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Subject of discussion
• For program specification and verification, logic is a natural choice.
• However, for static analysis, logic is rarely used, even as a user interface.
• We briefly discuss the weaknesses of logic from this static analysis perspective.
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Which logic for specification?
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Specification
• decidable logics (such as Presburger arithmetic [12]):

• validity can be mechanically checked
• incomplete (the invariant of a program that computes the multiplication * using

iteration and addition + is not expressible)
• first-order logic:

• undecidable (user-interaction is needed for proofs)
• incomplete (no recursion mechanism, transitive closure is not expressible [11])

• higher-order logic:
• necessary to discuss the relative completeness go Hoare logic
• necessary to discuss the soundness of static analyzers (e.g. hyperproperties in

℘(℘(S)) where S is the semantic domain)
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Which logic for property repre-
sentation in a static analyzer?
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Internal representation of abstract properties
• great advantage: uniform representation by (the abstract syntax) of a formula in

the logic
• many operations have simple implementations (e.g. connectives)
• exploited in the static analysis of Prolog [10]

• great disadvantage: uniformity
• no (useful) normal form
• efficient algorithms require specific representations (e.g. matrices+systems of

generators for linear equalities or inequalities [8])
• algorithmically, syntax-based representation uniformity is not tenable
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Abstract domains
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Abstract domains
• order-theoretic/algebraic concept of properties (representation + operations)
• hard to translate in logic (e.g. how to express “to be a number between a and b”)
• the semantics is formally defined by concretization to sets
• operations (e.g. logical connectives, transformers) are (predictable and efficient)

algorithms

• in logic, the failure of theorem provers or SMT solvers may be very hard to explain
[9]
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Combinations of abstract domains
• the uniformity of representation of properties is lost with abstract domains
• combinations of abstract domains handle non-uniform representations
• communication of shared information between abstract domains

• example: the reduced product [3] for conjunction
• the combination of theories in SMT solvers is a reduced product [5] (the shared

information is equalities and disqualifies for Nelson-Oppen [13])
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Induction
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Proofs by induction
• infering inductive arguments in proofs is the basis for verification and analysis of

programs
• asking the users for induction hypotheses makes verification simpler than program

analysis [6]
• hardly scale up (invariants are much larger than programs [4])

• induction in logic is predefined
• no mechanism in logic to specify how to automate approximate induction or

co-induction
• the complexity of an object and its logical denotation may be completely

unrelated.
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Extrapolation and interpolation
• induction tailored to a level of abstraction [1]
• often based on geometric considerations (e.g. widenings extrapolate in the

direction of growth)
• finitary abstract domains are not expressive [2] (e.g. liquid types [14])
• the evolution of the iterates is monitored for induction [7]

“Logic in program analysis and verification” – 12/17 – © P. Cousot, NYU, New York, Sunday, Nov 15th, 2020



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion
• logic reduces the representations of properties and formal reasonings to purely

syntactic manipulations (copy/paste :)
• this is great for logicians to reason about proofs ( ̸= making proofs)
• mathematicians do not use logics to make proofs

• computer scientists do, maybe that’s the problem
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Conclusion
• logic reduces the representations of properties and formal reasonings to purely

syntactic manipulations (copy/paste :)
• this is great for logicians to reason about proofs ( ̸= making proofs)
• mathematicians do not use logics to make proofs

• computer scientists do, maybe that’s the problem
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The End, Thank you
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