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7:2 Patrick Cousot

1 PROPERTIES OF STRONGEST POSTCONDITIONS
Lemma 1.1 (Composition). post(𝑋 !𝑌) = post(𝑌) ○ post(𝑋).
PRoof of Lem. 1.1.
post(𝑋 !𝑌)

= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′′⟩ ∈ 𝑋 !𝑌} "def. post#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. !#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ . 𝜎 ′ ∈ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋} ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. ∃ and ∈#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ ∈ post(𝑋)𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. post#
= 𝝀𝑃 .post(𝑌)(post(𝑋)𝑃) "def. post#
= post(𝑌) ○ post(𝑋) "def. function composition ○# !

Lemma 1.2 (test). post$B%𝑃 = 𝑃 ∩B$B%.

PRoof of Lem. 1.2.
post$B%𝑃

= {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $B%} "def. post#
= {𝜎 ∣ 𝜎 ∈ 𝑃 ∧ 𝜎 ∈ B$B%} "def. $B% ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ B$B%}#
= 𝑃 ∩B$B% "def. intersection ∪# !

Lemma 1.3 (StRongest postcondition). T (S) = 𝛼G ○ post$S% = {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}.
PRoof of Lem. 1.3.
T (S)

= 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({$S%#}) "def. T #
= 𝛼G ○ post ○ 𝛼/#($S%#) "def. 𝛼𝐶#
= 𝛼G ○ post($S%# ∩ (Σ × Σ)) "def. 𝛼/##
= 𝛼G ○ post$S% "def. (1) of the angelic semantics $S%#
= {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. 𝛼G# !

Lemma 1.4 (StRongest postcondition oveR appRoximation).
THL(S) ≜ post(⊇.⊆) ○ T (S) = {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} = post(=,⊆) ○ T (S)

PRoof of Lem. 1.4.
post(⊇.⊆) ○ T (S)

= post(⊇.⊆)(T (S)) "def. function composition ○#
= post(⊇.⊆)({⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}) "Lem. 1.3#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. (10) of post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ ⊇.⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ⊇ 𝑃 ′ ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇.⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇#
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= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post$S%𝑃 ′ ⊆ 𝑄 ′}
"(⊆) by Galois connection (12), post is increasing so that 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′ implies
post$S%𝑃 ′ ⊆ post$S%𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′ hence post$S%𝑃 ′ ⊆ 𝑄 ′ by transitivity;
(⊇) take 𝑃 = 𝑃 ′#

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ = 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. =#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. =,⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ T (S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} "Lem. 1.3#
= post(=,⊆)(T (S)) "def. (10) of post#
= post(=,⊆) ○ T (S) "def. function composition ○# !

For simplicity, we consider conditional iteration W = while (B) S with no break.

Lemma 1.5 (Commutation). post ○ 𝐹 ′𝑒 = 𝐹𝑒 ○ post where 𝐹𝑒(𝑋) ≜ id
.∪ (post($B% ! $S%𝑒) ○ 𝑋)

and 𝐹 ′𝑒 ≜ 𝝀𝑋 . id ∪ (𝑋 ! $B% ! $S%𝑒), 𝑋 ∈ ℘(Σ × Σ) by (70).

PRoof of Lem. 1.5.
post(𝐹 ′𝑒(𝑋)) "where 𝑋 ∈ ℘(Σ)#

= post(id ∪ (𝑋 ! $B% ! $S%𝑒)) "def. 𝐹𝑒#
= post(id) .∪ post(𝑋 ! $B% ! $S%𝑒) "join preservation in Galois connection (12)#
= id

.∪ (post($B% ! $S%𝑒) ○ post(𝑋)) "def. post and composition Lem. 1.1#
= 𝐹𝑒(post(𝑋)) "def. 𝐹𝑒# !

Lemma 1.6 (Pointwise commutation). ∀𝑋 ∈ ℘(Σ) → ℘(Σ) . ∀𝑃 ∈ ℘(Σ) . 𝐹𝑒(𝑋)𝑃 ≜ ¯̄𝐹𝑒𝑃(𝑋(𝑃))
where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 .

PRoof of Lem. 1.6.
𝐹𝑒(𝑋)𝑃

= (id .∪ (post($B% ! $S%𝑒) ○ 𝑋))𝑃 "def. 𝐹𝑒#
= id(𝑃) ∪ (post($B% ! $S%𝑒) ○ 𝑋)(𝑃) "pointwise def. .∪ and function composition ○#
= 𝑃 ∪ post($B% ! $S%𝑒)(𝑋(𝑃)) "def. identity id and function application#
= ¯̄𝐹𝑒𝑃(𝑋(𝑃)) "def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋# !

TheoRem 1.7 (IteRation stRongest postcondition). post$W%𝑃 = post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) where
¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 .

PRoof of Th. 1.7.
post$W%

= post(lfp⊆ 𝐹𝑒 ! $¬B%) "def. (49) of $W% in absence of break#
= post$¬B% ○ post(lfp⊆ 𝐹𝑒) "composition Lem. 1.1#
= post$¬B% ○ post(lfp⊆ 𝐹 ′𝑒) "since lfp⊆ 𝐹𝑒 = lfp⊆ 𝐹 ′𝑒 in (70)#
= post$¬B%(lfp⊆ 𝐹𝑒) "commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2#

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.



7:4 Patrick Cousot

= post$¬B% ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃
"pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2# !

CoRollaRy 1.8 (Conditional iteRation stRongest postcondition gRaph). T (W) = {⟨𝑃,
post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 .

PRoof of CoR. 1.8.
T (W)

= 𝛼G ○ post($W%) "Lem. 1.3#
= 𝛼G ○ post$¬B% ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃 "Th. 1.7#
= {⟨𝑃, post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. (7) of 𝛼G# !
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2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) "def. THL#
= post(=,⊆) ○ T (W) "Lem. 1.4#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} "component wise def. =,⊆#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} "def. =#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} "Th. 1.7#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

"(⊆) ∃𝑄 . post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′#

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post$¬B%(𝑄) ⊆ 𝑄 ′}
"(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post$¬B% is increasing by (12)#

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post$¬B%(𝑄) ⊆ 𝑄 ′} "Park fixpoint induction Th. II.3.1#
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄 ′}

"(⊆) 𝐼 ⊆ 𝑄 implies post$¬B%(𝐼) ⊆ post$¬B%(𝑄) since post$¬B% is increasing by (12) hence
post$¬B%(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼#

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post($B% ! $S%𝑒)(𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "renaming, def. ¯̄𝐹𝑒𝑃#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post($B% ! $S%)(𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "$S%𝑒 = $S% in absence of breaks#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%)𝐼 ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "def. ⊆ and ∪#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post$S%(post$B%𝐼) ⊆ 𝐼 ∧ post$¬B%(𝐼) ⊆ 𝑄} "composition Lem. 1.1#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post$S%(𝐼 ∩B$B%) ⊆ 𝐼 ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄} "test Lem. 1.2#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄 "def. ∈#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄 "Lem. 1.4#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B$B%, 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B$B%) ⊆ 𝑄 "Lem. 1.4# !
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2.2 Hoare logic rules
TheoRem 2.2 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B$B%} S{𝐼}, (𝐼 ∩ ¬B$B%) ⊆ 𝑄
{𝑃} while (B) S{𝑄} (1)

PRoof of Th. 2.2. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ THL(S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B$B%} S{𝐼}, (𝐼 ∩ ¬B$B%) ⊆ 𝑄 ;
Traditionally, the side condition is written as a premiss, to get (1).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.
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3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B$B%, 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) "def. TIL#
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post$W%𝑃} "⊆-order dual of Lem. 1.4#
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃)} "Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post$¬B%(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

"(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post$¬B% is increasing so 𝑄 ⊆ post$¬B%(𝐼) ⊆
post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity#

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post$¬B%(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

"fixpoint underapproximation Th. II.3.6#
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post$¬B%(⋃

𝑛<𝜔 𝐽𝑛)}
"(⊆) By Galois connection (12), post$¬B% is increasing so 𝑄 ⊆ post$¬B%(𝐼) ⊆
post$¬B%(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post($B% ! $S%𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post$¬B%(⋃
𝑛<𝜔 𝐽𝑛)}

"def. ¯̄𝐹𝑒𝑃#
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post($B% ! $S%𝑒)(𝐽𝑛) ∧𝑄 ⊆ post$¬B%( ⋃

1⩽𝑛<𝜔 𝐽𝑛)}
"getting rid of 𝐽 0 = ∅#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post($B% ! $S%𝑒)(𝐽𝑛) ∧𝑄 ⊆ post$¬B%(⋃
𝑛∈N 𝐽

𝑛)}
"changing 𝑛 + 1 to 𝑛#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post$S%𝑒(𝐽𝑛 ∩B$B%) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%}
"Lem. 1.2#

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B$B%, 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post$S%𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%} "def. ∈#
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B$B%, 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B$¬B%} "def. TIL#

!
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3.2 Calculational design of IL rules

𝐽 0 = 𝑃, [𝐽𝑛 ∩B$B%] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B$¬B%
[𝑃] while (B) S [𝑄] (2)

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B$B%] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B$¬B%;
Traditionally, the side condition is written as a premiss, to get (2).
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4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(S) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(S) = 𝛼¬ ○ THL(S)

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(S) = post(⊆,⊇) ○ 𝛼¬ ○ THL(S) "def. THL#

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄}) "Lem. 1.4 and def. (30) of 𝛼¬#
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post$S%𝑃 ⊆ 𝑄)}) "def. ¬#
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ∩ ¬𝑄 ≠ ∅}) "def. ⊆ and ¬#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} "def. post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post$S%𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post$S%𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} "component wise def. of ⊆,⊇#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post$S%𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

"(⊆) if 𝑃 ⊆ 𝑃 ′ then post$S%𝑃 ⊆ post$S%𝑃 ′ by (12) so that post$S%𝑃 ∩ ¬𝑄 ≠ ∅ implies
post$S%𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post$S%𝑃 ′, then ∃𝑃 . post$S%𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. #

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post$S%𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
"(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post$S%𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post$S%𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post$S%𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post$S%𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. #

= {⟨𝑃, 𝑄⟩ ∣ ¬(post$S%𝑃 ⊆ 𝑄)} "def. ⊆ and ¬#
= 𝛼¬ ○ THL(S) "def. 𝛼¬ and THL for Hoare logic# !

TheoRem 4.2 (TheoRy of HL). W = while (B) S

THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B$B% ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post$¬B%(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} "Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 #
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre$¬B%(¬𝑄) ≠ ∅} "(39.d)#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre$¬B%(¬𝑄) ≠ 0} "induction principle Th. H.3#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre$¬B%(¬𝑄)}

"def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post($B% ! $S%𝑒)𝑋 , ⊆, and post, which is ∅-strict#
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= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,
𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre$¬B%(¬𝑄)}

"since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre$¬B%(¬𝑄)}

"(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre$¬B%(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.#

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post($B% ! $S%𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. pre#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . {𝜎𝑖+1} ⊆ post($B% ! $S%𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B$B% ∧ 𝜎𝑛 /∈ 𝑄} "𝐼 is not used and can always be chosen to be Σ#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . post($B%!$S%𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B$B% ∧ 𝜎𝑛 /∈ 𝑄} "since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . post($B% ! $S%𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. ¬𝑋 = Σ ∖𝑋#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post($B% ! $S%𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post($S%𝑒)(B$B% ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. post, $B%, and !#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ⟨B$B% ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post($S%𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄} "def. ∈#
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B$B%∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B$B% ∧ 𝜎𝑛 ∈ 𝑄} "def. THL(S)# !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation). W = while (B) S

∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B$B% ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄
&𝑃 ' while (B) S &𝑄 '

(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B$B% ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B$B% ∧ 𝜎𝑛 /∈ 𝑄 where &B$B% ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !
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This is nothing but debugging formalized as a logic since ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ is a finite iteration in
the loop starting with 𝑃 true and finishing with 𝑄 false, which is obviously a counter example to
Hoare triple {𝑃} while (B) S{𝑄}. Notice that recursively &B$B% ∩ {𝜎𝑖} ' S &{𝜎𝑖+1} ' enforces the
execution of the loop body S to start in state 𝜎𝑖 and terminate in state 𝜎𝑖+1.
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7:12 Patrick Cousot

5 COMPARISON OF INCORRECTNESS LOGIC AND HOARE INCORRECTNESS
LOGIC

Lemma 5.1 (IL is sufficient but not necessaRy foR incoRRectness). Assuming 𝑄 ≠ Σ.
¬({𝑃} S{𝑄}) ⇔ post(𝑅)𝑃 ∩ ¬𝑄 ≠ ∅ (4)

⇔ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ /∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ $S%⇔ 𝑃 ∩ pre$S%¬𝑄 ≠ ∅/⇒⇐ ∀𝜎 ′ /∈ 𝑄 . ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S%
⇔ [𝑃]S[¬𝑄]

PRoof of Lem. 5.1.
¬({𝑃} S{𝑄})

⇔ ¬(post$S%𝑃 ⊆ 𝑄) "Lem. 1.4#
⇔ post$S%𝑃 ∩ ¬𝑄 ≠ ∅ "De Morgan#
⇔ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ /∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% "def. ∩ and ∅#
⇔𝑃 ∩ pre$S%¬𝑄 ≠ ∅ "def. pre#

[𝑃]S[¬𝑄] "reverse Hoare aka incorrectness logic#
⇔ ¬𝑄 ⊆ post$S%𝑃 "def. triple#
⇔ ¬𝑄 ⊆ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S%} "def. post#
⇔ ∀𝜎 ′ /∈ 𝑄 . ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% "def. ⊆ and ¬#/⇐⇒∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ $S% ∧ 𝜎 ′ /∈ 𝑄

"(⇒) Assume ¬𝑄 ≠ ∅ so pick 𝜎0 ∈ ¬𝑄 . Then, by hypothesis, ∃𝜎1 ∈ 𝑃 . ⟨𝜎0, 𝜎1⟩ ∈ $S%
proving ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ $S% ∧ 𝜎 ′ /∈ 𝑄 with 𝜎 = 𝜎0 and 𝜎 ′ = 𝜎1;
( /⇐) If ¬𝑄 = ∅ i.e. 𝑄 = Σ then ∀𝜎 ′ /∈ 𝑄 . ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% is vacuously true while∃𝜎 ′ . 𝜎 ′ /∈ 𝑄 hence ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ $S% ∧ 𝜎 ′ /∈ 𝑄 is false# !

Lemma 5.2 (PRoving HoaRe incoRRectness with IL).
¬({𝑃} S{𝑄}) ⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅ (5)⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄PRoof of Lem. 5.2.

¬({𝑃} S{𝑄}) "def. incorrect Hoare triple#
⇔ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ /∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ $S% "lem. 5.1#
⇔ ∃𝜎 /∈ 𝑄 . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′, 𝜎⟩ ∈ $S% "commutativity and renaming#
⇔ ∃𝜎 ∈ Σ . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′, 𝜎⟩ ∈ $S% ∧ 𝜎 /∈ 𝑄 "def. ∃#
⇔ ∃𝜎 ∈ Σ . ∀𝜎 ′′ ∈ {𝜎} . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ $S% ∧ 𝜎 /∈ 𝑄 "def. ∈#
⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄 "def. IL#
⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅

"(⊆) take 𝑅 = {𝜎};
(⊇) since 𝑅∩¬𝑄 ≠ ∅, we have ∃𝜎 ∈ 𝑅 . 𝜎 /∈ 𝑄 and [𝑃] S [{𝜎}] since otherwise we would
have ¬(∀𝜎 ′′ ∈ {𝜎} . ∃𝜎 ′ ∈ 𝑃 . ⟨𝜎 ′′, 𝜎 ′⟩ ∈ $S%)⇔ ∀𝜎 ′ ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ /∈ $S%), in contradiction
with [𝑃] S [𝑅] and 𝜎 ∈ 𝑅. # !
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