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OBJECTIVE

e Assume that we are given any transition system:

(5, 1)

state space <—| L> transition relation

e We first define all semantics of this given transition system
in the hierarchy of semantics as abstractions of the natural
trace semantics;

e We then constructively derive fixpoint characterizations of
all semantics in the hierarchy by abstraction of a fixpoint
characterization of the natural trace semantics of the tran-
sition system.
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Description of
the hierarchy of semantics
as abstractions of
the natural trace semantics
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NATURAL TRACE SEMANTICS

e The system/program we are interested in is assumed to be
specified by a transition system:
(S, 1)
state space <—| L> transition relation
e [ts natural trace semantics is:

Tt = {e—e—e...e—>e—e blocking} <« finite
4 4 state traces
U{e—e—e...0—0e—e...} < infinite
4 4 traces
any state transition

RELATIONAL SEMANTICS

a € Traces — p(S§ xS)), S, =SU{l}

R = a(T)
ab a b
= {(e,0) |00 —... 50 —ecT}

U{<0,J_>|o—>o—>,.__>._>._>.”€7,}

« 1s a Galois connection.
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NATURAL, DEMONIAC & ANGELIC SEMANTICS

e Natural trace semantics: Th‘

e Angelic abstraction

a(Th) = {ese—...—>0—e|

oo ... e —e E’Th};

e Demoniac abstraction *:

oATH = T

U{e—>e—...—e—e]
ese—.. . se—se—. .. T}

The a’s are Galois connections.

' Eliminate all infinite traces.
duce all arbitrary finite traces for states possibly starting an infinite trace.
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NON-DETERMINISTIC DENOTATIONAL SEMANTICS
a € p(Ex8))— (S—— p(S)))

D = a(R)

= Xs{s' €8 | (s,8) € R} right image

a 1s a Galois isomorphism.
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PREDICATE TRANSFORMER SEMANTICS
a € (S p(S1)) — (p(S1) — p(S))

W = «a(D)
= AQ{s eS|V eS8, :seD(s)= s €}

a is a Galois injection.
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Fixpoint presentation
of the semantics in the hierarchy
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AXIOMATIC SEMANTICS

a € (p(S) — p(S1)) — p(p(S) X p(S)))

H = aWW)
= {(P.Q) | PCSW(Q)}

a is a Galois injection.
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FIXPOINT PRESENTATION OF A SEMANTICS

e Fixpoint presentations of a semantic:

partial ordering

T

L
T=1p F
T }

semantics monotonic transformer

e Problem: find a fixpoint characterization of all semantics in
the hierarchy.
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e The known fixpoint characterizations look similar ’;

e So there should be a simple way of transferring/lifting fix-
point definitions through abstractions « (as we do in ab-
stract interpretation [CCT77]);

e [ failed for some time and will explain some of the crucial
steps to have this idea work properly.

— Reference

[CCTT] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4 POPL, pages 238 252, Los

Angeles, Calif., 1977. ACM Press.
® although not completely identical.
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NATURAL TRACE FIXPOINT SEMANTICS

Let X and Y be sets of complete traces:
e X CY, refinement
e XLV, computational ordering
2XtCYtAXY YW
X1 = the finite traces of X
X% = the infinite traces of X

C
AN
F2fut: X
traces of length 1 ending traces of X prefixed
in blocking states by an initial transition
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DirricuLTty 1: ORDERINGS

e Because “natural” semantics describe both finite and infi-
nite behaviors simultaneously, we cannot use lfp for C. But
we could use gfpg;

e Unfortunately the abstraction of the gfpg fixpoint seman-
tics for natural traces does not lead to Scott’s denotational
semantics;

e So we resort to two orderings "

1. C (approximation, refinement, logical implication, ... )
for Galois connections «;

2. C (computational ordering) for fixpoints.

* They are generally different but may happen to coincide by further abstractions.
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DirricuLTy 2: THE COMPUTATIONAL ORDERING

e There is only one approximation ordering;

e There are many possible computational orderings;

/
e Theorem (very rough sketch) lfpE F = lfpE F iff when
ordering the transfinite iterates of F from L by T and
C’, the respective lubs will lead to the same limit.

More precisely . ..
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FIXPOINT ITERATES REORDERING
o Let (D, C, L L), F)
be a fixpoint semantic specification;
e let E/ be a set and =< be a binary relation on F, such that:
1. ='is a pre-order on F;
2. all iterates F, 6 € O of F belong to E;
3. Lis the <-infimum of F;
4. the restriction F'|g of F' to E is <-monotone;
5. forallz € E,if Misalimit ordinaland V6 < A : F9 <

then || F° < x.
o<\

e Then lfpf F = 1fpfF|E € L.
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PoOSSIBLE DEMONIAC ITERATE ORDERINGS

{a,b}
{a} ) %
0 R0
{a,b, 1} {a,b, 1}
Demoniac ordering Cf  Demoniac ordering 9
W {ab{a.0} {0}
el
{a,b, 1} {a,b, 1}
Smyth ordering C° Flat ordering C=

. possible iterates of F
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ORDERINGS FOR THE NONDETERMINISTIC
DENOTATIONAL SEMANTICS, S = {a, b}

/{a[b} {a,b}
{a} {ab,1} {b} {a} {ab, L} {v}

{a, L1} % b.L} {a, L} {b,1}

Computational ordering C Egli-Milner ordering C™

. possible iterates of F
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DIFriCcULTY 3: FIXPOINT TRANSFER

e Fixpoint transfer/lifting theorems based upon:
- Kleene def. of fixpoints
- Tarski 7
may not be applicable;
e However, fixpoint transfer/lifting may work by parts.
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KLEENE FIXPOINT TRANSFER THEOREM
If (D, F) and (D¥, F*?) are semantic specifications and
all) = L
Floaq = qoF

V C-increasing chains X,k € A : o |_|h X)) = |_|ti a(Xg)

then KEA KEA

f
oz(lfpE F) = l’fpE Pt

Note 1: The condition F* o a = v o F provides guidelines for designing F** when
knowing F' and «;

Note 2: F* convergence is faster than that of F.
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EXAMPLE: TRACES TO RELATION ABSTRACTION
e Problem for o € Traces —— Relation:
- « 1s continuous for C,
- «v 1s not continuous for C:
= Kleene fixpoint transfer not applicable,
= But applicable to finite traces;
- « is not a complete M-morphism (because not complete
MN-morphism):
= Tarski fixpoint transfer not applicable,
= But applicable to infinite traces (since « is a a complete
U-morphism) ,
e Solution: split, transfer by parts, combine.
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TARSKI FIXPOINT TRANSFER THEOREM

If (D, C, 1, U)and <Dﬁ, 8 1f Llﬁ> are complete lattices,
FeD-% D, Ff e D25 DF are monotonic and
e (v is a complete MM-morphism
o FfoaClaoF
oVyEDﬁ:Fﬁ(y) Eﬁyiﬂxepza(:ﬁ):y/\]’(z) C*
T

then

ct

= ="t
allfp” F) =1fp~ F
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DIFFICULTY 4: PREDICATE TRANSFORMER
TRANSFORMER

e For the predicate transformer semantics, the fixpoint char-
acterization has the form:

W =lip- F
T T

predicate transformer predicate transformer
transformer
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e Use the further abstraction:

ag € (p(S1) —— p(5)) — ©(S)
agW) = W(Q)

which consists in fixing the postcondition @ C S| to get
Dijkstra’s fixpoint:

W = AQIfp- F(Q)
) )

predicate transformer predicate transformer
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EXAMPLE 1: PREDICATE TRANSFORMERS

Predicate

Denotational transformer

(8 = 9(51)) 7= (S 1) — p(S))
+ « surjective
=

(S — p(S1) V= (p(S1) == p(S))
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DIFFICULTY 5: HEALTHINESS CONDITIONS

e Healthiness conditions follow from the requirement that the
abstraction « should be surjective;

e More precisely by characterizing the image of the semantic
domain by the abstraction function «;

e Galois injections now become Galois isomorphisms.
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EXAMPLE 2: HOARE LOGICS

Predicate Hoare
transformer logic

(9(S1) == 0(S)) = pl(p(S) x (S 1))
+ « surjective
=

(p(S1) == p(S)) == p(S) @ p(S)

Exercice: what is ®7
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e Tensor product:

(D, L)@ (D, CF) = {H € o(D x D) | (1) A (2)A(3)}

where the conditions are:

LIXCX'AXLYYeHAY'CY)= ((X,Y) €
H);

(consequence rule of Hoare logic)
2. (VieA:(X;,YYEH)= (<‘eL|AXi’ Y) € H);
1
3. (Vie A (X, Y;) e H) = ((X, ,I_IAYi) € H)
i€

(by induction on the program structure, 2 and 3 follow
from Hoare logic rules).

P. Cousot - 29/35- WG 2.3, Obernai, September 26, 1997

DIFFICULTY 6: FROM FIXPOINT TO PROOF RULE
SEMANTICS

1) For safety/invariance, use Park induction (# monotonic on
complete lattice) :

lfp- FC P
e A FNCIANICP
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GALOIS CONNECTION COMMUTATIVE DIAGRAM

1({a, 7)) = a HA(a) = {(z, y) € D x D' | a(z) T y}
2(a, 7)) = v HC(y) = {(z, y) € D x D' |2 T +(y)}
AC(y) = AeTH{y |2 C(y)} AHH) = \ei{y | (2, y) € H}
ca(a) = NyUfz | ale) Ty} CHH) = MyU{a | (z, y) € H}
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2) For inevitability/liveness, use Scott induction ? No (£
monotonic on ¢po):

PClfp, F
<— decO:
Al e (e+1)— p(X):
e L
AVS:0<d<e:I°C F( U IP
#<d
APCI*
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CONCLUSION

e Synthetic and uniformizing (although somewhat contempla-
tive) work;

e Shows that abstract interpretation formalizes semantics ab-
straction nicely;

e Help to compare abstract interpretation based program anal-
ysis methods;

e Help to understand their limitations (e.g. denotational se-
mantics + € = £ = failure for binding time analysis +
strictness analysis);
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RESEARCH WORK

e Extend the hierarchy to other semantics of transition sys-
tems;

e [ixtend to a programming calculus with interpretations at
all levels in the hierarchy;

e Extend at higher-order to the A-calculus’.

® This should work, but is it really worth a long effort?
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