otherwise stated, the abstract values in α(L) are less approximate than the corresponding elements in α′(L).

Characterization of the Least Abstract
Complete Abstraction

Theorem 13 Dually, the least abstract partially complete
abstraction for Alg. 4 is such that:

• if I = 1 then M = {>} where α
def
= λX ·> and γ

def
= λY · 1;

• if I 6= 1 then M = {⊥,>} where ⊥ v ⊥ @ > v > with 〈α, γ〉
such that:

α(X)
def
= if X ≤ lfp

≤
λX · I ∨ F (X) then ⊥ else >

γ(⊥)
def
= lfp

≤
λX · I ∨ F (X) (3)

γ(>)
def
= 1

— 167 —

The Minimal Partially Complete
Abstractions for Algorithm 4

Theorem 14
• The set A of partially complete abstractions of minimal cardi-
nality for Alg. 4 is the set of all abstract domains 〈M, v, α, γ〉
such that M = {⊥,>} with ⊥ v ⊥ v > v >, 〈L,≤〉 −−−→←−−−α

γ

〈M,v〉, γ(⊥) ∈ I and ⊥ = > if and only if γ(>) ∈ I.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 166 — — 168 — c© P. Cousot

http://floc02.diku.dk/CAV/

The Complete Lattice of Minimal
Complete Abstractions for Alg. 4

Theorem 15
• The relation 〈{⊥,>}, v, α, γ〉 � 〈{⊥′,>′}, v′, α′, γ′〉 if and
only if γ(⊥) ≤ γ′(⊥′) is a pre-ordering on A.
• Let 〈{⊥,>}, v, α, γ〉 ∼= 〈{⊥′,>′}, v′, α′, γ′〉 if and only if

γ(⊥) = γ′(⊥′) be the corresponding equivalence.

• The quotient A/∼= is a complete lattice 46 for � with infimum
class representative 〈M, v, α, γ〉 and supremum 〈M, v, α, γ〉.

— 169 —

Intuition for Minimal Partially Complete
Abstractions

• There is a one to one correspondance between partially com-
plete abstractions of minimal cardinality for Alg. 4 and the set

of invariants for proving lfp
≤
λX · I ∨ F (X) ≤ S;

• Similar results hold for the other Algs. 6, 7 & 8.

46 Observe however that it is not a sublattice of the lattice of abstract interpretations of P. Cousot & R. Cousot, POPL’77,
POPL’79 with reduced product as glb.

Conclusion on
Abstraction Design

— 171 —

On Complete Abstraction Design (contd.)

• For a single given program, it is always possible to find a finite
and small model and so to check it;

⇒ by putting enough effort on the design of the model, model-checking

will always succeed without false alarm;

• Finding a model is difficult since logically equivalent to discov-
ering a program invariant;

⇒ no problem, its given by the user of the model-checker;

• proving the correctness of the model is logically equivalent to
an invariant proof obligation (Th. 10);

⇒ no problem, the end-user often does not care (he trusts himself).

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 170 — — 172 — c© P. Cousot

http://floc02.diku.dk/CAV/

On Complete Abstraction Design (contd.)

• For a infinitely many programs, it is impossible to find a finite
abstraction or widening that will work for all programs;

⇒ whichever effort is put on the design of the static analyzer, there will

always be false alarms for some program;

• Finding an abstraction/widening is difficult since logically equiv-
alent to discovering a map from programs to invariants;

⇒ never given by the user, a problem for the designer;

• Proving the correctness of the static analyzer is logically equiv-
alent to a proof obligation for all programs (Th. 10);

⇒ a definite problem, the end-user does care (he distrusts the designer).

— 173 —

On Widenings 47

47 P. Cousot, R. Cousot: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP 1992: 269-295

Widening Operator

A widening operator
`
∈ L× L 7→ L is such that:

• Correctness:

-- ∀x, y ∈ L : γ(x) v γ(x
`

y)

-- ∀x, y ∈ L : γ(y) v γ(x
`

y)

• Convergence:

-- for all increasing chains x0 v x1 v . . . , the increasing
chain defined by y0 = x0, . . . , yi+1 = yi

`
xi+1, . . .

is not strictly increasing.

— 175 —

Fixpoint Approximation with Widening

The upward iteration sequence with widening:

• X̂0 = ⊥- (infimum)

• X̂i+1 = X̂i if F (X̂i) v X̂i

= X̂i
`

F (X̂i) otherwise

is ultimately stationary and its limit Â is a sound upper approxi-

mation of lfp
⊥-

F :

lfp
⊥-

F v Â

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 174 — — 176 — c© P. Cousot

http://floc02.diku.dk/CAV/

Fixpoint Approximation with
Widening/Narrowing

t
t
t
t
t
t
t
t
tL

F

�
�
�
�

�
�
�
�

?

?

�
�
-

�
�
-

�
�
-

�
�
-

�
�
-

�
�
--

�
�

⊥-

lfp F

gfp F

>

t

t

t
tL

t

�

�

�t

�

�

�
�
�
�
�?

�
�

F

X̂0 = ⊥-

X̂1 = X̂0
`

F (X̂0)

X̌1 = X̌0aF (X̌0)

= gfpF = lfpF

X̂2 = X̂1
`

F (X̂1)

= > = X̌0

}

}

}

-

-

-

α

α

α

````
````

````
````̀

````
````

````
````̀

````
````

````
````̀

y

y

y�

γ

γ

γ

t

t

t
t

�

�

-

�

�

- �
��

— 177 —

Interval Widening

• L = {⊥} ∪ {[`, u] | ` ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞}∧ ` ≤ u}
• The widening extrapolates unstable bounds to infinity:

⊥
`

X = X

X
`
⊥ = X

[`0, u0]
`

[`1, u1] = [if `1 < `0 then −∞ else `0,

if u1 > u0 then +∞ else u0]

Not monotone. For example [0, 1] v [0, 2] but [0, 1]
`

[0, 2] = [0,

+∞] 6v [0, 2] = [0, 2]
`

[0, 2]

Interval Widening with Thresholds

• Extrapolate to thresholds, zero, one or infinity:

[`0, u0]
`

[`1, u1] = [if ` ≤ `1 < `0 ∧ ` ∈ {1, 0,−1} then l

elsif `1 < `0 then −∞
else `0,

if u0 < u1 ≤ u ∧ u ∈ {−1, 0, 1} then u

elsif u0 < u1 then +∞
else u0]

• So the analysis is always as good as the sign analysis.

— 179 —

Non-Existence of Finite Abstractions
Let us consider the infinite family of programs parameterized by
the mathematical constants n1, n2 (n1 ≤ n2):

X := n1;
while X ≤ n2 do
X := X + 1;

od

• An interval analysis with widening/narrowing will discover the
loop invariant X ∈ [n1, n2];

• To handle all programs in the family without false alarm, the
abstract domain must contain all such intervals;

⇒ No single finite abstract domain will do for all programs!

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 178 — — 180 — c© P. Cousot

http://floc02.diku.dk/CAV/

• Yes, but predicate abstraction with refinement will do (?) for
each program in the family (since it is equivalent to a widen-
ing) 48!

• Indeed no, since:

-- Predicate abstraction is unable to express limits of infinite
sequences of predicates;

-- Not all widening proceed by eliminating constraints:

-- A narrowing is necessary anyway in the refinement loop (to
avoid infinitely many refinements);

-- Not speaking of costs!

— 181 —

On the Design of
Program Static Analyzers

• P. Cousot. The Calculational Design of a Generic Abstract Interpreter. In Calculational System
Design, M. Broy and R. Steinbrüggen (Eds). Vol. 173 of NATO Science Series, Series F: Computer and
Systems Sciences. IOS Press, pp. 421–505, 1999.
• The corresponding generic abstract interpreter (written in Ocaml) is available at URL www.di.ens.fr
/~cousot

48 T. Ball, A. Podelski, S.K. Rajamani. Relative Completeness of Abstraction Refinement for Software Model Checking.
TACAS 2002: 158-172.

On the Design of Program Analyzers

• The abstract interpretation theory provides the design princi-
ples;

• In practice, one must find the appropriate tradeoff between gen-
erality, precision and efficiency;

• There is a full range of program analyzers from

general purpose analyzers for programming languages

to

specific analyzers for a given program (software model
checking).

— 183 —

Specific Static Program Analyzers

• A complete specific analyzer 49 (for a given software or hardware
program) can always use a finite abstract domain 50;

• The design of a complete specific analyzer is logically equivalent
to a correctness proof of the program;

• Such analyzers are precise but not reusable hence very costly
to develop.

49 Called a software model checker?
50 P. Cousot. Partial completeness of abstract fixpoint checking. SARA’2000. LNAI 1864, pp. 1–25. Springer.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 182 — — 184 — c© P. Cousot

www.di.ens.fr
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
/~cousot
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://floc02.diku.dk/CAV/

General-Purpose Static Program Analyzers

• To handle infinitely many programs for non-trivial properties, a
general-purpose analyser must use an infinite abstract domain 51;

• Such analyzers are huge for complex languages hence very costly
to develop but reusable;

• There are always programs for which they lead to false alarms;

• Although incomplete, they are very useful for verifying/testing/
debugging.

— 185 —

Parametric Specializable
Static Program Analyzers

• The abstraction can be tailored to significant classes of pro-
grams (e.g. critical synchronous real-time embedded systems);

• This leads to very efficient analyzers with almost no zero-false
alarm even for large programs.

51 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP’92. LNCS 631, pp. 269–295. Springer.

Experience Report on a
Parametric Specializable
Program Static Analyzer

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival.

— 187 —

Example of Parametric Specializable
Static Program Analyzers

Analyzer under development, very first results!

• C programs: safety critical embedded real-time synchronous
software for non-linear control of complex systems;

• 10 000 LOCs, 1300 global variables (booleans, integers, real,
arrays, macros, non-recursive procedures);

• Implicit specification: absence of runtime errors (no integer/floating
point arithmetic overflow, no array bound overflow);

• Initial design: 2h, 110 false alarms (general purpose analyzer);

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 186 — — 188 — c© P. Cousot

http://floc02.diku.dk/CAV/

Experience report
• Comparative results (commercial software):

-- 70 false alarms, 2 days, 500 Megabytes;

• Initial redesign:

-- Weak relational domain with time;

• Parametrisation:

-- Hypotheses on volatile inputs;

-- Staged widenings with thresholds;

-- Local refinements of the parameterized abstract domains;

• Results:

-- No false alarm, 14s, 20 Megabytes.
— 189 —

Example of refinement:
trace partitionning

Control point partitionning:

Trace partitionning:

Fork Join

Performance: Space and Time

Space = O(LOCs)
Time = O(LOCs × (ln(LOCs))1.5)

10

20

30

40

0
0 50 k 100 k 150 k 200 k 250 k 300 k

(KiloLOCs)Size

T
im

e
(m

in
u

te
s)

— 191 —

Conclusion

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 190 — — 192 — c© P. Cousot

http://floc02.diku.dk/CAV/

Conclusion on Formal Methods

• Formal methods concentrate on the deductive/exhaustive veri-
fication of (abstract) models of the execution of programs;

• Most often this abstraction into a model is manual and left
completely informal, if not tortured to meet the tool limitations;

• Semantics concentrates on the rigorous formalization of the
execution of programs;

• So models should abstract the program semantics. This is the
whole purpose of Abstract Interpretation!

— 193 —

Conclusion on Abstract Interpretation

• Abstract interpretation provides mathematical foundations of
most semantics-based program verification and manipulation
techniques;

• In abstract interpretation, the abstraction of the program se-
mantics into an approximate semantics is automated so that
one can go much beyond examples modelled by hand;

• The abstraction can be tailored to classes of programs so as to
design very efficient analyzers with almost no zero-false alarm.

THE END

More references at URL www.di.ens.fr/~cousot.

c© P. Cousot July 27-31, 2002CAV 2002 invited tutorial — 194 — — 195 — c© P. Cousot

http://www.di.ens.fr/~cousot/COUSOTpapers.html
http://floc02.diku.dk/CAV/

	Abstract
	Content
	MOTIVATIONS FOR FORMAL METHODS
	What is (or should be) the essential preoccupation of computer scientists?
	Computer software change of scale (cont'd)
	Bugs
	redThe estimated cost of an overflow
	redResponsibility of computer scientists
	redCapability of computer scientists
	Capability of computers
	ON FORMAL METHODS AND COMPUTER-AIDED VERIFICATION
	Computer systems
	Formal methods
	Deductive methods
	Deductive methods, criticism
	Software Model checking
	Software Model checking, criticism
	Static program analysis
	General-purpose static program analyzers
	Special-purpose static program analyzers
	Static program analysis, criticism
	Abstract interpretation
	Abstract interpretation
	MOTIVATIONS FOR ABSTRACT INTERPRETATION
	Abstract interpretation
	Coping with undecidable questions on the program semantics
	The theory of abstract interpretation
	INFORMAL INTRODUCTION TO ABSTRACT INTERPRETATION
	1 -- Abstract domains
	2 -- Correspondence between concrete and abstract properties
	3 -- Semantics abstraction
	4 --- Effective analysis/checking/verification algorithms
	ELEMENTS OF ABSTRACT INTERPRETATION
	Galois connections
	Composing Galois connection
	Function abstraction (1)
	Function abstraction (2)
	Fixpoint approximation
	Fixpoint abstraction
	Systematic design of an abstract semantics
	Abstract domains
	Combinations of abstract domains
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Content of the potpourri of applications of abstract interpretation
	Application to Syntax
	The semantics of syntax
	The fixpoint semantics of syntax
	Syntactic abstractions
	Application to Semantics
	Trace semantics, intuition
	Least fixpoint trace semantics
	Trace semantics, formally
	Semantics abstractions --- 1) relational abstractions
	1 --- Relational semantics abstractions (cont'd)
	2 --- Functional/denotational semantics abstractions
	3 --- Predicate transformer semantics abstractions
	4 --- Predicate transformer semantics abstractions (cont'd)
	5 --- Hoare logic semantics abstractions
	Lattice of semantics
	Application to Typing
	Syntax of the eager lambda calculus
	Semantic domains
	Denotational semantics with run-time type checking
	Standard denotational & collecting semantics
	Church/Curry monotypes
	Church/Curry monotypes (continued)
	Concretization function
	Program types
	Church/Curry monotype abstract semantics
	The Herbrand abstraction to get Hindley's unification-based type inference algorithm
	Application to Model Checking
	Objective of model checking
	Abstractions in model checking
	Model-checking itself is an abstraction
	Implicit abstraction in model checking
	Soundness
	Example for unsoundness
	Completeness
	Example for incompleteness
	On the completeness of model-checking
	Bidirectional traces
	The reversible mu-calculus
	The reversible mu-calculus (cont'd)
	Application to Program Transformation
	Principle of online program transformation (1)
	Principle of online program transformation (2)
	Principle of offline program transformation (1)
	Principle of offline program transformation (2)
	Examples of program transformations
	Application to Static Program Analysis
	What is static program analysis?
	Collecting semantics abstractions
	Partitioning
	Approximations of an [in]finite set of points
	Approximations of an [in]finite set of points
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	Example of effective abstractions of infinite sets of infinite trees
	ON THE DESIGN OF ABSTRACTIONS FOR SOFTWARE CHECKING
	Discovery of abstractions
	In what consists abstraction discovery?
	Formalization of the Abstraction Design Problem
	Fixpoint checking
	Soundness / (Partial) completeness
	Practical question
	Objective (formally)
	Concrete Fixpoint Checking
	Concrete fixpoint checking problem
	Example
	Concrete fixpoint checking algorithm
	Partial correctness
	Concrete invariants
	Dual and Adjoined Concrete Fixpoint Checking
	Galois connection
	Concrete adjoinedness
	Example of concrete adjoinedness
	Fixpoint concrete adjoinedness
	The complete lattice of concrete invariants
	Dual concrete fixpoint checking algorithm
	Partial correctness
	On (dual) fixpoint checking
	Adjoined concrete fixpoint checking algorithm
	Partial correctness
	Abstract Fixpoint Checking
	Abstract interpretation
	Example: the recurrent abstraction in abstract model-checking
	Example: the sign abstraction
	Abstract fixpoint checking algorithm
	Partial correctness
	Dual and Adjoined Abstract Fixpoint Checking
	Dual abstraction
	Example of dual abstraction
	Example of dual abstraction
	Abstract adjoinedness
	The dual abstract fixpoint checking algorithm
	Partial correctness
	The particular case of complement abstraction
	The contrapositive fixpoint checking algorithm
	Partial correctness
	The adjoined abstract fixpoint checking algorithm
	Partial correctness
	Program Static Analysis
	Further requirements for program static analysis
	Additional hypotheses
	Example: the recurrent abstraction in abstract model-checking
	The adjoined abstract fixpoint abstract checking algorithm
	Partial correctness
	Partially Complete Abstraction
	Partially complete abstraction (definition)
	Characterization of partially complete abstractions
	Characterization of partially complete abstractions
	The most abstract partially complete abstraction (definition)
	Characterization of the most abstract complete abstraction
	The least abstract partially complete abstraction (definition)
	Characterization of the least abstract complete abstraction
	The minimal partially complete abstractions
	The complete lattice of minimal partially complete abstractions
	Intuition for minimal partially complete abstractions
	Conclusion on Abstraction Design
	On complete abstraction design
	On complete abstraction design (cont'd)
	ON WIDENINGS
	Widening operator
	Fixpoint approximation with widening
	Fixpoint Approximation with Widening/Narrowing
	Interval Widening
	Interval widening with thresholds
	Non-Existence of Finite Abstractions
	ON THE DESIGN OF PROGRAM STATIC ANALYZERS
	On the design of program analyzers
	Specific static program analyzer
	General-purpose static program analyzer
	Parametric specializable static program analyzer
	EXPERIENCE REPORT ON A PARAMETRIC SPECIALIZABLE PROGRAM STATIC ANALYZERS
	Example of parametric specializable static program analyzer
	Experience report
	Example of refinement: trace partitionning
	Performance: space and time
	CONCLUSION
	Conclusion on formal methods
	Conclusion on abstract interpretation

