Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation

Patrick Cousot
Courant Institute, New York University

Objective

Method to design program transformational logics

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)
2. Define the theory of the logics as an abstraction $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ of the collecting semantics $\left\{\llbracket S \rrbracket_{\perp}\right\}$ (strongest (hyper) property)

Theory of a logic $=$ the subset of all true formulas

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)
2. Define the theory of the logics as an abstraction $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ of the collecting semantics $\left\{\mathbb{[} \mathrm{S} \mathbb{1}_{\perp}\right\}$ (strongest (hyper) property)
3. Calculate the theory $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ in structural fixpoint form by fixpoint abstraction

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)
2. Define the theory of the logics as an abstraction $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ of the collecting semantics $\left\{\mathbb{I} S \mathbb{1}_{\perp}\right\}$ (strongest (hyper) property)
3. Calculate the theory $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ in structural fixpoint form by fixpoint abstraction
4. Calculate the proof system by fixpoint induction and Aczel correspondence between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Two simple examples*:

Hoare (HL) and reverse Hoare aka incorrectness (IL) logics

not in the paper (where the examples are more complicated).

General Idea

HL = strongest postcondition abstraction of the collecting semantics

+ over approximating consequence abstraction
+ over approximating fixpoint induction
+ Aczel correspondence fixpoint \leftrightarrow proof system

General Idea

HL = strongest postcondition abstraction of the collecting semantics

+ over approximating consequence abstraction
+ over approximating fixpoint induction
+ Aczel correspondence fixpoint \leftrightarrow proof system

IL = strongest postcondition abstraction of the collecting semantics

+ under approximating consequence abstraction
+ under approximating fixpoint induction
+ Aczel correspondence fixpoint \leftrightarrow proof system
theory
proof system
theory
proof system

I. Angelic relational semantics $\llbracket S \rrbracket^{e}$

- Syntax*:

$$
S \in \mathbb{S}::=x=A|\operatorname{skip}| S ; S \mid \text { if (B) S else } S \mid \text { while (B) } S|x=[a, b]| \text { break }
$$

- States: Σ

ends

- Angelic relational semantics: $\llbracket S \rrbracket^{e} \in \wp(\Sigma \times \Sigma)$

I. Angelic relational semantics 【S】 (in deductive form)

- Notations using judgements:
- $\sigma \vdash \mathrm{S} \stackrel{e}{\Rightarrow} \sigma^{\prime}$ for $\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket^{e}$
- $\sigma \vdash$ while(B$) \mathrm{S} \stackrel{i}{\Rightarrow} \sigma^{\prime}$ for σ leads to σ^{\prime} after 0 or more iterations

I. Angelic relational semantics $\llbracket S \rrbracket$ (in deductive form)

- Notations using judgements:
- $\sigma \vdash \mathrm{S} \stackrel{e}{\Rightarrow} \sigma^{\prime}$ for $\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket^{e}$
- $\sigma \vdash$ while(B$) \mathrm{S} \stackrel{i}{\Rightarrow} \sigma^{\prime}$ for σ leads to σ^{\prime} after 0 or more iterations
- Semantics of the conditional iteration* $W=$ while(B) S :
(a) $\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma$
(b) $\frac{\mathcal{B} \llbracket \mathrm{B} \rrbracket \sigma, \quad \sigma \vdash \mathrm{S} \stackrel{e}{\Rightarrow} \sigma^{\prime}, \quad \sigma^{\prime} \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma^{\prime \prime}}{\sigma \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma^{\prime \prime}}$

$$
\begin{equation*}
\text { (a) } \frac{\sigma \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma^{\prime}, \quad \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket \sigma^{\prime}}{\sigma \vdash \mathrm{W} \stackrel{e}{\Rightarrow} \sigma^{\prime}} \tag{2}
\end{equation*}
$$

I. Angelic relational semantics $\llbracket S \rrbracket$ (in fixpoint form)

- Semantics of the conditional iteration* $W=$ while(B) S :

$$
\begin{align*}
F^{e}(X) & \triangleq \operatorname{id} \cup\left(\llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e} ;(X), \quad X \in \wp(\Sigma \times \Sigma)\right. & \tag{49}\\
\llbracket \text { while }(\mathrm{B}) \mathrm{S} \rrbracket^{e} & \left.\triangleq \mathrm{Ifp}^{\subseteq} F^{e} ; \llbracket\right\urcorner \mathrm{B} \rrbracket & \text { (no break) } \tag{51}
\end{align*}
$$

- Derived using Aczel correspondence between deductive systems and settheoretic fixpoints, see Ex. II.5.I

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system : $R=\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}, \quad R \in \wp\left(\wp \wp_{\mathrm{fin}}(\mathcal{U}) \times \mathcal{U}\right)$

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system : $R=\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}, \quad R \in \wp\left(\wp \wp_{\mathrm{fin}}(\mathcal{U}) \times \mathcal{U}\right)$
- Subset of the universe \mathcal{U} defined by R :

$$
\begin{aligned}
& \left\{t_{n} \in \mathcal{U} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathcal{U} . \forall k \in[1, n] . \exists \frac{P}{c} \in R . P \subseteq\left\{t_{1}, \ldots, t_{k-1}\right\} \wedge t_{k}=c\right\} \\
& =\quad \operatorname{Ifp}{ }^{\subseteq} F(R) \\
& F(R) X \triangleq\left\{c \left\lvert\, \exists \frac{P}{c} \in R . P \subseteq X\right.\right\} \\
& \leftarrow \text { model theoretic (gfp for coinduction) } \\
& \leftarrow \text { consequence operator }
\end{aligned}
$$

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system : $R=\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}, \quad R \in \wp\left(\wp \wp_{\mathrm{fin}}(\mathcal{U}) \times \mathcal{U}\right)$
- Subset of the universe \mathcal{U} defined by R :

$$
\left.\begin{array}{rlrl}
& \left\{t_{n} \in \mathcal{U} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathcal{U} .\right. & \left.\forall k \in[1, n] \cdot \exists \frac{P}{c} \in R . P \subseteq\left\{t_{1}, \ldots, t_{k-1}\right\} \wedge t_{k}=c\right\}
\end{array}\right] \begin{array}{ll}
\text { Ifp } \subseteq F(R) & \leftarrow \text { model theoretic (gfp for coinduction) } \\
F(R) X \triangleq\left\{c \left\lvert\, \exists \frac{P}{c} \in R . P \subseteq X\right.\right\} & \\
\cong \text { consequence operator }
\end{array}
$$

- Deductive system defining Ifp $^{\subseteq} F: \quad R_{F} \triangleq\left\{\left.\frac{P}{c} \right\rvert\, P \subseteq \mathcal{U} \wedge c \in F(P)\right\}$

2. Abstraction (much simplified)

- The composition of these abstractions is

- This is an oversimplification of Fig. I of the paper, forgetting about nontermination including total correctness and relational predicates

2. Abstraction (much simplified)

- Hyper properties to properties abstraction:

$$
\langle\wp(\wp(\Sigma \times \Sigma)), \subseteq\rangle \underset{\alpha_{C}}{\stackrel{\gamma C}{\leftrightarrows}}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \quad \alpha_{C}(P) \triangleq \bigcup P
$$

$$
\gamma_{C}(S) \triangleq \wp(S)
$$

2. Abstraction (much simplified)

- Hyper properties to properties abstraction:

$$
\begin{equation*}
\langle\wp(\wp(\Sigma \times \Sigma)), \subseteq\rangle \stackrel{\alpha_{C}}{\leftrightarrows}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \quad \alpha_{C}(P) \triangleq \bigcup P \tag{C}
\end{equation*}
$$

- Post-image isomorphism:

$$
\begin{aligned}
\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \underset{\text { post }}{\leftrightarrows}\langle\wp(\Sigma) \rightarrow \wp(\Sigma), \subseteq\rangle & \operatorname{post}(R) \triangleq \lambda P \cdot\left\{\sigma^{\prime} \mid \exists \sigma \in P \wedge\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\} \\
& \widetilde{\operatorname{pre}}(R) \triangleq \lambda X \cdot\left\{\sigma \mid \forall \sigma^{\prime} \in Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\}
\end{aligned}
$$

2. Abstraction (much simplified)

- Hyper properties to properties abstraction:

$$
\langle\wp(\wp(\Sigma \times \Sigma)), \subseteq\rangle \underset{\alpha_{C}}{\gamma_{C}}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \quad \alpha_{C}(P) \triangleq \bigcup P
$$

$$
\gamma_{C}(S) \triangleq \wp(S)
$$

- Post-image isomorphism:

$$
\begin{aligned}
\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \stackrel{\text { post }}{\leftrightarrows}\langle\wp(\Sigma) \rightarrow \wp(\Sigma), \subseteq\rangle & \operatorname{post}(R) \triangleq \lambda P \cdot\left\{\sigma^{\prime} \mid \exists \sigma \in P \wedge\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\} \\
& \widetilde{\operatorname{pre}}(R) \triangleq \lambda X \cdot\left\{\sigma \mid \forall \sigma^{\prime} \in Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\}
\end{aligned}
$$

- Graph isomorphism (a function is isomorphic to its graph, which is a function relation):.../...

$$
\begin{aligned}
\langle\wp(\Sigma) \rightarrow \wp(\Sigma),=\rangle \underset{\alpha_{\mathrm{G}}}{\leftrightarrows} & \wp_{\mathrm{fun}}(\wp(\Sigma) \times \wp(\Sigma)), \Rightarrow \\
& f \in \wp(\Sigma) \rightarrow \wp(\Sigma) \\
& \alpha_{\mathrm{G}}(f)=\{\langle P, f(P)\rangle \mid P \in \wp(\Sigma)\} \\
& \gamma_{\mathrm{G}}(R) \triangleq \lambda P \cdot(Q \text { such that }\langle P, S\rangle \in R)
\end{aligned}
$$

2. Abstraction (much simplified)

- Strongest postcondition logic theory (common to HL and IL with no consequence rule):

$$
\begin{aligned}
\mathcal{T}(\mathrm{s}) & \triangleq \alpha_{\mathrm{G}} \circ \text { post } \circ \alpha_{C}(\{\llbracket \mathrm{~s} \rrbracket\}) \\
& =\{\langle P, \operatorname{post} \llbracket \mathrm{~s} \rrbracket P\rangle \mid P \in \wp(\Sigma)\}
\end{aligned}
$$

2. Abstraction (much simplified)

- Strongest postcondition logic theory (common to HL and IL with no consequence rule):

$$
\begin{aligned}
\mathcal{T}(\mathrm{s}) & \triangleq \alpha_{\mathrm{G}} \circ \text { post } \circ \alpha_{C}(\{\llbracket \mathrm{~s} \rrbracket\}) \\
& =\{\langle P, \text { post } \llbracket \mathrm{s} \rrbracket P\rangle \mid P \in \wp(\Sigma)\}
\end{aligned}
$$

- Notation: $\{P\} \mathrm{s}\{Q\} \triangleq\langle P, Q\rangle \in \mathcal{T}(\mathrm{s})$
- The next step is to express this theory in fixpoint form

2. Abstraction (much simplified)

- The abstraction of a fixpoint is a fixpoint (POPL 79)

Theorem II. 2.1 (Fixpoint abstraction). If $\langle C, \sqsubseteq\rangle \underset{\alpha}{\leftrightarrows}\langle A, \leq\rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq\rangle$ and $\langle A, \preceq\rangle, f \in C \xrightarrow{i} C$ and $\bar{f} \in A \xrightarrow{i} A$ are increasing and commuting, that is, $\alpha \circ f=\bar{f} \circ \alpha$, then $\alpha\left(\operatorname{Ifp}^{\sqsubseteq} f\right)=\operatorname{Ifp}^{\leq} \bar{f}$ (while semi-commutation $\alpha \circ f \leq \bar{f} \circ \alpha$ implies $\left.\alpha\left(\operatorname{lfp}^{〔} f\right) \leq \operatorname{Ifp}^{\leq} \bar{f}\right)$.

2. Abstraction (much simplified)

- The abstraction of a fixpoint is a fixpoint (POPL 79)

Theorem II.2.1 (Fixpoint abstraction). If $\langle C, \sqsubseteq\rangle \stackrel{\diamond}{\leftrightarrows}\langle A, \leq\rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq\rangle$ and $\langle A, \leq\rangle, f \in C \xrightarrow{i} C$ and $\bar{f} \in A \xrightarrow{i} A$ are increasing and commuting, that is, $\alpha \circ f=\bar{f} \circ \alpha$, then $\alpha\left(\operatorname{Ifp}{ }^{\sqsubseteq} f\right)=\operatorname{Ifp}^{\leq} \bar{f}$ (while semi-commutation $\alpha \circ f \leq \bar{f} \circ \alpha$ implies $\left.\alpha\left(\operatorname{lfp}^{〔} f\right) \leq \operatorname{Ifp}^{\leq} \bar{f}\right)$.

- We get a fixpoint definition of the theory of strongest postconditions logics (common to HL and IL with no consequences at all)
- For the iteration $W=$ while (B) S :
$\mathcal{T}(\mathrm{W}) \triangleq\left\{\left\langle P, \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\mid \mathrm{Ifp}{ }^{\subseteq} \lambda X \cdot P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \stackrel{q}{ } \llbracket \rrbracket^{e}\right) X\right)\right\rangle \mid P \in \wp(\Sigma)\right\}$

1 PROPERTIES OF STRONGEST POSTCONDITIONS

Lemma $1.1($ Composition). $\operatorname{post}(X ; Y)=\operatorname{post}(Y) \circ \operatorname{post}(X)$
Proof of Lem. 1.1.
$\operatorname{post}(X ; Y)$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime \prime}\right\rangle \in X ; Y\right\} \quad$ 2def. post $\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma \in P \cdot \exists \sigma^{\prime} \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in X \wedge\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\} \quad$ 2def. $\left.\%\right\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} \cdot \sigma^{\prime} \in\left\{\sigma^{\prime} \mid \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in X\right\} \wedge\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} \in \operatorname{post}(X) P \cdot\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$
$=\lambda P \cdot \operatorname{post}(Y)(\operatorname{post}(X) P)$
$=\operatorname{post}(Y) \circ \operatorname{post}(X)$
(def. function composition
Lemma 1.2 (Test). post $\llbracket \mathrm{B} \rrbracket P=P \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket$.
Proof of Lem. 1.2.
post $\llbracket \mathbb{B} \rrbracket P$
$=\left\{\sigma^{\prime} \mid \exists \sigma \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{B} \rrbracket\right\}$
2def. post)
$=\{\sigma \mid \sigma \in P \wedge \sigma \in \mathcal{B}[\mathrm{~B}]\}$
2def. $\llbracket \mathrm{B} \rrbracket \triangleq\{\langle\sigma, \sigma\rangle \mid \sigma \in \mathcal{B} \llbracket \mathbb{B} \rrbracket\}$
$=P \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket$ \{def. intersection $\cup\}^{\square}$
Lemma 1.3 (Strongest postcondition). $\mathcal{T}(\mathrm{s})=\alpha_{\mathrm{G}} \circ$ post $\llbracket \mathrm{s} \rrbracket=\{\langle P$, post $\llbracket \mathrm{s} \rrbracket P\rangle \mid P \in \wp(\Sigma)\}$.
Proof of Lem. 1.3.
\mathcal{T} (s)
$=\alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{\neq} \circ \alpha_{C}\left(\left\{\llbracket \mathrm{~s} \rrbracket_{\perp}\right\}\right) \quad \quad$ def. $\left.\mathcal{T}\right\}$
$=\alpha_{G} \circ$ post $\circ \alpha_{f}\left(\llbracket \mathrm{~S} \rrbracket_{\perp}\right)$
(def. α_{C}
$=\alpha_{G} \circ \operatorname{post}\left(\llbracket s \rrbracket_{\perp} \cap(\Sigma \times \Sigma)\right)$
$=\alpha_{G} \circ$ post $\llbracket \mathrm{s} \rrbracket$
def. (1) of the angelic semantics $[s]$
$=\left\{\langle P\right.$, post $\left.\llbracket \S \rrbracket P\rangle \mid P \in_{\wp}(\Sigma)\right\}$
2 def. $\left.\alpha_{G}\right\} \quad \square$
Lemma 1.4 (Strongest postcondition over approximation).
$\mathcal{T}_{\mathrm{HL}}(\mathrm{s}) \xlongequal{\varrho} \operatorname{post}(\mathrm{I} . \subseteq) \circ \mathcal{T}(\mathrm{s})=\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q\}=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s})$
Proof of Lem. 1.4.
$\operatorname{post}($ ㄹ. $\subseteq) \circ \mathcal{T}(\mathrm{s})$
$=\operatorname{post}(\mathcal{Z . S})(\mathcal{T}(\mathrm{s})) \quad$ (def. function composition 0)
$=\operatorname{post}(\beth . \subseteq)(\{\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\}) \quad$ LLem. 1.3
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P\right.$, post $\left.\llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\} .\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in \supseteq . \subseteq\right\} \quad$ 2def. (10) of post ς
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\left\langle\langle P\right.\right.$, post $\left.\left.\llbracket \varsigma \rrbracket P\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in \mathcal{Z} . \subseteq\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle \supseteq . \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\}$
2def. ϵ)
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P \supseteq P^{\prime} \wedge\right.$ post $\left.\llbracket \varsigma \rrbracket P \subseteq Q^{\prime}\right\} \quad$ 2def. $\supseteq . \subseteq$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P^{\prime} \subseteq P \wedge \operatorname{post} \llbracket \S \rrbracket P \subseteq Q^{\prime}\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid\right.$ post $\left.\llbracket \leq \rrbracket P^{\prime} \subseteq Q^{\prime}\right\}$
(ธ) by Galois connection (12), post is increasing so that $P^{\prime} \subseteq P \wedge$ post $\llbracket \rrbracket \rrbracket P \subseteq Q^{\prime}$ implies post $\llbracket \mathrm{s} \rrbracket P^{\prime} \subseteq$ post $\llbracket \mathrm{s} \rrbracket P \wedge$ post $\llbracket \varsigma \rrbracket P \subseteq Q^{\prime}$ hence post $\llbracket \mathrm{s} \rrbracket P^{\prime} \subseteq Q^{\prime}$ by transitivity; post $\left(\underline{)}\right.$ take $P=P^{\prime} \oint$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P^{\prime}=P \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket P \subseteq Q^{\prime}\right\}$
2def. $=$ S
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle=, \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\}$
2def. $=, \subseteq$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P \cdot\left\langle\langle P\right.\right.$, post $\left.\left.\llbracket \rrbracket \rrbracket P\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \epsilon=, \subseteq\right\} \quad$ 2def. ϵ
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P, \operatorname{post} \llbracket \mathrm{~S} \rrbracket P\rangle \mid P \in \wp(\Sigma)\} \cdot\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\}$
2def. ϵ)
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in \mathcal{T}(\mathrm{s}) \cdot\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\}$
(Lem. 1.3)
$=\operatorname{post}(=, \subseteq)(\mathcal{T}(\mathrm{s}))$
2def. (10) of post
$=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s})$
(def. function composition of
For simplicity, we consider conditional iteration $W=$ while (B) S with no break
Lemma 1.5 (Commutation). post $\circ F^{\prime e}=\bar{F}^{e} \circ$ post where $\bar{F}^{e}(X) \triangleq \operatorname{id} \dot{\cup}\left(\operatorname{post}\left(\llbracket \mathbb{B} \rrbracket ; \llbracket \llbracket \rrbracket \rrbracket^{e}\right) \circ X\right)$ and $F^{\circ N} \xlongequal{=} \lambda X \cdot \mathrm{id} \cup\left(X ;[\mathrm{B}] ;[\mathrm{S}]^{n}\right), X \in \wp(\Sigma \times \Sigma)$ by (70).
Proof of Lem. 1.5.
$\operatorname{post}\left(F^{\prime e}(X)\right)$
2 where $X \in \wp(\Sigma) S$

$=\operatorname{post}($ id $) \dot{\cup} \operatorname{post}\left(X ; \llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{G} \rrbracket^{e}\right) \quad$ 2join preservation in Galois connection (12)

def. post and composition Lem. 1.15
$=\bar{F}^{e}(\operatorname{post}(X))$
2def. $\bar{F}^{e} \mathrm{~S}$
Lemma 1.6 (Pointwise commutation). $\forall X \in \wp(\Sigma) \rightarrow \wp(\Sigma) \cdot \forall P \in \wp(\Sigma) \cdot \bar{F}^{e}(X) P \triangleq \overline{\bar{F}}_{P}^{e}(X(P))$ where $\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathbb{B} \rrbracket ; \llbracket \llbracket \rrbracket^{e}\right) X$.

Proof of Lem. 1.6.

$\bar{F}^{e}(X) P$
$=\left(\right.$ id $\dot{\cup}\left(\operatorname{post}\left(\left[\mathrm{B} \rrbracket q \llbracket \mathrm{~s} \rrbracket^{e}\right) \circ X\right)\right) P$
$=\operatorname{id}(P) \cup\left(\operatorname{post}\left(\llbracket \mathbb{B} \rrbracket \circ \llbracket \llbracket \rrbracket^{e}\right) \circ X\right)(P)$
$=P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \mathrm{q} \rrbracket^{e}\right)(X(P))$
$=\overline{\bar{F}}_{P}^{e}(X(P))$
id and function application
 $\overline{\bar{F}}_{p}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{ } \llbracket \mathrm{~s} \rrbracket^{e}\right) X$.

Proof of Th. 1.7

post【W】
$=\operatorname{post}\left(\mid f \mathrm{ff}^{\varsigma} F^{e}{ }_{9} \llbracket \neg \mathrm{~B} \rrbracket\right) \quad$ 2def. (49) of $\llbracket \mathbb{W} \rrbracket$ in absence of break
$=\operatorname{post} \llbracket \rightarrow \mathrm{B} \rrbracket \circ \operatorname{post}\left(I \mathrm{Ifp} \mathrm{F}^{\varsigma}\right) \quad \quad$ 2composition Lem. 1.1
$=\operatorname{post} \llbracket\urcorner \mathrm{B} \rrbracket \circ \operatorname{post}\left(\mid \mathrm{If}{ }^{\varsigma} F^{\prime e}\right) \quad \quad$ since $\operatorname{Ifp}{ }^{\varsigma} F^{e}=\operatorname{Ifp}{ }^{\varsigma} F^{\prime e}$ in $\left.(70)\right\}$
$=\operatorname{post} \llbracket\urcorner \mathrm{B} \rrbracket\left(\operatorname{Ifp}{ }^{\varsigma} \bar{F}^{e}\right) \quad$ 2commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2
$=\operatorname{post}\left[\neg B \rrbracket \vee \lambda P \cdot \mid f p^{\mathrm{s}} \overline{\hat{F}}_{P}^{e}\right.$
Conouny 18 (Contise corination Len. 1.6 and poit wise abstraction Cor. If.2.2)

Proof of Cor. 1.8.

$\mathcal{T}(w)$

$=\alpha_{G} \circ \operatorname{post}([\mathbb{W}])$
$=\alpha_{\mathrm{G}} \circ \operatorname{post}[\llbracket \mathrm{B}] \circ \lambda P \cdot \mid \mathrm{fp} \mathrm{c}^{\mathrm{s}} \overline{\bar{F}}_{P}^{e}$

3. Approximation

- The component wise approximation:

$$
\langle x, y\rangle \sqsubseteq, \leq\left\langle x^{\prime}, y^{\prime}\right\rangle \triangleq x \sqsubseteq x^{\prime} \wedge y \leq y^{\prime}
$$

3. Approximation

- The component wise approximation:

$$
\langle x, y\rangle \sqsubseteq, \leq\left\langle x^{\prime}, y^{\prime}\right\rangle \triangleq x \sqsubseteq x^{\prime} \wedge y \leq y^{\prime}
$$

- The over approximation abstraction for HL :

$$
\begin{aligned}
\operatorname{post}(\subseteq, \supseteq) & =\lambda R \cdot\left\{\langle P, Q\rangle \mid \exists\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R \cdot P \subseteq P^{\prime} \wedge Q^{\prime} \subseteq Q\right\} \\
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) & \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})
\end{aligned}
$$

3. Approximation

- The component wise approximation:

$$
\langle x, y\rangle \sqsubseteq, \leq\left\langle x^{\prime}, y^{\prime}\right\rangle \triangleq x \sqsubseteq x^{\prime} \wedge y \leq y^{\prime}
$$

- The over approximation abstraction for HL :

$$
\begin{aligned}
\operatorname{post}(\subseteq, \supseteq) & =\lambda R \cdot\left\{\langle P, Q\rangle \mid \exists\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R \cdot P \subseteq P^{\prime} \wedge Q^{\prime} \subseteq Q\right\} \\
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) & \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})
\end{aligned}
$$

- The (order dual) under approximation abstraction for IL:

$$
\begin{aligned}
\operatorname{post}(\beth, \subseteq) & =\lambda R \cdot\left\{\langle P, Q\rangle \mid \exists\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R \cdot P^{\prime} \subseteq P \wedge Q \subseteq Q^{\prime}\right\} \\
\mathcal{T}_{R L}(\mathrm{~s}) & \triangleq \operatorname{post}(\subseteq, \supseteq) \circ \mathcal{T}(\mathrm{s})
\end{aligned}
$$

- Shows what it shared by HL and IL: all but the consequence rule (?)

4. Fixpoint induction

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL

4. Fixpoint induction

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL
- But then the HL proof system for iteration would be
I. Prove strongest postconditions (>>>>>>> total correctness)

2. Approximate with a consequence rule to get partial correctness

- This is sound and complete

4. Fixpoint induction

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL
- But then the HL proof system for iteration would be
I. Prove strongest postconditions (>>>>>>>> total correctness)

2. Approximate with a consequence rule to get partial correctness

- This is sound and complete
- But too demanding \Longrightarrow not so great!
- What we miss is fixpoint induction

4. Fixpoint induction

Theorem II.3.1 (Park fixpoint over approximation) Let $\langle L, \sqsubseteq, \perp, T, \sqcup, \sqcap\rangle$ be a complete lattice, $f \in L \xrightarrow{i} L$ be increasing, and $p \in L$. Then Ifp ${ }^{\sqsubseteq} f \sqsubseteq p$ if and only if $\exists i \in L . f(i) \sqsubseteq i \wedge i \sqsubseteq p$.

4. Fixpoint induction

Theorem II. 3.6 (Fixpoint Under Approximation by Transfinite Iterates) Let $f \in L \xrightarrow{i} L$ be an increasing function on a CPO $\langle L, \sqsubseteq, \perp, \sqcup\rangle . P \sqsubseteq \mathrm{Ifp}^{\sqsubseteq} f$, if and only if there exists an increasing transfinite sequence $\left\langle X^{\delta}, \delta \in \mathbb{O}\right\rangle$ such that
(1) $X^{0}=\perp$,
(2) $X^{\delta+1} \sqsubseteq f\left(X^{\delta}\right)$ for successor ordinals,
(3) $\bigsqcup_{\delta<\lambda} X^{\delta}$ exists for limit ordinals λ such that $X^{\lambda} \sqsubseteq \bigsqcup_{\delta<\lambda} X^{\delta}$, and
(4) $\exists \delta \in \mathbb{O} . P \sqsubseteq X^{\delta}$.
δ bounded by ω for continuous f.

5. Calculational design of HL

- Theory of HL (for iteration):

$$
\begin{aligned}
\mathcal{T}_{H L}(\mathrm{~W}) & \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{W}) \\
& =\left\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in T_{H L}(\mathrm{~s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\right\}
\end{aligned}
$$

5. Calculational design of HL

- Theory of HL (for iteration):

```
\(\mathcal{T}_{H L}(\mathrm{~W}) \triangleq \operatorname{post}(\beth . \subseteq) \circ \mathcal{T}(\mathrm{W})\)
    \(=\left\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in T_{H L}(\mathrm{~s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\right\}\)
```

- HL proof system:

Theorem 3 (Hoare rules for conditional iteration).

$$
\frac{P \subseteq I,\{I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\} \mathrm{s}\{I\},(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q}{\{P\} \text { while }(\mathrm{B}) \mathrm{s}\{Q\}}
$$

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL

2.1 Calculational Design of Hoare Logic Theory

Theorem 2.1 (Theory of Hoare logic HL)

$$
\mathcal{T}_{H L}(\mathrm{~W}) \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{W})
$$

$$
=\left\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in T_{H L}(\mathrm{~s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\right\}
$$

Proof of Th. 2.1.
$\mathcal{T}_{\mathrm{HL}}(\mathrm{w})$

```
    \(=\operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{w}) \quad\) 2def. \(\mathcal{T}_{\mathrm{HL}} S\)
```

 \(=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(W) \quad\) 2Lem. 1.4 \(\}\)
 \(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid\langle P, Q\rangle \in \mathcal{T}(\mathrm{w}) \cdot\langle P, Q\rangle=, \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad\) 2def. post \(\int\)
 \(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid\langle P, Q\rangle \in \mathcal{T}(\mathrm{W}) . P=P^{\prime} \wedge Q \subseteq Q^{\prime}\right\} \quad\) 2component wise def. \(=, \subseteq \int\)
 \(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q \cdot\langle P, Q\rangle \in \mathcal{T}(\mathrm{w}) \cdot Q \subseteq Q^{\prime}\right\} \quad\) 2def. \(=\int\)
 \(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q \cdot \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\operatorname{lfp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right) \subseteq Q \wedge Q \subseteq Q^{\prime}\right\} \quad\) 2Th. 1.7S
 \(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q \cdot\right.\) post \(\left.\llbracket \neg \mathrm{B} \rrbracket\left(\operatorname{Ifp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right) \subseteq Q^{\prime}\right\}\)
 \(2(\subseteq) \exists Q\). post \(\llbracket \neg \mathrm{B} \rrbracket\left(\operatorname{Ifp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right) \subseteq Q \wedge Q \subseteq Q^{\prime}\) and transitivity;
 (Э) take \(Q=Q^{\prime} S\)
 $=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q . \operatorname{lfp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e} \subseteq Q \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(Q) \subseteq Q^{\prime}\right\}$

2(〔) take $Q=\operatorname{Ifp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e} ; \quad(\supseteq)$ post $\llbracket \neg \mathrm{B} \rrbracket$ is increasing by (12) $)$
$=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q . \exists I . \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge I \subseteq Q \wedge\right.$ post $\left.\llbracket \neg \mathrm{B} \rrbracket(Q) \subseteq Q^{\prime}\right\} \quad$ 2Park fixpoint induction Th. II.3.1 $\}$
$=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists I \cdot \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q^{\prime}\right\}$
$\chi(\subseteq) I \subseteq Q$ implies post $\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq$ post $\llbracket \neg \mathrm{B} \rrbracket(Q)$ since post $\llbracket \neg \mathrm{B} \rrbracket$ is increasing by (12) hence post $\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq Q^{\prime}$ by transitivity;
(Э) take $Q=I S$
$=\left\{\langle P, Q\rangle \mid \exists I . P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \circ \llbracket \mathrm{~s} \rrbracket^{e}\right)(I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\right\} \quad$ 2renaming, def. $\overline{\bar{F}_{P}^{e}} S$
$=\{\langle P, Q\rangle \mid \exists I . P \cup \operatorname{post}(\llbracket \mathrm{~B} \rrbracket \stackrel{\circ}{\square} \rrbracket \rrbracket)(I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\} \quad ~\left[\llbracket \mathrm{~s} \rrbracket^{e}=\llbracket \mathrm{s} \rrbracket\right.$ in absence of breaks \int
$=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge \operatorname{post}(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~s} \rrbracket) I \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\} \quad \quad$ def. \subseteq and $\cup S$
$=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket(\operatorname{post} \llbracket \mathrm{~B} \rrbracket I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\} \quad$ 2composition Lem. 1.1 $\}$
$=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket(I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq I \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\} \quad$ 2test Lem. 1.2 \int
$=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q\} \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q \quad$ 2def. $\in\}$
$=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in \operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q \quad$ LLem. 1.4 $\}$
$=\left\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in T_{\mathrm{HL}}(\mathrm{s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q \quad\right.$ 2Lem. 1.4 $\}$

2.2 Hoare logic rules

Theorem 2.2 (HOARE RULES FOR CONDITIONAL ITERATION).

$$
\begin{equation*}
\frac{P \subseteq I,\{I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\} \mathrm{S}\{I\},(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q}{\{P\} \text { while }(\mathrm{B}) \mathrm{S}\{Q\}} \tag{1}
\end{equation*}
$$

Proof of Th. 2.2. We write $\{P\} \mathrm{S}\{Q\} \triangleq\langle P, Q\rangle \in \mathcal{T}_{\mathrm{HL}}(\mathrm{S})$;
By structural induction (S being a strict component of while (B) S), the rule for $\{P\} S\{Q\}$ have already been defined;

By Aczel method, the (constant) fixpoint lfp ${ }^{\subseteq} \lambda X \cdot S$ is defined by $\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}$;
So for while (B) S we have an axiom $\frac{\varnothing}{\{P\} \text { while }(B) \mathrm{S}\{Q\}}$ with side condition $P \subseteq I,\{I \cap$ $\mathcal{B} \llbracket \mathrm{B} \rrbracket\} \mathrm{S}\{I\},(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q ;$

Traditionally, the side condition is written as a premiss, to get (1).

Sound and complete by construction

Machine checkable, if not machine checked!

Surprised to find a variant of HL proof system

We also have (post is increasing):

$$
\mathcal{T}_{\mathrm{HL}}(\mathrm{~S})=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s})
$$

yields the sound and complete proof system:
$\underset{\text { Th. II.3.। }}{\subseteq}$ comes from $-P \subseteq I, \quad\{I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\} \mathrm{S}\{I\} \quad \underset{\{P\} \text { while }(\mathrm{B}) \mathrm{S}\{I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket\}}{\longrightarrow} \quad \frac{\{P\} \mathrm{S}\{Q\}, \quad Q \subseteq Q^{\prime}}{\{P\} \mathrm{S}\left\{Q^{\prime}\right\}}$

Surprised to find a variant of HL proof system
We also have (post is increasing):

$$
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s})=\operatorname{post}(=, \subsetneq) \circ \mathcal{T}(\mathrm{s})
$$

yields the sound and complete proof system:
$\underset{\text { Th. II.3.I }}{\subseteq}$ comes from $-P \subseteq I, \quad\{I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\} \mathrm{S}\{I\} \quad \underset{\{P\} \text { while }(B) \mathrm{S}\{I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket\}}{\longrightarrow} \quad \frac{\{P\} \mathrm{S}\{Q\}, \quad Q \subseteq Q^{\prime}}{\{P\} \mathrm{S}\left\{Q^{\prime}\right\}}$
no need for Hoare left consequence rule (but for iteration):

$$
\text { If } \mathcal{f}\{Q\} R \text { and } \vDash S \supset P \text { then } F S\{Q\} R
$$

5. Calculational design of IL

- Theory of IL (for iteration):

$$
\begin{aligned}
\mathcal{T}_{I L}(\mathrm{~W}) & \triangleq \operatorname{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathrm{W}) \\
& =\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle \cdot J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in \mathcal{T}_{I L}(\mathrm{~s}) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\}
\end{aligned}
$$

5. Calculational design of IL

- Theory of IL (for iteration):

$$
\begin{aligned}
\mathcal{T}_{I L}(\mathrm{w}) & \triangleq \operatorname{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathrm{w}) \\
& =\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle \cdot J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in \mathcal{T}_{I L}(\mathrm{~s}) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\}
\end{aligned}
$$

- IL proof system:

Theorem 5 (IL rules for conditional iteration).

$$
J^{0}=P,\left[J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\right] \mathrm{s}\left[J^{n+1}\right], Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket
$$

$$
[P] \text { while }(B) \mathrm{s}[Q]
$$

(similar to O'Hearn backward variant since the consequence rule can also be separated)

Calculational design of IL

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC (IL)
3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory Theorem 3.1 (Theory of IL).
$\mathcal{T}_{\text {IL }}(\mathrm{W}) \triangleq \operatorname{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathrm{w})$
$\left.=\quad\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle . J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in \mathcal{T}_{I L}(\mathrm{~s}) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket\right\urcorner \mathrm{B} \rrbracket\right\}$
Proof of Th. 3.1
$\mathcal{T}_{\text {IL }}(\mathrm{W})$
$=\operatorname{post}(\subseteq . \geq) \circ \mathcal{T}(\mathrm{w})$
$=\{\langle P, Q\rangle \mid Q \subseteq \operatorname{post} \llbracket w \rrbracket P\}$
2def. $\mathcal{T}_{\text {IL }}$)
$=\left\{\langle P, Q\rangle \mid Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\operatorname{Ifp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right)\right\}$
2؟-order dual of Lem. 1.4)
$=\left\{\langle P, Q\rangle \mid \exists I . Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \wedge I \subseteq I f \mathrm{fp}^{\subseteq} \overline{\bar{F}}_{P}^{e}\right\}$
2(c) Take $I=\operatorname{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}$ and reflexivity;
(Э) By Galois connection (12), post $\llbracket \neg \mathrm{B} \rrbracket$ is increasing so $Q \subseteq$ post $\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq$
post $\llbracket \neg \mathrm{B} \rrbracket\left(\operatorname{lfp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right)$ and transitivity S
$=\left\{\langle P, Q\rangle \mid \exists I . Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \wedge \exists\left\langle J^{n}, n<\omega\right\rangle \cdot J^{0}=\varnothing \wedge J^{n+1} \subseteq \overline{\bar{F}}_{P}^{e}\left(J^{n}\right) \wedge I \subseteq \bigcup J^{n}\right\}$

> (fixpoint underapproximation Th. II.3.6)
$=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n<\omega\right\rangle . J^{0}=\varnothing \wedge J^{n+1} \subseteq \overline{\bar{F}}_{P}^{e}\left(J^{n}\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\bigcup J^{n}\right)\right\}$
$\ell(\subseteq)$ By Galois connection (12), post $\llbracket \neg \mathrm{B} \rrbracket$ is increasing so $Q \subseteq$ post $\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq$ post $\llbracket\urcorner \mathrm{B} \rrbracket\left(\cup_{n<\omega} J^{n}\right)$ and transitivity;
(Э) take $I=\cup_{n<\omega} J^{n} S$
$=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n<\omega\right\rangle \cdot J^{0}=\varnothing \wedge J^{n+1} \subseteq\left(P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~s} \rrbracket^{e}\right)\left(J^{n}\right)\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\cup J^{n}\right)\right\}$

$$
2 \text { def. } \overline{\bar{F}}_{P}^{e} \rho
$$

$=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, 1 \leqslant n<\omega\right\rangle \cdot J^{1}=P \wedge J^{n+1} \subseteq \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \dot{q} \llbracket \mathrm{~s} \rrbracket^{e}\right)\left(J^{n}\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\bigcup_{1 \leqslant n<\omega}^{\bigcup} J^{n}\right)\right\}$
2 getting rid of $J^{0}=\varnothing S$

2changing $n+1$ to $n\}$
$=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle . J^{0}=P \wedge J^{n+1} \subseteq \operatorname{post} \llbracket \varsigma \rrbracket^{e}\left(J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\right) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\}$
2Lem. 1.2 ${ }^{2}$
$\left.=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle \cdot J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid Q^{\prime} \subseteq \operatorname{post} \llbracket \mathrm{s} \rrbracket{ }^{e}\right) P\right)\right\} \wedge Q \subseteq$ $\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket$

2def. ϵ S
$=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle . J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in \mathcal{T}_{\mathrm{IL}}(\mathrm{s}) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\} \quad$ 2def. $\mathcal{T}_{\mathrm{IL}} S$
3.2 Calculational design of IL rules

$$
\begin{equation*}
\frac{J^{0}=P,\left[J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\right] \mathrm{s}\left[J^{n+1}\right], Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket}{[P] \text { while (B) } \mathrm{s}[Q]} \tag{2}
\end{equation*}
$$

Proof. We write $[P] \mathrm{s}[Q] \triangleq \triangleq\langle P, Q\rangle \in \mathcal{T}_{\text {IL }}(\mathrm{s})$;
By structural induction (S being a strict component of while (B) S), the rule for $[P] \mathrm{S}[Q]$ have already been defined;
By Aczel method, the (constant) fixpoint $\operatorname{lfp}{ }^{〔} \lambda X \cdot S$ is defined by $\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}$;
So for while (B) S we have an axiom $\frac{\varnothing}{\{P\} \text { while (B) } \mathrm{S}\{Q\}}$ with side condition $J^{0}=P,\left[J^{n} \cap\right.$ $\mathcal{B} \llbracket \mathrm{B} \rrbracket] \mathrm{s}\left[J^{n+1}\right], Q \subseteq\left(\cup_{n \in \mathrm{~N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket ;$

Traditionally, the side condition is written as a premiss, to get (2)

Much more in the paper

Much more in the paper

- Bi-inductive relational semantics with break and non termination (\perp), for termination and nontermination proofs

Much more in the paper

- Bi-inductive relational semantics with break and non termination (\perp), for termination and nontermination proofs
- Many more abstractions and combinations \rightarrow hundreds of transformational logics theories (including property negations, proofs by contradictions, backward logics, etc.)

Much more in the paper

- Bi-inductive relational semantics with break and non termination (\perp), for termination and nontermination proofs
- Many more abstractions and combinations \rightarrow hundreds of transformational logics theories (including property negations, proofs by contradictions, backward logics, etc.)
- Taxonomies based on theory abstractions (not proof systems)

Fig. 3. Taxonomy of assertional logics

Much more in the paper

- Many more fixpoint induction principles (including $P \sqsubseteq I f p \sqsubseteq F, \mid f p \sqsubseteq F \sqsubseteq P$, $\mathrm{P} \sqsubseteq \mathrm{gfp} \sqsubseteq \mathrm{F}, \mathrm{gfp} \sqsubseteq \mathrm{F} \sqsubseteq \mathrm{P}, ~ \mathrm{Ifp} \sqsubseteq \mathrm{F} \sqcap \mathrm{P} \neq \varnothing, \mathrm{gfp} \sqsubseteq \mathrm{F} \sqcap \mathrm{P} \neq \varnothing$, etc)

Much more in the paper

- Example I: calculational design of a logic for partial correctness + total correctness + non termination

$$
\begin{aligned}
& \{n=\underline{n} \wedge f=1\} \\
& \text { while }(\mathrm{n}!=0)\{\mathrm{f}=\mathrm{f} * \mathrm{n} ; \mathrm{n}=\mathrm{n}-1 ;\} \\
& \{(\underline{n} \geqslant 0 \wedge f=!\underline{n}) \vee(\underline{n}<0 \wedge n=f=\perp)\}
\end{aligned}
$$

Much more in the paper

- Example II: calculational design of an incorrectness logic including non termination

Much more in the paper

- Example II: calculational design of an incorrectness logic including non termination
- A specification for factorial:

$$
\begin{aligned}
& \{n \in[-\infty, \infty] \wedge f \in[1,1]\} \\
& \text { while }(n!=0)\{f=f * n ; n=n-1 ;\} \\
& \{f \in[1, \infty]\}
\end{aligned}
$$

- False alarm $f \in[-\infty, 0]$ with a (totally imprecise) interval analysis

Much more in the paper

- Example II: calculational design of an incorrectness logic including non termination
- A specification for factorial:

$$
\begin{aligned}
& \{n \in[-\infty, \infty] \wedge f \in[1,1]\} \\
& \text { while }(n!=0)\{f=f * n ; n=n-1 ;\} \\
& \{f \in[1, \infty]\}
\end{aligned}
$$

- False alarm $f \in[-\infty, 0]$ with a (totally imprecise) interval analysis
- The alarm is false by nontermination, not provable with IL

About incorrectness

- IL is not Hoare incorrectness logic (sufficient, not necessary)

$$
\begin{aligned}
\neg(\{P\} \mathrm{s}\{Q\}) & \stackrel{\nLeftarrow}{\rightleftarrows}[P] \mathrm{s}[\neg Q] \\
& \Leftrightarrow \exists R \in \wp(\Sigma) \cdot[P] \mathrm{s}[R] \wedge R \cap \neg Q \neq \varnothing \\
& \Leftrightarrow \exists \sigma \in \Sigma \cdot[P] \mathrm{s}[\{\sigma\}] \wedge \sigma \notin Q
\end{aligned}
$$

- The logic $\left.\left.\mathcal{T}_{\overline{\overline{H L}}}(\mathrm{~W}) \xlongequal{\triangleq} \operatorname{post}(\subseteq, \supseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{\text {HL }}(\mathrm{W})=\alpha\right\urcorner \circ \mathcal{T}_{\text {HL }}(\mathrm{W})$ can be calculated by the design method (and does not need a consequence rule)

Calculational design of Hoare incorrectness logic $\overline{\mathrm{HL}}$
 （def．$\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~s} \rrbracket^{e}\right) X, \subseteq$ ，and post，which is \varnothing－strict

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4．1 Calculational Design of Hoare Incorrectness Logic Theory
Theorem 4.1 （Equivalent definitions of $\overline{\mathrm{HL}}$ theories）．
$\left.\left.\mathcal{T}_{\overline{H L}}(\mathrm{~W}) \triangleq \operatorname{post}(\subsetneq, \supseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{\text {HL }}(\mathrm{w})=\alpha\right\urcorner \circ \mathcal{T}_{\text {HL }}(\mathrm{W})$
W＝while（B）S
Observe that Th． 4.1 shows that post (\subseteq, \supseteq) can be dispensed with．This implies that the consequence rule is useless for Hoare incorrectness logic．

poof or Th 41

$\mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{W})=\operatorname{post}(\subseteq, \supseteq) \circ \alpha^{\urcorner} \circ \mathcal{T}_{\mathrm{HL}}(\mathrm{W})$
（def． $\mathcal{T}_{\overline{H L}}$ ）
$=\operatorname{post}((\subseteq, \supseteq)(\neg\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathbb{W} \rrbracket P \subseteq Q\})$
Lem． 1.4 and def．（30）of $\alpha\urcorner$
$=\operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q\rangle \mid \neg(\operatorname{post} \llbracket \mathbb{W} \rrbracket P \subseteq Q)\}) \quad$ def．$\neg\}$
$=\operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathbb{W} \rrbracket P \cap \neg Q \neq \varnothing\})$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P, Q\rangle \mid\right.$ post $\left.\llbracket \mathbb{W} \rrbracket P \cap \neg Q \neq \varnothing\} .\langle P, Q\rangle \subseteq, \supseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad$（def．post $\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \cdot \operatorname{post} \llbracket \rrbracket \rrbracket P \cap \neg Q \neq \varnothing \wedge\langle P, Q\rangle \subseteq, \supseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad$ def．ϵ
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle\right.$ ．post $\left.\llbracket \mathbb{W} \rrbracket P \cap \neg Q \neq \varnothing \wedge P \subseteq P^{\prime} \wedge Q \supseteq Q^{\prime}\right\} \quad$ 2component wise def．of \subseteq, \supseteq
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists Q \cdot \operatorname{post} \llbracket \llbracket \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \wedge Q \supseteq Q^{\prime}\right\}$
$\ell(\subseteq)$ if $P \subseteq P^{\prime}$ then post $\llbracket \mathbb{W} \rrbracket P \subseteq \operatorname{post} \llbracket \mathbb{W} \rrbracket P^{\prime}$ by（12）so that post $\llbracket \mathbb{W} \rrbracket P \cap \neg Q \neq \varnothing$ implies post $\llbracket \mathbb{W} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing$ ；
(\supseteq) conversely，if $\exists Q$ ．post $\llbracket \downarrow \rrbracket P^{\prime}$ ，then $\exists P$ ．post $\llbracket \llbracket \rrbracket P \cap \neg Q \neq \varnothing \wedge P \subseteq P^{\prime}$ by choosing $=$ ．
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \operatorname{post} \llbracket \mathbb{W} \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing\right\}$
（（ভ）if $Q \supseteq Q^{\prime}$ then $\neg Q^{\prime} \supseteq \neg Q$ so post $\llbracket \mathbb{W} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing$ implies post $\llbracket \mathbb{W} \| P^{\prime} \cap \neg Q^{\prime} \neq \varnothing$ ；
（仓）conversely post $\llbracket W \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing$ implies $\exists Q$ ．post $\llbracket \mathbb{W} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \wedge Q \supseteq Q^{\prime}$ by choosins $Q=Q^{\prime} . \rho$
$=\{\langle P, Q\rangle \mid \neg(\operatorname{post} \llbracket \mathbb{W} \rrbracket P \subseteq Q)\}$
\｛def．\subseteq and $\neg\}$
$=\alpha\urcorner \circ \mathcal{T}_{\text {HL }}(\mathrm{W}) \quad$ 2def．$\left.\alpha\right\urcorner$ and $\mathcal{T}_{\text {HL }}$ for Hoare logic \oint
Theorem 4.2 （Theory of $\overline{\mathrm{HL}}$ ）．
$\mathcal{T}_{\overline{\text { HL }}}(\mathrm{W})=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P\right.$

$$
\forall i \in\left[1, n\left[.\langle\mathcal{B} \llbracket \mathrm{B}] \cap\left\{\sigma_{i}\right\},\left\{\sigma_{i+1}\right\}\right\rangle \in \mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{~s}) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\}
$$

Proof of Th．4．2．
$\mathcal{T}_{\overline{\overline{H I}}}(\mathrm{w})$
$\left.=\{\langle P, Q\rangle \mid \operatorname{post} \llbracket\urcorner \mathbb{B} \rrbracket\left(I \mathrm{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right) \cap \neg Q \neq \varnothing\right\} \quad$ LLem．1．3，where $\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \llbracket \rrbracket^{e}\right) X S$
$=\left\{\langle P, Q\rangle \mid \operatorname{Ifp}{ }^{〔} \overline{\bar{F}}_{P}^{e} \cap \operatorname{pre} \llbracket \neg \mathbb{} \rrbracket(\neg Q) \neq \varnothing\right\}$
2（39．d）
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{B F} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I, i \in[1, \infty]\right\rangle . \sigma_{1} \in\right.$ $\overline{\bar{F}}_{P}^{e}(\varnothing) \wedge \forall i \in[1, \infty] . \sigma_{i+1} \in \overline{\bar{F}}_{P}^{e}\left(\left\{\sigma_{i}\right\}\right) \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \epsilon\right.$

$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~s} \rrbracket^{e}\right) I \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{B} \mathfrak{F} \cdot \exists v \in I \rightarrow W \cdot \exists\left\langle\sigma_{i} \in I\right.\right.$ $i \in[1, \infty]\rangle . \sigma_{1} \in P \wedge \forall i \in[1, \infty] .\left(\sigma_{i+1} \in P \vee\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\}\right) \wedge \forall i \in[1, \infty] .\left(\sigma_{i}\right.$ $\left.\sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right.$
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket\right.\right.$ g $\left.\llbracket \subseteq \rrbracket^{e}\right) I \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{B} \mathcal{F} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I\right.$, $\left\{\langle\in[1, \infty]\rangle \sigma_{1} \in P \wedge \forall i \in[1, \infty]\right.$ ．$\left.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}(\llbracket \mathrm{B}] \circ \llbracket \mathrm{s} \mathbb{l}^{e}\right)\left\{\sigma_{i}\right\} \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow$ $\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right.$

2since if $\sigma_{i+1} \in P$ ，we can equivalently consider the sequence $\left\langle\sigma_{j} \in I, j \in[i+1, \infty]\right\rangle S$
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \% \llbracket \mathrm{~s} \rrbracket^{e}\right) I \subseteq I \wedge \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\right.$ $\left[1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket 9\right.\right.\right.$ g $\left.\left.\llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \in \operatorname{pre} \llbracket \rightarrow \mathrm{~B} \rrbracket(\neg Q)\right\}$
（〔） $\mathrm{By}\langle W, \leqslant\rangle \in \mathfrak{W} \mathfrak{f}, v \in I \rightarrow W, \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right)\right.$ ，the sequence is ultimately stationary at some rank n ．For then on，$\sigma_{i+1}=\sigma_{i}, i \geqslant n$ and so $v\left(\sigma_{i}\right)=v\left(\sigma_{i+1}\right)$ ．Therefore $\forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \notin Q\right.$ implies that $\sigma_{n} \in$ pre $\llbracket \neg B \rrbracket(\neg Q)$ ；
(\supseteq) Conversely，from $\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle$ we can define $W=\left\{\sigma_{i} \mid i \in[1, n]\right\} \cup\{-\infty\}$ with $-\infty<\sigma_{i}<\sigma_{i+1}$ and $v(x)=\left(x \in\left\{\sigma_{i} \mid i \in[1, n]\right.\right.$ ？$\left.x:-\infty\right)$ and the sequence $\left\langle\sigma_{j} \in I\right.$ $j \in[1, \infty]\rangle$ repeats σ_{n} ad infimum for $j \geqslant n$ ． \int
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{ } \llbracket \mathrm{~S} \rrbracket^{e}\right) I \subseteq I \wedge \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i\right.$ $\left[1, n\left[\cdot\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \stackrel{q}{ } \llbracket \mathrm{~s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right.\right.$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \mathfrak{q} \llbracket \mathrm{S} \rrbracket \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \notin\right.\right.\right.$ $\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad$ I I is not used and can always be chosen to be Σ
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \operatorname{post}(\llbracket \mathrm{B}] q \llbracket \mathrm{~s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \cap\left\{\sigma_{i+1}\right\} \neq \varnothing \wedge \sigma_{n} \phi\right.\right.$
$\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \notin Q\right\}$
since $x \in X \Leftrightarrow X \cap\{x\} \neq \varnothing$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \cap \neg\left(\neg\left\{\sigma_{i+1}\right\}\right) \neq\right.\right.\right.$
$\left.\varnothing \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad$ 2def．$\neg X=\Sigma \backslash X$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \neg(\operatorname{post}(\llbracket \mathrm{B}] ; \llbracket \llbracket \mathrm{s}]^{e}\right)\left\{\sigma_{i}\right\} \subseteq\right.\right.$ $\left.\left.\left.\left(\neg\left\{\sigma_{i+1}\right\}\right)\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad \dot{\sim}\right)(X \subseteq Y) \Leftrightarrow(X \cap \neg Y \neq \varnothing$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \neg\left(\operatorname{post}(\llbracket \mathrm{S}]^{e}\right)(\mathcal{B} \llbracket \mathrm{B}] \cap\left\{\sigma_{i}\right\}\right) \subseteq\right.\right.$ $\left.\left.\left(\neg\left\{\sigma_{i+1}\right\}\right)\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathbb{B} \rrbracket \wedge \sigma_{n} \notin Q\right\}$
（def．post，$\llbracket \mathrm{B}]$ ，and ${ }^{\circ}$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left\langle\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in\{\langle P\right.\right.\right.$
$\left.\left.Q\rangle \mid \neg\left(\operatorname{post}\left(\llbracket \mathrm{S} \rrbracket^{e}\right) P \subseteq Q\right)\right\} \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad$ 2def．ϵ
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\langle\mathcal{B} \llbracket \mathrm{B}] \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in \mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{s}) \wedge \sigma_{n} \notin\right.\right.$ $\mathcal{B}\left[\mathrm{B} \rrbracket \wedge \sigma_{n} \in Q\right\}$

2def． $\mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{s}) S$
4．2 Calculational Design of $\overline{\mathrm{HL}}$ Proof Rules
Theorem 4.3 （ $\overline{\mathrm{HL}}$ rules for conditional iteration）
\qquad (P) while（B） $\mathrm{S}(Q)$

Proof of（3）．We write $(P \backslash \mathrm{~s} \backslash Q\rangle \triangleq\langle P, Q\rangle \in \overline{\mathrm{HL}}(\mathrm{s})$ ；
By structural induction（s being a strict component of while（B） S ），the rule for $(P) S(Q)$ have already been defined；
By Aczel method，the（constant）fixpoint $\operatorname{lfp}{ }^{\varsigma} \lambda X \cdot S$ is defined by $\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}$ ；
So for while（B） S we have an axiom $\frac{\varnothing}{(P) \text { while }(\mathrm{B}) \mathrm{S}(Q)}$ with side condition $\exists\left\langle\sigma_{i} \in I, i\right.$ $[1, n]\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left|\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\} \backslash \mathrm{S} \backslash \neg\left\{\sigma_{i+1}\right\}\right| \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right.\right.$ where $\mid \mathcal{B} \llbracket \mathrm{B} \rrbracket \cap$ $\left.\left\{\sigma_{i}\right\}\right) \mathrm{S}\left(\neg\left\{\sigma_{i+1}\right\}\right)$ is well－defined by structural induction；
Traditionally，the side condition is written as a premiss，to get（3）

Conclusion

A transformational logic is an abstract interpretation of
a natural relational semantics

The End, Thank You

- slides + calculational design + recording are online on my web page (https://cs.nyu.edu/~pcousot/)
- paper + appendix = 1 clickable file on Zenodo https://zenodo.org/records/I0439109 DOI 10.5281/zenodo. I0439108.

