Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation

Courant Institute, New York University

POPL 2024, London

Patrick Cousot

Transformational logic = Hoare style logics {P} S {Q}

POPL 2024, London

I. Define the natural relational semantics $[S]_{\perp}$ of the programming language (in structural fixpoint form)

- I. Define the natural relational semantics $[S]_{\perp}$ of the programming language (in structural fixpoint form)
- 2. Define the theory of the logics as an abstraction $\alpha(\{[S]_{\perp}\})$ of the collecting semantics $\{[S]_{\perp}\}$ (strongest (hyper) property)

Theory of a logic = the subset of all true formulas

POPL 2024, London

- Define the natural relational semantics [S] of the programming language (in structural fixpoint form)
- 2. Define the theory of the logics as an abstraction $\alpha(\{[S]_{|}\})$ of the collecting semantics {[[S]] | } (strongest (hyper) property)
- Calculate the theory $\alpha(\{[S]_{|}\})$ in structural fixpoint form by fixpoint abstraction 3.

Theory of a logic = the subset of all true formulas

POPL 2024, London

- Define the natural relational semantics [S] of the programming language (in structural fixpoint form)
- 2. Define the theory of the logics as an abstraction $\alpha(\{[S]_{|}\})$ of the collecting semantics {[[S]]] } (strongest (hyper) property)
- Calculate the theory $\alpha(\{[S]_{|}\})$ in structural fixpoint form by fixpoint abstraction 3.
- 4. Calculate the proof system by fixpoint induction and Aczel correspondence between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

* not in the paper (where the examples are more complicated).

POPL 2024, London

Two simple examples*: Hoare (HL) and reverse Hoare aka incorrectness (IL) logics

General Idea

- HL = strongest postcondition abstraction of the collecting semantics
 - + over approximating consequence abstraction
 - + over approximating fixpoint induction
 - + Aczel correspondence fixpoint +> proof system

} theory
} proof system

General Idea

- HL = strongest postcondition abstraction of the collecting semantics + over approximating consequence abstraction + over approximating fixpoint induction + Aczel correspondence fixpoint \Leftrightarrow proof system
- IL = strongest postcondition abstraction of the collecting semantics + under approximating consequence abstraction + under approximating fixpoint induction
 - + Aczel correspondence fixpoint +> proof system

theory proof system

theory proof system

I. Angelic relational semantics [[S]]^e

- Syntax*:
 - $S \in S := x = A | skip | S; S | if (B) S else S | while (B) S | x = [a,b] | break$
- States: Σ
- Angelic relational semantics: $[S]^{e} \in \wp(\Sigma \times \Sigma)$

* plus unbounded nondeterminism, breaks, and nontermination \perp in the paper.

POPL 2024, London

I. Angelic relational semantics [S] (in deductive form)

- Notations using judgements:
 - $\sigma \vdash S \stackrel{e}{\Rightarrow} \sigma' \text{ for } \langle \sigma, \sigma' \rangle \in \llbracket S \rrbracket^e$
 - $\sigma \vdash while(B) \ S \xrightarrow{i} \sigma'$ for σ leads to σ' after 0 or more iterations

-

- -

 Notations using judgements: • $\sigma \vdash S \stackrel{e}{\Rightarrow} \sigma' \text{ for } \langle \sigma, \sigma' \rangle \in \llbracket S \rrbracket^e$ • $\sigma \vdash while(B) \ S \xrightarrow{i} \sigma'$ for σ leads to σ' after 0 or more iterations • Semantics of the conditional iteration* W = while(B) S: (a) $\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma$ (b) $\frac{\mathcal{B}\llbracket B \rrbracket \sigma, \quad \sigma \vdash S \stackrel{e}{\Rightarrow} \sigma', \quad \sigma' \vdash W \stackrel{i}{\Rightarrow} \sigma''}{\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma''}$ (a) $\frac{\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma', \quad \mathcal{B}\llbracket \neg B \rrbracket \sigma'}{\sigma \vdash W \stackrel{e}{\Rightarrow} \sigma'}$

* plus breaks, and co-induction for nontermination \perp in the paper.

POPL 2024, London

I. Angelic relational semantics [S] (in deductive form)

(2)

I. Angelic relational semantics [S] (in fixpoint form)

- Semantics of the conditional iteration^{*} W = while(B) S:
 - $F^{e}(X) \triangleq \operatorname{id} \cup (\llbracket B \rrbracket \operatorname{s} \llbracket S \rrbracket^{e} \operatorname{s} X), X \in \wp(\Sigma \times \Sigma)$ [while (B) S]^e \triangleq Ifp^{\subseteq} F^e \in [\neg B] (no break) (51)
- Derived using Aczel correspondence between deductive systems and settheoretic fixpoints, see Ex. II.5.1

(49)

- Deductive system: $R = \left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}, \quad R \in \wp(\wp_{fin}(\mathcal{U}) \times \mathcal{U})$

- Deductive system: $R = \left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}, \quad R \in \wp(\wp_{fin}(\mathcal{U}) \times \mathcal{U})$
- Subset of the universe \mathcal{U} defined by R: $F(R)X \triangleq \left\{ c \mid \exists \frac{P}{c} \in R . P \subseteq X \right\} \leftarrow \text{consequence operator}$

 $= \begin{cases} t_n \in \mathcal{U} \mid \exists t_1, \dots, t_{n-1} \in \mathcal{U} \ \forall k \in [1, n] \ \exists \frac{P}{c} \in R \ P \subseteq \{t_1, \dots, t_{k-1}\} \land t_k = c\} \\ \\ \text{lfp}^{\subseteq} F(R) \\ \\ \hline \end{pmatrix} \leftarrow \text{model theoretic (gfp for coinduction)} \end{cases}$

- Deductive system: $R = \left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}, \quad R \in \wp(\wp_{fin}(\mathcal{U}) \times \mathcal{U})$
- Subset of the universe \mathcal{U} defined by R: $= \begin{cases} t_n \in \mathcal{U} \mid \exists t_1, \dots, t_{n-1} \in \mathcal{U} \ \forall k \in [1, n] \ \exists \frac{P}{c} \in R \ P \subseteq \{t_1, \dots, t_{k-1}\} \land t_k = c\} \\ \\ \mathsf{lfp}^{\subseteq} F(R) & \leftarrow \mathsf{model theoretic (of p for coinduction))} \end{cases}$ $F(R)X \triangleq \left\{ c \mid \exists \frac{P}{c} \in R . P \subseteq X \right\} \leftarrow \text{consequence operator} \right\}$
- Deductive system defining $|fp^{\subseteq}F$:

$$R_F \triangleq \left\{\frac{P}{c} \mid P \subseteq \mathcal{U} \land c \in F(P)\right\}$$

• The composition of these abstractions is

• This is an oversimplification of Fig. 1 of the paper, forgetting about

nontermination including total correctness and relational predicates

• Hyper properties to properties abstraction: $\langle \wp(\wp(\Sigma \times \Sigma)), \subseteq \rangle \xrightarrow{\gamma_C} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle \qquad \alpha_C(P) \triangleq \bigcup P \qquad \gamma_C(S) \triangleq \wp(S)$

- Hyper properties to properties abstraction: $\langle \wp(\wp(\Sigma \times \Sigma)), \subseteq \rangle \xrightarrow{\gamma_C} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle \qquad \alpha_C(P) \triangleq \bigcup P \qquad \gamma_C(S) \triangleq \wp(S)$
- Post-image isomorphism:

 $\langle \wp(\Sigma \times \Sigma), \subseteq \rangle \xrightarrow{\text{pre}} \langle \wp(\Sigma) \to \wp(\Sigma), \subseteq \rangle \quad \text{post}(R) \triangleq \lambda P \cdot \{\sigma' \mid \exists \sigma \in P \land \langle \sigma, \sigma' \rangle \in R\}$

 $\widetilde{\text{pre}}(R) \triangleq \lambda X \cdot \{\sigma \mid \forall \sigma' \in Q . \langle \sigma, \sigma' \rangle \in R\}$

- Hyper properties to properties abstraction: $\langle \wp(\wp(\Sigma \times \Sigma)), \subseteq \rangle \xrightarrow{\gamma_C} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle \qquad \alpha_C(P) \triangleq \bigcup P \qquad \gamma_C(S) \triangleq \wp(S)$
- Post-image isomorphism:

 $\langle \wp(\Sigma \times \Sigma), \subseteq \rangle \xrightarrow{\text{pre}} \langle \wp(\Sigma) \to \wp(\Sigma), \subseteq \rangle \quad \text{post}(R) \triangleq \lambda P \cdot \{\sigma' \mid \exists \sigma \in P \land \langle \sigma, \sigma' \rangle \in R\}$

• Graph isomorphism (a function is isomorphic to its graph, which is a function relation):.../... $\langle \wp(\Sigma) \to \wp(\Sigma), = \rangle \xrightarrow{\gamma_{G}} \langle \wp_{fun}(\wp(\Sigma) \times \wp(\Sigma)), = \rangle \quad f \in \wp(\Sigma) \to \wp(\Sigma)$

- $\widetilde{\text{pre}}(R) \triangleq \lambda X \cdot \{\sigma \mid \forall \sigma' \in Q . \langle \sigma, \sigma' \rangle \in R\}$
- $\alpha_{\mathrm{G}}(f) = \{ \langle P, f(P) \rangle \mid P \in \wp(\Sigma) \}$ $\gamma_{\rm G}(R) \triangleq \lambda P \cdot (Q \text{ such that } \langle P, S \rangle \in R)$

2. Abstraction (much simplified) Strongest postcondition logic theory (common to HL and IL with no

- Strongest postcondition logic th consequence rule):
 - $\mathcal{T}(S) \triangleq \alpha_G \circ \text{post} \circ \alpha_C(\{[S]]\})$
 - $= \{ \langle P, \text{post}[S] P \rangle \mid P \in \wp(\Sigma) \}$

2. Abstraction (much simplified) Strongest postcondition logic theory (common to HL and IL with no

- consequence rule):
 - $\mathcal{T}(S) \triangleq \alpha_G \circ \text{post} \circ \alpha_C(\{\|S\|\})$
 - $= \{ \langle P, \text{ post}[S]P \rangle \mid P \in \wp(\Sigma) \}$
- Notation: $\{P\} S \{Q\} \triangleq \langle P, Q \rangle \in \mathcal{T}(S)$
- The next step is to express this theory in fixpoint form

The abstraction of a fixpoint is a fixpoint (POPL 79)

THEOREM II.2.1 (FIXPOINT ABSTRACTION). If $\langle C, \subseteq \rangle \xrightarrow{i} \langle A, \leq \rangle$ is a Galois connection between complete lattices $\langle C, \subseteq \rangle$ and $\langle A, \leq \rangle$, $f \in C \xrightarrow{i} C$ and $\overline{f} \in A \xrightarrow{i} A$ are increasing and commuting, that is, $\alpha \circ f = \overline{f} \circ \alpha$, then $\alpha(\operatorname{lfp}^{\exists} f) = \operatorname{lfp}^{\preceq} \overline{f}$ (while semi-commutation $\alpha \circ f \leq \overline{f} \circ \alpha$ implies $\alpha(\operatorname{lfp}^{\scriptscriptstyle{\sqsubseteq}} f) \leq \operatorname{lfp}^{\scriptscriptstyle{\preceq}} \bar{f}).$

2. Abstraction (much simplified)

The abstraction of a fixpoint is a fixpoint (POPL 79)

THEOREM II.2.1 (FIXPOINT ABSTRACTION). If $\langle C, \sqsubseteq \rangle \xleftarrow{r} \langle A, \preceq \rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq \rangle$ and $\langle A, \preceq \rangle$, $f \in C \xrightarrow{i} C$ and $\overline{f} \in A \xrightarrow{i} A$ are increasing and commuting, that is, $\alpha \circ f = \overline{f} \circ \alpha$, then $\alpha(\operatorname{lfp}^{\exists} f) = \operatorname{lfp}^{\preceq} \overline{f}$ (while semi-commutation $\alpha \circ f \leq \overline{f} \circ \alpha$ implies $\alpha(\operatorname{lfp}^{\scriptscriptstyle{\sqsubseteq}} f) \leq \operatorname{lfp}^{\scriptscriptstyle{\preceq}} \bar{f}).$

- logics (common to HL and IL with no consequences at all)
- For the iteration W = while (B) S :

2. Abstraction (much simplified)

• We get a fixpoint definition of the theory of strongest postconditions

$\mathcal{T}(W) \triangleq \{ \langle P, \text{post}[\neg B]] (\mathsf{lfp}^{\subseteq} \lambda X \cdot P \cup \mathsf{post}([B]] ; [S]^{e} X) \} \mid P \in \wp(\Sigma) \}$

1 PROPERTIES OF STRONGEST POSTCONDITIONS

LEMMA 1.1 (COMPOSITION). $post(X \ \ Y) = post(Y) \circ post(X)$. Proof of Lem. 1.1. $post(X \ ; Y)$ $= \boldsymbol{\lambda} P \cdot \{ \sigma'' \mid \exists \sigma \in P . \langle \sigma, \sigma'' \rangle \in X \, \mathring{} \, Y \}$?def. post∫ $= \lambda P \cdot \{ \sigma'' \mid \exists \sigma \in P . \exists \sigma' . \langle \sigma, \sigma' \rangle \in X \land \langle \sigma', \sigma'' \rangle \in Y \}$ {def. \$} $= \lambda P \cdot \{ \sigma'' \mid \exists \sigma' \, . \, \sigma' \in \{ \sigma' \mid \exists \sigma \in P \, . \, \langle \sigma, \, \sigma' \rangle \in X \} \land \langle \sigma', \, \sigma'' \rangle \in Y \}$ $\partial \text{def.} \exists \text{ and } \in \mathcal{G}$ $= \lambda P \cdot \{ \sigma'' \mid \exists \sigma' \in \text{post}(X) P . \langle \sigma', \sigma'' \rangle \in Y \}$ {def. post∫ = $\lambda P \cdot \text{post}(Y)(\text{post}(X)P)$ {def. post∫ $= post(Y) \circ post(X)$ ∂ def. function composition \circ LEMMA 1.2 (TEST). post $\llbracket B \rrbracket P = P \cap \mathcal{B} \llbracket B \rrbracket$. Proof of Lem. 1.2. post[[B]]P $= \{ \sigma' \mid \exists \sigma \in P . \langle \sigma, \sigma' \rangle \in [\![B]\!] \}$?def. post∫ $= \{ \sigma \mid \sigma \in P \land \sigma \in \mathcal{B}[\![\mathsf{B}]\!] \}$ $\langle \text{def.} [\![B]\!] \triangleq \{ \langle \sigma, \sigma \rangle \mid \sigma \in \mathcal{B}[\![B]\!] \} \}$ $= P \cap \mathcal{B}[\![B]\!]$ $\partial \text{def. intersection } \cup \mathcal{L}$ LEMMA 1.3 (STRONGEST POSTCONDITION). $\mathcal{T}(S) = \alpha_G \circ \text{post}[S] = \{ \langle P, \text{post}[S] P \rangle \mid P \in \wp(\Sigma) \}.$ Proof of Lem. 1.3. $\mathcal{T}(S)$ = $\alpha_{\rm G} \circ {\rm post} \circ \alpha_{\it L} \circ \alpha_{\it C}(\{[\![{\tt S}]\!]_{\perp}\})$ $\partial \det \mathcal{T}$ = $\alpha_{\rm G} \circ {\rm post} \circ \alpha_{\it I}([[{\rm S}]]_{\perp})$ $\partial \det \alpha_C$ $= \alpha_{\rm G} \circ {\rm post}(\llbracket {\rm S} \rrbracket_{\perp} \cap (\Sigma \times \Sigma))$ $\langle \text{def. } \alpha_I \rangle$ = $\alpha_{\rm G} \circ \rm{post}[S]$ $\partial def.$ (1) of the angelic semantics [S] $= \{ \langle P, \text{ post}[S] P \rangle \mid P \in \wp(\Sigma) \}$ $\langle \text{def. } \alpha_{\text{G}} \rangle \square$ LEMMA 1.4 (STRONGEST POSTCONDITION OVER APPROXIMATION). $\mathcal{T}_{\mathrm{HL}}(\mathsf{S}) \triangleq \mathrm{post}(\supseteq \subseteq) \circ \mathcal{T}(\mathsf{S}) = \{ \langle P, Q \rangle \mid \mathrm{post}[\![\mathsf{S}]\!] P \subseteq Q \} = \mathrm{post}(=, \subseteq) \circ \mathcal{T}(\mathsf{S})$ Proof of Lem. 1.4. $\mathsf{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{S})$ $= \text{post}(\supseteq \subseteq)(\mathcal{T}(S))$ ∂ def. function composition \circ $= \text{post}(\supseteq \subseteq)(\{\langle P, \text{post}[S]P \rangle \mid P \in \wp(\Sigma)\})$ 2 Lem. 1.3 $= \{ \langle P', Q' \rangle \mid \exists \langle P, Q \rangle \in \{ \langle P, \text{post}[S]P \rangle \mid P \in \wp(\Sigma) \} . \langle \langle P, Q \rangle, \langle P', Q' \rangle \rangle \in \supseteq \subseteq \} \quad (\text{def. (10) of post}) \}$ $= \{ \langle P', Q' \rangle \mid \exists P . \langle \langle P, \text{ post}[S]P \rangle, \langle P', Q' \rangle \rangle \in \supseteq \subseteq \}$ 7 def. ∈ \$ $= \{ \langle P', Q' \rangle \mid \exists P . \langle P, \text{ post} [S] P \rangle \supseteq \subseteq \langle P', Q' \rangle \}$ {def. ∈∫ $= \{ \langle P', Q' \rangle \mid \exists P : P \supseteq P' \land \mathsf{post}[[S]] P \subseteq Q' \}$ (def. ⊇.⊆∫ $= \{ \langle P', Q' \rangle \mid \exists P . P' \subseteq P \land \mathsf{post}[S] P \subseteq Q' \}$ {def. ⊇∫

$$= \{ \langle P', Q' \rangle \mid \text{post}[[S]]P' \subseteq Q' \}$$

$$\{ \langle \subseteq \rangle \text{ by Galois connection (12), post is increasing so that } P' \subseteq P \land \text{post}[[S]]P \subseteq Q' \text{ implies } \\ \text{post}[[S]]P' \subseteq \text{post}[[S]]P \land \text{post}[[S]]P \subseteq Q' \text{ hence post}[[S]]P' \subseteq Q' \text{ by transitivity;} \\ (\supseteq) \text{ take } P = P' \}$$

$$= \{ \langle P', Q' \rangle \mid \exists P . P' = P \land \text{post}[[S]]P \subseteq Q' \}$$

$$= \{ \langle P', Q' \rangle \mid \exists P . \langle P, \text{post}[[S]]P \rangle =, \subseteq \langle P', Q' \rangle \}$$

$$= \{ \langle P', Q' \rangle \mid \exists P . \langle P, \text{post}[[S]]P \rangle, \langle P', Q' \rangle \rangle \in =, \subseteq \}$$

$$= \{ \langle P', Q' \rangle \mid \exists P. Q \rangle \in \{ \langle P, \text{post}[[S]]P \rangle \mid P \in \wp(\Sigma) \} . \langle \langle P, Q \rangle, \langle P', Q' \rangle \rangle \in =, \subseteq \}$$

$$= \{ \langle P', Q' \rangle \mid \exists \langle P, Q \rangle \in \mathcal{T}(S) . \langle \langle P, Q \rangle, \langle P', Q' \rangle \rangle \in =, \subseteq \}$$

$$= post(=, \subseteq)(\mathcal{T}(S))$$

$$= post(=, \subseteq) \circ \mathcal{T}(S)$$

$$= post(=, \subseteq) \circ \mathcal{T}(S)$$

LEMMA 1.5 (COMMUTATION). post $\circ F'^e = \overline{F}^e \circ \text{post where } \overline{F}^e(X) \triangleq \text{id } \cup (\text{post}([B]] \circ [S])^e) \circ X)$ and $F'^e \triangleq \lambda X \cdot \mathrm{id} \cup (X \circ [B] \circ [S]^e), X \in \wp(\Sigma \times \Sigma)$ by (70).

PROOF OF LEM. 1.5.
$$(where X \in \wp(\Sigma))$$
 $post(F'^e(X))$ $(def. F^e)$ $= post(id \cup (X \ \ B]) \ \ B]) \ \ B] \ \$

LEMMA 1.6 (POINTWISE COMMUTATION). $\forall X \in \wp(\Sigma) \to \wp(\Sigma) . \forall P \in \wp(\Sigma) . \bar{F}^e(X)P \triangleq \bar{F}^e_P(X(P))$ where $\overline{F}_{P}^{e}(X) \triangleq P \cup \text{post}(\llbracket B \rrbracket \operatorname{g} \llbracket S \rrbracket^{e})X.$ Proof of Lem. 1.6. $\overline{F}^{e}(X)P$ = $(\operatorname{id} \dot{\cup} (\operatorname{post}(\llbracket B \rrbracket \operatorname{g} \llbracket S \rrbracket^e) \circ X))P$ $2 \operatorname{def.} \bar{F}^e$ $= \operatorname{id}(P) \cup (\operatorname{post}(\llbracket B \rrbracket \operatorname{g} \operatorname{S} \operatorname{I}^{e}) \circ X)(P)$? pointwise def. $\dot{\cup}$ and function composition \circ

$$= P \cup \mathsf{post}(\llbracket B \rrbracket \, \mathring{g} \, \llbracket S \rrbracket^e)(X(P))$$

 $= \bar{\bar{F}}_{P}^{e}(X(P))$

 $\bar{F}_{P}^{e}(X) \triangleq P \cup \mathsf{post}(\llbracket \mathsf{B} \rrbracket \operatorname{s}^{e}) X.$

PROOF OF TH. 1.7.
post[[W]]
= post(lfp^{$$\subseteq$$} F^{e} $\stackrel{\circ}{,}$ [[\neg B]])
= post[[\neg B]] \circ post(lfp ^{\subseteq} F^{e})
= post[[\neg B]] \circ post(lfp ^{\subseteq} F'^{e})
= post[[\neg B]](lfp ^{\subseteq} \bar{F}^{e})

(def. function composition ~)

For simplicity, we consider conditional iteration W = while (B) S with no break.

 $\partial def.$ identity id and function application \int $\langle \operatorname{def.} \bar{F}_P^e(X) \triangleq P \cup \operatorname{post}(\llbracket B \rrbracket \operatorname{s} \llbracket S \rrbracket^e) X \rangle \square$

THEOREM 1.7 (ITERATION STRONGEST POSTCONDITION). post $[W]P = \text{post}[\neg B](\text{lfp} \in \overline{F}_P^e)$ where

(def. (49) of [[₩]] in absence of break

2 composition Lem. 1.1

 $\lim_{t \to 0} F^e = \operatorname{lfp}^{\subseteq} F'^e \text{ in } (70)$

(commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2)

= post $\llbracket \neg B \rrbracket \circ \lambda P \cdot Ifp^{\subseteq} \overline{F}_P^e$

2 pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2

Corollary 1.8 (Conditional iteration strongest postcondition graph). $\mathcal{T}(W) = \{\langle P, \rangle \}$ $\operatorname{post}[\![\neg \mathsf{B}]\!](\operatorname{lfp}^{\subseteq} \overline{F}_{P}^{e})) \mid P \in \wp(\Sigma)\} \text{ where } \overline{F}_{P}^{e}(X) \triangleq P \cup \operatorname{post}([\![\mathsf{B}]\!] \, \operatorname{\mathfrak{g}}\, [\![\mathsf{S}]\!]^{e})X.$

PROOF OF COR. 1.8.

$$\mathcal{T}(W)$$

$$= \alpha_{G} \circ \text{post}(\llbracket W \rrbracket)$$

$$= \alpha_{G} \circ \text{post}[\llbracket \neg B \rrbracket \circ \lambda P \cdot Ifp^{\subseteq} \overline{F}_{P}^{e}$$

$$= \{ \langle P, \text{post}[\llbracket \neg B \rrbracket (Ifp^{\subseteq} \overline{F}_{P}^{e}) \rangle \mid P \in \wp(\Sigma) \}$$

$$(\text{def. (7)})$$

• The component wise approximation: $\langle x, y \rangle \subseteq \leq \langle x', y' \rangle \triangleq x \subseteq x' \land y \leq y'$

15

• The component wise approximation:

- The over approximation abstraction for HL:
 - $\mathsf{post}(\subseteq, \supseteq) = \lambda R \cdot \{ \langle P, Q \rangle \mid \exists \langle P', Q' \rangle \in R : P \subseteq P' \land Q' \subseteq Q \}$
 - $\mathcal{T}_{HL}(S) \triangleq post(\supseteq.\subseteq) \circ \mathcal{T}(S)$

3. Approximation

- $\langle x, y \rangle \subseteq \leq \langle x', y' \rangle \triangleq x \subseteq x' \land y \leq y'$

- The component wise approximation: $\langle x, y \rangle \subseteq \leq \langle x', y' \rangle \triangleq x \subseteq x' \land y \leq y'$
- The over approximation abstraction for HL:
 - $\mathsf{post}(\subseteq, \supseteq) = \lambda R \cdot \{ \langle P, Q \rangle \mid \exists \langle P', Q' \rangle \in R : P \subseteq P' \land Q' \subseteq Q \}$
 - $\mathcal{T}_{HL}(S) \triangleq post(\supseteq,\subseteq) \circ \mathcal{T}(S)$
- The (order dual) under approximation abstraction for IL:
 - $\mathsf{post}(\supseteq, \subseteq) = \lambda R \cdot \{\langle P, Q \rangle \mid \exists \langle P', Q' \rangle \in R . P' \subseteq P \land Q \subseteq Q'\}$ $\mathcal{T}_{RL}(S) \triangleq \text{post}(\subseteq, \supseteq) \circ \mathcal{T}(S)$
- Shows what it shared by HL and IL: all but the consequence rule (?)

3. Approximation

- be great!
- A common part and different consequence rules for HL and IL

Deriving the proof system at this stage by Aczel correspondence would

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL
- But then the HL proof system for iteration would be

 - 2. Approximate with a consequence rule to get partial correctness
- This is sound and complete

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL
- But then the HL proof system for iteration would be

 - 2. Approximate with a consequence rule to get partial correctness
- This is sound and complete
- But too demanding \implies not so great!
- What we miss is fixpoint induction

THEOREM II.3.1 (PARK FIXPOINT OVER APPROXIMATION) If $p^{\exists} f \subseteq p$ if and only if ∃*i* ∈ *L* . *f*(*i*) ⊆ *i* ∧ *i* ⊆ *p*.

Let $(L, \subseteq, \bot, \top, \sqcup, \sqcap)$ be a complete lattice, $f \in L \xrightarrow{\iota} L$ be increasing, and $p \in L$. Then

only if there exists an increasing transfinite sequence $\langle X^{\delta}, \delta \in \mathbb{O} \rangle$ such that (1) $X^0 = \bot$, (2) $X^{\delta+1} \subseteq f(X^{\delta})$ for successor ordinals, (3) $\bigcup_{\delta < \lambda} X^{\delta}$ exists for limit ordinals λ such that $X^{\lambda} \subseteq \bigsqcup_{\delta < \lambda} X^{\delta}$, and (4) $\exists \delta \in \mathbb{O} . P \sqsubseteq X^{\delta}$.

δ bounded by ω for continuous f.

POPL 2024, London

THEOREM. II.3.6 (FIXPOINT UNDER APPROXIMATION BY TRANSFINITE ITERATES) Let $f \in L \xrightarrow{\iota} L$ be an increasing function on a CPO $\langle L, \subseteq, \bot, \sqcup \rangle$. $P \subseteq \mathsf{lfp}^{\sqsubseteq} f$, if and

5. Calculational design of HL

• Theory of HL (for iteration):

$\mathcal{T}_{HL}(W) \triangleq \text{post}(\supseteq \subseteq) \circ \mathcal{T}(W)$ $= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[B], I \rangle \in T_{HL}(S) \land (I \cap \neg \mathcal{B}[B]) \subseteq Q \}$

5. Calculational design of HL

- Theory of HL (for iteration):
 - $\mathcal{T}_{HL}(W) \triangleq \text{post}(\supseteq \subseteq) \circ \mathcal{T}(W)$
- HL proof system: THEOREM 3 (HOARE RULES FOR CONDITIONAL ITERATION). $P \subseteq I, \{I \cap \mathcal{B}[B]\} \in \{I\}, (I \cap \neg \mathcal{B}[B]) \subseteq Q$ $\{P\}$ while (B) $S\{Q\}$

$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[B], I \rangle \in T_{HL}(S) \land (I \cap \neg \mathcal{B}[B]) \subseteq Q \}$

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL

2.1 Calculational Design of Hoare Logic Theory

THEOREM 2.1 (THEORY OF HOARE LOGIC HL).

$$\mathcal{T}_{HL}(\mathsf{W}) \triangleq \mathsf{post}(\supseteq,\subseteq) \circ \mathcal{T}(\mathsf{W}) \\ = \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[\![\mathsf{B}]\!], I \rangle \in T_{HL}(\mathsf{S}) \land (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q \}$$

Proof of Th. 2.1.

$$\begin{split} &\mathcal{T}_{\mathrm{FIL}}(\mathbb{W}) & (\mathrm{def}, \mathcal{T}_{\mathrm{FIL}}) \\ &= \operatorname{post}(\exists, \subseteq) \circ \mathcal{T}(\mathbb{W}) & (\mathrm{def}, \mathcal{T}_{\mathrm{FIL}}) \\ &= \operatorname{post}(\exists, \subseteq) \circ \mathcal{T}(\mathbb{W}) \circ \mathcal{P}(\mathbb{W}) \cdot \langle P, Q \rangle = \exists \langle P', Q' \rangle \} & (\mathrm{def}, \operatorname{post}) \\ &= \{\langle P', Q' \rangle | \langle P, Q \rangle \in \mathcal{T}(\mathbb{W}) \cdot P = P' \land Q \subseteq Q' \} & (\mathrm{component wise def.} =, \subseteq) \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \langle P, Q \rangle \in \mathcal{T}(\mathbb{W}) \cdot Q \subseteq Q' \} & (\mathrm{def}, e^{\pm}) \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \operatorname{post}[\neg B](\mathrm{Ifp}^{\pm} \tilde{F}_{P}^{\pm}) \subseteq Q \land Q \subseteq Q' \} & (\mathrm{ifh} + 1.7) \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \operatorname{post}[\neg B](\mathrm{Ifp}^{\pm} \tilde{F}_{P}^{\pm}) \subseteq Q \land Q \subseteq Q' \text{ and transitivity;} \\ &= (2) \operatorname{take} Q = Q' \rangle & (2) \operatorname{take} Q = Q' \rangle \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \mathrm{Ifp}^{\pm} \tilde{F}_{P}^{\pm} \subseteq Q \land \operatorname{post}[\neg B](Q) \subseteq Q' \} & (2) \operatorname{take} Q = Q' \rangle \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \mathrm{Ifp}^{\pm} \tilde{F}_{P}^{\pm}(1) \subseteq 1 \land I \subseteq Q \land \operatorname{post}[\neg B](Q) \subseteq Q' \} & (2) \operatorname{post}[\neg B] \operatorname{is increasing by (12)} \rangle \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \mathrm{Ifp}^{\pm} \tilde{F}_{P}^{\pm}(1) \subseteq I \land I \subseteq Q \land \operatorname{post}[\neg B](Q) \subseteq Q' \} & (2) \operatorname{post}[\neg B] \operatorname{is increasing by (12)} \rangle \\ &= \{\langle P, Q' \rangle | \exists Q \cdot \mathrm{Ifp}^{\pm} \tilde{F}_{P}^{\pm}(1) \subseteq I \land \operatorname{post}[\neg B](Q) \subseteq Q' \} & (2) \operatorname{post}[\neg B] \operatorname{is increasing by (12)} \rangle \\ &= \{\langle P, Q' \rangle | \exists I \cdot \tilde{F}_{P}^{\pm}(1) \subseteq I \land \operatorname{post}[\neg B](I) \subseteq Q \} & (2) \operatorname{post}[\neg B] \operatorname{is increasing by (12)} \rangle \\ &= \{\langle P, Q \rangle | \exists I \cdot P \cup \operatorname{post}([B] \circ [S])(I) \subseteq I \land \operatorname{post}[\neg B](I) \subseteq Q \} & (2) \operatorname{imals, def} \tilde{F}_{P}^{\pm}) \\ &= \{\langle P, Q \rangle | \exists I \cdot P \cup \operatorname{post}([B] \circ [S])(I) \subseteq I \land \operatorname{post}[\neg B](I) \subseteq Q \} & (2) \operatorname{imals, def} \mathcal{F}_{P}^{\pm}) \\ &= \{\langle P, Q \rangle | \exists I \cdot P \subseteq I \land \operatorname{post}[S](\operatorname{post}[B][I) \subseteq I \land \operatorname{post}[\neg B](I) \subseteq Q \} & (2) \operatorname{imals, def} \mathcal{F}_{P}^{\pm}) \\ &= \{\langle P, Q \rangle | \exists I \cdot P \subseteq I \land \operatorname{post}[S](\operatorname{post}[B]) \subseteq I \land (I \cap \neg B[B]) \subseteq Q & (2) \operatorname{itest Lem}, 1.2) \\ &= \{\langle P, Q \rangle | \exists I \cdot P \subseteq I \land \operatorname{post}[S](\operatorname{post}[B][I) \subseteq I \land (I \cap \neg B[B]) \subseteq Q & (2) \operatorname{itest} \mathcal{F}_{I}, 2) \\ & (2) \operatorname{post}[S](I \cap B[B], I) \in \{\langle P, Q \rangle | \operatorname{post}[\neg B][I) \subseteq Q & (2) \operatorname{itest} \mathcal{F}_{I}, 2) \\ &= \{\langle P, Q \rangle | \exists I \cdot P \subseteq I \land \langle I \cap B[B], I \land (P \circ [\nabla) \cap \nabla B[B]) \subseteq Q & (2) \operatorname{itest}, 1.4) \\ &= \{\langle P, Q \rangle | \exists I \cdot P \subseteq I \land \langle I \cap B[B], I \land (P \circ [\nabla) \cap \nabla B[B]) \subseteq Q & (2) \operatorname{itest}, 1.4) \\ &$$

POPL 2024, London

2.2 Hoare logic rules

THEOREM 2.2 (HOARE RULES FOR CONDITIONAL ITERATION).

 $\frac{P \subseteq I, \{I \cap \mathcal{B}\llbracket B \rrbracket\} S \{I\}, (I \cap \neg \mathcal{B}\llbracket B \rrbracket) \subseteq Q}{\{P\} \text{ while (B) } S \{Q\}}$

PROOF OF TH. 2.2. We write $\{P\} \in \{Q\} \triangleq \langle P, Q \rangle \in \mathcal{T}_{HL}(S);$

By structural induction (S being a strict component of while (B) S), the rule for $\{P\}$ S $\{Q\}$ have already been defined;

By Aczel method, the (constant) fixpoint $|fp \leq \lambda X \cdot S|$ is defined by $\{\frac{\emptyset}{c} \mid c \in S\}$;

So for while (B) S we have an axiom $\frac{\emptyset}{\{P\}}$ while (B) S $\{Q\}$ with side condition $P \subseteq I$, $\{I \cap I\}$

 $\mathcal{B}\llbracket B \rrbracket\} S \{I\}, \ (I \cap \neg \mathcal{B}\llbracket B \rrbracket) \subseteq Q;$

Traditionally, the side condition is written as a premiss, to get (1).

Sound and complete by construction

Machine checkable, if not machine checked!

Surprised to find a variant of HL proof system

We also have (post is increasing): $T_{\rm HL}$ (see

 $\mathcal{T}_{\mathrm{HL}}(\mathsf{S}) = \mathrm{post}(=, \subseteq) \circ \mathcal{T}(\mathsf{S})$ yields the sound and complete proof system: $\subseteq \mathrm{comes \ from} \longrightarrow P \subseteq I, \quad \{I \cap \mathcal{B}[\![\mathsf{B}]\!]\} \, \mathsf{S} \, \{I\}$ Th. II.3.1 $\frac{P}{\{P\} \ \mathrm{while} \ (\mathsf{B}) \ \mathsf{S} \, \{I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]\}}{\{P\} \ \mathsf{S} \, \{Q\}, \quad Q \subseteq Q'}$

Surprised to find a variant of HL proof system

We also have (post is increasing):

yields the sound and complete proof system: $\subseteq \text{ comes from } P \subseteq I, \quad \{I \cap \mathcal{B}[\![\mathsf{B}]\!]\} \in \{I\}$ Th. II.3.1 $\{P\}$ while (B) $S\{I \cap \neg \mathcal{B}[B]\}$

no need for Hoare left consequence rule (but for iteration):

If $P{Q}R$ and $S \supset P$ then $S{Q}R$

- $\mathcal{T}_{HL}(S) = post(=, \subseteq) \circ \mathcal{T}(S)$ $\{P\} \in \{Q\}, \quad Q \subseteq Q'$ $\{P\} S \{Q'\}$

5. Calculational design of IL

• Theory of IL (for iteration):

 $\mathcal{T}_{IL}(W) \triangleq \text{post}(\subseteq :\supseteq) \circ \mathcal{T}(W)$

$= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \mathcal{T}_{IL}(\mathsf{S}) \land Q \subseteq (\bigcup J^n) \cap \mathcal{B}[\![\neg \mathsf{B}]\!] \}$ $n \in \mathbb{N}$

5. Calculational design of IL

• Theory of IL (for iteration):

 $\mathcal{T}_{IL}(W) \triangleq \text{post}(\subseteq :\supseteq) \circ \mathcal{T}(W)$

• IL proof system: THEOREM 5 (IL RULES FOR CONDITIONAL ITERATION).

(similar to O'Hearn backward variant since the consequence rule can also be separated)

$= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \mathcal{T}_{IL}(\mathsf{S}) \land Q \subseteq (\bigcup J^n) \cap \mathcal{B}[\![\neg \mathsf{B}]\!] \}$ $n \in \mathbb{N}$

Calculational design of IL

- 3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC (IL)
- **3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory** THEOREM 3.1 (THEORY OF IL).

$$\begin{split} \mathcal{T}_{\overline{n}}(\mathbb{W}) &\triangleq \operatorname{post}(\subseteq, 2) \circ \mathcal{T}(\mathbb{W}) \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n \in \mathbb{N} \rangle, J^{0} = P \land \langle J^{n} \cap \mathcal{B}[\mathbb{B}], J^{n+1} \rangle \in \mathcal{T}_{\underline{n}}(\mathbb{S}) \land Q \subseteq (\bigcup_{n \in \mathbb{N}} J^{n}) \cap \mathcal{B}[[-\mathbb{B}]\} \\ \operatorname{Proor or TH. 3.1.} \\ \mathcal{T}_{\overline{n}}(\mathbb{W}) \\ &= \operatorname{post}(\subseteq, 2) \circ \mathcal{T}(\mathbb{W}) & (\det, \mathcal{T}_{\overline{n}}) \\ &= \{\langle P, Q \rangle \mid Q \subseteq \operatorname{post}[\mathbb{W}]P \} & (\subseteq \operatorname{-order} dual of Lem. 1.4) \\ &= \{\langle P, Q \rangle \mid Q \subseteq \operatorname{post}[\mathbb{H}_{\mathbb{P}}](\operatorname{Ifp} \circ \tilde{F}_{p}^{e}) \} & (Th. 1.7 \text{ where } \tilde{F}_{p}^{e}(\mathbb{X}) \triangleq P \cup \operatorname{post}([\mathbb{B}] \circ [\mathbb{S}]^{e}) | \mathbb{X} \rangle \\ &= \{\langle P, Q \rangle \mid \exists I. Q \subseteq \operatorname{post}[\mathbb{H}_{P}](I) \land I \subseteq \operatorname{Ifp} \circ \tilde{F}_{p}^{e} \rangle \\ &= \{\langle P, Q \rangle \mid \exists I. Q \subseteq \operatorname{post}[\mathbb{H}_{P}](I) \land I \subseteq \operatorname{Ifp} \circ \tilde{F}_{p}^{e} \rangle \\ &= \{\langle P, Q \rangle \mid \exists I. Q \subseteq \operatorname{post}[\mathbb{H}_{P}](I) \land \exists \langle J^{n}, n < \omega \rangle, J^{0} = \emptyset \land J^{n+1} \subseteq \tilde{F}_{p}^{e}(J^{n}) \land I \subseteq \bigcup J^{n} \} \\ &= \operatorname{post}[\mathbb{H}_{P}](\operatorname{Ifp} \circ \tilde{F}_{p}^{e}) \text{ and transitivity} \rangle \\ &= \{\langle P, Q \rangle \mid \exists I. Q \subseteq \operatorname{post}[\mathbb{H}_{P}](I) \land \exists \langle J^{n}, n < \omega \rangle, J^{0} = \emptyset \land J^{n+1} \subseteq \tilde{F}_{p}^{e}(J^{n}) \land I \subseteq \bigcup J^{n} \} \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n < \omega \rangle, J^{0} = \emptyset \land J^{n+1} \subseteq \tilde{F}_{p}^{e}(J^{n}) \land Q \subseteq \operatorname{post}[\mathbb{H}_{P}](\bigcup I^{n}) \rangle \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n < \omega \rangle, J^{0} = \emptyset \land J^{n+1} \subseteq \langle P \cup \operatorname{post}([\mathbb{B}] \circ [\mathbb{S}]^{e})(J^{n}) \land Q \subseteq \operatorname{post}[\mathbb{H}_{P}](\bigcup J^{n}) \rangle \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n < \omega \rangle, J^{0} = \emptyset \land J^{n+1} \subseteq \operatorname{post}([\mathbb{B}] \circ [\mathbb{S}]^{e})(J^{n}) \land Q \subseteq \operatorname{post}[\mathbb{H}_{P}](\bigcup J^{n}) \rangle \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n \in \mathbb{N} \rangle, J^{0} = P \land J^{n+1} \subseteq \operatorname{post}([\mathbb{B}] \circ [\mathbb{S}]^{e})(J^{n}) \land Q \subseteq \operatorname{post}[\mathbb{H}_{P}](\bigcup J^{n}) \rangle \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n \in \mathbb{N} \rangle, J^{0} = P \land J^{n+1} \subseteq \operatorname{post}([\mathbb{B}] \circ [\mathbb{S}]^{e})(J^{n}) \land Q \subseteq \operatorname{post}[\mathbb{H}_{P}] \rangle \\ & (\operatorname{changing} n + 1 \text{ to } n) \\ &= \{\langle P, Q \rangle \mid \exists \langle J^{n}, n \in \mathbb{N} \rangle, J^{0} = P \land J^{n+1} \subseteq \operatorname{post}(\mathbb{H}_{P}, J^{n+1}) \in \{\langle P', Q'\rangle \mid Q' \subseteq \operatorname{post}[\mathbb{H}_{P}] \rangle \\ & (\operatorname{changing} n \in \mathbb{H}) \land (\operatorname{changing} n \in \mathbb{H}) \\ & (\operatorname{changing} n \in \mathbb{H}) \land (\operatorname{changing} n \in \mathbb{H}) \\ &= (P, Q) \mid \exists \langle J^{n}, n \in \mathbb{N} \rangle, J^{0} = P \land \langle J^{n} \cap B_{\mathbb{H}} \mathbb{H}, J^{n+1} \rangle \in \{\langle P', Q'\rangle \mid Q' \subseteq \operatorname{post}[\mathbb{H}_{P}] \rangle \rangle \rangle \rangle \rangle \\ &= (P, Q) \mid \exists \langle$$

POPL 2024, London

3.2 Calculational design of IL rules

$$\frac{J^{0} = P, [J^{n} \cap \mathcal{B}\llbracketB]] S[J^{n+1}], Q \subseteq (\bigcup_{n \in \mathbb{N}} J^{n}) \cap \mathcal{B}\llbracket\negB]}{[P] \text{ while (B) } S[Q]}$$
(2)

PROOF. We write $[P] S [Q] \triangleq \langle P, Q \rangle \in \mathcal{T}_{IL}(S);$

By structural induction (S being a strict component of while (B) S), the rule for [P] S[Q] have already been defined;

By Aczel method, the (constant) fixpoint $\operatorname{lfp}^{\subseteq} \lambda X \cdot S$ is defined by $\{\frac{\emptyset}{c} \mid c \in S\}$;

So for while (B) S we have an axiom $\frac{\emptyset}{\{P\}}$ while (B) S $\{Q\}$ with side condition $J^0 = P$, $[J^n \cap$

 $\mathcal{B}\llbracket B \rrbracket] S [J^{n+1}], Q \subseteq (\bigcup_{n \in \mathbb{N}} J^n) \cap \mathcal{B}\llbracket \neg B \rrbracket;$

Traditionally, the side condition is written as a premiss, to get (2).

POPL 2024, London

for termination and nontermination proofs

Fig. 3. Taxonomy of assertional logics

1

POPL 2024, London

(14) By Galois connection (39.b), $post(\subseteq, \supseteq) \circ \alpha_G(\widetilde{pre}[S]) \triangleq \{\langle P, Q \rangle \in \wp(\Sigma) \times \wp(\Sigma) \mid F \}$ equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit's sub.

 $\boldsymbol{\omega}$

• Bi-inductive relational semantics with break and non termination (\bot) ,

 \mathcal{O}

- for termination and nontermination proofs
- Many more abstractions and combinations \rightarrow hundreds of **Contradiction** Subgoal induction [51] 14 [22, (i) p. 100] α_{I} α_{I} (a) Hoare logic [49] [22, (i) p. 100] α_{I} α_{I} α_{I}

Fig. 3. Taxonomy of assertional logics

POPL 2024, London

(14) By Galois connection (39.b), $post(\subseteq, \supseteq) \circ \alpha_G(\widetilde{pre}[S]) \triangleq \{\langle P, Q \rangle \in \wp(\Sigma) \times \wp(\Sigma) \mid F \}$ equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit's sub.

• Bi-inductive relational semantics with break and non termination (\bot) ,

transformation $\alpha_{pre} = \alpha_{G} = \alpha_{$

 $\boldsymbol{\omega}$

- for termination and nontermination proofs
- Many more abstractions and combinations \rightarrow hundreds of transformation 8 Hoare logic [49] 8 Hoare logic [49] 8 Experimental formation [51] [14] [22, (i) p. 100] [22, (i) p. 100 [22, (ĩ) p. 100] $\dot{\alpha}^{-1}$ post(\supseteq, \subseteq) $\circ \alpha_{c}$ post S Taxonomies based on theor Outcome logic [98] 13 (18) Dijkstra's subgoal induction [36] aka inforrectness [67] logic aka inforrectness [67] logic System (1) System (21) Callon (21) 7 Apt & Plotkin total correctness [6] post(⊇,⊆) $post(\supseteq, \subseteq) \circ \alpha$ post[[S]]⊥ pre∥S∥ $post(\subseteq, \supseteq) \circ \alpha_G$ ¹⁹ nontermination logic (application 2)

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

Fig. 3. Taxonomy of assertional logics

POPL 2024, London

(14) By Galois connection (39.b), $post(\subseteq, \supseteq) \circ \alpha_G(\widetilde{pre}[S]) \triangleq \{\langle P, Q \rangle \in \wp(\Sigma) \times \wp(\Sigma) \mid P \subseteq \widetilde{pre}[S]Q\}$ is equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit's subgoal induction

• Bi-inductive relational semantics with break and non termination (\bot) ,

• Many more fixpoint induction principles (including $P \sqsubseteq Ifp \sqsubseteq F$, $Ifp \sqsubseteq F \sqsubseteq P$, $P \sqsubseteq gfp \sqsubseteq F, gfp \sqsubseteq F \sqsubseteq P, Ifp \sqsubseteq F \sqcap P \neq \emptyset, gfp \sqsubseteq F \sqcap P \neq \emptyset, etc$

• Example I: calculational design of a logic for partial correctness + total correctness + non termination

> $\{ n = \underline{n} \land f = 1 \}$ while (n!=0) { f $\{ (\underline{n} \ge 0 \land f = !n) \lor$

= f * n; n = n - 1;}
$$(\underline{n} < 0 \land n = f = \bot)$$

• Example II: calculational design of an incorrectness logic including non termination

- Example II: calculational design of an incorrectness logic including non termination
- A specification for factorial: $\{n \in [-\infty,\infty] \land f \in$ while $(n!=0) \{ f =$ $\{f \in [1,\infty]\}$
- False alarm $f \in [-\infty, 0]$ with a (totally imprecise) interval analysis

- Example II: calculational design of an incorrectness logic including non termination
- A specification for factorial: $\begin{cases} n \in [-\infty, \infty] \land f \in \\ \text{while (n!=0) } \{ f = \\ \{ f \in [1, \infty] \} \end{cases}$
- False alarm $f \in [-\infty, 0]$ with a (totally imprecise) interval analysis
- The alarm is false by nontermination, not provable with IL

About incorrectness

• IL is <u>not</u> Hoare incorrectness logic (sufficient, not necessary)

• The logic $\mathcal{T}_{\overline{HL}}(W) \triangleq \text{post}(\subseteq, \supseteq) \circ \alpha^{\neg} \circ \mathcal{T}_{HL}(W) = \alpha^{\neg} \circ \mathcal{T}_{HL}(W)$ can be calculated by the design method (and does not need a consequence rule)

- $\Leftrightarrow \exists R \in \wp(\Sigma) . [P] S [R] \land R \cap \neg Q \neq \emptyset$ $\Leftrightarrow \exists \sigma \in \Sigma \ . \ [P] \ S[\{\sigma\}] \land \sigma \notin Q$

Calculational design of Hoare incorrectness logic HL

27

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC

4.1 Calculational Design of Hoare Incorrectness Logic Theory

Theorem 4.1 (Equivalent definitions of $\overline{\text{HL}}$ theories).

$$\mathcal{T}_{\overline{HL}}(W) \triangleq \text{post}(\subseteq, \supseteq) \circ \alpha^{\neg} \circ \mathcal{T}_{HL}(W) = \alpha^{\neg} \circ \mathcal{T}_{HL}(W)$$
 W = while (B) S

Observe that Th. 4.1 shows that $post(\subseteq, \supseteq)$ can be dispensed with. This implies that the consequence rule is useless for Hoare incorrectness logic.

Proof of Th. 4.1.

	$\mathcal{T}_{\overline{\mathrm{HL}}}(W) = \mathrm{post}(\subseteq, \supseteq) \circ \alpha^{\neg} \circ \mathcal{T}_{\mathrm{HL}}(W)$	$(\text{def. }\mathcal{T}_{\overline{ ext{HL}}}))$
=	$post((\subseteq, \supseteq)(\neg \{\langle P, Q \rangle \mid post[W]] P \subseteq Q\})$	
		(Lem. 1.4 and def. (30) of α [¬])
=	$post(\subseteq, \supseteq)(\{\langle P, Q \rangle \mid \neg(post[W]] P \subseteq Q)\})$	(def. º
=	$post(\subseteq, \supseteq)(\{\langle P, Q \rangle \mid post[\![W]\!]P \cap \neg Q \neq \emptyset\})$	$\langle def. \subseteq and \neg \rangle$
=	$\{\langle P', Q'\rangle \mid \exists \langle P, Q\rangle \in \{\langle P, Q\rangle \mid post[\![W]\!]P \cap \neg Q \neq \emptyset\} : \langle P, Q\rangle \subseteq \mathbb{Q}\}$	$\langle P', Q' \rangle \}$ (def. post)
=	$\{\langle P', Q'\rangle \mid \exists \langle P, Q\rangle : post[\![W]\!]P \cap \neg Q \neq \emptyset \land \langle P, Q\rangle \subseteq \subseteq \langle P', Q'\rangle\}$	(def. ∈∫
=	$\{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle : post[\![W]\!]P \cap \neg Q \neq \emptyset \land P \subseteq P' \land Q \supseteq Q'\}$	(component wise def. of ⊆, ⊇)
=	$\{\langle P', Q' \rangle \mid \exists Q : post[\![W]\!]P' \cap \neg Q \neq \emptyset \land Q \supseteq Q'\}$	
	$\langle (\subseteq) \text{ if } P \subseteq P' \text{ then } \text{post}[W] P \subseteq \text{post}[W] P' by (12) so the$	at $post[W] P \cap \neg Q \neq \emptyset$ implies
	$\operatorname{post}[\![W]\!]P' \cap \neg Q \neq \emptyset;$	
	(2) conversely, if $\exists Q : \text{post}[W]P'$, then $\exists P : \text{post}[W]P \cap D = D' \subseteq C$	$\neg Q \neq \emptyset \land P \subseteq P'$ by choosing
=	$P = P \cdot j$ {\langle P', \langle \rangle post \[W]\]P' \cap \sigma O' \neq \angle \]	
	$\begin{array}{ll} \langle (\subseteq) & \text{if } Q \supseteq Q' \text{ then } \neg Q' \supseteq \neg Q \text{ so } \text{post}[\![\mathbb{W}]\!] P' \cap \neg Q \neq \emptyset \text{ implies } \text{post}[\![\mathbb{W}]\!] P' \cap \neg Q' \neq \emptyset; \\ (\supseteq) & \text{conversely } \text{post}[\![\mathbb{W}]\!] P' \cap \neg Q' \neq \emptyset \text{ implies } \exists Q \text{ . } \text{post}[\![\mathbb{W}]\!] P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \neq \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q = \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q = \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q = \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q = \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q = \emptyset \land Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \supseteq Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \supseteq Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \supseteq Q \supseteq Q' \text{ by choosing } P' \cap \neg Q \supseteq Q \supseteq Q' \supseteq Q' \text{ by choosing } P' \cap \neg Q \supseteq Q \supseteq Q' \square Q \supseteq Q' \square Q' \square$	
	Q = Q'.	
=	$\{\langle P, Q \rangle \mid \neg (post[W]] P \subseteq Q)\}$	$(\det \subseteq \operatorname{and} \neg)$
=	$ \alpha \overline{} \circ \mathcal{T}_{\mathrm{HL}}(W) \qquad \qquad (\mathrm{def.} \alpha \overline{}) $	and $\mathcal{T}_{\mathrm{HL}}$ for Hoare logic \Box
	Theorem 4.2 (Theory of $\overline{\text{HL}}$).	
	$\mathcal{T}_{\overline{HL}}(W) = \{ \langle P, Q \rangle \mid \exists n \ge 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \\ \forall i \in [1, n[. \langle \mathcal{B}[\![B]\!] \cap \{\sigma_i\}, \{\sigma_{i+1}\} \rangle \in \mathcal{T}_{\overline{HL}}(S) \land \sigma_n \notin \mathcal{B}[\![B]\!] \land \sigma_n \notin Q \}$	
	Proof of Th. 4.2.	

 $\mathcal{T}_{\overline{\mathrm{HL}}}(\mathtt{W})$

- $= \{ \langle P, Q \rangle \mid \text{post}[[\neg B]](\text{lfp} \in \bar{F}_{P}^{e}) \cap \neg Q \neq \emptyset \}$ (Lem. 1.3, where $\bar{F}_{P}^{e}(X) \triangleq P \cup \text{post}([[B]] \in [[S]]^{e})X$) $= \{ \langle P, Q \rangle \mid \text{lfp} \in \bar{F}_{P}^{e} \cap \text{pre}[[\neg B]](\neg Q) \neq \emptyset \}$ (39.d))
- $= \{ \langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : \bar{F}_{P}^{e}(I) \subseteq I \land \exists \langle W, \leqslant \rangle \in \mathfrak{W} \mathfrak{f} : \exists v \in I \to W : \exists \langle \sigma_{i} \in I, i \in [1, \infty] \rangle : \sigma_{1} \in \bar{F}_{P}^{e}(\emptyset) \land \forall i \in [1, \infty] : \sigma_{i+1} \in \bar{F}_{P}^{e}(\{\sigma_{i}\}) \land \forall i \in [1, \infty] : (\sigma_{i} \neq \sigma_{i+1}) \Rightarrow (v(\sigma_{i}) > v(\sigma_{i+1}) \land \forall i \in [1, \infty] : (v(\sigma_{i}) \neq v(\sigma_{i+1}) \Rightarrow \{\sigma_{i}\} \cap \operatorname{pre}[\neg B](\neg Q) \neq 0 \}$ (induction principle Th. H.3)
- $= \{ \langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : P \subseteq I \land \mathsf{post}(\llbracket B \rrbracket ; \llbracket S \rrbracket^e) I \subseteq I \land \exists \langle W, \leqslant \rangle \in \mathfrak{W} \mathfrak{f} : \exists v \in I \to W : \exists \langle \sigma_i \in I, i \in [1, \infty] \rangle : \sigma_i \in P \land \forall i \in [1, \infty] : (\sigma_{i+1} \in P \lor \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket B \rrbracket ; \llbracket S \rrbracket^e) \{\sigma_i\}) \land \forall i \in [1, \infty] : (\sigma_i \neq \sigma_{i+1}) \Rightarrow (v(\sigma_i) > v(\sigma_{i+1}) \land \forall i \in [1, \infty] : (v(\sigma_i) \neq v(\sigma_{i+1})) \Rightarrow \sigma_i \in \mathsf{pre}[\llbracket \neg B \rrbracket (\neg Q) \}$

POPL 2024, London

 $\langle \det, \bar{F}_P^e(X) \triangleq P \cup \operatorname{post}(\llbracket B \rrbracket \operatorname{s} \llbracket S \rrbracket^e) X$, ⊆, and post, which is Ø-strict \rangle

 $= \{ \langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : P \subseteq I \land \mathsf{post}(\llbracketB] \, {}^\circ_{9} \, \llbracketS]^{e} \} I \subseteq I \land \exists \langle W, \leqslant \rangle \in \mathfrak{W} \mathfrak{f} : \exists v \in I \to W : \exists \langle \sigma_{i} \in I, i \in [1, \infty] \rangle : \sigma_{1} \in P \land \forall i \in [1, \infty] : \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracketB] \, {}^\circ_{9} \, \llbracketS]^{e} \} \{\sigma_{i}\} \land \forall i \in [1, \infty] : (\sigma_{i} \neq \sigma_{i+1}) \Rightarrow (v(\sigma_{i}) > v(\sigma_{i+1}) \land \forall i \in [1, \infty] : (v(\sigma_{i}) \not> v(\sigma_{i+1}) \Rightarrow \sigma_{i} \in \mathsf{pre}[\llbracket \neg B]](\neg Q) \}$

(since if $\sigma_{i+1} \in P$, we can equivalently consider the sequence $\langle \sigma_i \in I, j \in [i+1,\infty] \rangle$)

- $= \{ \langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : P \subseteq I \land \mathsf{post}(\llbracket B \rrbracket \degree \llbracket S \rrbracket^e) I \subseteq I \land \exists n \ge 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land \forall i \in [1, n[: \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket B \rrbracket \degree [S] \degree) \{\sigma_i\} \land \sigma_n \in \mathsf{pre}[\llbracket \neg B \rrbracket (\neg Q) \} \}$
 - $\langle (\subseteq)$ By $\langle W, \leq \rangle \in \mathfrak{W}\mathfrak{f}, v \in I \to W, \forall i \in [1, \infty] . (\sigma_i \neq \sigma_{i+1}) \Rightarrow (v(\sigma_i) > v(\sigma_{i+1}), \text{ the sequence is ultimately stationary at some rank$ *n* $. For then on, <math>\sigma_{i+1} = \sigma_i, i \geq n$ and so $v(\sigma_i) = v(\sigma_{i+1})$. Therefore $\forall i \in [1, \infty] . (v(\sigma_i) \neq v(\sigma_{i+1}) \Rightarrow \sigma_i \notin Q \text{ implies that } \sigma_n \in \operatorname{pre}[\neg B](\neg Q);$

(2) Conversely, from $\langle \sigma_i \in I, i \in [1, n] \rangle$ we can define $W = \{\sigma_i \mid i \in [1, n]\} \cup \{-\infty\}$ with $-\infty < \sigma_i < \sigma_{i+1}$ and $\nu(x) = \{x \in \{\sigma_i \mid i \in [1, n] \ \text{?} \ x \ \text{!} -\infty\}$ and the sequence $\langle \sigma_j \in I, j \in [1, \infty] \rangle$ repeats σ_n ad infimum for $j \ge n$.

- $= \{ \langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : P \subseteq I \land \mathsf{post}(\llbracket B \rrbracket \degree \llbracket S \rrbracket^e) I \subseteq I \land \exists n \ge 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land \forall i \in [1, n[: \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket B \rrbracket \degree [S] \P) \land \sigma_n \notin \mathcal{B}[\llbracket B \rrbracket \land \sigma_n \notin Q \}$ (def. pre)
- $= \{ \langle P, Q \rangle \mid \exists n \ge 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. \{\sigma_{i+1}\} \subseteq \text{post}(\llbracket B \rrbracket \mathring{}_{\mathcal{G}} \llbracket S \rrbracket^e) \{\sigma_i\} \land \sigma_n \notin \mathcal{B}[\llbracket B \rrbracket \land \sigma_n \notin Q \}$ (*I* is not used and can always be chosen to be Σ)
- $= \{ \langle P, Q \rangle \mid \exists n \ge 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. post(\llbracket B \rrbracket \overset{\circ}{,} \llbracket S \rrbracket ^e) \{\sigma_i\} \cap \{\sigma_{i+1}\} \neq \emptyset \land \sigma_n \notin B \llbracket B \rrbracket \land \sigma_n \notin Q \}$ (since $x \in X \Leftrightarrow X \cap \{x\} \neq \emptyset$)
- $= \{ \langle P, Q \rangle \mid \exists n \ge 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. post(\llbracket B \rrbracket ; \llbracket S \rrbracket^e) \{ \sigma_i \} \cap \neg(\neg \{ \sigma_{i+1} \}) \neq \emptyset \land \sigma_n \notin B \llbracket B \rrbracket \land \sigma_n \notin Q \}$ $(def. \neg X = \Sigma \smallsetminus X)$
- $= \{ \langle P, Q \rangle \mid \exists n \geq 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land \forall i \in [1, n[: \neg(\mathsf{post}(\llbracket B \rrbracket ; \llbracket S \rrbracket^e) \{\sigma_i\} \subseteq (\neg\{\sigma_{i+1}\})) \land \sigma_n \notin \mathcal{B}[\llbracket B \rrbracket \land \sigma_n \notin Q \}$ $(\neg(X \subseteq Y) \Leftrightarrow (X \cap \neg Y \neq \emptyset))$
- $= \{ \langle P, Q \rangle \mid \exists n \ge 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land \forall i \in [1, n[: \neg(\mathsf{post}(\llbracket S \rrbracket^e)(\mathcal{B}\llbracket B \rrbracket \cap \{\sigma_i\}) \subseteq (\neg\{\sigma_{i+1}\})) \land \sigma_n \notin \mathcal{B}\llbracket B \rrbracket \land \sigma_n \notin Q \}$ (def. post, $\llbracket B \rrbracket$, and $\overset{\circ}{\mathfrak{g}} \}$
- $= \{ \langle P, Q \rangle \mid \exists n \ge 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land \forall i \in [1, n[: \langle \mathcal{B}[B]] \cap \{\sigma_i\}, \neg \{\sigma_{i+1}\} \rangle \in \{ \langle P, Q \rangle \mid \neg (\mathsf{post}([S]]^e) P \subseteq Q) \} \land \sigma_n \notin \mathcal{B}[B]] \land \sigma_n \notin Q \}$ $(def. \in \mathcal{G})$
- $= \{ \langle P, Q \rangle \mid \exists n \ge 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. \langle \mathcal{B}[B]] \cap \{\sigma_i\}, \neg \{\sigma_{i+1}\} \rangle \in \mathcal{T}_{\overline{\mathrm{HL}}}(\mathsf{S}) \land \sigma_n \notin \mathcal{B}[B]] \land \sigma_n \in Q \}$

4.2 Calculational Design of HL Proof Rules

Theorem 4.3 ($\overline{\text{HL}}$ rules for conditional iteration).

$$\frac{\exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. (\mathcal{B}[B]] \cap \{\sigma_i\}) \land (\neg \{\sigma_{i+1}\}) \land \sigma_n \notin \mathcal{B}[B]] \land \sigma_n \notin Q}{(P) \text{ while (B) } \land (Q)}$$
(3)

PROOF OF (3). We write $(P) S (Q) \triangleq \langle P, Q \rangle \in \overline{HL}(S);$

By structural induction (S being a strict component of while (B) S), the rule for (P) S (Q) have already been defined;

By Aczel method, the (constant) fixpoint $|fp^{\subseteq} \lambda X \cdot S|$ is defined by $\{\frac{\emptyset}{c} \mid c \in S\}$;

So for while (B) S we have an axiom $\frac{\emptyset}{(P)}$ while (B) S(Q) with side condition $\exists \langle \sigma_i \in I, i \in [1, n] \rangle$. $\sigma_1 \in P \land \forall i \in [1, n[. (B[B]] \cap \{\sigma_i\}) S(\neg\{\sigma_{i+1}\}) \land \sigma_n \notin B[B]] \land \sigma_n \notin Q$ where $(B[B]] \cap \{\sigma_i\}) S(\neg\{\sigma_{i+1}\})$ is well-defined by structural induction;

Traditionally, the side condition is written as a premiss, to get (3).

Conclusion

A transformational logic is an abstract interpretation of a natural relational semantics

- slides + calculational design + recording are online on my web page (https://cs.nyu.edu/~pcousot/)
- paper + appendix = 1 clickable file on Zenodo <u>https://zenodo.org/records/10439109</u> DOI 10.5281/zenodo.10439108.

POPL 2024, London

The End, Thank You