
Auxiliary Material for the Slides “Calculational Design of
[In]Correctness Transformational Program Logics by
Abstract Interpretation” at POPL 2024, London
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transforma-
tional Program Logics by Abstract Interpretation” at POPL 2024, London. Proc. ACM Program. Lang. 8, POPL,
Article 7 (January 2024), 15 pages. https://doi.org/10.1145/3632849

This text contains the details of the formal development of Hoare logic, reverse Hoare logic aka
incorrectness logic, and Hoare incorrectness logic.

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART7
https://doi.org/10.1145/3632849

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0003-0101-9953
https://doi.org/10.1145/3632849
https://orcid.org/0000-0003-0101-9953
https://doi.org/10.1145/3632849

7:2 Patrick Cousot

1 PROPERTIES OF STRONGEST POSTCONDITIONS
Lemma 1.1 (Composition). post(𝑋 !𝑌) = post(𝑌) ○ post(𝑋).
PRoof of Lem. 1.1.
post(𝑋 !𝑌)

= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′′⟩ ∈ 𝑋 !𝑌} "def. post#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. !#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ . 𝜎 ′ ∈ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋} ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. ∃ and ∈#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ ∈ post(𝑋)𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. post#
= 𝝀𝑃 .post(𝑌)(post(𝑋)𝑃) "def. post#
= post(𝑌) ○ post(𝑋) "def. function composition ○# !

Lemma 1.2 (test). post$B%𝑃 = 𝑃 ∩B$B%.

PRoof of Lem. 1.2.
post$B%𝑃

= {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $B%} "def. post#
= {𝜎 ∣ 𝜎 ∈ 𝑃 ∧ 𝜎 ∈ B$B%} "def. $B% ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ B$B%}#
= 𝑃 ∩B$B% "def. intersection ∪# !

Lemma 1.3 (StRongest postcondition). T (S) = 𝛼G ○ post$S% = {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}.
PRoof of Lem. 1.3.
T (S)

= 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({$S%#}) "def. T #
= 𝛼G ○ post ○ 𝛼/#($S%#) "def. 𝛼𝐶#
= 𝛼G ○ post($S%# ∩ (Σ × Σ)) "def. 𝛼/##
= 𝛼G ○ post$S% "def. (1) of the angelic semantics $S%#
= {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. 𝛼G# !

Lemma 1.4 (StRongest postcondition oveR appRoximation).
THL(S) ≜ post(⊇.⊆) ○ T (S) = {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} = post(=,⊆) ○ T (S)

PRoof of Lem. 1.4.
post(⊇.⊆) ○ T (S)

= post(⊇.⊆)(T (S)) "def. function composition ○#
= post(⊇.⊆)({⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}) "Lem. 1.3#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. (10) of post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ ⊇.⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ⊇ 𝑃 ′ ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇.⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇#
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:3

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post$S%𝑃 ′ ⊆ 𝑄 ′}
"(⊆) by Galois connection (12), post is increasing so that 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′ implies
post$S%𝑃 ′ ⊆ post$S%𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′ hence post$S%𝑃 ′ ⊆ 𝑄 ′ by transitivity;
(⊇) take 𝑃 = 𝑃 ′#

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ = 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. =#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. =,⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ T (S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} "Lem. 1.3#
= post(=,⊆)(T (S)) "def. (10) of post#
= post(=,⊆) ○ T (S) "def. function composition ○# !

For simplicity, we consider conditional iteration W = while (B) S with no break.

Lemma 1.5 (Commutation). post ○ 𝐹 ′𝑒 = 𝐹𝑒 ○ post where 𝐹𝑒(𝑋) ≜ id
.∪ (post($B% ! $S%𝑒) ○ 𝑋)

and 𝐹 ′𝑒 ≜ 𝝀𝑋 . id ∪ (𝑋 ! $B% ! $S%𝑒), 𝑋 ∈ ℘(Σ × Σ) by (70).

PRoof of Lem. 1.5.
post(𝐹 ′𝑒(𝑋)) "where 𝑋 ∈ ℘(Σ)#

= post(id ∪ (𝑋 ! $B% ! $S%𝑒)) "def. 𝐹𝑒#
= post(id) .∪ post(𝑋 ! $B% ! $S%𝑒) "join preservation in Galois connection (12)#
= id

.∪ (post($B% ! $S%𝑒) ○ post(𝑋)) "def. post and composition Lem. 1.1#
= 𝐹𝑒(post(𝑋)) "def. 𝐹𝑒# !

Lemma 1.6 (Pointwise commutation). ∀𝑋 ∈ ℘(Σ) → ℘(Σ) . ∀𝑃 ∈ ℘(Σ) . 𝐹𝑒(𝑋)𝑃 ≜ ¯̄𝐹𝑒𝑃(𝑋(𝑃))
where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 .

PRoof of Lem. 1.6.
𝐹𝑒(𝑋)𝑃

= (id .∪ (post($B% ! $S%𝑒) ○ 𝑋))𝑃 "def. 𝐹𝑒#
= id(𝑃) ∪ (post($B% ! $S%𝑒) ○ 𝑋)(𝑃) "pointwise def. .∪ and function composition ○#
= 𝑃 ∪ post($B% ! $S%𝑒)(𝑋(𝑃)) "def. identity id and function application#
= ¯̄𝐹𝑒𝑃(𝑋(𝑃)) "def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋# !

TheoRem 1.7 (IteRation stRongest postcondition). post$W%𝑃 = post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) where
¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 .

PRoof of Th. 1.7.
post$W%

= post(lfp⊆ 𝐹𝑒 ! $¬B%) "def. (49) of $W% in absence of break#
= post$¬B% ○ post(lfp⊆ 𝐹𝑒) "composition Lem. 1.1#
= post$¬B% ○ post(lfp⊆ 𝐹 ′𝑒) "since lfp⊆ 𝐹𝑒 = lfp⊆ 𝐹 ′𝑒 in (70)#
= post$¬B%(lfp⊆ 𝐹𝑒) "commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2#

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:4 Patrick Cousot

= post$¬B% ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃
"pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2# !

CoRollaRy 1.8 (Conditional iteRation stRongest postcondition gRaph). T (W) = {⟨𝑃,
post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 .

PRoof of CoR. 1.8.
T (W)

= 𝛼G ○ post($W%) "Lem. 1.3#
= 𝛼G ○ post$¬B% ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃 "Th. 1.7#
= {⟨𝑃, post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. (7) of 𝛼G# !

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) "def. THL#
= post(=,⊆) ○ T (W) "Lem. 1.4#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} "component wise def. =,⊆#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} "def. =#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} "Th. 1.7#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

"(⊆) ∃𝑄 . post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′#

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post$¬B%(𝑄) ⊆ 𝑄 ′}
"(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post$¬B% is increasing by (12)#

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post$¬B%(𝑄) ⊆ 𝑄 ′} "Park fixpoint induction Th. II.3.1#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄 ′}

"(⊆) 𝐼 ⊆ 𝑄 implies post$¬B%(𝐼) ⊆ post$¬B%(𝑄) since post$¬B% is increasing by (12) hence
post$¬B%(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼#

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post($B% ! $S%𝑒)(𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "renaming, def. ¯̄𝐹𝑒𝑃#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post($B% ! $S%)(𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "$S%𝑒 = $S% in absence of breaks#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%)𝐼 ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "def. ⊆ and ∪#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post$S%(post$B%𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "composition Lem. 1.1#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post$S%(𝐼 ∩B$B%) ⊆ 𝐼 ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄} "test Lem. 1.2#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄 "def. ∈#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄 "Lem. 1.4#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄 "Lem. 1.4# !

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:6 Patrick Cousot

2.2 Hoare logic rules
TheoRem 2.2 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B$B%} S{𝐼}, (𝐼 ∩ ¬B$B%) ⊆ 𝑄
{𝑃} while (B) S{𝑄} (1)

PRoof of Th. 2.2. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ THL(S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B$B%} S{𝐼}, (𝐼 ∩ ¬B$B%) ⊆ 𝑄 ;
Traditionally, the side condition is written as a premiss, to get (1).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B$B%, 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) "def. TIL#
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post$W%𝑃} "⊆-order dual of Lem. 1.4#
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃)} "Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post$¬B%(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

"(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post$¬B% is increasing so 𝑄 ⊆ post$¬B%(𝐼) ⊆
post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity#

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post$¬B%(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

"fixpoint underapproximation Th. II.3.6#
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post$¬B%(⋃

𝑛<𝜔 𝐽𝑛)}
"(⊆) By Galois connection (12), post$¬B% is increasing so 𝑄 ⊆ post$¬B%(𝐼) ⊆
post$¬B%(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post($B% ! $S%𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post$¬B%(⋃
𝑛<𝜔 𝐽𝑛)}

"def. ¯̄𝐹𝑒𝑃#
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post($B% ! $S%𝑒)(𝐽𝑛) ∧𝑄 ⊆ post$¬B%(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
"getting rid of 𝐽 0 = ∅#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post($B% ! $S%𝑒)(𝐽𝑛) ∧𝑄 ⊆ post$¬B%(⋃
𝑛∈N 𝐽

𝑛)}
"changing 𝑛 + 1 to 𝑛#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post$S%𝑒(𝐽𝑛 ∩B$B%) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%}
"Lem. 1.2#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B$B%, 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post$S%𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%} "def. ∈#
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B$B%, 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B$¬B%} "def. TIL#

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:8 Patrick Cousot

3.2 Calculational design of IL rules

𝐽 0 = 𝑃, [𝐽𝑛 ∩B$B%] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%
[𝑃] while (B) S [𝑄] (2)

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B$B%] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B$¬B%;
Traditionally, the side condition is written as a premiss, to get (2).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(S) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(S) = 𝛼¬ ○ THL(S)

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(S) = post(⊆,⊇) ○ 𝛼¬ ○ THL(S) "def. THL#

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄}) "Lem. 1.4 and def. (30) of 𝛼¬#
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post$S%𝑃 ⊆ 𝑄)}) "def. ¬#
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ∩ ¬𝑄 ≠ ∅}) "def. ⊆ and ¬#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} "def. post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post$S%𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post$S%𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} "component wise def. of ⊆,⊇#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post$S%𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

"(⊆) if 𝑃 ⊆ 𝑃 ′ then post$S%𝑃 ⊆ post$S%𝑃 ′ by (12) so that post$S%𝑃 ∩ ¬𝑄 ≠ ∅ implies
post$S%𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post$S%𝑃 ′, then ∃𝑃 . post$S%𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. #

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post$S%𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
"(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post$S%𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post$S%𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post$S%𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post$S%𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. #

= {⟨𝑃, 𝑄⟩ ∣ ¬(post$S%𝑃 ⊆ 𝑄)} "def. ⊆ and ¬#
= 𝛼¬ ○ THL(S) "def. 𝛼¬ and THL for Hoare logic# !

TheoRem 4.2 (TheoRy of HL). W = while (B) S

THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B$B% ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} "Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 #
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre$¬B%(¬𝑄) ≠ ∅} "(39.d)#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre$¬B%(¬𝑄) ≠ 0} "induction principle Th. H.3#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre$¬B%(¬𝑄)}

"def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 , ⊆, and post, which is ∅-strict#
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:10 Patrick Cousot

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,
𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre$¬B%(¬𝑄)}

"since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[. {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre$¬B%(¬𝑄)}

"(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre$¬B%(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.#

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[. {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. pre#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B$B% ∧ 𝜎𝑛 /∈ 𝑄} "𝐼 is not used and can always be chosen to be Σ#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. post($B%!$S%𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B$B% ∧ 𝜎𝑛 /∈ 𝑄} "since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. post($B% ! $S%𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. ¬𝑋 = Σ ∖𝑋#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ¬(post($B% ! $S%𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ¬(post($S%𝑒)(B$B% ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. post, $B%, and !#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ⟨B$B% ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post($S%𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. ∈#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B$B%∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B$B% ∧ 𝜎𝑛 ∈ 𝑄} "def. THL(S)# !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation). W = while (B) S

∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. &B$B% ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄
&𝑃 ' while (B) S &𝑄 '

(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. &B$B% ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄 where &B$B% ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:11

This is nothing but debugging formalized as a logic since ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ is a finite iteration in
the loop starting with 𝑃 true and finishing with 𝑄 false, which is obviously a counter example to
Hoare triple {𝑃} while (B) S{𝑄}. Notice that recursively &B$B% ∩ {𝜎𝑖} ' S &{𝜎𝑖+1} ' enforces the
execution of the loop body S to start in state 𝜎𝑖 and terminate in state 𝜎𝑖+1.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:12 Patrick Cousot

5 COMPARISON OF INCORRECTNESS LOGIC AND HOARE INCORRECTNESS
LOGIC

Lemma 5.1 (IL is sufficient but not necessaRy foR incoRRectness). Assuming 𝑄 ≠ Σ.
¬({𝑃} S{𝑄}) ⇔ post(𝑅)𝑃 ∩ ¬𝑄 ≠ ∅ (4)

⇔ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ /∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ $S%⇔ 𝑃 ∩ pre$S%¬𝑄 ≠ ∅/⇒⇐ ∀𝜎 ′ /∈ 𝑄 . ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S%
⇔ [𝑃]S[¬𝑄]

PRoof of Lem. 5.1.
¬({𝑃} S{𝑄})

⇔ ¬(post$S%𝑃 ⊆ 𝑄) "Lem. 1.4#
⇔ post$S%𝑃 ∩ ¬𝑄 ≠ ∅ "De Morgan#
⇔ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ /∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% "def. ∩ and ∅#
⇔𝑃 ∩ pre$S%¬𝑄 ≠ ∅ "def. pre#

[𝑃]S[¬𝑄] "reverse Hoare aka incorrectness logic#
⇔ ¬𝑄 ⊆ post$S%𝑃 "def. triple#
⇔ ¬𝑄 ⊆ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S%} "def. post#
⇔ ∀𝜎 ′ /∈ 𝑄 . ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% "def. ⊆ and ¬#/⇐⇒∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ $S% ∧ 𝜎 ′ /∈ 𝑄

"(⇒) Assume ¬𝑄 ≠ ∅ so pick 𝜎0 ∈ ¬𝑄 . Then, by hypothesis, ∃𝜎1 ∈ 𝑃 . ⟨𝜎0, 𝜎1⟩ ∈ $S%
proving ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ $S% ∧ 𝜎 ′ /∈ 𝑄 with 𝜎 = 𝜎0 and 𝜎 ′ = 𝜎1;
(/⇐) If ¬𝑄 = ∅ i.e. 𝑄 = Σ then ∀𝜎 ′ /∈ 𝑄 . ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% is vacuously true while∃𝜎 ′ . 𝜎 ′ /∈ 𝑄 hence ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ $S% ∧ 𝜎 ′ /∈ 𝑄 is false# !

Lemma 5.2 (PRoving HoaRe incoRRectness with IL).
¬({𝑃} S{𝑄}) ⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅ (5)⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄PRoof of Lem. 5.2.

¬({𝑃} S{𝑄}) "def. incorrect Hoare triple#
⇔ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ /∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% "lem. 5.1#
⇔ ∃𝜎 /∈ 𝑄 . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′, 𝜎⟩ ∈ $S% "commutativity and renaming#
⇔ ∃𝜎 ∈ Σ . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′, 𝜎⟩ ∈ $S% ∧ 𝜎 /∈ 𝑄 "def. ∃#
⇔ ∃𝜎 ∈ Σ . ∀𝜎 ′′ ∈ {𝜎} . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ $S% ∧ 𝜎 /∈ 𝑄 "def. ∈#
⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄 "def. IL#
⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅

"(⊆) take 𝑅 = {𝜎};
(⊇) since 𝑅∩¬𝑄 ≠ ∅, we have ∃𝜎 ∈ 𝑅 . 𝜎 /∈ 𝑄 and [𝑃] S [{𝜎}] since otherwise we would
have ¬(∀𝜎 ′′ ∈ {𝜎} . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′′, 𝜎 ′⟩ ∈ $S%)⇔ ∀𝜎 ′ ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ /∈ $S%), in contradiction
with [𝑃] S [𝑅] and 𝜎 ∈ 𝑅. # !

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

	Abstract
	1 Properties of Strongest Postconditions
	2 Calculational Design of Hoare Logic HL
	2.1 Calculational Design of Hoare Logic Theory
	2.2 Hoare logic rules

	3 Calculational Design of Reverse Hoare aka Incorrectness Logic (IL)
	3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
	3.2 Calculational design of IL rules

	4 Calculational Design of Hoare Incorrectness Logic
	4.1 Calculational Design of Hoare Incorrectness Logic Theory
	4.2 Calculational Design of HL Proof Rules

	5 Comparison of Incorrectness Logic and Hoare Incorrectness Logic

