Abstract Semantic Dependency

Patrick Cousot

New York University, Courant Institute of Mathematics, Computer Science
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot
Objective
Objective

- Design a dependency analysis by abstract interpretation of a trace semantics.
- \(a \) depends on \(b \) iff changing \(b \) into a different \(b' \) will change \(a \) into a different \(a' \)
- This involves 2 execution traces \(a \rightarrow b \) and \(a' \rightarrow b' \) (i.e. it is not a trace abstraction)
Objective

- Design a dependency analysis by abstract interpretation of a trace semantics.
- \(a \) depends on \(b \) iff changing \(b \) into a different \(b' \) will change \(a \) into a different \(a' \)
- This involves 2 execution traces \(a \to b \) and \(a' \to b' \) (i.e. it is not a trace abstraction)
- Recent work (Mounir Assaf, David A. Naumann, Julien Signoles, Éric Totel, and Frédéric Tronel and Caterina Urban and Peter Müller) suggests abstract interpretation theory must be revisited
Objective

- Design a dependency analysis by abstract interpretation of a trace semantics.
- \(a \) depends on \(b \) iff changing \(b \) into a different \(b' \) will change \(a \) into a different \(a' \)
- This involves 2 execution traces \(a \rightarrow b \) and \(a' \rightarrow b' \) (i.e. it is not a trace abstraction)
- Recent work (Mounir Assaf, David A. Naumann, Julien Signoles, Éric Totel, and Frédéric Tronel and Caterina Urban and Peter Müller) suggests abstract interpretation theory must be revisited
- or not?
Syntax and trace semantics
Syntax and trace semantics

- The syntax is a subset of \(C \) (while programs)
- The semantics is a structural prefix (or maximal) trace semantics \(\langle \pi^{\ell}, \ell \pi' \rangle \in S^* \) (where \(\ell = \text{at}[S] \)) means that an execution reaching the entry point \(\ell \) of program component \(S \) may continue as stated by \(\ell \pi' \).
- Example: Assignment \(S ::= \ell x = A ; \) (where \(\text{at}[S] = \ell \))

\[
S^*[S] \triangleq \{ \langle \pi^{\ell}, \ell \rangle, \langle \pi^{\ell}, \ell \xrightarrow{x=A=\nu} \text{after}[S] \rangle \mid \pi^{\ell} \in T^+ \land \nu = A[J][Q](\pi^{\ell}) \} \quad (0)
\]

\[
S^+[S] \triangleq \{ \langle \pi^{\ell}, \ell \xrightarrow{x=A=\nu} \text{after}[S] \rangle \mid \pi^{\ell} \in T^+ \land \nu = A[J][Q](\pi^{\ell}) \}
\]

\[
S^\infty[S] \triangleq \emptyset \quad \text{no infinite trace}
\]
Informal Requirements for a Semantic Definition of Dependency
Informal Requirements for a Semantic Definition of Dependency

- For simplicity, we consider dependency upon initial states.
- The dependency of variables on initial states is local, at each program point (not global as in [D. E. Denning and P. J. Denning, 1977] or on program exit as in [Assaf, Naumann, Signoles, Totel, and Tronel, 2017; Urban and Müller, 2018]).
- We don't want to make a difference between control and data dependency (as in [D. E. Denning and P. J. Denning, 1977] and their followers).
- We ignore timing channels (as usual in compilation).
- We ignore empty observations (observing nothing at a program point is not an observation).
Formal Semantic Definition of Dependency
Sequence of values of a variable at a program point

- $\text{seqval}[y]^{\ell}(\pi_0, \pi)$ is the sequence of values of the variable y at program point ℓ along the trace π continuing π_0

$$
\text{seqval}[y]^{\ell}(\pi_0, \ell) \triangleq q(\pi_0)y
$$

$$
\text{seqval}[y]^{\ell}(\pi_0, \ell') \triangleq \emptyset \quad \text{when} \quad \ell' \neq \ell
$$

$$
\text{seqval}[y]^{\ell}(\pi_0, \ell \xrightarrow{a} \ell'' \pi) \triangleq q(\pi_0)y \cdot \text{seqval}[y]^{\ell}(\pi_0 \circ \ell \xrightarrow{a} \ell'', \ell'' \pi)
$$

$$
\text{seqval}[y]^{\ell}(\pi_0, \ell' \xrightarrow{a} \ell'' \pi) \triangleq \text{seqval}[y]^{\ell}(\pi_0 \circ \ell' \xrightarrow{a} \ell'', \ell'' \pi) \quad \text{when} \quad \ell' \neq \ell
$$

- (bi-induction: induction for finite traces, co-induction for infinite ones)
Differences between sequences of values of a variable at a program point

- $\text{diff}(\omega, \omega')$ holds if and only if the sequences of value observations ω and ω' at some program point differ by at least one value

\[
\text{diff}(\omega, \omega') \triangleq \exists \omega_0, \omega_1, \nu, \nu'. \omega = \omega_0 \cdot \nu \cdot \omega_1 \land \omega' = \omega_0 \cdot \nu' \cdot \omega_1' \land \nu \neq \nu'
\] \hspace{1cm} (2)

- $\neg\text{diff}(\omega, \omega')$ implies
 - either that $\omega = \omega'$ (no dependency for same futures)
 - or one is a strict prefix of the other (timing channels are abstracted away).

- Change this definition to get alternative concepts of dependency (e.g. timing channels, empty observation, etc.)
Definition of value dependency

- $\Pi \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})$ is a trace semantics
- Properties are represented by sets (of individuals with this property)
- $\Pi \in D^\ell(x, y)$ means that y at ℓ depends on the initial value of x

Definition 1 (Dependency D)

$$D^\ell(x, y) \triangleq \{\Pi \in \wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}) \mid \exists \langle \pi_0, \pi_1 \rangle, \langle \pi'_0, \pi'_1 \rangle \in \Pi \cdot$$

$$\forall z \in V \setminus \{x\}. \varrho(\pi_0)z = \varrho(\pi'_0)z \land$$

$$\text{diff(seqval}_\ell y][\pi_0, \pi_1], \text{seqval}_\ell y][\pi'_0, \pi'_1])\}$$

□
Value dependency flow

- $x \succeq_\ell P y$ iff, at program point ℓ of program P, variable y depends on the initial value of variable x (or the initial value of variable x flows to variable y at program point ℓ)

Definition 2 (Value dependency flow)

$$x \succeq_\ell P y \triangleq (\mathcal{S}^{+\infty}[P] \in \mathcal{D}_\ell(x, y)).$$ \hspace{1cm} (4)

- The use of the prefix trace semantics $\mathcal{S}^*[P]$ is equivalent to that of the maximal trace semantics $\mathcal{S}^{+\infty}[P]$

Lemma 1 (Value dependency for finite prefix traces)

$$x \succeq_\ell P y = (\mathcal{S}^*[P] \in \mathcal{D}_\ell(x, y)).$$ \hspace{1cm} □
Value dependency abstraction

- $\alpha^d(S)$ is the value dependency abstraction of a semantic property $S \in \wp(\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty}))$ is

\[
\alpha^d(S) \triangleq \{\langle x, y \rangle \mid S \subseteq D^\ell \langle x, y \rangle\}
\] \(5 \)

- This a Galois connection $\langle \wp(\wp(\mathbb{T}^+ \times \mathbb{T}^{+\infty})), \subseteq \rangle \leftrightarrow \langle \wp^d, \supseteq^d \rangle$ where

$\wp^d \triangleq L \rightarrow \wp(\wp(\wp(\mathbb{V} \times \mathbb{V})))$ is ordered pointwise

\[
\ell \mapsto \{\langle x, y \rangle \mid x \leadsto^\ell P y\} = \alpha^d(\{S^+\supseteq [P]\}) = \alpha^d(\{S^*\supseteq [P]\})
\]
Exact, definite, and potential value dependency semantics

\[
\begin{align*}
\mathcal{S}_{\text{diff}}[S] & \triangleq \alpha^d(\{\mathcal{S}^+\infty[S]\}) = \alpha^d(\{\mathcal{S}^*[S]\}) \quad \text{exact dependency} \\
\mathcal{S}_{\text{diff}}^\forall[S] & \triangleq \alpha^d(\{\mathcal{S}^+\infty[S]\}) \quad \text{definite dependency} \\
\alpha^d(\{\mathcal{S}^+\infty[S]\}) & \preceq \mathcal{S}_{\text{diff}}^\exists[S] \quad \text{potential dependency} \quad (6)
\end{align*}
\]
Calculational design of the structural potential dependency analysis
Calculational design

- Based on the soundness definition

\[\alpha^d(\{S^*\llbracket S \rrbracket\}) \subseteq \widehat{S}_{\text{diff}}^{\exists} \llbracket S \rrbracket \]

- The finite abstract domain is \(L \rightarrow \wp (V \times V) \) ordered pointwise

- Method
 - by structural induction on program components \(S \)
 - develop \(\alpha^d(\{S^*\llbracket S \rrbracket\}) \) to eliminate the abstraction \(\alpha^d \)
 - over-approximate to eliminate all concrete computations (e.g. value of a test with dead branch)

- A bit more complicated than for DFA since for each program component \(S \), we have to consider any two execution traces of \(S \) (only one for DFA)
Structural static potential value dependency analysis

- assignment $S ::= x = A$;

\[
\begin{align*}
\widehat{S}_{\text{diff}}^\exists [S] \ell & \triangleq (\ell = \text{at}[S] \not\in \forall \\
& \cup (\ell = \text{after}[S] \not\in \forall \{\langle y, x \rangle \mid y \in \widehat{S}_{\text{diff}}^\exists [A] \} \cup \{\langle y, y \rangle \mid y \neq x\} \\
\& \subseteq \emptyset) \\
\widehat{S}_{\text{diff}}^\exists [A] & \triangleq \{y \mid \exists \rho \in \mathbb{E}v . \exists \nu \in \mathbb{V} . \mathcal{A}[A] \rho \neq \mathcal{A}[A] \rho[y \leftarrow \nu] \subseteq \text{vars}[A]\}
\end{align*}
\]
Proof of (10) We consider the case $\ell = \text{after}[S]$. (The cases $\ell = \text{at}[S]$ and $\ell \notin \text{labx}[S]$ are simpler.)

$$\alpha^d(\{S^+ \in \text{at}[S]\}) \text{ after}[S]$$

$$= \alpha^d(\{S^* \in \text{at}[S]\}) \text{ after}[S]$$

$$= \{ \langle x', y \rangle | S^* \in D(\text{after}[S]) \langle x', y \rangle \}$$

$$\text{proof of (5) of } \alpha^d \text{ and def. } \subseteq$$

$$= \{ \langle x', y \rangle | \exists \langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle \in S^* \text{ after}[S] \exists z \in \forall \setminus \{x'\} . q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) = q(\pi'_0)z \land \text{diff}(\text{seqval}[y](\text{after}[S]))(\pi_0, \pi_1)$$

$$\text{def. of prefix finite trace semantics}$$

$$= \{ \langle x', y \rangle | \exists \langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle \in \langle \text{at}[S], \text{at}[S] \rangle \} \xrightarrow{x = A[q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) \text{ after}[S]]} \text{ after}[S] \} . \forall z \in \forall \setminus \{x'\} . q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) = q(\pi'_0)z \land \text{seqval}[y](\text{after}[S])(\pi_0, \pi_1)$$

$$\text{def. of prefix finite trace semantics}$$

$$= \{ \langle x', y \rangle | \exists \langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle \in \langle \text{at}[S], \text{at}[S] \rangle \} \xrightarrow{x = A[q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) \text{ after}[S]]} \text{ after}[S] \} . \forall z \in \forall \setminus \{x'\} . q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) = q(\pi'_0)z \land \text{seqval}[y](\text{after}[S])(\pi_0, \pi_1)$$

$$\text{def. of prefix finite trace semantics}$$

$$= \{ \langle x', y \rangle | \exists \langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle \in \langle \text{at}[S], \text{at}[S] \rangle \} \xrightarrow{x = A[q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) \text{ after}[S]]} \text{ after}[S] \} . \forall z \in \forall \setminus \{x'\} . q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) = q(\pi'_0)z \land \text{seqval}[y](\text{after}[S])(\pi_0, \pi_1)$$

$$\text{def. of prefix finite trace semantics}$$

$$= \{ \langle x', y \rangle | \exists \langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle \in \langle \text{at}[S], \text{at}[S] \rangle \} \xrightarrow{x = A[q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) \text{ after}[S]]} \text{ after}[S] \} . \forall z \in \forall \setminus \{x'\} . q(\langle \pi_0, \pi_1, \pi'_0, \pi'_1 \rangle) = q(\pi'_0)z \land \text{seqval}[y](\text{after}[S])(\pi_0, \pi_1)$$

$$\text{def. of prefix finite trace semantics}$$
\[
\begin{align*}
\{ (x', y) \mid & \exists (\pi_0 at[S], at[S]) \quad x = A[\pi_0 at[S]] \rightarrow \text{after}[S]), \langle \pi_0 at[S], at[S] \rangle \quad x = A[\pi_0 at[S]] \rightarrow \text{after}[S]) \cdot (\forall z \in V \setminus \{x'\} \cdot q(\pi_0 at[S])z = q(\pi_0 at[S])z) \wedge ((q(\pi_0 at[S]))y \neq q(\pi_0 at[S]))y \vee (q(\pi_0 at[S]))y = q(\pi_0 at[S]))y \wedge q(\pi_0 at[S]) \rightarrow \text{after}[S])y \neq q(\pi_0 at[S]) \rightarrow \text{after}[S])(y) \}\end{align*}
\]
\[\text{def. } q\]
\[
\{ (x', y) \mid ((y = x') \vee (y = x \wedge x \in \mathcal{A}[\pi_0 at[S]] \neq \mathcal{A}[\pi_0 at[S]]))\}
\]
\[\text{letting } \rho = q(\pi_0 at[S])\text{ and } \nu = q(\pi_0 at[S])(x') \text{ so that } \forall z \in V \setminus \{x'\} \cdot q(\pi_0 at[S])z = q(\pi_0 at[S])z \text{ implies that } q(\pi_0 at[S]) = \rho[x' \leftarrow \nu].\]
\[
\{ (x', x') \mid x' \neq x \} \cup \{ (x', x) \mid \exists \rho, \nu \cdot \mathcal{A}[\pi_0 at[S]] \neq \mathcal{A}[\pi_0 at[S]]\rho[x' \leftarrow \nu]\}
\]
\[\text{case analysis}\]
\[
\{ (x', x') \mid x' \neq x \} \cup \{ (x', x) \mid x' \in \mathcal{S}_{\text{diff}}^3[\mathcal{A}]\}
\]
\[\text{by defining the functional dependency of an expression } A \text{ as } \mathcal{S}_{\text{diff}}^3[\mathcal{A}] \triangleq \{ x' \mid \exists \rho, \nu \cdot \mathcal{A}[\pi_0 at[S]] \neq \mathcal{A}[\pi_0 at[S]]\rho[x' \leftarrow \nu]\} \text{ in (10)}\]
\[\square\]
Determinacy

- If variables in \(x \in \text{det}(B_1, B_2) \) have different values then \(B_1 \) and \(B_2 \) cannot both be true.

i.e. if \(B_1 \) and \(B_2 \) are both true then the values of variables \(x \in \text{det}(B_1, B_2) \) are the same

\[
\text{det}(B_1, B_2) \subseteq \{ x | \forall \rho, \rho'. (B_1^\rho \land B_2^{\rho'}) \Rightarrow (\rho(x) = \rho'(x)) \} \tag{13}
\]

e.g. \(\text{det}(x=1, x=1 \land y=42) = \{x\} \)

- The values of variables in \(\text{det}(B, B) \) are determined by the veracity of \(B \)

\[
\text{det}(B, B) \subseteq \{ x | \forall \rho, \rho'. (B^\rho \land B^{\rho'}) \Rightarrow (\rho(x) = \rho'(x)) \}
\]

e.g. \(\text{det}(x=y \land z=42, x=y \land z=42) = \{z\} \)
Non-determinacy:

- Variables in $x \in \text{nondet}(B_1, B_2)$ do not change the veracity of B_1 and B_2

 $$\text{nondet}(B_1, B_2) \supseteq \forall \setminus \text{det}(B_1, B_2)$$
 $$\supseteq \{x \mid \exists \rho, \rho'. \mathcal{B}[B_1] \rho \land \mathcal{B}[B_2] \rho' \land \rho(x) \neq \rho'(x)\}$$

 e.g. $\text{nondet}(x=1, x=1 \land y=42) = \{y\}$

- The values of variables in $x \in \text{nondet}(B, B)$ are not determined by the veracity of B

 $$\text{nondet}(B, B) \supseteq \{x \mid \exists \rho, \rho'. \mathcal{B}[B] \rho \land \mathcal{B}[B] \rho' \land \rho(x) \neq \rho'(x)\}$$

 e.g. $\text{det}(x=y \land z=42, x=y \land z=42) = \{x, y\}$
Structural static potential value dependency analysis (cont’d)

- conditional $S ::= \text{if } (B) \ S_t$

$$\widehat{\mathcal{S}}_{\text{diff}}^3 [S] \ell \triangleq (\ell = \text{at}[S] \ ? 1_¥$$

$$\ | \ell \in \text{in}[S_t] \ ? \widehat{\mathcal{S}}_{\text{diff}}^3 [S_t] \ell | \ \text{nondet}(B, B)$$

$$\ | \ell = \text{after}[S] \ ? \widehat{\mathcal{S}}_{\text{diff}}^3 [S_t] \ \text{after}[S_t] \ | \ \text{nondet}(B, B)$$

$$\bigcup \ 1_¥ | \ \text{nondet}(\neg B, \neg B)$$

$$\bigcup \ \text{nondet}(\neg B, \neg B) \times \text{mod}[S_t]$$

$$\vdots \emptyset$$

$mod[S_t]$ is the set of variables that may be modified by S_t

1) is left restriction

"Abstract Semantic Dependency" – 22/40 –
Example

- \(S ::= \ell \; L = H \; \ell' \)
 \[\hat{\mathcal{S}}_{\text{diff}}^3 [S] \; \ell = \{ \langle L, L \rangle, \langle H, H \rangle \} \]
 \[\hat{\mathcal{S}}_{\text{diff}}^3 [S] \; \ell' = \{ \langle H, L \rangle \} \cup \{ \langle H, H \rangle \}. \]

- \(S' ::= \{ \text{if} \; \ell_1 (H) \; \ell_2 \; L = H \; \ell_3 \; \text{else} \; \ell_4 \; L = H \; \ell_5 \} \}\ell_6 \)
 \[\text{nondet}(H, H) = \text{nondet}(\neg H, \neg H) = \{ L \} \]
 \[\hat{\mathcal{S}}_{\text{diff}}^3 [S'] \; \ell_1 = \{ \langle L, L \rangle, \langle H, H \rangle \} \]
 \[\hat{\mathcal{S}}_{\text{diff}}^3 [S'] \; \ell_2 = \hat{\mathcal{S}}_{\text{diff}}^3 [S'] \; \ell_4 = \{ \langle L, L \rangle \} \]
 \[\hat{\mathcal{S}}_{\text{diff}}^3 [S'] \; \ell_3 = \hat{\mathcal{S}}_{\text{diff}}^3 [S'] \; \ell_5 = \{ \langle H, H \rangle \} \]
 \[\hat{\mathcal{S}}_{\text{diff}}^3 [S'] \; \ell_6 = \{ \langle H, L \rangle \} \cup \{ \langle H, H \rangle \} \]
Structural static potential value dependency analysis (cont’d)

- statement list $Sl ::= Sl' S$

\[
\tilde{S}_{\text{diff}}^{\exists}[Sl] \; \ell \triangleq (\ell \in \text{labx}[Sl'] ? \tilde{S}_{\text{diff}}^{\exists}[Sl'] \; \ell
\]
\[
\quad \mid \ell \in \text{labx}[S] \setminus \{\text{at}[S]\} ? \tilde{S}_{\text{diff}}^{\exists}[Sl'] \; \text{at}[S] \; \ell
\]
\[
\quad \triangledown \emptyset
\]

(16.a)

where $r_1 \triangledown r_2 \triangleq \{\langle x, y \rangle \mid \exists z. \langle x, z \rangle \in r_1 \land \langle z, y \rangle \in r_2\}$.

(16.b)
Structural static potential value dependency analysis (cont’d)

- iteration $S ::= \text{while } \ell \ (B) \ S_b$

\[
\widehat{S}_{\text{diff}}^\exists \cdot [S] \ \ell' = (\text{lfp}^\exists F_{\text{diff}}^\exists [\text{while } \ell \ (B) \ S_b]) \ \ell'
\]

\[
F_{\exists}^\text{diff} [\text{while } \ell \ (B) \ S_b] \ X \ \ell' =
\begin{cases}
\ell' = \ell \ ? \ 1 \lor (X(\ell) \ ? (\widehat{S}_{\text{diff}}^\exists [S_b] \ \ell' \] \ \text{nondet}(B, B))) \\
\ell' \in \text{in}[S_b] \ ? X(\ell) \ ? (\widehat{S}_{\text{diff}}^\exists [S_b] \ \ell' \] \ \text{nondet}(B, B)) \\
\ell' = \text{after}[S] \ ? X(\ell) \lor (X(\ell) \ ? (V \times \text{mod}[S_b])) \lor \\
X(\ell) \ ? \left(\left(\bigcup_{\ell'' \in \text{breaks-of}[S_b]} \widehat{S}_{\text{diff}}^\exists [S_b] \ \ell''\right)\ \text{nondet}(B, B)\right)
\end{cases}
\]

\[
: \emptyset
\]
Reduced product with a relational value analysis
Structural compositionality

In the following statement, \(x \) and \(y \) at \(\ell_1 \) depend on \(x \) at \(\ell_0 \)

\[\ell_0 \ y = x \ ; \ \\
\ell_1 \]

In the following statement, \(x \) and \(y \) at \(\ell_2 \) depend on \(x \) at \(\ell_1 \)

\[\ell_1 \ y = y-x \ ; \ \\
\ell_2 \]

In the sequential composition of the two statements

\[
/* \ x = x_0, y = y_0 */
\]

\[\ell_0 \ y = x \ ; \\
\ell_1 \ y = y-x \ ; \\
\ell_2 \]

\(y \) at \(\ell_2 \) depends on \(x \) at \(\ell_1 \) which depends on \(x \) at \(\ell_0 \).

By composition, \(y \) at \(\ell_2 \) depends on \(x \) at \(\ell_0 \).

However, \(y = 0 \) at \(\ell_2 \) so \(y \) at \(\ell_2 \) does not depend on \(x \) at \(\ell_0 \).
Structural compositionality (cont’d)

In the following statement, \(x \) and \(y \) at \(\ell_1 \) depend on \(x \) at \(\ell_0 \)
\[
\ell_0 \ y = x ; \\
\ell_1 \ y = y-x ; \\
\ell_2
\]

In the following statement, \(x \) and \(y \) at \(\ell_2 \) depend on \(x \) at \(\ell_1 \)
\[
\ell_1 \ y = y-x ; \\
\ell_2 \ y = y-x ; \\
\ell_2
\]

In the sequential composition of the two statements
\[
\ell_0 \ y = x ; \\
\ell_1 \ y = y-x ; \\
\ell_2
\]

\(y \) at \(\ell_2 \) depends on \(x \) at \(\ell_1 \) which depends on \(x \) at \(\ell_0 \).

By composition, \(y \) at \(\ell_2 \) depends on \(x \) at \(\ell_0 \).

However, \(y = 0 \) at \(\ell_2 \) so \(y \) at \(\ell_2 \) does not depend on \(x \) at \(\ell_0 \).

\(\implies \) reduced product with a value analysis (here Karr linear equalities)
Dye instrumented semantics
Dye analysis in hydrology

When a river is lost in the ground (e.g. la perte du Gour de Champlive in France)

a dye analysis with fluorescein can be used to discover its resurgences
Dye instrumented semantics

- The initial values of the variables are colored with different colors
- The initial color of a variable can be the variable name
- The dye instrumented semantics is sound iff it associates to each variable y and program point ℓ the set of colors/variables x upon which is depends

$$\{x \mid S^{+\infty}[p] \in D\ell\langle x, y \rangle\}$$

- Better approach than postulating the dye instrumented semantics [Cheney, Ahmed, and Acar, 2011] (e.g. the mix of colors at tests and assignments can be postulated arbitrarily)
Tracking analysis

- Partition the variables V into racked T and untracked U variables ($V = T \cup U$ and $T \cap U = \emptyset$)

- Tracking abstraction $\alpha^T(D)$ of a dependency property $D \in \mathcal{L} \rightarrow \wp(V \times V)$

\[
\alpha^T(D)^{\ell} \triangleq \{y \mid \exists x \in T. \langle x, y \rangle \in D^{(\ell)}\}
\]

- Sound tracking analysis

\[
S^T[S] \supseteq \alpha^T(\alpha^d(\{S^{+\infty}[S]\}))
\]

- Examples: taint analysis in privacy/security checks [Ferrara, Olivieri, and Spoto, 2018; Spoto, Burato, Ernst, Ferrara, Lovato, Macedonio, and Spiridon, 2019] (tracked is tainted, untracked is untainted); binding time analysis in offline partial evaluation [Hatcliff, 1998] (tracked is dynamic, untracked is static) and absence of interference [Bowman and Ahmed, 2015; Goguen and Meseguer, 1984; Heinze and Turker, 2018; Lourenço and Caires, 2015; Volpano, Irvine, and Smith, 1996] (tracked is high (private/untrusted), untracked is low (public/trusted)).
Conclusion
Conclusion

• The dependency analysis is not postulated but derived formally by abstract interpretation of the trace semantics.

• No need for extra notions like (hyper)"properties [Assaf, Naumann, Signoles, Totel, and Tronel, 2017], non-standard abstract interpretation [Urban and Müller, 2018], postulated instrumented semantics [Ørbæk, 1995, Sect. 4], multisemantics [Cabon and Schmitt, 2017], monadic reification [Grimm, Maillard, Fournet, Hritcu, Maffei, Protzenko, Ramananandro, Rastogi, Swamy, and Béguelin, 2018], etc.

References II

References III

The End, Thank you