
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

JPMorgan Chase Distinguished Lecture Series

Abstract interpretation: from principles to
applications

Patrick Cousot
NYU, New York

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Wednesday, June 30th, 2021, 11:00 AM EST.

“Abstract interpretation: from principles to applications” – 1/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

http://cs.nyu.edu/~pcousot

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is program semantics,
program verification,

program dynamic or static analysis,
and abstract interpretation?

“Abstract interpretation: from principles to applications” – 2/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Program semantics
• syntax: a representation of a program of a language (e.g. character file, syntax

tree, etc.)
• semantics: a formal description S JPK of the executions of a program P of a

programming language (e.g. set of execution traces, set of reachable states at
each program point)

Verification of a Specification
• specification: a desired property of the program semantics (e.g. all executions are

finite, no runtime errors)
• verification: a mathematical proof that a program semantics satisfies a

specification
• induction: proofs are by induction/recurrence to handle loops/recursions
• inductive argument: the induction hypothesis in proof by induction/recurrence to

handle loops/recursions

“Abstract interpretation: from principles to applications” – 3/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Program semantics
• syntax: a representation of a program of a language (e.g. character file, syntax

tree, etc.)
• semantics: a formal description S JPK of the executions of a program P of a

programming language (e.g. set of execution traces, set of reachable states at
each program point)

Verification of a Specification
• specification: a desired property of the program semantics (e.g. all executions are

finite, no runtime errors)
• verification: a mathematical proof that a program semantics satisfies a

specification
• induction: proofs are by induction/recurrence to handle loops/recursions
• inductive argument: the induction hypothesis in proof by induction/recurrence to

handle loops/recursions
“Abstract interpretation: from principles to applications” – 3/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Undecidability
• finite mechanical proofs must fail on infinitely many programs

Verification Methods
• the proof is incorrect (e.g. Coverity)
• the proof is restricted to decidable cases (e.g. termination of linear arithmetic loop

with no inner test or loop)
• the proof goes out of memory/time resources (e.g. model-checking)
• the proof requires human interaction (e.g. deductive methods)
• the proof is correct, always terminate, but may be inconclusive (static analysis).

“Abstract interpretation: from principles to applications” – 4/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

https://scan.coverity.com

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Undecidability
• finite mechanical proofs must fail on infinitely many programs

Verification Methods
• the proof is incorrect (e.g. Coverity)
• the proof is restricted to decidable cases (e.g. termination of linear arithmetic loop

with no inner test or loop)
• the proof goes out of memory/time resources (e.g. model-checking)
• the proof requires human interaction (e.g. deductive methods)
• the proof is correct, always terminate, but may be inconclusive (static analysis).

“Abstract interpretation: from principles to applications” – 4/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

https://scan.coverity.com

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic analysis
• the proof is done by monitoring execution at runtime
• one execution at a time (cannot handle accurately e.g.

dependency/non-interference)

Symbolic execution
• give symbolic names to values (of variables, inputs, array elements, etc.)
• not all paths can be explored (e.g. non-termination)

Bug Finding
• specify a program path in the program (e.g. to a potential bug)
• prove its [un]feasibility by a SMT solver

These are not verification methods!

“Abstract interpretation: from principles to applications” – 5/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic analysis
• the proof is done by monitoring execution at runtime
• one execution at a time (cannot handle accurately e.g.

dependency/non-interference)

Symbolic execution
• give symbolic names to values (of variables, inputs, array elements, etc.)
• not all paths can be explored (e.g. non-termination)

Bug Finding
• specify a program path in the program (e.g. to a potential bug)
• prove its [un]feasibility by a SMT solver

These are not verification methods!

“Abstract interpretation: from principles to applications” – 5/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic analysis
• the proof is done by monitoring execution at runtime
• one execution at a time (cannot handle accurately e.g.

dependency/non-interference)

Symbolic execution
• give symbolic names to values (of variables, inputs, array elements, etc.)
• not all paths can be explored (e.g. non-termination)

Bug Finding
• specify a program path in the program (e.g. to a potential bug)
• prove its [un]feasibility by a SMT solver

These are not verification methods!

“Abstract interpretation: from principles to applications” – 5/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic analysis
• the proof is done by monitoring execution at runtime
• one execution at a time (cannot handle accurately e.g.

dependency/non-interference)

Symbolic execution
• give symbolic names to values (of variables, inputs, array elements, etc.)
• not all paths can be explored (e.g. non-termination)

Bug Finding
• specify a program path in the program (e.g. to a potential bug)
• prove its [un]feasibility by a SMT solver

These are not verification methods!
“Abstract interpretation: from principles to applications” – 5/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Static analysis
• the proof is done by considering the program text only
• valid for all executions

Abstract Interpretation
• a theory of abstraction (of the semantics of programming languages)
• applied to the design of semantics, verification methods, and analysis methods

“Abstract interpretation: from principles to applications” – 6/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Static analysis
• the proof is done by considering the program text only
• valid for all executions

Abstract Interpretation
• a theory of abstraction (of the semantics of programming languages)
• applied to the design of semantics, verification methods, and analysis methods

“Abstract interpretation: from principles to applications” – 6/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main objectives of abstract interpretation
• soundness: what is proved is true
• completeness: what is true can be proved (e.g. for manual verification methods)
• incompleteness: what is true may not be provable due to approximations (for

static analysis methods)
• constructive design: by calculus, guided by the theory, machine checkable.

“Abstract interpretation: from principles to applications” – 7/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An informal introduction
to abstract interpretation

“Abstract interpretation: from principles to applications” – 8/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 1

Concrete
universe of
discourse

“Abstract interpretation: from principles to applications” – 9/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 2

Concrete
universe of
discourse

Elements

“Abstract interpretation: from principles to applications” – 10/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 3

Concrete
universe of
discourse

Properties

Elements

“Abstract interpretation: from principles to applications” – 11/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 4

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

“Abstract interpretation: from principles to applications” – 12/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 5

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

Abstract
properties

“Abstract interpretation: from principles to applications” – 13/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 6

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties

“Abstract interpretation: from principles to applications” – 14/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 7

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties⊆

Inclusion

“Abstract interpretation: from principles to applications” – 15/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 8

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties

Abstract
implication

⊆

⊑

Inclusion

“Abstract interpretation: from principles to applications” – 16/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

 9

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties

Abstract
implication

⊆

⊑

Inclusion

Provable abstract properties
are true in the concrete

“Abstract interpretation: from principles to applications” – 17/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1) Define the programming language semantics
Formalize the concrete executions of programs (e.g. transition system)

x

y

Trajectory
in state space

Space/time trajectory

(x,y)

t

x

y

t=0

t=1

t=2

t=…

y

“Abstract interpretation: from principles to applications” – 18/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

II) Define the program properties of interest
Formalize what you are interested to know about program behaviors

We are interested in the set of
possible trajectories

“Abstract interpretation: from principles to applications” – 19/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

III) Define which specification must be checked
Formalize what you are interested to prove about program behaviors

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

No trajectory should hit the forbidden zone

“Abstract interpretation: from principles to applications” – 20/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

IV) Choose the appropriate abstraction
Abstract away all information on program behaviors irrelevant to the proof

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

Abstraction by geometric forms (rectangles, polyhedra,
ellipsoids, abstraction by parts, etc)

“Abstract interpretation: from principles to applications” – 21/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

V) Mechanically verify in the abstract
The proof is fully automatic

!"##$%&'(
)*+,'-)"*$'#

."*%$//'0(1"0'

2%#)*+-)$"0("3()4'()*+,'-)"*$'#

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

21

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

22

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties⊆

Inclusion

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

23

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties

Abstract
implication

⊆

⊑

Inclusion

ICSME 2014, Victoria, BC, Canada, 2014-10-02 © P. Cousot

 What is abstraction in AI?

24

Concrete
universe of
discourse

Properties

Elements
Abstract

universe of
properties

γ
α

α
γ

Abstract
properties

Abstract
implication

⊆

⊑

Inclusion

Provable abstract properties
are true in the concrete

“Abstract interpretation: from principles to applications” – 22/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soundness of the abstract verification
Never forget any possible case so the abstract proof is correct in the concrete

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

“Abstract interpretation: from principles to applications” – 23/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unsound validation: testing
Try a few cases

“Abstract interpretation: from principles to applications” – 24/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unsound validation: bounded model-checking
Simulate the beginning of all executions

Bounded model-checking

Forbidden zone

Possible
trajectories

“Abstract interpretation: from principles to applications” – 25/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unsound validation: static analysis
Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

“Abstract interpretation: from principles to applications” – 26/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Incompleteness
When abstract proofs may fail while concrete proofs would succeed

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

By soundness an alarm must be
raised for this overapproximation!

“Abstract interpretation: from principles to applications” – 27/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

True error
The abstract alarm may correspond to a concrete error

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#

3-/#4)555

“Abstract interpretation: from principles to applications” – 28/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

False alarm
The abstract alarm may correspond to no concrete error (false negative)

!"#$%&&'())*"('

+",,%$-')
.#/0'1."#%',

!/-,')/-/#2

3-/#2)444

The only solution is to refine the analysis to take more
properties into account (e.g. specifically for a domain
of application)!

“Abstract interpretation: from principles to applications” – 29/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A few basic concepts in
abstract interpretation

“Abstract interpretation: from principles to applications” – 30/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of semantics

“Abstract interpretation: from principles to applications” – 31/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trace semantics
• A trace semantics is a (finite or infinite) set of traces
• A trace is a finite or infinite sequence of states
• A state is a pair or a control state and a memory state
• A control state records all calls to methods leading to a program point
• A memory state records the values of variables, allocated memory, inputs, etc.

“Abstract interpretation: from principles to applications” – 32/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of prefix trace semantics (cont’d)
• a simple while language
• a state

!
!

iDI��w � ��������� � ����� � QBHF ��� � �� !
!

!
!

!
!

��� $IBQUFS ��

TP UIBU
 CZ FYFSDJTF ����
 ܹÛ	4� s4�

 Ċܺ ÷÷÷÷Ҿ݇ҽ÷÷÷÷÷÷૓3૕3 ܹÛ	3�

 Ċܺ�
.PSFPWFS
 XF DPOTJEFS BMM QPTTJCMF JOJUJBMJ[BUJPO USBDFT UIBU JT UIF BCTUSBDUJPO ܹ4� ҾÛ	4�

 ТĊܺ ÷÷÷÷Ҿ݇ҽ÷÷÷÷÷÷૓3૕3 ܹÛ	3�

 Ċܺ EFĕOFE CZ ૓3	យ
 թ ૓3	\ܹૢ�
 ૢܺ Է ૢ� ó4� ü ૢ óយ	ૢ�
^
 �\૓3	ܹૢ�
 ૢܺ
 Է ૢ� ó4� ü ૢ óយ	ૢ�
^ XIFSF 3� JT UIF TFU PG BMM OPOFNQUZ TFRVFODFT PG

TUBUFT JO 3�
4P XF EFĕOF UIF QSFĕY TUBUF USBDF TFNBOUJDT យøS !�" PG B QSPHSBN DPNQPOFOU � óCPយøS !�" թ ૓3	យø!�"
 	����

���� 4UBUFGVM 1SFĕY 5SBDF 4FNBOUJDT

8F OPX MPPL GPS B TUSVDUVSBM TQFDJĕDBUJPO ȥយøS !�" PG UIF QSFĕY TUBUF USBDF TFNBOUJDTȥយøS !�" � ਈøS !�"	 Ƕ
�ഋ⊲ � ȥយøS !�ў"
 	����

CZ DBMDVMBUJPOBM EFTJHO� -FU VT TUBSU XJUI UIF CBTJD DBTFT�

1SFĕY TUBUF USBDFT PG BO BTTJHONFOU TUBUFNFOU � ՆՆ� Ғ 3� � �ȥយøS !�" � \ܹҒ
 ૣܺ Է ૣ ó%V^ Լ \ܹҒ
 ૣܹܺBGUFS!�"
 ૣ<3ҽ૟>ܺ Է ૣ ó%Vü૟�਼!�"ૣ^ 	����

1SPPG PG 	����
ȥយøS !�"թ យøS !�" #EFĕOJUJPO PG ȥយøS
 TUSVDUVSBM WFSTJPO PG យøS $թ ૓3	យø!�"
 #EFĕOJUJPO 	����
 PG យøS $
� ૓3	 ȥយø!�"
 #UIFPSFN ����$
� \૓3	ܹૢ
 ૢўܺ
 Է ૢ ó4� ü ૢў ó ȥយø!�"	ૢ
^ #EFĕOJUJPO 	����
 PG ૓3$
� \૓3	ܹૢҒഋ
 ૢўܺ
 Է ૢҒഋ ó4� ü ૢў ó \Ғഋ^ Լ \Ғഋ 3� �� ਗ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Ҿ BGUFS!�" Է ਗ �਼!�"ଫ	ૢҒഋ
^ ü Ғഋ � Ғ^

#EFĕOJUJPO 	����
 PG ȥយø!�" BOE SFNBSL ����$
� \૓3	ܹૢҒഋ
 Ғഋܺ
 Է ૢҒഋ ó4� ü Ғഋ � Ғ^ Լ \૓3	ܹૢҒഋ
 Ғഋ 3� �� ਗ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Ҿ BGUFS!�"ܺ
 Է ૢҒഋ ó4� ü ਗ �਼!�"ଫ	ૢҒഋ
 ü Ғഋ � Ғ^ #EFĕOJUJPO PG Լ$
� \ܹҒ
 ଫ	ૢҒ
ܺ Է ૢҒഋ ó4� ü Ғഋ � Ғ^ Լ \ܹҒഋ
 ଫ	ૢҒഋ
ܹܺBGUFS!�"
 ଫ	ૢҒഋ 3� �� ਗ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Ҿ BGUFS!�"
ܺ ԷૢҒഋ ó4� ü ਗ �਼!�"ଫ	ૢҒഋ
 ü Ғഋ � Ғ^ #EFĕOJUJPO PG ૓3$
� \ܹҒ
 ૣܺ Է ૣ ó%V^ Լ \ܹҒ
 ૣܹܺBGUFS!�"
 ૣ<3ҽਗ>ܺ Է ૣ ó%Vü ਗ�਼!�"ૣ^

#MFUUJOH ૣ� ଫ	ૢҒഋ
 BOE DPOWFSTFMZ
 CZ 	���
 BOE FYFSDJTF ���
 îૣ ó%V � ðૢҒഋ ó4� �ૣ � ଫ	ૢҒഋ

 BOE Ғഋ � Ғ � BU!�"$!

1SFĕY TUBUF USBDFT PG B TUBUFNFOU MJTU �' ՆՆ� �'ў �ȥយøS !�'" � ȥយøS !�'ў"Լ 	����
\ૢ ď ܹBU!�"
 ૣܺ ď ૢў Է ૢ ď ܹBU!�"
 ૣܺ ó ȥយøS !�'ў"ü ܹBU!�"
 ૣܺ ď ૢў ó ȥយøS !�"^
1SPPG PG 	����

is a pair program point × environments (assigning values of
variables)

• defined by structural induction (induction on the syntax of programs)
• prefix traces of an assignment

!
!

iDI��w � ��������� � ����� � QBHF ��� � �� !
!

!
!

!
!

��� $IBQUFS ��

TP UIBU
 CZ FYFSDJTF ����
 ܹÛ	4� s4�

 Ċܺ ÷÷÷÷Ҿ݇ҽ÷÷÷÷÷÷૓3૕3 ܹÛ	3�

 Ċܺ�
.PSFPWFS
 XF DPOTJEFS BMM QPTTJCMF JOJUJBMJ[BUJPO USBDFT UIBU JT UIF BCTUSBDUJPO ܹ4� ҾÛ	4�

 ТĊܺ ÷÷÷÷Ҿ݇ҽ÷÷÷÷÷÷૓3૕3 ܹÛ	3�

 Ċܺ EFĕOFE CZ ૓3	យ
 թ ૓3	\ܹૢ�
 ૢܺ Է ૢ� ó4� ü ૢ óយ	ૢ�
^
 �\૓3	ܹૢ�
 ૢܺ
 Է ૢ� ó4� ü ૢ óយ	ૢ�
^ XIFSF 3� JT UIF TFU PG BMM OPOFNQUZ TFRVFODFT PG

TUBUFT JO 3�
4P XF EFĕOF UIF QSFĕY TUBUF USBDF TFNBOUJDT យøS !�" PG B QSPHSBN DPNQPOFOU � óCPយøS !�" թ ૓3	យø!�"
 	����

���� 4UBUFGVM 1SFĕY 5SBDF 4FNBOUJDT

8F OPX MPPL GPS B TUSVDUVSBM TQFDJĕDBUJPO ȥយøS !�" PG UIF QSFĕY TUBUF USBDF TFNBOUJDTȥយøS !�" � ਈøS !�"	 Ƕ
�ഋ⊲ � ȥយøS !�ў"
 	����

CZ DBMDVMBUJPOBM EFTJHO� -FU VT TUBSU XJUI UIF CBTJD DBTFT�

1SFĕY TUBUF USBDFT PG BO BTTJHONFOU TUBUFNFOU � ՆՆ� Ғ 3� � �ȥយøS !�" � \ܹҒ
 ૣܺ Է ૣ ó%V^ Լ \ܹҒ
 ૣܹܺBGUFS!�"
 ૣ<3ҽ૟>ܺ Է ૣ ó%Vü૟�਼!�"ૣ^ 	����

1SPPG PG 	����
ȥយøS !�"թ យøS !�" #EFĕOJUJPO PG ȥយøS
 TUSVDUVSBM WFSTJPO PG យøS $թ ૓3	យø!�"
 #EFĕOJUJPO 	����
 PG យøS $
� ૓3	 ȥយø!�"
 #UIFPSFN ����$
� \૓3	ܹૢ
 ૢўܺ
 Է ૢ ó4� ü ૢў ó ȥយø!�"	ૢ
^ #EFĕOJUJPO 	����
 PG ૓3$
� \૓3	ܹૢҒഋ
 ૢўܺ
 Է ૢҒഋ ó4� ü ૢў ó \Ғഋ^ Լ \Ғഋ 3� �� ਗ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Ҿ BGUFS!�" Է ਗ �਼!�"ଫ	ૢҒഋ
^ ü Ғഋ � Ғ^

#EFĕOJUJPO 	����
 PG ȥយø!�" BOE SFNBSL ����$
� \૓3	ܹૢҒഋ
 Ғഋܺ
 Է ૢҒഋ ó4� ü Ғഋ � Ғ^ Լ \૓3	ܹૢҒഋ
 Ғഋ 3� �� ਗ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Ҿ BGUFS!�"ܺ
 Է ૢҒഋ ó4� ü ਗ �਼!�"ଫ	ૢҒഋ
 ü Ғഋ � Ғ^ #EFĕOJUJPO PG Լ$
� \ܹҒ
 ଫ	ૢҒ
ܺ Է ૢҒഋ ó4� ü Ғഋ � Ғ^ Լ \ܹҒഋ
 ଫ	ૢҒഋ
ܹܺBGUFS!�"
 ଫ	ૢҒഋ 3� �� ਗ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Ҿ BGUFS!�"
ܺ ԷૢҒഋ ó4� ü ਗ �਼!�"ଫ	ૢҒഋ
 ü Ғഋ � Ғ^ #EFĕOJUJPO PG ૓3$
� \ܹҒ
 ૣܺ Է ૣ ó%V^ Լ \ܹҒ
 ૣܹܺBGUFS!�"
 ૣ<3ҽਗ>ܺ Է ૣ ó%Vü ਗ�਼!�"ૣ^

#MFUUJOH ૣ� ଫ	ૢҒഋ
 BOE DPOWFSTFMZ
 CZ 	���
 BOE FYFSDJTF ���
 îૣ ó%V � ðૢҒഋ ó4� �ૣ � ଫ	ૢҒഋ

 BOE Ғഋ � Ғ � BU!�"$!

1SFĕY TUBUF USBDFT PG B TUBUFNFOU MJTU �' ՆՆ� �'ў �ȥយøS !�'" � ȥយøS !�'ў"Լ 	����
\ૢ ď ܹBU!�"
 ૣܺ ď ૢў Է ૢ ď ܹBU!�"
 ૣܺ ó ȥយøS !�'ў"ü ܹBU!�"
 ૣܺ ď ૢў ó ȥយøS !�"^
1SPPG PG 	����

“Abstract interpretation: from principles to applications” – 33/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fixpoints
• solutions to equations x = f (x)
• may have 0, one, or many solutions
• Tarski’s fixpoint theorem ensures that there is a unique least solution lfp⊑ f for

some order v
• Can be calculated iteratively (as the limit of infinite iterations)

f 0=⊥
f 1
f 2
f 3

… f ∞ = ⨆i f i =f(f ∞)

f

f

“Abstract interpretation: from principles to applications” – 34/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of prefix trace semantics (cont’d)
• prefix traces of an iteration

“Abstract interpretation: from principles to applications” – 35/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Maximal trace semantics.BYJNBM USBDF TFNBOUJDT

t .BYJNBM USBDF TFNBOUJDTយ�6!�" թ \ૢܹҒ
 ૣܺ ó យø6!�" Է 	Ғ � BGUFS!�"
 ý 	FTDBQF!�" ü Ғ � CSFBL�UP!�"
^
យú6 !�" թ MJNʐយø6!�"ʞ

t -JNJU

MJNਞ թ \ૢ ó 4ú Է îਏ ó . � ૢ<���ਏ> ó ਞ ^�

i%ZOBNJD BCTUSBDU JOUFSQSFUBUJPOw o ����� o ª 1� $PVTPU
 /:6
 $*.4
 $4
 5VFTEBZ
 +VOF ��UI
 ����
“Abstract interpretation: from principles to applications” – 36/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of abstractions

“Abstract interpretation: from principles to applications” – 37/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reachability semantics (invariance)
• Collects reachable states at each program point
• S r⃗JPK = α(S JPK) = P0 7→ ℓ 7→ {ρ | ∃σσ′.σ〈ℓ, ρ〉σ′ ∈ S JPK}
• By calculational design we get

“Abstract interpretation: from principles to applications” – 38/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Cartesian abstraction
• We are left with sets of environments mapping variables to their values
• Cartesian abstraction

$BSUFTJBO BCTUSBDUJPO 	DPOUO�E

t $BSUFTJBO BCTUSBDUJPO PG QSPQFSUZ ৸ թ 	ਙ � ਚ � � ü ਚ ó <�
 �>
 JTТ૓ɉs	৸
 թ 	ਙ ó <�
 �> ü ਚ ó <�
 �>
 TP UIBU UIF SFMBUJPO ਙ � ਚ � � JT MPTU�
t 5IJT JT 3FOÏ %FTDBSUFT� QSPKFDUJPO PO UIF BYFT PG B DPPSEJOBUF TZTUFN <%FTDBSUFT
 ����>�

� ਙ

ਚ
৸¹ ¹ ¹
¹

� ÷� ÷
� ÷� ÷

� � � �

i$I� ��
 "CTUSBDU $BSUFTJBO 4FNBOUJDTw o ���� o ª 1� $PVTPU
 /:6
 $*.4
 $4
 .POEBZ
 .BSDI ��UI
 ����

• α(R) = x 7→ {ρ(x) | ρ ∈ R}

“Abstract interpretation: from principles to applications” – 39/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interval abstraction
• We are left with sets of values
• For totally ordered sets, the interval abstraction records the minimum (or −infty)

and maximum (or +∞)
• α(V) = [minV, maxV]

“Abstract interpretation: from principles to applications” – 40/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduced product
• Static analyzers use many abstractions
• The static analyzer can be refined by new abstractions
• The are also used to infer new properties and reduce the previous abstractions
• Example of reduction for cartesian congruence and interval analysis

[]

[]

1 5 9 13 17 21

3 20

5 17

reduction

x ∈ [3,20]

x ∈ [5,17]

x = 1 mod 4

“Abstract interpretation: from principles to applications” – 41/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fixpoint abstraction

x
0 1

!"# f

f

α

α

α (!"# f) f

!"# f

y f

…
f ∞ = ⨆i f i

…

α

α

α
α

γ

f 1

f 0=α (⊥)

γ

f

f

C A

f 0=⊥
f 1

f 2
f 3

f

f

f ≠α∘f∘γ

α
α f

α∘f=f∘α

f

γ

γα
f ∞+1 = !"# f

= !"# ff 2

“Abstract interpretation: from principles to applications” – 42/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fixpoint iteration acceleration (with widening)

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Abstract Induction
(in non-Noetherian

domains)

97 CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Convergence acceleration

98

Infinite iteration

F

l fp F

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Convergence acceleration

99

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the derivative

as in Newton-Raphson method(*))

F

l fp F

F

l fp F x

F(x)6x

(*) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33
(2010)

CSL – LICS, Vienna, Austria, Juky 15, 2014 © P Cousot

Problem with infinite abstractions

• For non-Noetherian iterations, we need

• finitary abstract induction, and

• finitary passage to the limit

X0=⊥, …, Xn+1 = ℑ(X0, …, Xn, F(X0), …, F(Xn)),…, limn⟶∞Xn

100

ℑ above the limit below the limit

below the
limit

widening ▽ dual narrowing △

above the
limit

narrowing △ dual widening ▽

Iteration
starting
from

iteration converging

~
~

“Abstract interpretation: from principles to applications” – 43/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

α(x = 1 ∧ y = 1) = x ∈ [1, 1] ∧ y ∈ [1, 1]

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

α((x ∈ [1, 1] ∧ y ∈ [1, 1]) ∨ (x = 1 ∧ y = 2))

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

x ∈ [1, 1] ∧ y ∈ [1, 2]

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

α((x ∈ [1, 1] ∧ y ∈ [1, 2]) ∨ (x = 2 ∧ y = 2))

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

x ∈ [1, 2] ∧ y ∈ [1, 2]

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

α((x ∈ [1, 2] ∧ y ∈ [1, 2]) ∨ (x = 3 ∧ y = 2)

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

(x ∈ [1, 3] ∧ y ∈ [1, 2])

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of widening (intervals)

0 1 2 3

1

2

y

x

(x ∈ [1, 2] ∧ y ∈ [1, 2]) widening (x ∈ [1, 3] ∧ y ∈ [1, 2]) = (x ∈ [1,+∞] ∧ y ∈ [1, 2])

“Abstract interpretation: from principles to applications” – 44/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples of static analyzes

“Abstract interpretation: from principles to applications” – 45/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical properties

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

“Abstract interpretation: from principles to applications” – 46/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Symbolic properties
• Numerous abstractions to handle symbolic properties (arrays, pointers, memory

allocation, etc.)
• example: process tables of an OS

Automatic Verification of Embedded System Code
Manipulating Dynamic Structures Stored in Contiguous Regions

Jiangchao Liu
Laboratory of Software Engineering
of Complex Systems, College of
Computer, National University of

Defense Technology
Changhsha, China

jliu@di.ens.fr

Liqian Chen
Laboratory of Software Engineering
of Complex Systems, College of
Computer, National University of

Defense Technology
Changhsha, China
lqchen@nudt.edu.cn

Xavier Rival
ENS, INRIA, CNRS and PSL*

Paris, France
rival@di.ens.fr

ABSTRACT
User-space programs rely on memory allocation primitives when
they need to construct dynamic structures such as lists or trees.
However, low-level OS kernel services and embedded device drivers
typically avoid resorting to an external memory allocator in such
cases, and store structure elements in contiguous arrays instead.
This programming pattern leads to very complex code, based on
data-structures that can be viewed and accessed either as arrays or
as chained dynamic structures. The code correctness then depends
on intricate invariants mixing both aspects. We propose a static
analysis that is able to verify such programs. It relies on the com-
bination of abstractions of the allocator array and of the dynamic
structures built inside it. This approach allows to integrate program
reasoning steps inherent in the array and in the chained structure
into a single abstract interpretation. We report on the successful
veri�cation of several embedded OS kernel services and drivers.

1 INTRODUCTION
While user-space programs usually rely onmemory allocation prim-
itives provided by the OS to manage dynamic memory, low-level
codes such as embedded device drivers or low-level OS services typ-
ically manage their own memory using a custom allocation scheme.
The most common way to achieve this is to create a static array,
and use it as a pool of memory cells, which can be used directly in
order to create dynamic structures, like lists or trees. This pattern is
much more complex and harder to get correct than using a regular
memory allocator, due to the intricacy of the underlying invariants.
In essence, it embeds the memory manager into the user code.

We show an instance of this pattern in Figure 1, that consists of
a task manager taken from a proprietary real-time embedded OS
designed for aerospace (that we later refer to as AOS). This task
manager maintains three disjoint sets of tasks, that are respectively
ready, sleeping, and suspended. Each group of tasks corresponds to
a singly linked list, and the three corresponding lists are stored in a
single array, which serves as a memory cells pool. Three variables
ready, sleep, and suspend store the index of the �rst element of
each list. Moreover, each list element stores a reference to the next
element de�ned as its index in the array in �eld next. Tasks in state
ready are ordered by their order of priority, which is stored in �eld
prio. The declaration is shown in Figure 1(a), and an example state
is depicted in Figure 1(b). Moreover, the task manager implements
system calls (not shown), that operate on this structure, including
init (initialization of the array and variables), create (search of a

s t ruc t {
in t used ;
in t next ;
in t prio ;

} a [1 0 0] ;
in t ready ;
in t sleep ;
in t suspend ;
(a) Declaration

ready = 0 sleep = 1 suspend = 2

[0] :

[1] :

[2] :

[3] :

used = 1

used = 1

used = 1

used = 0

next = 96

next = 50

next = 30

prio = 1
[96] :

[97] :

[98] :

[99] :

used = 1

used = 0

used = 1

used = 0

next = 98

next = �1

prio = 2

prio = 3

(b) Concrete memory state

Figure 1: Process tables in a proprietary embedded OS

free slot in the array, and insertion in the list of tasks that are ready),
stop (removal of a task —the corresponding cell becomes free), and
schedule (move of a task from one list to another). Similar code
can be found in many OS services that need to manage tasks, or in
device drivers that need to manage resources. It is also common in
low-level embedded codes, as it alleviates the need for a separate
memory allocator. On the other hand, it makes the code of the
operations on the table (that we later refer as primitive operations,
or for short, primitives) very complex, and hard to get right. Indeed,
the operations over the pool of cells mix direct array cell accesses,
or accesses following chains of pointers to list elements encoded
as indexes. They also involve tricky side conditions, such as cases
where any of the lists is or becomes empty. Moreover, they need to
preserve sophisticated invariants, such as the well-formedness and
the disjointness of the lists of tasks. In the context of embedded
systems or critical softwares, such programming patterns induce
serious safety concerns. To guarantee the correct behavior of com-
ponents such as the task manager described above, we need to
verify not only memory safety but also the preservation of complex
structural invariants by all the primitive operations. For example,
the process table of Figure 1 should be consistent at all times, which
means the three lists should be well-formed, acyclic and disjoint,
and variables should point to the head of each list. If either of these
conditions ever gets broken, the task manager will not be able to
operate correctly anymore, and will lose or ignore some tasks.

The veri�cation of the task manager boils down to checking that
all calls preserve the structural invariant of the cells pool: if any of
these is called in a state that satis�es the structural invariants, it

Automatic Verification of Embedded System Code Manipulating Dynamic Structures Stored in Contiguous Regions

�0

i = 0
next
used

[0] :
1
1

[1] :
1
6

[2] :
0
0

[3] :
1
�1

[4] :
0
0

[5] :
0
0

[6] :
1
3

[7] :
0
0

[8] :
0
0

�1

i = 0
next
used

[0] :
1
8

[1] :
0
0

[2] :
1
�1

[3] :
0
0

[4] :
0
0

[5] :
1
2

[6] :
1
5

[7] :
0
0

[8] :
1
6

(a) Concrete states

list(�0,�1) true
�used0 = 1 �used1 = 0

ar(� sz0 ,�
ix
0 ,�

used
0 ,�next0) ar(� sz1 ,�

ix
1 ,�

used
1 ,�next1)

i 7! �0 2 � ix0

Array summaries
Num. constraints
Ind. summaries
Variable term

(b) Coalesced abstract state

Figure 5: Coalescing abstraction example

where summary predicates are occurrences of ar, where $a is the
above summarization relation, and where � a

M̄
is de�ned by$a.

We note that the concretization � a
M̄
is de�ned by the summariza-

tion relation$a, which is expected since summary predicates aim
at supporting abstract predicates folding / unfolding.

E������ 1. As an example, we consider a simpli�ed memory
cells pool, which is based on a single list of active elements, and on
two �elds used and next. An element of index i is in the list if and
only if a[i].used is equal to 1; then, a[i].next denotes the index of
the next element; otherwise, a[i].used is equal to 0. Two example
concrete states are shown in Figure 5(a). Elements in the active list are
shown in red. This set of states can be described by an abstract state
(t̄0 ^ n̄0) ⇤ (t̄1 ^ n̄1) ⇤ (t̄2 ^ n̄2), where:
• t̄0 = ar(� sz0 ,�

ix
0 ,�

used
0 ,�next0) and n̄0 = (�used0 = 1) describe

the group of active elements;
• t̄1 = ar(� sz1 ,�

ix
1 ,�

used
1 ,�next1) and n̄1 = (�used1 = 0) describe

the group of non-active elements;
• t̄2 = i 7! �0 and n̄2 = �0 2 � ix0 describe variable i.

Abstraction of inductive structures. So far, we have considered
only the description of the properties relative to the array structure,
so we now turn our attention to the inductive structures stored in
each region. In Section 2, we have observed that these structures
can be represented using inductive summaries, we de�ned a sum-
mary list for singly linked lists, and we noted sorted singly linked
lists can also be described using an inductive summary predicate.
More generally, an inductive summary predicate i is de�ned by a
summarization relation of the form i(�0, . . . ,�k) $i {m̄0, . . . ,m̄p }
where m̄0, . . . ,m̄p are made of terms the memory part of which
consists either in individual memory cells or in other instances
of the summary predicate i itself. Each of the terms m̄0, . . . ,m̄p
accounts for one of the ways to construct a structure; as an example
the predicate list introduced in Section 2 comprises two such cases.
We write M̄i for the set of memory predicates where all summary
predicates are either of the above form or the true predicate that
describes any memory region.

D��������� 3 (I�������� �����������). The inductivememory
abstraction is the triple (M̄i,� i

M̄
,$i) where M̄i and$i are de�ned as

above, and � i
M̄
is the concretization function de�ned by$i.

Note that the summarization relation de�nes the concretization
function as in the case of the array abstraction (De�nition 2).

E������ 2. We consider the same structure as in Example 1. The
region formed by the active elements stores a singly linked list whereas
the other array cells satisfy no particular inductive property. As a
consequence, this set of states can be described by an abstract state
(t̄0 ^ n̄0) ⇤ (t̄1 ^ n̄1) ⇤ (t̄2 ^ n̄2), where: t̄0 = list(�0,�1) and
n̄0 = true describe the group of active elements, t̄1 = true and
n̄1 = true describe the group of non-active elements, and t̄2 = i 7! �0
and n̄2 = true describe the state of variable i. In particular, we note
that these constraints convey the fact that i points to the head of a
singly linked list.

Coalescing abstraction. We remarked in Section 2 that the anal-
ysis of programs like the create function of Figure 2 requires to
reason simultaneously about arrays and inductive structures in a
same region. To achieve this, the coalescing abstraction combines
summaries locally:

D��������� 4 (C��������� �����������). Let (M̄0,� 0
M̄
,$0) and

(M̄1,� 1
M̄
,$1) be two memory abstractions in the sense of De�nition 1,

with di�erent sets of summary predicates. We call coalescing abstrac-
tion the memory abstraction (M̄./,� ./

M̄
,$./) such that:

• the summary predicates in M̄./ are of the form sum0 ^ sum1

where sum0 2 M̄0 and sum1 2 M̄1 are summary predicates;
• the summarization relation$./ is de�ned by:

(sum0 ^ sum1 ^ n̄) $./ M̄ ()
(

(sum0 ^ n̄) $0 M̄
^ (sum1 ^ n̄) $1 M̄

• the concretization function � ./
M̄

is de�ned by � ./
M̄
(sum0 ^

sum1 ^ n̄) = � 0
M̄
(sum0 ^ n̄) \ � 1

M̄
(sum1 ^ n̄).

In the rest of the paper, we focus on the case where (M̄0,� 0
M̄
,$0)

is the array abstraction (M̄a,� a
M̄
,$a) and (M̄1,� 1

M̄
,$1) is the induc-

tive abstraction (M̄i,� i
M̄
,$i) although the De�nition 4 sets up a

general notion of coalescing abstraction. We remark an important
characteristic of coalescing: the structure of a coalesced summary
sum0 ^ sum1 deeply ties the structures of summary predicates
sum0 and sum1. Indeed, when we consider sum0 = ar(. . .) and
sum1 = list(. . .), then a memory region described by sum0 ^
sum1 is either empty or non empty, thus the materialization of
ar(. . .) ^ list(. . .) produces a disjunction of two elements which
correspond to the case where both summaries unfold to the empty
(resp., non empty) region.

E������ 3. We consider the structure of Example 1. Two abstrac-
tions of this structure were presented in Example 1 and Example 2,
which respectively account for the array view and for the inductive
view of the structure. Each abstraction consists of the separating con-
junction of two summary predicates and one points-to predicate over
a variable. The terms of these two abstractions describe regions that
coincide, thus the whole structure can be accurately represented in
the coalescing abstraction. For instance, the �rst group can be rep-
resented by ar(� sz0 ,�

ix
0 ,�

used
0 ,�next0) ^ list(�0,�1) ^ (�used0 = 1).

Jiangchao Liu, Liqian Chen, Xavier Rival: Automatic Verification of Embedded System Code Manipulating Dynamic Structures Stored in Contiguous
Regions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11): 2311-2322 (2018)

“Abstract interpretation: from principles to applications” – 47/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Static specification checking
• Examples of specifications: datalog, regular expressions to specify sequences of

invariants
• (?:x>=0)∗ states that the value of x is always positive or zero during program

execution.
• (?:x>='x)∗ states that the value of x is always greater than or equal to its initial

value 'x during execution.
• (¬ℓ:x>=0)∗ · ℓ : x==0 · (?:x<0)∗ states that

• the value of x should be positive or zero, and next
• if program point ℓ is ever reached then x should be 0, and next
• if computations go on after program point ℓ then x should be negative afterwards.

• In the literature: Fred Schneider’s security monitors: monitor the actions of a
program, checks the behavior of the program against a given safety specification
(and initiate remedial actions)1,2

Patrick Cousot: Calculational design of a regular model checker by abstract interpretation. Theor. Comput. Sci. 869: 62-84 (2021)
Fred B. Schneider: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1): 30-50 (2000)

1use automata equivalent to regular expressions
2use actions instead of program labels.

“Abstract interpretation: from principles to applications” – 48/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soundness

“Abstract interpretation: from principles to applications” – 49/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soundness is difficult
• Languages have machine-dependent and undefined behaviors that must be taken

into account by sound static analyzers
• Astrée for C: 3 types of errors

1. the erroneous behavior is perfectly defined for the machine (e.g. integer overflow) →
sound

2. the erroneous behavior can be over approximated (e.g. integer division by zero is
always an integer on some machines) → sound but imprecise

3. the erroneous behavior is undefined →
• Astrée signals the error and goes on as if the error did not occur
• the analysis is sound for executions up to the point where this error might occur, if

ever, and inconclusive afterwards
• allows for discovering other errors afterwards

• Static analysis is harder than verification

Patrick Cousot, Roberto Giacobazzi, Francesco Ranzato: Program Analysis Is Harder Than Verification: A Computability Perspective. CAV (2) 2018:
75-95

“Abstract interpretation: from principles to applications” – 50/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples of static analyzers

“Abstract interpretation: from principles to applications” – 51/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Andromeda
• Static analyzer for security of Web applications written in Java, .NET and

JavaScript
• Developed by Marco Pistoia and his team at IBM Yorktown Heights
• Sound demand-driven abstract interpretation-based static dependency/taint

analysis
• Precise and scalable
• Checks for cross-site scripting (XSS), SQL injection (SQLi), log forging, etc.

ANDROMEDA: Accurate and Scalable

Security Analysis of Web Applications

Omer Tripp1, Marco Pistoia2, Patrick Cousot3,
Radhia Cousot4, and Salvatore Guarnieri5

1 Tel Aviv University and IBM Software Group, Israel, omert@il.ibm.com
2 IBM Thomas J. Watson Research Center, USA, pistoia@us.ibm.com

3 New York University, USA, pcousot@cs.nyu.edu
4 École Normale Supérieure, France, radhia.cousot@ens.edu

5 University of Washington and IBM Software Group, USA, sguarni@us.ibm.com

Abstract. Security auditing of industry-scale software systems mandates au-
tomation. Static taint analysis enables deep and exhaustive tracking of suspi-
cious data flows for detection of potential leakage and integrity violations, such
as cross-site scripting (XSS), SQL injection (SQLi) and log forging. Research
in this area has taken two directions: program slicing and type systems. Both of
these approaches suffer from a high rate of false findings, which limits the usabil-
ity of analysis tools based on these techniques. Attempts to reduce the number
of false findings have resulted in analyses that are either (i) unsound, suffering
from the dual problem of false negatives, or (ii) too expensive due to their high
precision, thereby failing to scale to real-world applications.
In this paper, we investigate a novel approach for enabling precise yet scalable
static taint analysis. The key observation informing our approach is that taint anal-
ysis is a demand-driven problem, which enables lazy computation of vulnerable
information flows, instead of eagerly computing a complete data-flow solution,
which is the reason for the traditional dichotomy between scalability and preci-
sion. We have implemented our approach in ANDROMEDA, an analysis tool that
computes data-flow propagations on demand, in an efficient and accurate man-
ner, and additionally features incremental analysis capabilities. ANDROMEDA is
currently in use in a commercial product. It supports applications written in Java,
.NET and JavaScript. Our extensive evaluation of ANDROMEDA on a suite of 16
production-level benchmarks shows ANDROMEDA to achieve high accuracy and
compare favorably to a state-of-the-art tool that trades soundness for precision.

Keywords: Security, Static Analysis, Taint Analysis, Information Flow, Integrity, Ab-
stract Interpretation

1 Introduction

Web-application security is an ever-growing concern. By design, Web applications feed
on inputs whose source is untrusted, perform numerous security-sensitive operations
(such as database accesses and transfers of Web content to remote machines), and ex-
pose data to potentially malicious observers. It is not surprising, then, that six out of

“Abstract interpretation: from principles to applications” – 52/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Astrée (https://www.absint.com/astree)

“Abstract interpretation: from principles to applications” – 53/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

https://www.absint.com/astree

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Abstract interpretation: from principles to applications” – 54/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Which runtime properties are analyzed by Astree?

Astree statically analyzes whether the programming language is used correctly and whether there can be any runtime errors during

any execution in any environment. This covers any use of C or C++ that, according to the corresponding language standard, has

undefined behavior or violates hardware-specific aspects.

Additionally, Astree reports invalid concurrent behavior, violations of user-specified programming guidelines, and various program

properties relevant for functional safety.

Astree detects any:

• division by zero,

• out-of-bounds array indexing,

• erroneous pointer manipulation and dereferencing (NULL, uninitialized and dangling pointers),

• integer and floating-point arithmetic overflow,

• read access to uninitialized variables,

• data races (read/write or write/write concurrent accesses by two threads to the same memory location without proper mutex

locking),

• inconsistent locking (lock/unlock problems),

• invalid calls to operating system services (e.g. OSEK calls to TerminateTask on a task with unreleased resources),

• violation of optional user-defined assertions to prove additional runtime properties (similar to assert diagnostics),

code it can prove to be unreachable under any circumstances.

“Abstract interpretation: from principles to applications” – 55/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8304.pdf

https://frama-c.com

“Abstract interpretation: from principles to applications” – 56/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8304.pdf
https://frama-c.com

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soundness

“Abstract interpretation: from principles to applications” – 57/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Choosing a static analyzer

“Abstract interpretation: from principles to applications” – 58/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irresponsibility: avoid static analysis
• Programmers are never held responsible for their errors, even when the human and

economic consequences are huge3;
• Software engineers are guaranteed qualified immunity under the argument that

verification is beyond best practice;
• If best practice would include the mandatory use of standards and qualified tools,

programmers and their hierarchy could be held accountable at least for definite
bugs automatically found be static analysis tools.

JULY 2014 | VOL. 57 | NO. 7 | COMMUNICATIONS OF THE ACM 7

cerf’s up

WELCOME TO “CERF’S UP!”
I am grateful for Editor-
in-Chief Moshe Vardi’s
invitation to continue
writing for Communica-

tions; this column succeeds the “From
the President” column I penned during
my service to ACM in that role.

Let me congratulate Alex Wolf, the
newly elected ACM president. I know he
will give exemplary service to our organi-
zation. Congratulations also go to Vicki
Hanson and Erik Altman in their new
roles as vice president and secretary/
treasurer respectively. I know this team
will provide first-rate leadership.

I also thank Alain Chenais, who ends
his term as Past President and I begin
mine. He has been a staunch, reliable,
and active leader in ACM matters and
I expect this will continue. There are
many others elected to new positions or
moving on as their terms in office end.
I thank them all without enumeration,
and commend them to your attention.

Lastly, allow me to note the enormous
contributions of the ACM staff and, es-
pecially, the leadership of John White,
CEO, and Pat Ryan, COO of ACM. They
have accumulated a truly enviable re-
cord of steadfast leadership spanning
the terms of many elected ACM officers.

Now to the substance of this col-
umn: responsible programming. What
do I mean by that? In a nutshell, I think
it means people who write software
should have a clear sense of responsi-
bility for its reliable operation and re-
sistance to compromise and error. We
do not seem to know how to write soft-
ware that has no bugs…at least, not yet.
But that, in a sense, is the very subject I
want to explore.

My very good friend, Steve Crocker,
drew me into a conversation about this
topic a short while ago. As a graduate stu-
dent, he had pursued a dissertation on
provable correctness of programs. While

this is not a new topic, the objective con-
tinues to elude us. We have developed re-
lated tactics for trying to minimize errors.
Model checking is one good example of
a systematic effort to improve reliability
for which ACM gave the Turing Award in
2007 to Edmund Clarke, Allen Emerson,
and Joseph Sifakis. What is apparent,
and emphasized by Crocker, is the tools
available to programmers for validating
assertions about program operation
are complex, with user interfaces only a
mother could love (my characterization).
Formal proofs are difficult, especially for
anything but the simplest sort of pro-
gram. Just conceiving the appropriate
conditional statements to characterize
program correctness is a challenge.

Despite the Turing Halting Problem,
it is still possible to establish lines of
reasoning to show a particular program
terminates or achieves a repeatable
state under the right conditions. One
can make other kinds of statements
about I/O checking (for example, buf-
fer overflows). Some unending pro-
grams, like email user agents, can still
have characterizations of well-defined
states. It is clear, however, it is not easy
to develop succinct and potentially de-
monstrable statements about program
behavior that show the likelihood the
program will behave as desired. Yet
harder may be demonstrating the pro-
gram does not do something undesired.

While I have no ready solution to
the problem, I believe better interactive
tools are needed to test assertions about
the program’s anticipated behavior
while it is being written and to get some
useful feedback from the composition
and validation system that these asser-
tions are somehow supportable. If not
provable, then at least not disproved by
counterexample perhaps. It seems fair
to imagine that when a programmer is
designing a program and actually writ-
ing the code, there is a model in the pro-

grammer’s head of what the program is
supposed to be doing and, presumably
things it is not supposed to do or should
avoid. Whether this model is sufficiently
clear and complete to allow provable or
verifiable assertions to be made could
be the subject of considerable debate.

One intriguing example of program-
ming environments that is tangentially
relevant comes from Bret Victor (http://
worrydream.com) who has conceived
and implemented a programming en-
vironment that allows one to see im-
mediately the results of executing the
current program. Obviously, the system
can only do this when the programmer
has reached a point where the program
can be parsed and interpreted. Imagine
an environment fashioned for continu-
ous validation of a set of assertions, as
the program is developed. One sus-
pects heavy use of libraries could either
help or hinder the process of verifying
program correctness. If the library of
subroutines is opaque to the verifying
tools, bugs could be hidden. However,
if a set of assertions that are invariant
for the subroutine could be codified,
the use of such a library might actually
help the validation process. I am fairly
certain a body of prior work exists that
can be cited here, but my impression is
such tools are not used regularly by pro-
fessional programmers today.

It seems timely to suggest responsi-
ble programming calls for renewed ef-
forts to verify proper operation of soft-
ware many may depend upon heavily to
work as advertised. To do this, we need
much better tools and programming
environments than seem to be avail-
able today. I await with great interest
responses from ACM members more
knowledgeable than I in this area.

Vinton G. Cerf is vice president and Chief Internet Evangelist
at Google. He served as ACM president from 2012–2014.

Copyright held by author.

Responsible Programming
DOI:10.1145/2631185 Vinton G. Cerf

3e.g. 2009–11 Toyota vehicle recalls, Boeing 737 MAX groundings.

“Abstract interpretation: from principles to applications” – 59/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

https://en.wikipedia.org/wiki/2009–11_Toyota_vehicle_recalls
https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Academic versus industry
Benchmarking Software Model Checkers

on Automotive Code

Lukas Westhofen1, Philipp Berger2, and Joost-Pieter Katoen2

1 OFFIS e.V., Oldenburg, Germany
lukas.westhofen@offis.de

2 RWTH Aachen University, Aachen, Germany
{berger, katoen}@cs.rwth-aachen.de

Abstract. This paper reports on our experiences with verifying auto-
motive C code by state-of-the-art open source software model checkers.
The embedded C code is automatically generated from Simulink open-
loop controller models. Its diverse features (decision logic, floating-point
and pointer arithmetic, rate limiters and state-flow systems) and the
extensive use of floating-point variables make verifying the code highly
challenging. Our study reveals large discrepancies in coverage — which
is at most only 20% of all requirements — and tool strength compared
to results from the main annual software verification competition. A
hand-crafted, simple extension of the verifier CBMC with k-induction
delivers results on 63% of the requirements while the proprietary BTC
EmbeddedValidator covers 80% and obtains bounded verification results
for most of the remaining requirements.

1 Introduction

Software Model Checking. Software model checking is an active field of research.
Whereas model checking algorithms initially focused on verifying models, vari-
ous dedicated techniques have been developed in the last two decades to enable
model checking of program code. This includes e.g., predicate abstraction, ab-
stract interpretation, bounded model checking, counterexample-guided abstrac-
tion refinement (CEGAR) and automata-based techniques. Combined with the
enormous advancements of SAT and SMT-techniques [1], nowadays program
code can be directly verified by powerful tools. Companies like Microsoft, Face-
book, Amazon, and ARM check software on a daily basis using in-house model
checkers. The enormous variety of code verification techniques and tools has ini-
tiated a number of software verification competitions such as RERS, VerifyThis,
and SV-COMP. For software model checking, the annual SV-COMP competition
is most relevant. Launched with 9 participating tools in 2012, it gained popular-
ity over the years with more than 40 competitors in 2019 [2]. It runs o↵-line in
a controlled manner, and has several categories. Competitions like SV-COMP
have established standards in input and output format, and evaluation criteria.
Software model checkers are ranked based on the verification results, earning

ar
X

iv
:2

00
3.

11
68

9v
1

 [c
s.L

O
]

26
 M

ar
 2

02
0

message of this paper is to emphasize the need for a synchronization between
the industrial and scientific software verification communities.

2 Preliminaries

2.1 The Automotive Benchmarks

Benchmark Description. Both case studies involve auto-generated code of
two R&D prototype Simulink models from Ford Motor Company: the next-gen
Driveline State Request (DSR) feature and the next-gen E-Clutch Control (ECC)
feature. The DSR and ECC features implement the decision logic for opening
and closing the driveline and calculating the desired clutch torque and corre-
sponding engine control torque of the vehicle, respectively. The case studies are
described in detail in [3]. Unfortunately, because of non-disclosure agreements,
we cannot make the benchmarks publicly available; instead we give a detailed
characterization of the used code in the following.

Table 1: Code metrics of the benchmarks.

Metric DSR ECC

Complexity

Source lines of code 1,354 2,517
Cyclomatic complexity 213 268

Global constants 77 274

char 12 8
char[] [12,32] 2 0
float 35 77
float[] [6-12] 9 [2-7] 4
float* 1 1
void* 18 184

Global variables 273 775

char 199 595
char[] [16-32] 3 0
float 46 110
float[] [4-10] 25 [2-4] 70

Operations 5232 10096

Addition/subtraction 133 346
Multiplication/division 52 253
Bit-wise operations 65 191
Pointer dereferences 83 180

Code Characteristics. From
the Simulink models, gener-
ated by a few thousand blocks,
around 1,400 and 2,500 source
lines of C code were extracted
for DSR and ECC. Both code
bases have a cyclomatic com-
plexity of over 200 program
paths. The cyclomatic com-
plexity is a common software
metric indicating the number
of linearly independent paths
through a program’s code. Ta-
ble 1 presents the metrics col-
lected on both case studies.

Constants are used to ac-
count for configurability, i.e.
they represent parameters of
the model that can be changed
for di↵erent types of applica-
tions. The configurable state-
space consists of 77 and 274
constants, for DSR and ECC
respectively. Most of them are
of type float, sometimes in a
fixed-length array, as indicated
by the square brackets. Their

3 Comparing the Open-Source Verifiers

Coverage. Fig. 2 shows the verification results of running the open-source veri-
fiers on the two case studies, omitting the results of the witness validation.

0

20

40

60

80

100

CBM
C+

k

CBM
C

U
ltim

ateTaipan

ESBM
C

U
ltim

ateA
utom

izer

Sym
biotic

CPAChecker

PeSCo

D
epthK

U
ltim

ateK
ojak

2LS
SM

ACK

P
er
ce
n
ta
ge

True

False

Timeout

Out of memory

Verifier bug

Spurious counterexample

Max. depth reached

Fig. 2: The overall result distribution for each software model checker, in percent.

CBMC+k is able to verify about 63% of the verification tasks; CBMC and
UltimateTaipan cover roughly 20%. ESBMC delivers results on 10% of the re-
quirements. The remaining verifiers reach a coverage of at most 5%. The majority
of the verifiers is either able to identify counterexamples or produce proofs, but
seldom both. 2LS and SMACK cannot return a single definite result. The only
successful witness validation was a proof of PeSCo validated by CPAChecker,
indicated by True (Correct). CBMC delivered invalid witnesses on all tasks,
leading it to fail the witness validation process.

Fig. 2 also indicates the reasons for Unknown answers. We observe that
time- and memory-outs prevail, but a large number of verifiers exhibit erroneous
behavior. A detailed description of the latter issues is given in Section 5.

To get insight into which requirements are covered by which software model
checker, Fig. 3 depicts two Venn diagrams indicating the subsets of all 179 verifi-
cation tasks. Each area represents the set of verification tasks on which a verifier
returned a definite result. Those areas are further divided into overlapping sub-
areas, where a number indicates the size of this set. For reasons of clarity, we
included only the top five verifiers for the respective case study, based on the
number of definite answers. For both case studies, there is not one verifier which
covers all requirements covered by the other verifiers. For DSR, CBMC+k cov-
ers all but one definite results of the remaining verifiers. In this case, CBMC
was able to identify a counterexample close to the timeout. CBMC+k exhausts
its resources on this requirement as the inductive case occupies a part of the
available computation time. For ECC, UltimateTaipan, ESBMC, and CBMC+k
together cover the set of all definite results. Note that some verifiers — e.g. Ulti-
mateTaipan and ESBMC — perform rather well on one case study, but lose most
of their coverage on the other. In most of such cases, this is due to erroneous
behavior of the verifier manifesting on just one of the two case studies.

We believe that the substantial di↵erence in verifier coverage for the two case
studies, as seen in Fig. 3, is the result of structural di↵erences in the benchmark

size range is also given in square brackets. Additionally, both case studies contain
pointers to constant data (e.g. const void*).

With a couple of hundred variables, globals are heavily employed . They are
used for exchanging data with other compilation units. Here, the char type is
most prevalent, taking up around three quarters of the variable count. float
variables make up the remaining quarter.

The number of operations in the call graph are around 5, 000 and 10, 000 for
DSR and ECC. While linear arithmetic is most prominent, we also observe a
large amount of multiplication and division operations, possibly on non-constant
variables. Challenges for software verifiers rise along with the complexity of oper-
ators used. Pointer and floating-point arithmetic, as well as bit-wise operations
impose challenges. These case studies employ a variety of bit-wise operations

such as >>, &, and |, mainly on 32-bit variables. Such operators can force the
underlying solvers to model the variable bit by bit. A noticeable amount of
pointer dereferences, namely 180 and 83 occurrences, is present in the programs.

Requirement Characteristics. The requirements originate from internal and
informal documents of the car manufacturer and have been formalized by hand.
As described in [3], obtaining an unambiguous formal requirement specification
can be a substantial task. All di↵erences between the formalization in [3] and this
work in number of properties stem from di↵erent splitting of the properties. For
the DSR case study, from 42 functional requirements we extracted 105 properties,
consisting of 103 invariants and two bounded-response properties. For the ECC
case study, from 74 functional requirements we extracted 71 invariants and three
bounded-response properties.

Invariant properties are assertions that are supposed to hold for all reachable
states. Bounded-response properties request that a certain assertion holds within
a given number of computational steps whenever a given, second assertion holds.

2.2 The Software Model Checkers

In order to analyze the performance of open-source verifiers on our specific use
case of embedded automotive C code from Simulink models, we selected a suit-
able subset of C verifiers based on the following criteria:

1. Has matured enough to compete in the SV-COMP 2019 [2] in the Reach-

Safety and SoftwareSystems category.
2. Has a license that allows an academic evaluation.

Based on these criteria, we selected the verifiers: 2LS, CBMC, CPAChecker,
DepthK, ESBMC, PeSCo, SMACK, Symbiotic, UltimateAutomizer, UltimateKo-
jak, and UltimateTaipan. The study was conducted in March 2019. We used the
latest stable versions of each tool to that date. We also included CBMC+k (de-
scribed in Section 2.3), a variant of CBMC that enables k-induction as a proof
generation technique on top of CBMC. Let us briefly introduce the selected
open-source verifiers.

size range is also given in square brackets. Additionally, both case studies contain
pointers to constant data (e.g. const void*).

With a couple of hundred variables, globals are heavily employed . They are
used for exchanging data with other compilation units. Here, the char type is
most prevalent, taking up around three quarters of the variable count. float
variables make up the remaining quarter.

The number of operations in the call graph are around 5, 000 and 10, 000 for
DSR and ECC. While linear arithmetic is most prominent, we also observe a
large amount of multiplication and division operations, possibly on non-constant
variables. Challenges for software verifiers rise along with the complexity of oper-
ators used. Pointer and floating-point arithmetic, as well as bit-wise operations
impose challenges. These case studies employ a variety of bit-wise operations

such as >>, &, and |, mainly on 32-bit variables. Such operators can force the
underlying solvers to model the variable bit by bit. A noticeable amount of
pointer dereferences, namely 180 and 83 occurrences, is present in the programs.

Requirement Characteristics. The requirements originate from internal and
informal documents of the car manufacturer and have been formalized by hand.
As described in [3], obtaining an unambiguous formal requirement specification
can be a substantial task. All di↵erences between the formalization in [3] and this
work in number of properties stem from di↵erent splitting of the properties. For
the DSR case study, from 42 functional requirements we extracted 105 properties,
consisting of 103 invariants and two bounded-response properties. For the ECC
case study, from 74 functional requirements we extracted 71 invariants and three
bounded-response properties.

Invariant properties are assertions that are supposed to hold for all reachable
states. Bounded-response properties request that a certain assertion holds within
a given number of computational steps whenever a given, second assertion holds.

2.2 The Software Model Checkers

In order to analyze the performance of open-source verifiers on our specific use
case of embedded automotive C code from Simulink models, we selected a suit-
able subset of C verifiers based on the following criteria:

1. Has matured enough to compete in the SV-COMP 2019 [2] in the Reach-

Safety and SoftwareSystems category.
2. Has a license that allows an academic evaluation.

Based on these criteria, we selected the verifiers: 2LS, CBMC, CPAChecker,
DepthK, ESBMC, PeSCo, SMACK, Symbiotic, UltimateAutomizer, UltimateKo-
jak, and UltimateTaipan. The study was conducted in March 2019. We used the
latest stable versions of each tool to that date. We also included CBMC+k (de-
scribed in Section 2.3), a variant of CBMC that enables k-induction as a proof
generation technique on top of CBMC. Let us briefly introduce the selected
open-source verifiers.

Lukas Westhofen, Philipp Berger, Joost-Pieter Katoen: Benchmarking Software Model Checkers on Automotive Code. NFM 2020: 133-150

“Abstract interpretation: from principles to applications” – 60/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Commerce is not science

WHITE PAPER

Coverity: Risk Mitigation for DO-178C
Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

WHITE PAPER

Coverity: Risk Mitigation for DO-178C
Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

WHITE PAPER

Coverity: Risk Mitigation for DO-178C
Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

…

 | synopsys.com | 7

Putting it all together
Picking the right analysis tool is important because it will have a significant effect on development efficiency and the DO-178C
certification schedule. In this paper we’ve discussed how using Coverity static analysis during code development and before
reverse-engineering certification artifacts from the code has proven to increase productivity while simultaneously reducing
budget and schedule risk. But it is typical for procurement policies to require the consideration of multiple suppliers for software
tools. Synopsys welcomes competition and, in that spirit, provides the following vendor-neutral guidelines for establishing your
selection criteria:

Do’s
• Install, or have the vendor install, the candidate tool for a test run in your environment. (Synopsys does this regularly with

Coverity, for free.)

 – Verify that the tool works in your development environment.

 – Verify that it interfaces with your software repository and defect tracking systems.

 – Verify that it is compatible with your software build procedures and other development tools, such as compilers, integrated
development environments (IDEs), and so on.

 – Verify that managing and updating the tool will not impose an unacceptable workload on IT staff.

• Run the tool over your existing code.

 – Determine whether the defects reported are meaningful or insignificant. Allocate some time for your subject matter
experts to perform this task, because a proper assessment requires a systemwide perspective.

 – Determine whether the tool presents defects in a manner useful to developers. There should be more information than
“Problem type X in line Y of source file Z.” The tool should disclose the reasoning behind each finding, because very often
the fix for a defect found in a line of code is to change lines of code in the control flow preceding that defect.

• Verify that the tool is practical.

 – Verify that it runs fast enough to be invoked in every periodic build.

 – Determine whether you can run it only over modified code relative to the baseline while still retaining context or whether it
is fast enough to analyze all the code all the time.

 – Determine whether you can implement and enforce a clean-before-review or clean-before-commit policy.

• Determine the false-positive (FP) rate.

 – Focus on your own code. Do not accept an FP rate based on generic code or an unsubstantiated vendor claim.

 – Decide an acceptable FP rate for your process. An unacceptable FP rate wastes resources and erodes developer
confidence in the tool itself. A very significant finding can be obscured by meaningless noise.

• Investigate training, startup, and support options.

 – Inquire about the vendor’s capability to provide on-site training relevant to your SDLC.

 – Verify that they can provide services to help you get started with the tool quickly and smoothly.

 – Verify that their support hours correspond to your workday.

 – Verify that they have field engineering staff if on-site support becomes necessary.

Don’ts
• Don’t evaluate tools by comparing lists of vendor claims about the kinds of defects that their tools can find, and don’t let a

vendor push the evaluation in that direction. Comparing lists of claims regarding defect types isn’t meaningful and leads to
false equivalencies. Capabilities with the same name from different vendors won’t have the same breadth, depth, or accuracy.

• Don’t waste time purposely writing defective code to be used as the evaluation target. Purposely written bad code can contain
only the kinds of defects that you already know of. The value of a static analysis tool is to find the kinds of defects that you
don’t already know of.

• Don't overestimate the limited value of standard test suites such as Juliet.†† These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

ƋƋŵ�.YPMIX�8IWX�7YMXIW�EVI�EZEMPEFPI�EX�https://samate.nist.gov/SRD/testsuite.php.

 | synopsys.com | 7

Putting it all together
Picking the right analysis tool is important because it will have a significant effect on development efficiency and the DO-178C
certification schedule. In this paper we’ve discussed how using Coverity static analysis during code development and before
reverse-engineering certification artifacts from the code has proven to increase productivity while simultaneously reducing
budget and schedule risk. But it is typical for procurement policies to require the consideration of multiple suppliers for software
tools. Synopsys welcomes competition and, in that spirit, provides the following vendor-neutral guidelines for establishing your
selection criteria:

Do’s
• Install, or have the vendor install, the candidate tool for a test run in your environment. (Synopsys does this regularly with

Coverity, for free.)

 – Verify that the tool works in your development environment.

 – Verify that it interfaces with your software repository and defect tracking systems.

 – Verify that it is compatible with your software build procedures and other development tools, such as compilers, integrated
development environments (IDEs), and so on.

 – Verify that managing and updating the tool will not impose an unacceptable workload on IT staff.

• Run the tool over your existing code.

 – Determine whether the defects reported are meaningful or insignificant. Allocate some time for your subject matter
experts to perform this task, because a proper assessment requires a systemwide perspective.

 – Determine whether the tool presents defects in a manner useful to developers. There should be more information than
“Problem type X in line Y of source file Z.” The tool should disclose the reasoning behind each finding, because very often
the fix for a defect found in a line of code is to change lines of code in the control flow preceding that defect.

• Verify that the tool is practical.

 – Verify that it runs fast enough to be invoked in every periodic build.

 – Determine whether you can run it only over modified code relative to the baseline while still retaining context or whether it
is fast enough to analyze all the code all the time.

 – Determine whether you can implement and enforce a clean-before-review or clean-before-commit policy.

• Determine the false-positive (FP) rate.

 – Focus on your own code. Do not accept an FP rate based on generic code or an unsubstantiated vendor claim.

 – Decide an acceptable FP rate for your process. An unacceptable FP rate wastes resources and erodes developer
confidence in the tool itself. A very significant finding can be obscured by meaningless noise.

• Investigate training, startup, and support options.

 – Inquire about the vendor’s capability to provide on-site training relevant to your SDLC.

 – Verify that they can provide services to help you get started with the tool quickly and smoothly.

 – Verify that their support hours correspond to your workday.

 – Verify that they have field engineering staff if on-site support becomes necessary.

Don’ts
• Don’t evaluate tools by comparing lists of vendor claims about the kinds of defects that their tools can find, and don’t let a

vendor push the evaluation in that direction. Comparing lists of claims regarding defect types isn’t meaningful and leads to
false equivalencies. Capabilities with the same name from different vendors won’t have the same breadth, depth, or accuracy.

• Don’t waste time purposely writing defective code to be used as the evaluation target. Purposely written bad code can contain
only the kinds of defects that you already know of. The value of a static analysis tool is to find the kinds of defects that you
don’t already know of.

• Don't overestimate the limited value of standard test suites such as Juliet.†† These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

ƋƋŵ�.YPMIX�8IWX�7YMXIW�EVI�EZEMPEFPI�EX�https://samate.nist.gov/SRD/testsuite.php.

 | synopsys.com | 7

Putting it all together
Picking the right analysis tool is important because it will have a significant effect on development efficiency and the DO-178C
certification schedule. In this paper we’ve discussed how using Coverity static analysis during code development and before
reverse-engineering certification artifacts from the code has proven to increase productivity while simultaneously reducing
budget and schedule risk. But it is typical for procurement policies to require the consideration of multiple suppliers for software
tools. Synopsys welcomes competition and, in that spirit, provides the following vendor-neutral guidelines for establishing your
selection criteria:

Do’s
• Install, or have the vendor install, the candidate tool for a test run in your environment. (Synopsys does this regularly with

Coverity, for free.)

 – Verify that the tool works in your development environment.

 – Verify that it interfaces with your software repository and defect tracking systems.

 – Verify that it is compatible with your software build procedures and other development tools, such as compilers, integrated
development environments (IDEs), and so on.

 – Verify that managing and updating the tool will not impose an unacceptable workload on IT staff.

• Run the tool over your existing code.

 – Determine whether the defects reported are meaningful or insignificant. Allocate some time for your subject matter
experts to perform this task, because a proper assessment requires a systemwide perspective.

 – Determine whether the tool presents defects in a manner useful to developers. There should be more information than
“Problem type X in line Y of source file Z.” The tool should disclose the reasoning behind each finding, because very often
the fix for a defect found in a line of code is to change lines of code in the control flow preceding that defect.

• Verify that the tool is practical.

 – Verify that it runs fast enough to be invoked in every periodic build.

 – Determine whether you can run it only over modified code relative to the baseline while still retaining context or whether it
is fast enough to analyze all the code all the time.

 – Determine whether you can implement and enforce a clean-before-review or clean-before-commit policy.

• Determine the false-positive (FP) rate.

 – Focus on your own code. Do not accept an FP rate based on generic code or an unsubstantiated vendor claim.

 – Decide an acceptable FP rate for your process. An unacceptable FP rate wastes resources and erodes developer
confidence in the tool itself. A very significant finding can be obscured by meaningless noise.

• Investigate training, startup, and support options.

 – Inquire about the vendor’s capability to provide on-site training relevant to your SDLC.

 – Verify that they can provide services to help you get started with the tool quickly and smoothly.

 – Verify that their support hours correspond to your workday.

 – Verify that they have field engineering staff if on-site support becomes necessary.

Don’ts
• Don’t evaluate tools by comparing lists of vendor claims about the kinds of defects that their tools can find, and don’t let a

vendor push the evaluation in that direction. Comparing lists of claims regarding defect types isn’t meaningful and leads to
false equivalencies. Capabilities with the same name from different vendors won’t have the same breadth, depth, or accuracy.

• Don’t waste time purposely writing defective code to be used as the evaluation target. Purposely written bad code can contain
only the kinds of defects that you already know of. The value of a static analysis tool is to find the kinds of defects that you
don’t already know of.

• Don't overestimate the limited value of standard test suites such as Juliet.†† These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

ƋƋŵ�.YPMIX�8IWX�7YMXIW�EVI�EZEMPEFPI�EX�https://samate.nist.gov/SRD/testsuite.php.

“Abstract interpretation: from principles to applications” – 61/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Competence is very rare

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

1/29/19, 16(04(29) Google Cloud DevOps is hiring! | LinkedIn

Page 1 of 3https://www.linkedin.com/pulse/google-cloud-devops-hiring-doma…=IwAR0OfD-G0X37hjN9E0fK0VvR5vJO0mbManWzQqBbULjiPQ8_ jF908fqx_Ok

Google Cloud DevOps is hiring!
Published on January 8, 2019

Domagoj Babic
Tech Lead & Manager @ Google
2 articles

15 0 1

Job Description:

The DevOps organization is looking for Software Engineers passionate about research and
development of Google-scale deep program analysis tools, based on abstract
interpretation. We are starting a new team that will develop cutting-edge deep Go static
analysis tools and deploy them in production. We are looking for individuals who enjoy
collaborative teamwork, thrive on computationally hard problems, are motivated by impact,
deeply care about software correctness and security, and have a strong academic background
in program analysis.

Responsibilities:

Conceive, research, implement, evaluate, and productionize new analyses

Maintain, debug, optimize, and refactor code

Architect new systems, write tests, and documentation

Support the developers-facing teams who run our tools in production

Minimum qualifications:

 Following

ǳ�#bi`�+i AMi2`T`2i�iBQMǴ Ĝ RRf9d Ĝ Ü SX *QmbQi- Lul- *AJa- *a- JQM/�v kyRN@yR@k3

“Abstract interpretation: from principles to applications” – 62/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some hot topics in ab-
stract interpretation

“Abstract interpretation: from principles to applications” – 63/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

• Blockchain
Víctor Pérez, Maximiliano Klemen, Pedro López-García, José Francisco Morales,
Manuel V. Hermenegildo: Cost Analysis of Smart Contracts Via Parametric
Resource Analysis. SAS 2020: 7-31

• Fairness in neural networks
Caterina Urban, Antoine Miné: A Review of Formal Methods applied to Machine
Learning. CoRR abs/2104.02466 (2021)
Caterina Urban, Maria Christakis, Valentin Wüstholz, Fuyuan Zhang: Perfectly
parallel fairness certification of neural networks. Proc. ACM Program. Lang.
4(OOPSLA): 185:1-185:30 (2020)
Caterina Urban: Static Analysis of Data Science Software. SAS 2019: 17-23

• Quantum computing
Nengkun Yu and Jens Palsberg: Quantum Abstract Interpretation. PLDI 2021.

“Abstract interpretation: from principles to applications” – 64/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

“Abstract interpretation: from principles to applications” – 65/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

For engineers
Introduction to Static Analysis
Xavier Rival and Kwangkeun Yi
MIT Press, 2020

“Abstract interpretation: from principles to applications” – 66/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

For researchers
Principles of Abstract Interpretation
Patrick Cousot
MIT Press, September 21st, 2021

PRINCIPLES OF
ABSTRACT INTERPRETATION

PATRICK COUSOT

“Abstract interpretation: from principles to applications” – 67/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The End, Thank you

“Abstract interpretation: from principles to applications” – 68/81 – © P. Cousot, NYU, New York, Wednesday, June 30th, 2021, 11:00 AM EST.

