JPMorgan Chase Distinguished Lecture Series

Abstract interpretation: from principles to
applications

Patrick Cousot

NYU, New York

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Wednesday, June 30", 2021, 11:00 AM EST.

¢ “Abstract interpretation: from principles to applications” -1/81 - © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST

http://cs.nyu.edu/~pcousot

What is program semantics,
program verification,
program dynamic or static analysis,
and abstract interpretation?

“Abstract interpretation: from principles to applications” -2/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Program semantics

= syntax: a representation of a program of a language (e.g. character file, syntax
tree, etc.)
= semantics: a formal description S[P] of the executions of a program P of a

programming language (e.g. set of execution traces, set of reachable states at
each program point)

% “Abstract interpretation: from principles to applications” -3/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Program semantics

syntax: a representation of a program of a language (e.g. character file, syntax
tree, etc.)

semantics: a formal description S[P] of the executions of a program P of a
programming language (e.g. set of execution traces, set of reachable states at
each program point)

Verification of a Specification

specification: a desired property of the program semantics (e.g. all executions are
finite, no runtime errors)

verification: a mathematical proof that a program semantics satisfies a
specification
induction: proofs are by induction/recurrence to handle loops/recursions

inductive argument: the induction hypothesis in proof by induction/recurrence to
handle loops/recursions

"“Abstract interpretation: from principles to applications” -3/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Undecidability

= finite mechanical proofs must fail on infinitely many programs

% “Abstract interpretation: from principles to applications” - 4/81 — © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

https://scan.coverity.com

Undecidability

= finite mechanical proofs must fail on infinitely many programs
Verification Methods

= the proof is incorrect (e.g. Coverity)

= the proof is restricted to decidable cases (e.g. termination of linear arithmetic loop
with no inner test or loop)

= the proof goes out of memory/time resources (e.g. model-checking)
= the proof requires human interaction (e.g. deductive methods)

= the proof is correct, always terminate, but may be inconclusive (static analysis).

% “Abstract interpretation: from principles to applications” - 4/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

https://scan.coverity.com

Dynamic analysis

= the proof is done by monitoring execution at runtime

= one execution at a time (cannot handle accurately e.g.
dependency/non-interference)

% “Abstract interpretation: from principles to applications” -5/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Dynamic analysis

= the proof is done by monitoring execution at runtime

= one execution at a time (cannot handle accurately e.g.
dependency/non-interference)

Symbolic execution

= give symbolic names to values (of variables, inputs, array elements, etc.)
= not all paths can be explored (e.g. non-termination)

% “Abstract interpretation: from principles to applications” -5/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Dynamic analysis

= the proof is done by monitoring execution at runtime

= one execution at a time (cannot handle accurately e.g.
dependency/non-interference)

Symbolic execution

= give symbolic names to values (of variables, inputs, array elements, etc.)

= not all paths can be explored (e.g. non-termination)
Bug Finding

= specify a program path in the program (e.g. to a potential bug)

prove its [un]feasibility by a SMT solver

% “Abstract interpretation: from principles to applications” -5/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Dynamic analysis

= the proof is done by monitoring execution at runtime

= one execution at a time (cannot handle accurately e.g.
dependency/non-interference)

Symbolic execution

= give symbolic names to values (of variables, inputs, array elements, etc.)

= not all paths can be explored (e.g. non-termination)
Bug Finding

= specify a program path in the program (e.g. to a potential bug)

prove its [un]feasibility by a SMT solver

These are not verification methods!

% “Abstract interpretation: from principles to applications” -5/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Static analysis

= the proof is done by considering the program text only

= valid for all executions

% “Abstract interpretation: from principles to applications” -6/81 — © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Static analysis

= the proof is done by considering the program text only

= valid for all executions

Abstract Interpretation

= a theory of abstraction (of the semantics of programming languages)

= applied to the design of semantics, verification methods, and analysis methods

% “Abstract interpretation: from principles to applications” -6/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Main objectives of abstract interpretation

= soundness: what is proved is true
= completeness: what is true can be proved (e.g. for manual verification methods)

= incompleteness: what is true may not be provable due to approximations (for
static analysis methods)

= constructive design: by calculus, guided by the theory, machine checkable.

% “Abstract interpretation: from principles to applications” -7/81— © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

An informal introduction
to abstract interpretation

“Abstract interpretation: from principles to applications” -8/81 — © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Concrete
universe of

discourse

What is abstraction in Al?

% “Abstract interpretation: from principles to applications” -9/81 — © P. Cousot, NYU, New York, Wednesday, June 30" 2021, 11:00 AM EST

Concrete
universe of
discourse

What is abstraction in Al?

.-

Elements

LT
.

2

¢

¢ “Abstract interpretation: from principles to applications” -10/81 — © P. Cousot, NYU, New York, Wednesday, June 30'1‘, 2021, 11:00 AM EST

Concrete
universe of
discourse

What is abstraction in Al?

[y
Ly

Elements

3

¢

¢ “Abstract interpretation: from principles to applications” -11/81 — © P. Cousot, NYU, New York, Wednesday, June 30'1’, 2021, 11:00 AM EST

“Abstract interpretation: from pririciplées to applications” -12/81 -

Concrete
universe of
discourse

What is abstraction in Al?

Abstract
universe of

Elements
' .-properties

4

© P. Cousot, NYU, New York, Wednesday, June 30" 2021, 11:00 AM EST

Concrete
universe of
discourse

What is abstraction in Al?

Abstract
universe of
.-properties

Abstract
propertles

......

EIements

Properties
5

¢

¢ “Abstract interpretation: from prirciplées to applications” -13/81 - © P. Cousot, NYU, New York, Wednesday, June 30" 2021, 11:00 AM EST

“Abstract interpretation: from pririciplées to applications” - 14/81 -

Concrete
universe of
discourse

What is abstraction in Al?

[y
Ly

Abstract
universe of
_.-properties

Abstract

Elements

6

© P. Cousot, NYU, New York, Wednesday, June 30'1’, 2021, 11:00 AM EST

“Abstract interpretation: from pririciplées to applications” —-15/81 -

Concrete
universe of
discourse

What is abstraction in Al?

[y
Ly

Abstract
Inclusion universe of
’ _.-properties

Abstract

Elements

7

© P. Cousot, NYU, New York, Wednesday, June 30" 2021, 11:00 AM EST

“Abstract interpretation: from pririciplées to applications” -16/81 -

Concrete
universe of
discourse

What is abstraction in Al?

[y
Ly

Abstract
Inclusion universe of
’ _.-properties

Abstract
properties

......

Elements

Abstract
implication

8

© P. Cousot, NYU, New York, Wednesday, June 30" 2021, 11:00 AM EST

“Abstract interpretation: from pririciplées to applications” -17/81 -

Concrete
universe of
discourse

What is abstraction in Al?

[y
Ly

Abstract
Inclusion universe of
' _.-properties

Abstract

Elements

Abstract
implication

Provable abstract properties
are true in the concrete

9

© P. Cousot, NYU, New York, Wednesday, June 30'1’, 2021, 11:00 AM EST

|) Define the programming language semantics

Formalize the concrete executions of programs (e.g. transition system)

i f (x)
g U

Trajectory Space/time trajectory
in state space

% “Abstract interpretation: from principles to applications” - 18/81 — © P. Cousot, NYU, New York, Wednesday, June 30'1’, 2021, 11:00 AM EST

ll) Define the program properties of interest

Formalize what you are interested to know about program behaviors

A

Possible
trajectories

W

We are interested in the set of
possible trajectories

% “Abstract interpretation: from principles to applications” —19/81 - © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST

lIl) Define which specification must be checked

Formalize what you are interested to prove about program behaviors

Forbiden zone

Possible
trajectories

No trajectory should hit the forbidden zone

% “Abstract interpretation: from principles to applications” —20/81 - © P. Cousot, NYU, New York, Wednesday, June 30%", 2021, 11:00 AM EST.

IV) Choose the appropriate abstraction

Abstract away all information on program behaviors irrelevant to the proof

Possible
trajectories

Abstraction of the trajectories

Abstraction by geometric forms (rectangles, polyt/~
ellipsoids, abstraction by parts, etc)

% “Abstract interpretation: from principles to applications” -21/81 - © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST

V) Mechanically verify in the abstract

The proof is fully automatic

Forbidden zone

Possible
trajectories

Abstraction of the trajectories

Provable abstract properties
are true in the concrete

% “Abstract interpretation: from principles to applications” —22/81 - © P. Cousot, NYU, New York, Wednesday, June 30”’, 2021, 11:00 AM EST

Soundness of the abstract verification

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

Possible
trajectories

Abstraction of the trajectories

% “Abstract interpretation: from principles to applications” —23/81 - © P. Cousot, NYU, New York, Wednesday, June 30%", 2021, 11:00 AM EST.

Try a few cases

Unsound validation: testing
Forbidden zone

S et Possible
i RS | “~-. [trajectories
Test of a few trajectories
% “Abstract interpretation: from principles to applications”

—24/81 -

Error !l

© P. Cousot, NYU, New York, Wednesday, June 30tk

. 2021, 11:00 AM

EST.

Unsound validation: bounded model-checking

Simulate the beginning of all executions

Forbidden zone

Possible
trajectories

Bounded model-checking

% “Abstract interpretation: from principles to applications” —25/81 —

Unsound validation: static analysis

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone Error !

4
— A Possible
trajectories

Erroneous trajectory abstraction

% “Abstract interpretation: from principles to applications” —26/81 — © P. Cousot, NYU, New York, Wednesday, June 30”“, 2021, 11:00 AM EST

Incompleteness

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone Alarm !l

Possible
trajectories

Error or false alarm ?

By soundness an alarm must be
raised for this overapproximation!

Propereed

% “Abstract interpretation: from principles to applications” —27/81 - © P. Cousot, NYU, New York, Wednesday, June 30”“, 2021, 11:00 AM EST

True error

The abstract alarm may correspond to a concrete error

Forbidden zone Alarm !t

Possible
trajectories

Propefued

% “Abstract interpretation: from principles to applications” —28/81 — © P. Cousot, NYU, New York, Wednesday, June 30%", 2021, 11:00 AM EST.

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Alarm !!

Possible
trajectories

False alarm

The only solution is to refine the analysis to take more
properties into account (e.g. specifically for a domain
of application)!

% “Abstract interpretation: from principles to applications” —29/81 — © P. Cousot, NYU, New York, Wednesday, June 30”“, 2021, 11:00 AM EST

A few basic concepts in
abstract interpretation

% “Abstract interpretation: from principles to applications” -30/81 - © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Example of semantics

% “Abstract interpretation: from principles to applications” -31/81 - © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Trace semantics

= A trace semantics is a (finite or infinite) set of traces

A trace is a finite or infinite sequence of states

A state is a pair or a control state and a memory state

A control state records all calls to methods leading to a program point

= A memory state records the values of variables, allocated memory, inputs, etc.

% “Abstract interpretation: from principles to applications” -32/81 - © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

Example of prefix trace semantics

a simple while language

a state (¢, p) is a pair program point x environments (assigning values of
variables)

defined by structural induction (induction on the syntax of programs)

prefix traces of an assignment

Prefix state traces of an assignment statement S ::=t x =A;

87[s] = {(t p) | pe B} UL, p)(after[S], plx —V]) | p € EvAv=[A]p} (42.4)

% “Abstract interpretation: from principles to applications” - 33/81 — © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

Fixpoints

= solutions to equations x = f(x)
= may have 0, one, or many solutions

= Tarski's fixpoint theorem ensures that there is a unique least solution Ifp= f for
some order C

= Can be calculated iteratively (as the limit of infinite iterations)

Y v
f3
5

1

% “Abstract interpretation: from principles to applications” —34/81 — © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

Example of prefix trace semantics (cont'd)

= prefix traces of an iteration

Prefix state traces of an iteration statement S ::=whilet(B) S,

8:[whilet(B)S,] = Ifp* Fi[whilet(B)S,] (42.6)

Filwhilet(B)s,] X = {(t p)|pelv} (a)
U {m, (¥, p)after[S], p) | m, (¥, p) e XAB[B] p=Fnt' =t} (b)

U, pXatlSl, p) -5 | 24, p) eX/\.%J[B]] p=tA ©
(at[S,], p) 75 € 82[S,IAY =t}

% “Abstract interpretation: from principles to applications” - 35/81 — © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

Maximal trace semantics

« Maximal trace semantics
8y[s]

$7[s]

>

{r(t, py € 8[S] | (t = after[S]) V (escape[[S] At = break-to[[S])}

112

lim(s7 [s])
 Limit

ImJ 2 {meT®|VneN.n[0.n] € T}

% “Abstract interpretation: from principles to applications” - 36/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Example of abstractions

% “Abstract interpretation: from principles to applications” —37/81 - © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Reachability semantics (invariance)

= Collects reachable states at each program point
» SP] = a(S[P]) =Por £+ {p|Toc’.a(l, p)o’' € S[P]}
= By calculational design we get

Reachability of an iteration statement S ::=whilet(B) S,
8] Py v = (lfp* Fé[whilet(B)S,] R)¢ (19.16)
Fewhilet(B)S)] Fy € (L —p(Ev9)—(L — p(Ev9))
Fwhilet(B)S,] #, X¢¥ =
(¢ =22 P,U8[S,] (test?[B] X(¢)) ¢
1¢ €in]S,] \ {8} ? 89S,] (test?[B] X(®)) ¢
1¢ =after[S] 2tes[B](X(@)U] 89[S,] (test?[B]X(2)) ¢"

e"ébreaks-of[[sb]]

7))

where testF[[B]]g’ {pe P | AB[B]p=t}

> 1>

test'[B]2 = {(py, p) € P | B[Bp=1}
test'[8]? 2 {peP|BBlp=1}
test'[B]? 2 {(po. p) € P | B[B]p=1}

% “Abstract interpretation: from principles to applications” - 38/81 — © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

Cartesian abstraction

= We are left with sets of environments mapping variables to their values

= Cartesian abstraction

= a(R) =x+ {o(x) | p € R}

% “Abstract interpretation: from principles to applications” —39/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Interval abstraction

= We are left with sets of values

= For totally ordered sets, the interval abstraction records the minimum (or —infty)
and maximum (or +00)

= (V)= [minV, max V|

% “Abstract interpretation: from principles to applications” -40/81 — © P. Cousot, NYU, New York, Wednesday, June 30”’, 2021, 11:00 AM EST

Reduced product

Static analyzers use many abstractions

The static analyzer can be refined by new abstractions

The are also used to infer new properties and reduce the previous abstractions

Example of reduction for cartesian congruence and interval analysis

1 5 9 13 17 21
x = | mod 4

3 20
E 3 x € [3.20]

reduction

x € [517]

% “Abstract interpretation: from principles to applications” —-41/81 — © P. Cousot, NYU, New York, Wednesday, June 30”’, 2021, 11:00 AM EST

Fixpoint abstraction

Ifp f corl = |f]
alifp f) -1 / Jrmtes
Ifp f g

fo -

"ﬁ\ |

\ 4

% “Abstract interpretation: from principles to applications” —42/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Fixpoint iteration acceleration (with widening)

Ifp F

F

[
\ 4

% “Abstract interpretation: from principles to applications”

—43/81 -

A

3

lfp F

© P. Cousot, NYU, New York, Wednesday, June 30*"*, 2021, 11:00 AM EST

Example of widening (intervals)

0 I 2 3

ax=1Ay=1)=xe[l,1]Aye [1,]1]

% “Abstract interpretation: from principles to applications” —44/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Example of widening (intervals)

0 | 2 3

a((xe [L,1]Aye[L1])V(x=1Ay=2))

% “Abstract interpretation: from principles to applications” —44/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Example of widening (intervals)

xe[1,1]AnyeL,2]

% “Abstract interpretation: from principles to applications” —44/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Example of widening (intervals)

2 .

0 | 2 3

a((xe [L,1]Aye[1,2])V(x=2Ay=2))

% “Abstract interpretation: from principles to applications” —44/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Example of widening (intervals)

xe[L,2]Ay€e|L,2]

% “Abstract interpretation: from principles to applications”

— 44/81 -

[m]

© P. Cousot, NYU, New York, Wednesday, June 30

th 2021, 11:00

= DA
AM EST.

Example of widening (intervals)
0

a((xe[L,2JAye[1,2])V(x=3Ay=2)

% “Abstract interpretation: from principles to applications”

— 44/81 -

[m]

© P. Cousot, NYU, New York, Wednesday, June 30

th 2021, 11:00 AM

Dac
EST.

Example of widening (intervals)

(xe[1,3]Aye[L,2])

o

o & - = = DQ
% “Abstract interpretation: from principles to applications” —44/81 — © P. Cousot, NYU, New York, Wednesday, June 30%", 2021, 11:00 AM EST.

Example of widening (intervals)

3

X
% “Abstract interpretation: from principles to applications”

(xe[1,2] Ay € [1,2]) widening (x € [1,3] Ay € [1,2]) = (x€ [1,+o0] Ay € [1,2])

— 44/81 -

[m]

& = =
© P. Cousot, NYU, New York, Wednesday, June 30“‘, 2021, 11:00

DA
AM EST.

Examples of static analyzes

% “Abstract interpretation: from principles to applications” —45/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Numerical properties

)
T
Collecting semantics: Intervals: Simple congruences:
partial traces x € [a,b] x = a[b]

Y Y

Octagons. Ellipses: Exponentials:
+x+y<a 2 +by? —axy<d —a® <y(t) <a*

% “Abstract interpretation: from principles to applications” - 46/81 — © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

Symbolic properties

= Numerous abstractions to handle symbolic properties (arrays, pointers, memory
allocation, etc.)

= example: process tables of an OS

o wused| 1] 1] o] 1] ol ol 1] o] o]
next | 1 | 6 | o0 | -1 o | o | Lo T o]
i = T J
ready = 0 sleep=1 suspend = 2 i=0 l T
[0]:] used=1 [o]: [1]: [2]: [3]: [4]: [5]: [6]: ([7]: [8]:
struct { next = 96 (9] : [used=1 o ued| 1 | o [1 o o] 1] 1] o] 1]
int used; prio=1 next = 98 next | 8 | o [=1] o [o [2 | 5 [o | |
int next; (¢ used=1 prio=2 izo | T JT JT JT
. ’ next = 50 [97]:[used =0
int prio; (a) Concrete states
} al100]; [2]:] used=1
i . next = 30 [98]:[used=1
int ready; rext= =1 Array summaries ar(a, al¥, ag*ed, ahe*t ar(a?, o, ai5ed, g7eXT)
int sleep; [3]:] used=0 prio=3 Num. constraints agsm =i a‘fSEd =0
int suspend; [99]:[used=0 Ind. summaries list(a, —1) true
(a) Declaration Variable term i a€al
(b) Concrete memory state (b) Coalesced abstract state

Jiangchao Liu, Ligian Chen, Xavier Rival: Automatic Verification of Embedded System Code Manipulating Dynamic Structures Stored in Contiguous
Regions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11): 2311-2322 (2018)

% “Abstract interpretation: from principles to applications” —47/81 —

) P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Static specification checking

= Examples of specifications: datalog, regular expressions to specify sequences of

invariants
= (?7:x>=0)" states that the value of x is always positive or zero during program

execution.
= (?7:x>='x)" states that the value of x is always greater than or equal to its initial

value 'x during execution.
s (=:x>=0)" - £ :x==0- (?7:x<0)" states that

= the value of x should be positive or zero, and next
= if program point £ is ever reached then x should be 0, and next
= if computations go on after program point ¢ then x should be negative afterwards.

= In the literature: Fred Schneider's security monitors: monitor the actions of a
program, checks the behavior of the program against a given safety specification
(and initiate remedial actions)!:?

Patrick Cousot: Calculational design of a regular model checker by abstract interpretation. Theor. Comput. Sci. 869: 62-84 (2021)
Fred B. Schneider: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1): 30-50 (2000)

Luse automata equivalent to regular expressions

2use actions instead of program labels.
% “Abstract interpretation: from principles to applications” —48/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Soundness

% “Abstract interpretation: from principles to applications” —49/81 - © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Soundness is difficult

= Languages have machine-dependent and undefined behaviors that must be taken
into account by sound static analyzers
= Astrée for C: 3 types of errors
1. the erroneous behavior is perfectly defined for the machine (e.g. integer overflow) —
sound
2. the erroneous behavior can be over approximated (e.g. integer division by zero is
always an integer on some machines) — sound but imprecise
3. the erroneous behavior is undefined —

= Astrée signals the error and goes on as if the error did not occur

= the analysis is sound for executions up to the point where this error might occur, if
ever, and inconclusive afterwards

= allows for discovering other errors afterwards

= Static analysis is harder than verification

Patrick Cousot, Roberto Giacobazzi, Francesco Ranzato: Program Analysis Is Harder Than Verification: A Computability Perspective. CAV (2) 2018:
75-95

% “Abstract interpretation: from principles to applications” -50/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Examples of static analyzers

% “Abstract interpretation: from principles to applications” -51/81 - © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Andromeda

= Static analyzer for security of Web applications written in Java, .NET and
JavaScript

= Developed by Marco Pistoia and his team at IBM Yorktown Heights

= Sound demand-driven abstract interpretation-based static dependency/taint
analysis

= Precise and scalable
= Checks for cross-site scripting (XSS), SQL injection (SQLi), log forging, etc.

ANDROMEDA: Accurate and Scalable
Security Analysis of Web Applications

Omer Trippl, Marco Pistoia2, Patrick Cousot®,
Radhia Cousot?, and Salvatore Guarnieri®

% “Abstract interpretation: from principles to applications” - 52/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

Astrée (https://www.absint.com/astree)

Timing Stack usage Runtime errors Rule checking Compilation —
Astrée automatically proves the absence of runtime errors and invalid concurrent behavior
G in C/C++ applications. It is sound for floating-point computations, very fast, and exceptionally precise.

‘ ‘ The analyzer also checks for MISRA coding rules and supports qualification for ISO 26262, DO-178C
level A, and other safety standards. Jenkins and Eclipse plugins are available.

Who uses Astrée?
Automotive The global automotive supplier Helbako in Germany is using Astrée to guarantee HELBAKO
Aviation that no runtime errors can occur in their electronic control software and to de-

monstrate MISRA compliance of the code.

» Power plants
P Bosch Automotive Steering replaced their legacy tools with Astrée and

» Space flight RuleChecker, resulting in significant savings thanks to faster analyses, higher BOSCH

accuracy, and optimized licensing and support costs.
» Ventilation

% “Abstract interpretation: from principles to applications” - 53/81 —

Cousot, NYU, New York, Wednesday, June 30‘1’, 2021, 11:00 AM EST

https://www.absint.com/astree

ﬁ Absint Advanced Analyzer for C - Astrée - Example: Scenarios (1) - o X
Project Analysis Editors Tools Help

BEEO 242 O®® €« CN & ownen

#4 Example: Scenarios Findings/C | Findings/F Findings/Classification Rule violations ~ Reachability = Metrics = Dataflow | Control flow | Filter
@ Information
y - Count Name & Alarms (18 findings)
Configuration
> v 18 Alarms
9 Preprocessor » 5 Failed coding rule checks
% Parser » 4 Data and control flow alarms
/ Analyzer v 3 Uninitialized variables
A Annotations 3 P Use of uninitialized variables

A

2 Invalid usage of pointers and a
1 P Out-of-bound array access
1 P Possible overflow upon der...

Results

1%

Call graph ~ 1l 2 Invalid ranges and overflows
J Reports 1 P Overflow in conversion (wi.
" 1 P Overflow in arithmetic
Files - . 1 Division or modulo by zero
Preprocessed | Original 1 P Integer division by zero
b # ProcBic . | 1 Failed or invalid directives
~ # scenarios.c i > 3 Eooc
F basic_examples ‘101 messages loaded: <
F msgl :
F msg2 /[call#main at astree.cfg:18.6-50.1
F registerMsg call#basic_examples at astree.cfg:26.6-22
F sendMsg _ loop=1/100"at scenarios.c:124.3-126.5
S ALARM (C): signed int arithmetic range [-2147483647, 2147483648] not included in [-214748364
[Project summary - Resource Monitor j i+ =
Errors: 3 _
s Filter: = || More fiters | 18 of 18 findings visble Show unused comments
Run-time errors: 9 Order ~ Type Category Location Classification
Fl lies: 4
e enomelies 2 P Alarm (4) Use of uninitialized variables # scenarios.c1258-9

Rule violations: 5

Memory locations with alarms: 13 Alarm (C) Overflow in arithmetic P scenarios.c:125.8- -
Data races: 0

e — 14 P Alarm (D) Infinite loop # scenarios.c1304-9 o
Duration: 108 Xl L
000 Aouput |WFindings A Notreached A Dataflow A Watch A Search &
% “Abstract interpretation: from principles to applications” —54/81 — P. Cousot, NYU, New York, Wednesday, June 30%", 2021, 11:00 AM EST.

Which runtime properties are analyzed by Astrée?

Astrée statically analyzes whether the programming language is used correctly and whether there can be any runtime errors during
any execution in any environment. This covers any use of C or C++ that, according to the corresponding language standard, has
undefined behavior or violates hardware-specific aspects.

Additionally, Astrée reports invalid concurrent behavior, violations of user-specified programming guidelines, and various program
properties relevant for functional safety.

Astrée detects any:

« division by zero,

= out-of-bounds array indexing,

« erroneous pointer manipulation and dereferencing (NULL, uninitialized and dangling pointers),
« integer and floating-point arithmetic overflow,

* read access to uninitialized variables,

« data races (read/write or write/write concurrent accesses by two threads to the same memory location without proper mutex
locking),

* inconsistent locking (lock/unlock problems),

« invalid calls to operating system services (e.g. OSEK calls to TerminateTask on a task with unreleased resources),
* violation of optional user-defined assertions to prove additional runtime properties (similar to assert diagnostics),

« code it can prove to be unreachable under any circumstances.

% “Abstract interpretation: from principles to applications’ — BE

o

o

<9

e
|

) P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

% “Abstract interpretation: from principles to applications” —56/81 —

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8304.pdf

The NIST Software Assurance Metrics And Tool Evaluation project, or SAMATE for short, is Ng
dedicated to improving software assurance by developing methods for evaluating software tools,
measuring their effectiveness, and identifying gaps in methods and techniques.

Slundunh and luhndogy
U.S. Depariment of Commerce

The SAMATE project recognizes the value and importance of sound static code analyzers. During the 6th Static Analysis Tool
Exposition (SATE VI), the NIST team evaluated static analyzers with respect to the SATE VI Ockham Sound Analysis Criteria.

At least four tools were considered, only two of which satisfied the SATE VI criteria: Astrée and
Frama-C.

Astrée was run on 28 sets of test cases from the Juliet 1.3 C test suite, containing a total of
18,954 buggy sites. All 18,954 were reported by Astrée.

https://frama-c.com

© P. Cousot, NYU, New York, Wednesday, June 30*"*, 2021, 11:00 AM EST

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8304.pdf
https://frama-c.com

Soundness

Astrée was run on 28 sets of test cases from the Juliet 1.3 C test suite, containing a total of
18,954 buggy sites. All 18,954 were reported by Astrée.

These included test cases for buffer overflows/underflows, invalid pointer dereferences, integer
overflows/underflows, divisions by zero, use of uninitialized variables, dead code, infinite loops,
double free and use after free.

Additionally, Astrée discovered thousands of unintended defects in the Juliet 1.3 benchmark set.

““Alarms from Astrée led us to find and fix thousands of mistakes in what was intended as the Juliet known-bug list,
manifest.xml.
Because Astrée analyzes code very precisely and we checked meticulously, details of modeling that otherwise would be
inconsequential showed up and had to be resolved.”

% “Abstract interpretation: from principles to applications” - 57/81 — © P. Cousot, NYU, New York, Wednesday, June 30‘1’, 2021, 11:00 AM EST

Choosing a static analyzer

% “Abstract interpretation: from principles to applications” —58/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Irresponsibility: avoid static analysis

= Programmers are never held responsible for their errors, even when the human and
economic consequences are huge?;

= Software engineers are guaranteed qualified immunity under the argument that
verification is beyond best practice;

= |f best practice would include the mandatory use of standards and qualified tools,

programmers and their hierarchy could be held accountable at least for definite
bugs automatically found be static analysis tools. &\
@n‘ s

v

Responsible Programming

3e.g. 2009-11 Toyota vehicle recalls, Boeing 737 MAX groundings.

% “Abstract interpretation: from principles to applications” —-59/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

https://en.wikipedia.org/wiki/2009–11_Toyota_vehicle_recalls
https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings

Academic versus industry

Benchmarking Software Model Checkers
on Automotive Code

Lukas Westhofen', Philipp Berger?, and Joost-Pieter Katoen?

1 OFFIS ¢.V., Oldenburg, Germany
Lukas.uesthofentoffis.de
* RWTH Aachen University, Aachen, Germany.
{berger, katoen}dcs.rvth-aachen. de

Metric DSR ECC Requirement Characteristics.

Invariant properties are assertions that are supposed to hold for all reachable
Source lines of code. 2,517 states. Bounded-response properties request that a certain assertion holds within
Cyclomatic complexity a given number of computational steps whenever a given, second assertion holds.

Coverage. Fig. 2 shows the verification results of running the open-source veri-
fiers on the two case studies, omitting the results of the witness validation.

100

—
— Fuke
w0 LEH = Timeont
N — Ont of memary
. L — Verier bug
g w H o = Spurious comntaresaple
g == Max. depth reached
£ w0 —
0
0
%
s, %, %, %
3, B Y,
5 “ M,
‘ e

Lukas Westhofen, Philipp Berger, Joost-Pieter Katoen: Benchmarking Software Model Checkers on Automotive Code. NFM 2020: 133-150

% “Abstract interpretation: from principles to applications” —60/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Commerce is not science

SYNoesy.

WHITE PAPER
Coverity: Risk Mitigation for DO-178C

Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

Don'ts

+ Don't overestimate the limited value of standard test suites such as Juliet."" These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

Tt Juliet Test Suites are available at https://samate.nist.gov/SRD/testsuite.php.

% “Abstract interpretation: from principles to applications” -61/81 — © P. Cousot, NYU, New York, Wednesday, June 30”’, 2021, 11:00 AM EST

Competence is very rare

@ Peter Backes If data is the new oil, then program analysis grads
are the rarest element on earth ... Wish you good luck

Like - Reply - 2d Q 2

Q Francesco Ranzato @ Even worse, program analysis

grads who seriously know principles and practice of
abstract interpretation are almost inexistent

Like - Reply - 2d 0 !

% “Abstract interpretation: from principles to applications” -62/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

Some hot topics in ab-
stract interpretation

% “Abstract interpretation: from principles to applications” —63/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

= Blockchain

Victor Pérez, Maximiliano Klemen, Pedro Lépez-Garcia, José Francisco Morales,
Manuel V. Hermenegildo: Cost Analysis of Smart Contracts Via Parametric
Resource Analysis. SAS 2020: 7-31

= Fairness in neural networks

Caterina Urban, Antoine Miné: A Review of Formal Methods applied to Machine
Learning. CoRR abs/2104.02466 (2021)

Caterina Urban, Maria Christakis, Valentin Wiistholz, Fuyuan Zhang: Perfectly
parallel fairness certification of neural networks. Proc. ACM Program. Lang.
4(OOPSLA): 185:1-185:30 (2020)
Caterina Urban: Static Analysis of Data Science Software. SAS 2019: 17-23

= Quantum computing
Nengkun Yu and Jens Palsberg: Quantum Abstract Interpretation. PLDI 2021.

% “Abstract interpretation: from principles to applications” - 64/81 - © P. Cousot, NYU, New York, Wednesday, June 30", 2021, 11:00 AM EST

References

% “Abstract interpretation: from principles to applications” - 65/81 — © P. Cousot, NYU, New York, Wednesday, June 30tR, 2021, 11:00 AM EST

For engineers

Introduction to Static Analysis
Xavier Rival and Kwangkeun Yi
MIT Press, 2020

INTRODUCTION
TO STATIC ANALYSIS

=] (64

= = E E 9Q
© P. Cousot, NYU, New York, Wednesday, June 30“‘, 2021, 11:00 AM EST.

% “Abstract interpretation: from principles to applications” —66/81 —

For researchers

Principles of Abstract Interpretation
Patrick Cousot
MIT Press, September 21st, 2021

PRINCIPLES OF
ABSTRACT INTERPRETATION

PATRICK COUSOT

% “Abstract interpretation: from principles to applications” - 67/81 — © P. Cousot, NYU, New York, Wednesday, June 30”‘, 2021, 11:00 AM EST

The End, Thank you

% “Abstract interpretation: from principles to applications” —68/81 — © P. Cousot, NYU, New York, Wednesday, June 30“’, 2021, 11:00 AM EST.

