Auxiliary Material for the Slides "Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation" at POPL 2024, London

PATRICK COUSOT

We study transformational program logics for correctness and incorrectness that we extend to explicitly handle both termination and nontermination. We show that the logics are abstract interpretations of the right image transformer for a natural relational semantics covering both finite and infinite executions. This understanding of logics as abstractions of a semantics facilitates their comparisons through their respective abstractions of the semantics (rather that the much more difficult comparison through their formal proof systems). More importantly, the formalization provides a calculational method for constructively designing the sound and complete formal proof system by abstraction of the semantics. As an example, we extend Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition (in)correctness logic.

CCS Concepts: • Theory of computation \rightarrow Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termination, nontermination, abstract interpretation

ACM Reference Format:

Patrick Cousot. 2024. Auxiliary Material for the Slides "Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation" at POPL 2024, London. Proc. ACM Program. Lang. 8, POPL, Article 7 (January 2024), 15 pages. https://doi.org/10.1145/3632849

This text contains the details of the formal development of Hoare logic, reverse Hoare logic aka incorrectness logic, and Hoare incorrectness logic.

[^0]
1 PROPERTIES OF STRONGEST POSTCONDITIONS

Lemma 1.1 (Composition). $\operatorname{post}(X \circ Y)=\operatorname{post}(Y) \circ \operatorname{post}(X)$.
Proof of Lem. 1.1.
$\operatorname{post}(X ; Y)$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime \prime}\right\rangle \in X ;{ }_{9}^{\circ} Y\right\}$
2def. post $\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma \in P \cdot \exists \sigma^{\prime} \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in X \wedge\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$
(def. 9)
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} \cdot \sigma^{\prime} \in\left\{\sigma^{\prime} \mid \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in X\right\} \wedge\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$
2def. \exists and $\in\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} \in \operatorname{post}(X) P \cdot\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$ \{def. post $\}$
$=\lambda P \cdot \operatorname{post}(Y)(\operatorname{post}(X) P)$ 2def. post $\}$
$=\operatorname{post}(Y) \circ \operatorname{post}(X)$
2def. function composition of
Lemma 1.2 (TEST), post $\llbracket \mathrm{B} \rrbracket P=P \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket$.
Proof of Lem. 1.2.
post $\llbracket \mathrm{B} \rrbracket P$
$=\left\{\sigma^{\prime} \mid \exists \sigma \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{B} \rrbracket\right\}$
2def. post $\}$
$=\{\sigma \mid \sigma \in P \wedge \sigma \in \mathcal{B} \llbracket \mathrm{~B} \rrbracket\}$ 2def. $\llbracket \mathrm{B} \rrbracket \triangleq\{\langle\sigma, \sigma\rangle \mid \sigma \in \mathcal{B} \llbracket \mathrm{B} \rrbracket\}\}$
$=P \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket$ \{def. intersection $\cup\}$

Lemma 1.3 (Strongest postcondition). $\mathcal{T}(\mathrm{s})=\alpha_{\mathrm{G}} \circ$ post $\llbracket \mathrm{s} \rrbracket=\{\langle P$, post $\llbracket \mathrm{s} \rrbracket P\rangle \mid P \in \wp(\Sigma)\}$.
Proof of Lem. 1.3.
$\mathcal{T}(\mathrm{s})$
$=\alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{\neq} \circ \alpha_{C}\left(\left\{\llbracket \mathrm{~s} \rrbracket_{\perp}\right\}\right)$
2def. \mathcal{T} S
$=\alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{\neq}\left(\llbracket \mathrm{s} \rrbracket_{\perp}\right) \quad$ 2def. $\alpha_{C} \int$
$=\alpha_{\mathrm{G}} \circ \operatorname{post}\left(\llbracket \mathrm{s} \rrbracket_{\perp} \cap(\Sigma \times \Sigma)\right) \quad$ 2def. $\alpha_{\neq} \int$
$=\alpha_{\mathrm{G}} \circ \operatorname{post} \llbracket \mathrm{s} \rrbracket$
2def. (1) of the angelic semantics $\llbracket s \rrbracket \int$
$=\{\langle P, \operatorname{post} \llbracket \mathrm{~s} \rrbracket P\rangle \mid P \in \wp(\Sigma)\}$
2 def. α_{G})
Lemma 1.4 (Strongest postcondition over approximation).

$$
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})=\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q\}=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s})
$$

Proof of Lem. 1.4.
$\operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})$
$=\operatorname{post}(\supseteq . \subseteq)(\mathcal{T}(\mathrm{S})) \quad$ 2def. function composition $\circ \rho$
$=\operatorname{post}(\supseteq . \subseteq)(\{\langle P, \operatorname{post} \llbracket \mathrm{~s} \rrbracket P\rangle \mid P \in \wp(\Sigma)\})$
2Lem. 1.3 $\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P\right.$, post $\left.\llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\} .\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in \supseteq . \subseteq\right\} \quad$ 2def. (10) of post $\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P \cdot\left\langle\langle P\right.\right.$, post $\left.\left.\llbracket \mathrm{s} \rrbracket P\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in \supseteq . \subseteq\right\} \quad$ 2def. $\left.\in\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\langle P\right.$, post $\left.\llbracket \mathrm{s} \rrbracket P\rangle \supseteq . \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad$ (def. $\in \mathcal{J}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P \supseteq P^{\prime} \wedge \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q^{\prime}\right\}$
2def. Ј. \subseteq §
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P^{\prime} \subseteq P \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket P \subseteq Q^{\prime}\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P^{\prime} \subseteq Q^{\prime}\right\}$
२（๓）by Galois connection（12），post is increasing so that $P^{\prime} \subseteq P \wedge$ post $\llbracket \mathrm{s} \rrbracket P \subseteq Q^{\prime}$ implies post $\llbracket \mathrm{s} \rrbracket P^{\prime} \subseteq$ post $\llbracket \mathrm{s} \rrbracket P \wedge$ post $\llbracket \mathrm{s} \rrbracket P \subseteq Q^{\prime}$ hence post $\llbracket \mathrm{s} \rrbracket P^{\prime} \subseteq Q^{\prime}$ by transitivity；
（こ）take $P=P^{\prime} S$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P^{\prime}=P \wedge\right.$ post $\left.\llbracket \mathrm{s} \rrbracket P \subseteq Q^{\prime}\right\} \quad$（def．$=\int$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\langle P, \operatorname{post} \llbracket \mathrm{~s} \rrbracket P\rangle=, \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad$ 2def．$\left.=, \subseteq\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P \cdot\left\langle\langle P\right.\right.$, post $\left.\left.\llbracket \mathrm{s} \rrbracket P\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\} \quad$ 2def．ϵS
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\} .\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\} \quad$ ddef．ϵS
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in \mathcal{T}(\mathrm{s}) \cdot\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\}$
2Lem．1．3 3
$=\operatorname{post}(=, \subseteq)(\mathcal{T}(\mathrm{s}))$
2def．（10）of post $\}$
$=\operatorname{post}(=, \subsetneq) \circ \mathcal{T}(\mathrm{s}) \quad$ 2def．function composition $\circ \mathcal{S}$
For simplicity，we consider conditional iteration $\mathrm{W}=$ while（B） S with no break．
Lemma 1.5 （Commutation）．post $\circ F^{\prime e}=\bar{F}^{e} \circ$ post where $\bar{F}^{e}(X) \triangleq \mathrm{id} \dot{\cup}(\operatorname{post}(\llbracket \mathrm{B} \rrbracket \stackrel{\varrho}{ } \llbracket \mathrm{s} \rrbracket) \circ X)$ and $F^{\prime e} \triangleq \lambda X \cdot \operatorname{id} \cup\left(X ; \llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e}\right), X \in \wp(\Sigma \times \Sigma)$ by (70) ．

Proof of Lem． 1.5 ．

```
    post( (F
```



```
= id ن ( post(\llbracket\textrm{B}\rrbracketq}\\llbracket\textrm{s}\mp@subsup{\rrbracket}{}{e})\circ\operatorname{post}(X)
= \overline{F} where \(\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \llbracket \mathrm{~s} \rrbracket^{e}\right) X\) ．

Proof of Lem．1．6．
\(\bar{F}^{e}(X) P\)
\(=\left(i d \dot{\cup}\left(\operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{q} \llbracket \mathrm{~s} \rrbracket^{e}\right) \circ X\right)\right) P\)
2def． \(\bar{F}^{e}\) ）
\(=\operatorname{id}(P) \cup\left(\operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \circ \llbracket \llbracket \rrbracket^{e}\right) \circ X\right)(P)\) 2pointwise def．\(\cup\) and function composition \(\circ \int\)
\(=P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{ } \llbracket \mathrm{~s} \rrbracket^{e}\right)(X(P))\)
\(=\overline{\bar{F}}_{P}^{e}(X(P))\) \｛def．identity id and function application \(\}\)〔def．\(\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket\right.\) g \(\left.\llbracket \mathrm{s} \rrbracket^{e}\right) X \varsigma\)

Theorem 1.7 （Iteration strongest postcondition）．post \(\llbracket \mathrm{W} \rrbracket P=\operatorname{post} \llbracket \neg \mathrm{B} \rrbracket\left(\operatorname{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right)\) where \(\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \llbracket \rrbracket^{e}\right) X\) ．

Proof of Th．1．7．
post【W】
\(=\operatorname{post}\left(\operatorname{Ifp}{ }^{〔} F^{e} ; \llbracket \neg \mathrm{B} \rrbracket\right) \quad\) 2def．（49）of \(\llbracket W \rrbracket\) in absence of break \(\varsigma\)
\(=\operatorname{post} \llbracket \neg \mathrm{B} \rrbracket \circ\) post \(\left(\right.\) Ifp \(\left.{ }^{\varsigma} F^{e}\right)\)
\(=\operatorname{post} \llbracket \neg \mathrm{B} \rrbracket \circ \operatorname{post}\left(\mathrm{Ifp}{ }^{〔} F^{\prime e}\right)\)
（composition Lem．1．1）
2 since \(\operatorname{Ifp}{ }^{〔} F^{e}=\operatorname{Ifp}{ }^{〔} F^{\prime e}\) in（70）S
\(=\operatorname{post} \llbracket \neg \mathrm{B} \rrbracket\left(\mathrm{Ifp}{ }^{\varsigma} \bar{F}^{e}\right)\)
2commutation Lem． 1.5 and fixpoint abstraction Th．II．2．2 \(\int\)
\(=\operatorname{post} \llbracket \neg \mathrm{B} \rrbracket \circ \lambda P \cdot \operatorname{lfp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\)
2pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2〕
Corollary 1.8 (Conditional iteration strongest postcondition graph). \(\mathcal{T}(\mathrm{w})=\{\langle P\), \(\left.\left.\operatorname{post} \llbracket \neg \mathrm{B} \rrbracket\left(\operatorname{lfp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right)\right\rangle \mid P \in \wp(\Sigma)\right\}\) where \(\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ף \llbracket \mathrm{~s} \rrbracket^{e}\right) X\).
Proof of Cor. 1.8.
\(\mathcal{T}(\mathrm{w})\)
\(=\alpha_{\mathrm{G}} \circ \operatorname{post}(\llbracket \mathrm{w} \rrbracket) \quad\) 2Lem. 1.3
\(=\alpha_{\mathrm{G}} \circ \operatorname{post} \llbracket \neg \mathrm{B} \rrbracket \circ \lambda P \cdot \mid \mathrm{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\)
2Th. 1.7)
\(=\left\{\left\langle P, \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\operatorname{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right)\right\rangle \mid P \in \wp(\Sigma)\right\}\)
2def. (7) of \(\left.\alpha_{G}\right\}\)

\section*{2 CALCULATIONAL DESIGN OF HOARE LOGIC HL}

\subsection*{2.1 Calculational Design of Hoare Logic Theory}

Theorem 2.1 (Theory of Hoare logic HL).
\[
\begin{aligned}
\mathcal{T}_{\mathrm{HL}}(\mathrm{~W}) & \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{w}) \\
& =\left\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in T_{\mathrm{HL}}(\mathrm{~s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\right\}
\end{aligned}
\]

Proof of Th. 2.1.
\(\mathcal{T}_{\mathrm{HL}}(\mathrm{W})\)
\(=\operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(W) \quad 2\) def. \(\mathcal{T}_{\mathrm{HL}} \int\)
\(=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{W})\)
2Lem. 1.4 \(\}\)
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid\langle P, Q\rangle \in \mathcal{T}(\mathrm{w}) \cdot\langle P, Q\rangle=, \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad\) 2def. post \(\}\)
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid\langle P, Q\rangle \in \mathcal{T}(\mathrm{W}) . P=P^{\prime} \wedge Q \subseteq Q^{\prime}\right\} \quad\) 2component wise def. \(=, \subseteq \int\)
\(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q \cdot\langle P, Q\rangle \in \mathcal{T}(\mathrm{w}) \cdot Q \subseteq Q^{\prime}\right\} \quad\) 2def. \(\left.=\right\}\)
\(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q \cdot \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\operatorname{Ifp}{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right) \subseteq Q \wedge Q \subseteq Q^{\prime}\right\} \quad\) 2Th. 1.7 \(\}\)
\(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q\right.\). post \(\llbracket \neg \mathrm{B} \rrbracket\left(\right.\) Ifp \(\left.\left.{ }^{\subseteq} \overline{\bar{F}}_{P}^{e}\right) \subseteq Q^{\prime}\right\}\)
\(2(\subseteq) \exists Q \cdot\) post \(\llbracket \neg \mathrm{B} \rrbracket\left(\right.\) Ifp \(\left.^{\subseteq} \overline{\bar{F}}_{P}^{e}\right) \subseteq Q \wedge Q \subseteq Q^{\prime}\) and transitivity;
(ㄱ) take \(Q=Q^{\prime} S\)
\(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q\right.\). Ifp \({ }^{\subseteq} \overline{\bar{F}}_{P}^{e} \subseteq Q \wedge\) post \(\left.\llbracket \neg \mathrm{B} \rrbracket(Q) \subseteq Q^{\prime}\right\}\)
\(\left\{(\subseteq)\right.\) take \(Q=\) Ifp \({ }^{\subseteq} \overline{\bar{F}}_{P}^{e} ; \quad(\supseteq)\) post \(\llbracket \neg \mathrm{B} \rrbracket\) is increasing by (12) \(S\)
\(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists Q \cdot \exists I \cdot \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge I \subseteq Q \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(Q) \subseteq Q^{\prime}\right\} \quad\) 2Park fixpoint induction Th. II.3.1 \(\}\)
\(=\left\{\left\langle P, Q^{\prime}\right\rangle \mid \exists I . \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q^{\prime}\right\}\)
\(2(\subseteq) I \subseteq Q\) implies post \(\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq\) post \(\llbracket \neg \mathrm{B} \rrbracket(Q)\) since post \(\llbracket \neg \mathrm{B} \rrbracket\) is increasing by (12) hence post \(\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq Q^{\prime}\) by transitivity;
\((\supseteq)\) take \(Q=I S\)
\(=\left\{\langle P, Q\rangle \mid \exists I . P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{ } \llbracket \mathrm{~S} \rrbracket^{e}\right)(I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\right\} \quad\) 2renaming, def. \(\left.\overline{\bar{F}}_{P}^{e}\right\}\)
\(=\{\langle P, Q\rangle \mid \exists I . P \cup \operatorname{post}(\llbracket \mathrm{~B} \rrbracket \stackrel{\circ}{\circ} \llbracket \mathrm{~s} \rrbracket)(I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\} \quad 2 \llbracket \mathrm{~s} \rrbracket^{e}=\llbracket \mathrm{s} \rrbracket\) in absence of breaks \(\}\)
\(=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge \operatorname{post}(\llbracket \mathrm{~B} \rrbracket \circ \llbracket \mathrm{~s} \rrbracket) I \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\}\)
\(\{\) def. \(\subseteq\) and \(\cup\}\)
\(=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket(\operatorname{post} \llbracket \mathrm{~B} \rrbracket I) \subseteq I \wedge \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq Q\} \quad\) 2composition Lem. 1.1\}
\(=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket(I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq I \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\} \quad\) 2test Lem. 1.2 \(\int\)
\(=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q\} \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q \quad\) def. \(\in\}\)
\(=\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in \operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\)
2Lem. 1.4 \({ }^{\text {S }}\)
\(=\left\{\langle P, Q\rangle \mid \exists I . P \subseteq I \wedge\langle I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, I\rangle \in T_{\mathrm{HL}}(\mathrm{S}) \wedge(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q\right.\)
2Lem. 1.4 \({ }^{\text {S }}\)

\subsection*{2.2 Hoare logic rules}

Theorem 2.2 (Hoare rules for conditional iteration).
\[
\begin{equation*}
\frac{P \subseteq I,\{I \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\} \mathrm{s}\{I\},(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q}{\{P\} \text { while (B) } \mathrm{s}\{Q\}} \tag{1}
\end{equation*}
\]

Proof of Th. 2.2. We write \(\{P\} \mathrm{s}\{Q\} \stackrel{\wedge}{\triangleq}\langle P, Q\rangle \in \mathcal{T}_{\text {HL }}(\mathrm{S})\);
By structural induction (S being a strict component of while (B) S), the rule for \(\{P\} \mathrm{S}\{Q\}\) have already been defined;

By Aczel method, the (constant) fixpoint \(\operatorname{Ifp}{ }^{\varsigma} \lambda X \cdot S\) is defined by \(\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}\);
So for while (B) S we have an axiom \(\frac{\varnothing}{\{P\} \text { while (B) } \mathrm{S}\{Q\}}\) with side condition \(P \subseteq I,\{I \cap\) \(\mathcal{B} \llbracket \mathrm{B} \rrbracket\} \mathrm{s}\{I\},(I \cap \neg \mathcal{B} \llbracket \mathrm{~B} \rrbracket) \subseteq Q ;\)

Traditionally, the side condition is written as a premiss, to get (1).

\section*{3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC （IL）}

\section*{3．1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory}

Theorem 3.1 （Theory of IL）．
```

$\mathcal{T}_{L L}(\mathrm{~W}) \triangleq \operatorname{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathrm{w})$
$=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle . J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in \mathcal{T}_{I L}(\mathrm{~s}) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\}$
Proof of Th. 3.1.

```
    \(\mathcal{T}_{\text {IL }}\) (w)
\(=\operatorname{post}(\subseteq . \geq) \circ \mathcal{T}(W)\)
(def. \(\mathcal{T}_{\text {IL }}\) )
\(=\{\langle P, Q\rangle \mid Q \subseteq \operatorname{post} \llbracket W \rrbracket P\}\)
    2气-order dual of Lem. 1.4
\(=\left\{\langle P, Q\rangle \mid Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\operatorname{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right)\right\} \quad\) 2Th. 1.7 where \(\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket g\right.\) g \(\left.\llbracket \mathrm{s} \rrbracket^{e}\right) X S\)
\(=\left\{\langle P, Q\rangle \mid \exists I . Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \wedge I \subseteq \operatorname{lfp}^{\varsigma} \overline{\bar{F}}_{P}^{e}\right\}\)
    2(c) Take \(I=\operatorname{Ifp} \subseteq \overline{\bar{F}}_{P}^{e}\) and reflexivity;
    (き) By Galois connection (12), post \(\llbracket \neg \mathrm{B} \rrbracket\) is increasing so \(Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \subseteq\)
        post \(\llbracket \neg \mathrm{B} \rrbracket\left(\right.\) Ifp \(\left.{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right)\) and transitivity \(\int\)
\(=\left\{\langle P, Q\rangle \mid \exists I \cdot Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket(I) \wedge \exists\left\langle J^{n}, n<\omega\right\rangle \cdot J^{0}=\varnothing \wedge J^{n+1} \subseteq \overline{\bar{F}}_{P}^{e}\left(J^{n}\right) \wedge I \subseteq \bigcup_{n<\omega} J^{n}\right\}\)
                                    2fixpoint underapproximation Th. II.3.6 \(\int\)
\(=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n<\omega\right\rangle . J^{0}=\varnothing \wedge J^{n+1} \subseteq \overline{\bar{F}}_{P}^{e}\left(J^{n}\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\bigcup_{n<\omega} J^{n}\right)\right\}\)
    २(؟) By Galois connection (12), post \(\llbracket \neg \mathrm{B} \rrbracket\) is increasing so \(Q \subseteq\) post \(\llbracket \neg \mathrm{B} \rrbracket(I) \subseteq\)
        post \(\llbracket \neg \mathrm{B} \rrbracket\left(\cup_{n<\omega} J^{n}\right)\) and transitivity;
            (き) take \(I=\cup_{n<\omega} J^{n} S\)
\(=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n<\omega\right\rangle . J^{0}=\varnothing \wedge J^{n+1} \subseteq\left(P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{\square} \boxtimes \rrbracket^{e}\right)\left(J^{n}\right)\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\bigcup_{n<\omega} J^{n}\right)\right\}\)
                                    2def. \(\overline{\bar{F}}_{P}^{e}\) )
\(=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, 1 \leqslant n<\omega\right\rangle \cdot J^{1}=P \wedge J^{n+1} \subseteq \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{q} \llbracket \rrbracket^{e}\right)\left(J^{n}\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left({\left.\left.\underset{1}{ } \bigcup_{n<\omega} J^{n}\right)\right\}}\right.\right.\)
                                    2getting rid of \(J^{0}=\varnothing S\)
\(=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle \cdot J^{0}=P \wedge J^{n+1} \subseteq \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket\right.\right.\) g \(\left.\left.\llbracket \mathrm{s} \rrbracket^{e}\right)\left(J^{n}\right) \wedge Q \subseteq \operatorname{post} \llbracket \neg \mathbb{B} \rrbracket\left(\bigcup_{n \in \mathbb{N}} J^{n}\right)\right\}\)
                                    2 changing \(n+1\) to \(n\}\)
\(=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle \cdot J^{0}=P \wedge J^{n+1} \subseteq \operatorname{post} \llbracket \mathrm{~S} \rrbracket^{e}\left(J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket\right) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\}\)

2Lem． 1.2 S
\(\left.=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle . J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid Q^{\prime} \subseteq \operatorname{post} \llbracket \mathrm{s} \rrbracket^{e}\right) P\right)\right\} \wedge Q \subseteq\) \(\left.\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\}\)
\(=\left\{\langle P, Q\rangle \mid \exists\left\langle J^{n}, n \in \mathbb{N}\right\rangle . J^{0}=P \wedge\left\langle J^{n} \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket, J^{n+1}\right\rangle \in \mathcal{T}_{\mathrm{IL}}(\mathrm{S}) \wedge Q \subseteq\left(\bigcup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket\right\} \quad\) def． \(\mathcal{T}_{\mathrm{IL}} S\)

\subsection*{3.2 Calculational design of IL rules}


Proof. We write \([P] \mathrm{s}[Q] \triangleq\langle P, Q\rangle \in \mathcal{T}_{\text {LL }}(\mathrm{S})\);
By structural induction (S being a strict component of while (B) S), the rule for \([P] \mathrm{S}[Q]\) have already been defined;

By Aczel method, the (constant) fixpoint \(\operatorname{Ifp}{ }^{\varsigma} \lambda X \cdot S\) is defined by \(\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}\);
So for while (B) S we have an axiom \(\frac{\varnothing}{\{P\} \text { while (B) } \mathrm{S}\{Q\}}\) with side condition \(J^{0}=P,\left[J^{n} \cap\right.\) \(\mathcal{B} \llbracket \mathrm{B} \rrbracket] \mathrm{s}\left[J^{n+1}\right], Q \subseteq\left(\cup_{n \in \mathbb{N}} J^{n}\right) \cap \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket ;\)

Traditionally, the side condition is written as a premiss, to get (2).

\section*{4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC}

\section*{4．1 Calculational Design of Hoare Incorrectness Logic Theory}

Theorem 4.1 （Equivalent definitions of \(\overline{\mathrm{HL}}\) theories）．
\[
\left.\left.\mathcal{T}_{\overline{H L}}(\mathrm{~s}) \triangleq \operatorname{post}(\subseteq, \supseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{H L}(\mathrm{~s})=\alpha\right\urcorner \circ \mathcal{T}_{H L}(\mathrm{~s})
\]

Observe that Th． 4.1 shows that \(\operatorname{post}(\subseteq, \supseteq)\) can be dispensed with．This implies that the consequence rule is useless for Hoare incorrectness logic．

Proof of Th．4．1．
\[
\left.\mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{~s})=\operatorname{post}(\subseteq, \supseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{\mathrm{HL}}(\mathrm{~s})
\]

2def． \(\mathcal{T}_{\overline{\mathrm{HL}}}\) S
\(=\operatorname{post}((\subseteq, \supseteq)(\neg\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{S} \rrbracket P \subseteq Q\}) \quad\) 2Lem．1．4 and def．（30）of \(\alpha\urcorner \varsigma\)
\(=\operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q\rangle \mid \neg(\operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q)\})\)
2def．\(\neg\}\)
\(=\operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q\rangle \mid \operatorname{post} \llbracket s \rrbracket P \cap \neg Q \neq \varnothing\})\)
〔def．\(\subseteq\) and \(\neg\) \}
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{S} \rrbracket P \cap \neg Q \neq \varnothing\} .\langle P, Q\rangle \subseteq, \supseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad\) 2def．post \(\int\)
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle . \operatorname{post} \llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing \wedge\langle P, Q\rangle \subseteq, \supseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\}\)
2def．\(\in\) S
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle . \operatorname{post} \llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing \wedge P \subseteq P^{\prime} \wedge Q \supseteq Q^{\prime}\right\} \quad\)（component wise def．of \(\subseteq, \supseteq \bigcirc\)
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists Q . \operatorname{post} \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \wedge Q \supseteq Q^{\prime}\right\}\)
2（c）if \(P \subseteq P^{\prime}\) then post \(\llbracket \varsigma \rrbracket P \subseteq \operatorname{post} \llbracket \rrbracket \rrbracket P^{\prime}\) by（12）so that post \(\llbracket \rrbracket \rrbracket P \cap \neg Q \neq \varnothing\) implies post \(\llbracket \rrbracket \rrbracket P^{\prime} \cap \neg Q \neq \varnothing\) ；
（き）conversely，if \(\exists Q\) ．post \(\llbracket \mathrm{s} \rrbracket P^{\prime}\) ，then \(\exists P\) ．post \(\llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing \wedge P \subseteq P^{\prime}\) by choosing \(P=P^{\prime} . S\)
\(=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing\right\}\)
2（c）if \(Q \supseteq Q^{\prime}\) then \(\neg Q^{\prime} \supseteq \neg Q\) so post \(\llbracket \rrbracket \rrbracket P^{\prime} \cap \neg Q \neq \varnothing\) implies post \(\llbracket \rrbracket \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing\) ；
\((\supseteq)\) conversely post \(\llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing\) implies \(\exists Q\) ．pos \(\llbracket \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \wedge Q \supseteq Q^{\prime}\) by choosing \(Q=Q^{\prime} . S\)
\(=\{\langle P, Q\rangle \mid \neg(\operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q)\} \quad\) 2def．\(\subseteq\) and \(\neg\}\)
\(=\alpha\urcorner \circ \mathcal{T}_{\mathrm{HL}}(\mathrm{S}) \quad\) def．\(\left.\alpha\right\urcorner\) and \(\mathcal{T}_{\text {HL }}\) for Hoare logic \(\oint\)
Theorem 4.2 （Theory of \(\overline{\mathrm{HL}}\) ）．\(\quad \mathrm{w}=\) while（ B\() \mathrm{S}\)
\(\mathcal{T}_{\overline{H L}}(\mathrm{~W})=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge\right.\) \(\forall i \in\left[1, n\left[.\left\langle\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in \mathcal{T}_{\overline{H L}}(\mathrm{~s}) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\}\right.\)

Proof of Th．4．2．
\[
\begin{aligned}
& \mathcal{T}_{\overline{\mathrm{HL}}} \text { (W) } \\
& =\left\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \neg \mathrm{B} \rrbracket\left(\operatorname{Ifp}{ }^{〔} \overline{\bar{F}}_{P}^{e}\right) \cap \neg Q \neq \varnothing\right\} \quad \text { Lem. 1.3, where } \overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{ } \llbracket \mathrm{~s} \rrbracket^{e}\right) X S \\
& \left.=\left\{\langle P, Q\rangle \mid \operatorname{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e} \cap \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q) \neq \varnothing\right\} \quad \text { 2(39.d) }\right\} \\
& =\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{W} \boldsymbol{f} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I, i \in[1, \infty]\right\rangle . \sigma_{1} \in\right. \\
& \overline{\bar{F}}_{P}^{e}(\varnothing) \wedge \forall i \in[1, \infty] . \sigma_{i+1} \in \overline{\bar{F}}_{P}^{e}\left(\left\{\sigma_{i}\right\}\right) \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in\right. \\
& \left.[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow\left\{\sigma_{i}\right\} \cap \operatorname{pre} \llbracket \neg \mathrm{B} \rrbracket(\neg Q) \neq 0\right\} \quad \text { (induction principle Th. H.3 }\right\} \\
& =\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{\square} \mathbb{\mathrm { s } \rrbracket e}{ }^{e}\right) I \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{W} \mathfrak{F} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I\right. \text {, }\right. \\
& i \in[1, \infty]\rangle . \sigma_{1} \in P \wedge \forall i \in[1, \infty] .\left(\sigma_{i+1} \in P \vee\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket 9 \text { g } \llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\}\right) \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq\right. \\
& \left.\sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right. \\
& \text { 2def. } \left.\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{\varrho}{\circ} \llbracket \mathrm{~s} \rrbracket^{e}\right) X \text {, } \subseteq \text {, and post, which is } \varnothing \text {-strict }\right\}
\end{aligned}
\]
\(=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \varsigma \rrbracket^{e}\right) I \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{B} \mathfrak{\beta} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I\right.\right.\), \(i \in[1, \infty]\rangle . \sigma_{1} \in P \wedge \forall i \in[1, \infty] .\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket q \llbracket \mathrm{~s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\) \(\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \in \operatorname{pre} \llbracket \neg \mathbb{B} \rrbracket(\neg Q)\right\}\right.\)
\{since if \(\sigma_{i+1} \in P\), we can equivalently consider the sequence \(\left.\left\langle\sigma_{j} \in I, j \in[i+1, \infty]\right\rangle\right\rangle\)
\(=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{\circ}{\square} \llbracket \mathrm{~s} \rrbracket^{e}\right) I \subseteq I \wedge \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\right.\) \(\left[1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right.\)
\(\chi(\subseteq) \quad \mathrm{By}\langle W, \leqslant\rangle \in \mathfrak{M} \mathfrak{f}, v \in I \rightarrow W, \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right)\right.\), the sequence is ultimately stationary at some rank \(n\). For then on, \(\sigma_{i+1}=\sigma_{i}, i \geqslant n\) and so \(v\left(\sigma_{i}\right)=v\left(\sigma_{i+1}\right)\). Therefore \(\forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \notin Q\right.\) implies that \(\sigma_{n} \in\) pre \(\llbracket \neg \mathrm{B} \rrbracket(\neg Q)\);
\((\supseteq)\) Conversely, from \(\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle\) we can define \(W=\left\{\sigma_{i} \mid i \in[1, n]\right\} \cup\{-\infty\}\) with \(-\infty<\sigma_{i}<\sigma_{i+1}\) and \(v(x)=\left(x \in\left\{\sigma_{i} \mid i \in[1, n]\right.\right.\) ว \(\left.x:-\infty\right)\) and the sequence \(\left\langle\sigma_{j} \in I\right.\), \(j \in[1, \infty]\rangle\) repeats \(\sigma_{n}\) ad infimum for \(j \geqslant n\). \(\int\)
\(=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{\circ}{\circ} \llbracket \mathrm{~s} \rrbracket^{e}\right) I \subseteq I \wedge \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\right.\) \([1, n[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}(\llbracket \mathrm{B} \rrbracket \overbrace{}^{\circ} \llbracket \mathrm{\llbracket} \rrbracket^{e})\left\{\sigma_{i}\right\} \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\} \quad\) 2def. pre \(\}\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \rrbracket \llbracket \llbracket \rrbracket \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \notin\right.\right.\right.\) \(\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad\{I\) is not used and can always be chosen to be \(\Sigma S\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[\cdot \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~g} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \cap\left\{\sigma_{i+1}\right\} \neq \varnothing \wedge \sigma_{n} \notin\right.\right.\right.\) \(\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad \quad\) since \(x \in X \Leftrightarrow X \cap\{x\} \neq \varnothing S\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[\cdot \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \cap \neg\left(\neg\left\{\sigma_{i+1}\right\}\right) \neq\right.\right.\right.\) \(\left.\varnothing \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad\) (def. \(\neg X=\Sigma \backslash X \rho\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \neg\left(\operatorname{post}\left(\llbracket \mathrm{B} \rrbracket\right.\right.\right.\right.\right.\) g \(\left.\llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \subseteq\) \(\left.\left.\left(\neg\left\{\sigma_{i+1}\right\}\right)\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad \quad \neg(X \subseteq Y) \Leftrightarrow(X \cap \neg Y \neq \varnothing \rho\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \neg\left(\operatorname{post}\left(\llbracket \mathrm{s} \rrbracket^{e}\right)\left(\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}\right) \subseteq\right.\right.\right.\right.\) \(\left.\left.\left(\neg\left\{\sigma_{i+1}\right\}\right)\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad\) 2def. post, \(\llbracket \mathrm{B} \rrbracket\), and \(\left.\%\right\}\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\langle\mathcal{B} \llbracket \mathrm{B}] \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in\{\langle P\right.\right.\), \(\left.\left.Q\rangle \mid \neg\left(\operatorname{post}\left(\llbracket \mathrm{s} \rrbracket^{e}\right) P \subseteq Q\right)\right\} \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad\) 2def. \(\epsilon \mathcal{S}\)
\(=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left\langle\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in \mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{s}) \wedge \sigma_{n} \notin\right.\right.\right.\) \(\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \in Q\right\}\)
\[
\text { 2def. } \mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{~S}) S
\]

\subsection*{4.2 Calculational Design of \(\overline{\mathrm{HL}}\) Proof Rules}

Theorem 4.3 ( \(\overline{\mathrm{HL}}\) rules for conditional iteration). \(W=\) while ( \(B\) ) S
\[
\begin{equation*}
\frac{\exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \cap \mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}\right) \mathrm{S}\left(\neg\left\{\sigma_{i+1}\right\}\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right.}{(P \backslash \text { while }(\mathrm{B}) \mathrm{S}(Q)} \tag{3}
\end{equation*}
\]

Proof of (3). We write \(\ P \backslash \mathrm{~s}(Q) \triangleq\langle P, Q\rangle \in \overline{\mathrm{HL}}(\mathrm{s})\);
By structural induction (s being a strict component of while (B) S ), the rule for \((P) \mathrm{S} \backslash Q)\) have already been defined;

By Aczel method, the (constant) fixpoint Ifp \({ }^{\varsigma} \lambda X \cdot S\) is defined by \(\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}\);
So for while (B) S we have an axiom \(\frac{\varnothing}{(P) \text { while (B)S S }(Q)}\) with side condition \(\exists\left\langle\sigma_{i} \in I, i \in\right.\) \([1, n]\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \mid \mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}\right) \mathrm{S} \backslash \neg\left\{\sigma_{i+1}\right\}\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\) where \(\backslash \mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\) \(\left\{\sigma_{i}\right\} \backslash S\left(\neg\left\{\sigma_{i+1}\right\}\right)\) is well-defined by structural induction;

Traditionally, the side condition is written as a premiss, to get (3).

This is nothing but debugging formalized as a logic since \(\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle\) is a finite iteration in the loop starting with \(P\) true and finishing with \(Q\) false, which is obviously a counter example to Hoare triple \(\{P\}\) while (B) \(\mathrm{S}\{Q\}\). Notice that recursively \(\left(\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\} \backslash \mathrm{S} \backslash\left\{\sigma_{i+1}\right\}\right.\) ) enforces the execution of the loop body \(S\) to start in state \(\sigma_{i}\) and terminate in state \(\sigma_{i+1}\).

\section*{5 COMPARISON OF INCORRECTNESS LOGIC AND HOARE INCORRECTNESS LOGIC}

Lemma 5.1 (IL is sufficient but not necessary for incorrectness). Assuming \(Q \neq \Sigma\).
\[
\begin{align*}
\neg(\{P\} \mathrm{s}\{Q\}) & \Leftrightarrow \operatorname{post}(R) P \cap \neg Q \neq \varnothing  \tag{4}\\
& \Leftrightarrow \exists \sigma \in P \cdot \exists \sigma^{\prime} \notin Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket \\
& \Leftrightarrow P \cap \operatorname{pre\llbracket s\rrbracket \neg Q\neq \varnothing } \\
& \nLeftarrow \\
& \forall \sigma^{\prime} \notin Q \cdot \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket \\
& \Leftrightarrow[P] \mathrm{s}[\neg Q]
\end{align*}
\]

Proof of Lem. 5.1.
\[
\begin{aligned}
& \neg(\{P\} \mathrm{s}\{Q\}) \\
\Leftrightarrow & \neg(\operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q) \\
\Leftrightarrow & \operatorname{post} \llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing \\
\Leftrightarrow & \exists \sigma \in P \cdot \exists \sigma^{\prime} \notin Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket \\
\Leftrightarrow & P \cap \operatorname{pre} \llbracket \mathrm{~s} \rrbracket \neg Q \neq \varnothing
\end{aligned}
\]
2Lem. 1.4
\[
\text { ¿De Morgan } \int
\]
```

 \([P] \mathrm{s}[\neg Q]\)
 $\Leftrightarrow \neg Q \subseteq \operatorname{post} \llbracket \mathrm{~s} \rrbracket P$
$\Leftrightarrow \neg Q \subseteq\left\{\sigma^{\prime} \mid \exists \sigma \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket\right\}$
$\Leftrightarrow \forall \sigma^{\prime} \notin Q . \exists \sigma \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket$
2reverse Hoare aka incorrectness logic \oint
2def. triple S
(def. post $)$
2def. \subseteq and $\neg\}$
$\stackrel{\nLeftarrow}{\Rightarrow} \exists \sigma \in P . \exists \sigma^{\prime} .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \varsigma \rrbracket \wedge \sigma^{\prime} \notin Q$
$2(\Rightarrow)$ Assume $\neg Q \neq \varnothing$ so pick $\sigma_{0} \in \neg Q$. Then, by hypothesis, $\exists \sigma_{1} \in P .\left\langle\sigma_{0}, \sigma_{1}\right\rangle \in \llbracket \mathrm{s} \rrbracket$
proving $\exists \sigma \in P . \exists \sigma^{\prime} .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket \wedge \sigma^{\prime} \notin Q$ with $\sigma=\sigma_{0}$ and $\sigma^{\prime}=\sigma_{1}$;
(\neq) If $\neg Q=\varnothing$ i.e. $Q=\Sigma$ then $\forall \sigma^{\prime} \notin Q . \exists \sigma \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket$ is vacuously true while
$\exists \sigma^{\prime} . \sigma^{\prime} \notin Q$ hence $\exists \sigma \in P . \exists \sigma^{\prime} .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket \wedge \sigma^{\prime} \notin Q$ is false ς

```

Lemma 5.2 (Proving Hoare incorrectness with IL).
\[
\begin{equation*}
\neg(\{P\} \mathrm{s}\{Q\}) \Leftrightarrow \exists R \in \wp(\Sigma) \cdot[P] \mathrm{s}[R] \wedge R \cap \neg Q \neq \varnothing \tag{5}
\end{equation*}
\]

Proof of Lem. 5.2.
\(\Leftrightarrow \exists \sigma \in P . \exists \sigma^{\prime} \notin Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket\)
\(\Leftrightarrow \exists \sigma \notin Q . \exists \sigma^{\prime} \in P .\left\langle\sigma^{\prime}, \sigma\right\rangle \in \llbracket \mathrm{s} \rrbracket\)
2commutativity and renaming \(\}\)
\(\Leftrightarrow \exists \sigma \in \Sigma . \exists \sigma^{\prime} \in P .\left\langle\sigma^{\prime}, \sigma\right\rangle \in \llbracket \mathrm{s} \rrbracket \wedge \sigma \notin Q\) 2def. \(\exists\) J
\(\Leftrightarrow \exists \sigma \in \Sigma . \forall \sigma^{\prime \prime} \in\{\sigma\} . \exists \sigma^{\prime} \in P \cdot\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in \llbracket s \rrbracket \wedge \sigma \notin Q \quad\) def. \(\left.\epsilon\right\}\)
\(\Leftrightarrow \exists \sigma \in \Sigma .[P] \mathrm{s}[\{\sigma\}] \wedge \sigma \notin Q\)
(def. IL)
\(\Leftrightarrow \exists R \in \wp(\Sigma) \cdot[P] \mathrm{s}[R] \wedge R \cap \neg Q \neq \varnothing\)
2(ㄷ) take \(R=\{\sigma\}\);
(Э) since \(R \cap \neg Q \neq \varnothing\), we have \(\exists \sigma \in R . \sigma \notin Q\) and \([P] \mathrm{S}[\{\sigma\}]\) since otherwise we would have \(\left.\neg\left(\forall \sigma^{\prime \prime} \in\{\sigma\} . \exists \sigma^{\prime} \in P .\left\langle\sigma^{\prime \prime}, \sigma^{\prime}\right\rangle \in \llbracket s \rrbracket\right) \Leftrightarrow \forall \sigma^{\prime} \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \notin \llbracket s \rrbracket\right)\), in contradiction with \([P] \mathrm{S}[R]\) and \(\sigma \in R\). \(S\)```


[^0]:    Author's address: Patrick Cousot, pcousot@cims.nyu.edu.
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
    © 2024 Copyright held by the owner/author(s).
    ACM 2475-1421/2024/1-ART7
    https://doi.org/10.1145/3632849

