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Abstract interpretation

Abstract interpretation

--- Abstract interpretation is a mathematical theory of
sound approximation of properties of formal sys-
tems (including program specifications, semantics,
. . . )

--- Abstraction is central to the comprehension of com-
plex systems (such as software)

--- Discovering new, useful, reusable abstractions can
be a full time job
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Applications of Abstract Interpretation (Cont’d)

--- Static Program Analysis [POPL ’77], [POPL ’78], [POPL ’79]
including Dataflow Analysis [POPL ’79], [POPL ’00], Set-
based Analysis [FPCA ’95], Predicate Abstraction
[Manna’s festschrift ’03], . . .

--- Syntax Analysis [TCS 290(1) 2002]

--- Hierarchies of Semantics (including Proofs) [POPL ’92],
[TCS 277(1–2) 2002]

--- Typing & Type Inference [POPL ’97]
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Applications of Abstract Interpretation (Cont’d)

--- (Abstract) Model Checking [POPL ’00]

--- Program Transformation [POPL ’02]

--- Software Watermarking [POPL ’04]

--- Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation
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A successful example:
The ASTRÉE static analyzer

The ASTRÉE static analyzer

--- Verify the absence of runtime errors in C programs:
-- out-of-bound array accesses 1

-- integer division by zero

-- IEEE 754-1985 floating point operations overflows and in-
valid operations (producing Inf or NaN 2)

-- integer arithmetics or cast wrap around, . . .

--- No union, malloc, recursion, library, strings, . . .
. . . as usual in many (automatically generated) synchronous,
time-triggered, real-time, safety critical, embedded software as
found in automotive, energy and aerospace applications
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Industrial applications
--- Nov. 2003: absence of any RTE in the primary flight control
software of the fly-by-wire system of a family of existing com-
mercial planes (generated from a proprietary specification lan-
guage), 132.000 lines

--- Mar. 2005: absence of any RTE in the primary flight con-
trol software of the fly-by-wire system of commercial plane un-
der certification (generated from a proprietary specification lan-
guage/SCADE), 500.000 lines, No false alarm (a world première)

--- Oct. 2005: 1.000.000 lines

Objectives: verification of binary code (+3 months), automatic

analysis of the origin of errors (+6 months), asynchronous com-

munication (+1 year), asynchronous processes (+2 years), . . .

1 It is completely wrong that “we don’t need a proof but a proper compiler”: discovering the error at runtime
is too late, no compiler checks these verification conditions
2 Well-written programs check for Inf/NaN inputs which must be shown statically not to propagate
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Abstractions
Abstraction of sets of traces 3 with

--- Intervals abstract domain (basic domain necessary to check
the absence of RTE)

--- Octagons abstract domain

--- Digital filters abstract domain

--- Decision trees abstract domain

--- Control/data partitioning to handle disjunctions

--- . . .

Preprocessing to handle C macros. Abstract domains are param-

eterized to tailor cost/precision, they talk/communicate symbol-

ically through mutual queries to implement the reduced product
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Ellipsoid Abstract Domain for Filters2d Order Digital Filter:
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3 i.e. more refined that invariants

Filter Exampletypedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

Reference
see http://www.astree.ens.fr/
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Arithmetic-geometric progressions

--- Abstract domain: (R
+)5 4

--- Concretization (any function bounded by the arithmetic-
geometric progression):
‚ 2 (R

+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“

–x . ax+ b ‹ (–x . a0x+ b0)k
”

(M)g

Reference
see http://www.astree.ens.fr/

4 here in R
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Arithmetic-Geometric Progressions (Example 1)
% cat count.c

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;

void main() {

R = 0;

while (TRUE) {

__ASTREE_log_vars((R));

if (I) { R = R + 1; }

else { R = 0; }

T = (R >= 100);

__ASTREE_wait_for_clock(());

}}

% cat count.config

__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!
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Arithmetic-geometric progressions (Example 2)

% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev( )

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev( );

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1

+ 1.19209290217e-07)ˆclock

- 5.87747175411e-39 /

1.19209290217e-07 <=

23.0393526881

Directions for application of
abstract interpretation

to the verification grand challenge
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Program verification
Following E.W.D. Dijkstra:

--- Program testing: presence of bugs

-- dynamic (e.g. program monitoring, . . . )

-- static (error pattern recognition, prefix (model)-
checking, . . . )

--- Program verification: absence of bugs

-- static

The Verification Grand Challenge is on verification (???).
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Error tracing

--- Bugs or false alarms are found during the verification
process

--- Abstract slicing can extract the part of the program
(control + data) which may be responsible for the error

--- Parametric abstraction can be used to provide counter-
examples

--- This can be hard (e.g. accumulation of rounding errors
in floating point computations for hours)
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Program semantics

--- A program is checked with respect to its semantics (in-
ternal specification)

--- Precise formal semantics (usable for program verifica-
tion, including at the implementation level) are missing
for the most common languages (e.g. C 5)

--- No semantics is universal

--- Abstract interpretation unifies semantics according to
their level of abstraction and can be used to prove their
consistency

5 The semantics of C is –P : Program texts ´ –M : Machine ´ –S : System ´ –L : Linker ´ –C : Compiler ´
S[C;L; S;M ]JP K . . . described informally

Specifications

--- Specifications translate external requirements in terms
of the program semantics

--- Specifications are erroneous

--- Specifications must be checked with respect to specifi-
cations of the specification

--- Static analysis by abstract interpretation could be use-
ful for specification verification

— 19 —

On specification satisfaction

--- Specification satisfaction can be verified in part

--- Such parts are abstractions of the specification (e.g. ab-
sence of RTE)

--- This shows the need for abstractions of specifications

--- Abstract interpretation

-- unifies specifications at various levels of abstraction

-- can be used to prove their consistency

-- can be used to specify by parts (through complex
combinations of abstractions)
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Complex systems

--- Engineers abstract complex physical systems (e.g. using
mathematical models)

--- Computer scientists abstract complex program compu-
tations (e.g. using abstract interpretation)

--- A unification of abstraction in computer science and
engineering sciences is necessary for the full verification
of complex systems, including
-- Abstract models of a program (e.g. using abstract se-
mantics)

-- Abstract models of its environment (e.g. using physi-
cal models)
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Proofs, abstractions and false alarms

--- A program proof involves a program-specific inductive
argument

--- A static analysis involves a program specific abstraction

--- Discovering an appropriate abstraction (e.g. by refine-
ment fixpoint iteration) is equivalent to discovering an
inductive proof

--- There is no false alarm only if the proof weakest induc-
tive argument is expressible in the abstract

Verification of program families

--- How to invent inductive arguments/abstractions avoid-
ing false alarms?

--- We can consider program families for which inductive
arguments/abstractions are similar

--- Examples:
-- Absence of runtime error in synchronous control command
programs (ASTRÉE)

-- Sorting, list processing,. . . (TVLA)

-- Scientific and signal processing applications (PIPS)

-- Numerical programs (Fluctuat)
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Application-aware verifiers

--- General-purpose verifiers are difficult to built

--- Domain-specific verifiers can be made powerful and ef-
ficient by incorporating knowledge about programs and
specifications

--- Example (for digital filters):

-- Polynomial assertions 6, versus

-- Ellipsoidal assertions 7, versus

-- Polyhedral assertions 8, . . .

6 Too expensive
7 OK, if implemented very efficiently and used locally in the program analysis
8 Not stable

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 22 — — 24 — ľ P. Cousot

http://www.astree.ens.fr/
http://www.cs.tau.ac.il/~tvla/
http://www.cri.ensmp.fr/pips/
http://www.enseignement.polytechnique.fr/profs/informatique/Matthieu.Martel/
http://www.di.ens.fr/
http://www.di.ens.fr/


Domains of abstract assertions

--- Universal representations (e.g. terms in theorem provers
or BDDs in model-checkers) are not always efficient

--- Dedicated representations are always algorithmically more
efficient

--- We can develop reusable libraries of dedicated abstrac-
tions 9
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Combination of abstractions

--- The modular combination of abstract domains (e.g. re-
duced product) allow universal uses of dedicated repre-
sentations

--- A domain-specific static analyzer can be built by com-
bining appropriate abstract domains

--- This is a generalization from:

-- the design of an inductive argument (e.g. invariant)
for a specific program (invariant generator), to

-- the design of an appropriate abstract domain com-
bination for a program family ((invariant generator)
generator)

9 e.g. APRON project in France: interchangeable numeric abstractions

Abstract solvers

--- Abstract solvers can take various forms:

-- Elimination

-- Iterative

-- Convergence acceleration

-- . . .

--- Progress needed on reusable, generic, parametric and
modular abstract solvers
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Modular analyzers

--- Static analyzers are extremely complex

--- Efficient static analyzers can be designed by modular
combination of abstract domains and abstract solvers

--- This leads to a wide spectrum of domain-aware verifiers
as opposed to a universal one
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The verified verifier (heavy version)

--- Any verifier must be qualified (e.g. verified)

--- Abstract interpretation formalizes the design and cor-
rectness of static analyzers

--- An abstract interpretation-based static analyzer is fully
formally specified and can be fully verified 10
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The verified verifier (light version)

--- A static analyzer computes an assertion and checks that
it is inductive

--- The computation of the abstract inductive assertion
(e.g. invariant) need not be verified

--- The check that the abstract assertion is inductive must
be verified

--- This is much simpler than a complete correctness proof!

--- A verified inductiveness checker can be extracted from
the correctness proof (COQ) and run occasionally to
validate the abstract assertion (despite its inefficiency)

10 e.g. in COQ as in D. Pichardie thesis, to appear

Acceptance and dissemination of static analysis

--- Ultimate success is in effective industrial applications

--- Measured only by economic payoff criteria

--- Hard to estimate the potential cost of errors discovered
by static analysis 11

--- The public demand on software quality might increase

--- Regulation might also be necessary (e.g. for safety crit-
ical software) to raise the law to the state of the art

--- Static analysis (as available at design time) can check a
posteriori for fatal errors, which can determine respon-
sibilities in case of software failures
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Conclusion

11 The Ariane 5.01 bug is worth billions of $ if discovered by failure after departure but 0 $ if known before!

ľ P. Cousot Oct. 10th–14th, 2005VSTTE, ETH — 30 — — 32 — ľ P. Cousot

http://www.di.ens.fr/
http://www.di.ens.fr/


Conclusion

--- Abstraction is indispensable for the Verification Grand
Challenge

--- The challenge for abstract interpretation is to extend
its scope to complex systems, from specification to im-
plementation, including engineering considerations
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THE END, THANK YOU
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