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Abstract
• In static analysis by abstract interpretation, algebraic abstract domains can 

be combined by the reduced product, or over-approximated by the 
iterated pairwise reductions.

In Satisfiability Modulo Theories (SMT) solvers, the Nelson-Oppen (NO) 
theory combination schema provides, under various restrictions, a sound 
and complete decision procedure for the combining of disjoint theories by 
exchanges of disjunctions of equalities and disequalities. Understood as 
abstract domains, we show that the NO procedure is an iterated pairwise 
reduction.

In the context of static analysis, theories can be understood as abstract 
domains. Completeness is useless in the abstract since the static analysis 
problem is undecidable anyway. This point of view introduces 
generalizations which, when combined with bounded widenings (such as 
interpolation), yields new cominations of algebraic and logical abstractions.

• Joint work with Radhia Cousot, ENS & CNRS, Paris and Laurent 
Mauborgne, IMDEA, Madrid.

2

Invited talk, SAS 2011,Ca’ Foscari, Venezia, Wednesday, September 14th, 2011, 14:00-15:00.                                                                                                                                                © P. Cousot

References

3

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 
Logical Abstract Domains and Interpretations.
In The Future of Software Engineering, S. Nanz (Ed.). 
© Springer 2010, Pages 48—71.

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 
The reduced product of abstract domains and the combination of decision procedures.
In 14th International Conference on Foundations of Software Science and Computation 
Structures (FoSSaCS 2011), March 26 — April 3, 2011, Saarbrücken, Germany, Martin 
Hofmann (Ed.), Lecture Notes in Computer Science, Vol. 6604, 
© Springer 2011, pages 456—472.

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 
Theories, Solvers and Static Analysis by Abstract Interpretation.
Submitted to a journal.
Available from the authors.

•

•

•

Combined, revised and extended into:

Invited talk, SAS 2011,Ca’ Foscari, Venezia, Wednesday, September 14th, 2011, 14:00-15:00.                                                                                                                                                © P. Cousot

Objective

4



Invited talk, SAS 2011,Ca’ Foscari, Venezia, Wednesday, September 14th, 2011, 14:00-15:00.                                                                                                                                                © P. Cousot

Algebraic abstractions
• Used in abstract interpretation for analysis/

verification of finite/infinite systems

• System properties and specifications are abstracted 
as an algebraic lattice (abstraction-specific encoding 
of properties) 

• Fully automatic: system properties are computed as 
fixpoints of algebraic transformers 

• Abstractions can be combined using the reduced 
product
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Proof theoretic/logical abstractions
• Used in deductive methods

• System properties and specifications are expressed 
with formulæ of first-order theories (universal 
encoding of properties) 

• Partly automatic: system properties are provided 
manually by end-users and automatically checked to 
satisfy verification conditions (with implication 
defined by the theories)

• Theories can be combined using Nelson-Oppen 
procedure  
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Objective
• Show that proof-theoretic/logical abstractions are 

particular cases of algebraic abstractions

• Show that the Nelson-Oppen procedure is a 
particular case of the reduced product

• Use this unifying point of view to introduce a new 
combination of logical and algebraic abstractions
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➥ Convergence of proof theoretic/
logical and algebraic property-
inference and verification methods
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Concrete semantics
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Programs (syntax)
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• Expressions (on a signature         )

• Programs (including assignment, guards, loops, ...)

A:2 Patrick Cousot et al.

arithmetics could be encoded with integer arithmetics and floats with rationals, but then the perfor-
mances of SMT solvers and theorem provers would be highly degraded. On the other end, static
analyzers such as Astrée [Bertrane et al. 2010; Cousot et al. 2005] which are based on algebraic
abstractions of the machine semantics do not have such e�ciency and soundness limitations. How-
ever their expressivity is limited by that of their abstract domains. It is therefore interesting not only
to use SMT solvers and theorem provers in logical abstract domains but also to combine algebraic
and logical abstract interpretations to get the best of both worlds i.e. scalability, expressivity, nat-
ural interface with the end-user using logical formulæ, and soundness with respect to the machine
semantics. The proposed combination is based on the iterated reduced product [Cousot and Cousot
1979c] which is commonly used in algebraic abstract interpreters (e.g. in Astrée [Cousot et al.
2008]) while logical abstract interpreters combine (disjoint, convex, stably-infinite) theories by the
Nelson-Oppen procedure [Nelson and Oppen 1979]. The key new idea is to show that the Nelson-
Oppen procedure computes a reduced product in an observational semantics, so that algebraic and
logical abstract interpretations can naturally be combined in a classical way using a reduced prod-
uct on this observational semantics. The main practical benefit is that reductions can be performed
within the logical abstract domains, within the algebraic abstract domains, and also between the
logical and the algebraic abstract domains, including the case of abstractions evolving during the
analysis.

We recall in sect. 2 the syntax, interpretation, satisfiability, validity, decidability, and comparison
of first-order logical theories, in sect. 4, the basic notions of abstract interpretation, and in sect. 5,
after some syntax, the multi-interpreted semantics [Cousot et al. 2010] of programs, and their ab-
stractions. Sect. 6 defines the multi-interprete semantics of first-order formulæ, a necessary mean
to describe the soundness and relative precision of the logical abstract domains defined in sect. 7.
Next sect. 8 introduces observational semantics, which is a new construction generalizing static
analysis practices and is necessary to describe the first step of the Nelson-Oppen procedure in the
abstract interpretation framework. Sect. 10.1 introduces iterated reduction while Sect. 9 recalls the
notion of reduced product and its implementation by iterated reduction, with new incompleteness
results on that approach and su�cient conditions for completeness. Then sect. 11 is focused on the
Nelson-Oppen procedure and the links with the abstract interpretation. Finally, sect. 12 develops
new methods to combine classical abstract interpretation and theorem provers. A comparison with
related work is provided in sect. 13, and the conclusion in sect. 14 proposes future work.

2. TERMINOLOGY ON FIRST-ORDER LOGICS, THEORIES, INTERPRETATIONS AND MODELS
2.1. First-Order Logics
We defineB � {false, true} to be the Booleans. The set F(x, f ,p) of first-order formulæ on variables
x and a signature ⌃f , p⌥ (where f are the function symbols, and p the predicate symbols such that
f ⌅ p = ⇥), is defined as:

x, y, z, . . . � x variables

a, b, c, . . . � f0 constants

f, g, h, . . . � fn, f �
⇥

n⇥0

fn function symbols of arity n ⇥ 1

t � T(x, f) t ::= x | c | f(t1, . . . , tn) terms

p, q, r, . . . � pn, p0 � {ff, tt}, p �
�

n⇥0 pn predicate symbols of arity n ⇥ 0,

a � A(x, f ,p) a ::= ff | p(t1, . . . , tn) | ¬a atomic formulæ

e � E(x, f ,p) � T(x, f) ⇤A(x, f ,p) program expressions

� � C(x, f ,p) � ::= a | � ⇧ � clauses in simple conjunctive nor-
mal form
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satisfiable (a su⇥cient condition for the combination of theories with disjoint signatures 4 to be
satisfiable is that they both have an infinite model [Tinelli and Harandi 1996, Cor. 3.3]).

3. CONCRETE SEMANTICS
Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with di�erent memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in Sect. 3.2 and 3.3.

3.1. Programs
We let P(x, f ,p) be the set of programs P over a signature  x, f , p⌦.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature  x, f , p⌦. Programs are built out of basic expressions e ⌅ E(x, f ,p)
and imperative commands including assignments and tests

P, . . . ⌅ P(x, f ,p) P ::= x := e | � | . . . programs

Tests/guards appear in conditionals and loops whose syntax, as well as that of programs, is irrele-
vant. �↵
Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
often multi-interpreted (section 3.3), since their executions may vary on di�erent machines or may
di�er from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics
A mono-interpreted concrete semantics C⌃�P⇥ of programs P as defined by a program interpretation
⌃ ⌅ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties  P⌃, �⌦ and a concrete
transformer F⌃�P⇥. We define postfp⇥ f �

⇥
x
��� f (x) ⇥ x

⇤
.

R⌃ concrete observables5

P⌃ � ⇥(R⌃) concrete properties 6

F⌃�P⇥ ⌅ P⌃ ⇤P⌃ concrete transformer of program P
C⌃�P⇥ � postfp� F⌃�P⇥ ⌅ ⇥(P⌃) concrete semantics of program P

where the concrete transformer F⌃�P⇥ of program P is built out of the set primitives ⇧, R⌃, ⌥, �,
. . . and the forward and backward transformers f, b ⌅ P⌃ ⇤ P⌃ for assignment, the transformer
p ⌅ P⌃ ⇤B for tests, . . . .

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).

4
F(x, f1,p1) and F(x, f2,p2) such that (f1⌥p1)�(f2⌥p2) = {=} and all equalities in common have the same interpretation.

6Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6A property is understood as the set of elements satisfying this property.
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Programs (mono-interpretation)
• Interpretation             for a signature           is                                                                                                       

such that

• Environments

• Expression evaluation 

10

Theories, Solvers and Abstract Interpretation A:3

� ⌅ F(x, f ,p) � ::= a | ¬� | � ⌥ � | ⌃x : � quantified first-order formulæ

In first order logics with equality, there is a distinguished predicate = (t1, t2) which we write t1 = t2.

2.2. Theories
The set ⇤x� of free variables of a formula � is defined inductively as the set of variables in the
formula which are not in the scope of an existential quantifier. A sentence of F(x, f ,p) is a formula
with no free variable. A theory is a set of sentences [Chang and Keisler 1990] (called the theorems
of the theory) and a signature, which should contain at least all the predicates and function symbols
that appear in the theorems. The language of a theory is the set of quantified first-order formulæ
that contain no predicate or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of functions and predicates in order to
reason under these hypotheses. The meanings which are allowed are the meanings which make the
sentences of the theory true.

2.3. Interpretations
This is better explained with the notion of interpretation of formulæ: An interpretation I for a
signature �f , p is a couple �IV, I� such that

— IV is a non-empty set of values,
— ⇧c ⌅ f0 : I�(c) ⌅ IV, ⇧n ⇥ 1 : ⇧f ⌅ fn : I�(f) ⌅ In

V⇥ IV, and
— ⇧n ⇥ 0 : ⇧p ⌅ pn : I�(p) ⌅ In

V⇥B.

Let I be the class of all such interpretations I. In a given interpretation I ⌅ I, an environment 1 is a
function from variables to values

⇥ ⌅ RI � x⇥ IV environments

An interpretation I and an environment ⇥ satisfy a formula�, written I |=⇥ �, in the following way:

I |=⇥ a � �a⇥I⇥ I |=⇥ � ⌥ �⇤ � (I |=⇥ �) ⌥ (I |=⇥ �⇤)
I |=⇥ ¬� � ¬(I |=⇥ �) I |=⇥ ⌃x : � � ⌃v ⌅ IV : I |=⇥[x�v] �

2

where the value �a⇥I⇥ ⌅ B of an atomic formula a ⌅ A(x, f ,p) in environment ⇥ ⌅ RI is

�ff⇥I⇥ � false
�p(t1, . . . , tn)⇥I⇥ � I�(p)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(p) ⌅ In

V⇥B
�¬a⇥I⇥ � ¬�a⇥I⇥, where ¬true = false, ¬false = true

and the value �t⇥I⇥ ⌅ IV of the term t ⌅ T(x, f) in environment ⇥ ⌅ RI is

�x⇥I⇥ � ⇥(x)
�c⇥I⇥ � I�(c), where I�(c) ⌅ IV

�f(t1, . . . , tn)⇥I⇥ � I�(f)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(f) ⌅ IVn ⇥ IV, n ⇥ 1

In addition, in a first-order logic with equality the interpretation of equality is always

I |=⇥ t1 = t2 � �t1⇥I⇥ =I �t2⇥I⇥

where =I is the unique reflexive, symmetric, antisymmetric, and transitive relation on IV.

1 Environments are also called variable assignments, valuations, etc. For programming languages, environments may also
contain the program counter, stack, etc.
2⇥[x� v] is the assignment of v to x in ⇥ such that ⇥[x� v](x) � v and ⇥[x� v](y) � ⇥(y) when x � y.
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In first order logics with equality, there is a distinguished predicate = (t1, t2) which we write t1 = t2.

2.2. Theories
The set ⇤x� of free variables of a formula � is defined inductively as the set of variables in the
formula which are not in the scope of an existential quantifier. A sentence of F(x, f ,p) is a formula
with no free variable. A theory is a set of sentences [Chang and Keisler 1990] (called the theorems
of the theory) and a signature, which should contain at least all the predicates and function symbols
that appear in the theorems. The language of a theory is the set of quantified first-order formulæ
that contain no predicate or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of functions and predicates in order to
reason under these hypotheses. The meanings which are allowed are the meanings which make the
sentences of the theory true.

2.3. Interpretations
This is better explained with the notion of interpretation of formulæ: An interpretation I for a
signature �f , p is a couple �IV, I� such that

— IV is a non-empty set of values,
— ⇧c ⌅ f0 : I�(c) ⌅ IV, ⇧n ⇥ 1 : ⇧f ⌅ fn : I�(f) ⌅ In

V⇥ IV, and
— ⇧n ⇥ 0 : ⇧p ⌅ pn : I�(p) ⌅ In

V⇥B.

Let I be the class of all such interpretations I. In a given interpretation I ⌅ I, an environment 1 is a
function from variables to values

⇥ ⌅ RI � x⇥ IV environments

An interpretation I and an environment ⇥ satisfy a formula�, written I |=⇥ �, in the following way:

I |=⇥ a � �a⇥I⇥ I |=⇥ � ⌥ �⇤ � (I |=⇥ �) ⌥ (I |=⇥ �⇤)
I |=⇥ ¬� � ¬(I |=⇥ �) I |=⇥ ⌃x : � � ⌃v ⌅ IV : I |=⇥[x�v] �

2

where the value �a⇥I⇥ ⌅ B of an atomic formula a ⌅ A(x, f ,p) in environment ⇥ ⌅ RI is

�ff⇥I⇥ � false
�p(t1, . . . , tn)⇥I⇥ � I�(p)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(p) ⌅ In

V⇥B
�¬a⇥I⇥ � ¬�a⇥I⇥, where ¬true = false, ¬false = true

and the value �t⇥I⇥ ⌅ IV of the term t ⌅ T(x, f) in environment ⇥ ⌅ RI is

�x⇥I⇥ � ⇥(x)
�c⇥I⇥ � I�(c), where I�(c) ⌅ IV

�f(t1, . . . , tn)⇥I⇥ � I�(f)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(f) ⌅ IVn ⇥ IV, n ⇥ 1

In addition, in a first-order logic with equality the interpretation of equality is always

I |=⇥ t1 = t2 � �t1⇥I⇥ =I �t2⇥I⇥

where =I is the unique reflexive, symmetric, antisymmetric, and transitive relation on IV.

1 Environments are also called variable assignments, valuations, etc. For programming languages, environments may also
contain the program counter, stack, etc.
2⇥[x� v] is the assignment of v to x in ⇥ such that ⇥[x� v](x) � v and ⇥[x� v](y) � ⇥(y) when x � y.
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In first-order logics with equality, there is a distinguished predicate = (t1, t2) which we write t1 = t2.

2.2. Theories
The set ⇧x� of free variables of a formula � is defined inductively as the set of variables in the
formula which are not in the scope of an existential quantifier. A sentence of F(x, f ,p) is a formula
with no free variable. A theory is a set of sentences [?] (called the theorems of the theory) and
a signature, which should contain at least all the predicates and function symbols that appear in
the theorems. The language of a theory is the set of quantified first-order formulæ that contain no
predicate or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of functions and predicates in order to
reason under these hypotheses. The meanings which are allowed are the meanings which make all
sentences of the theory true.

2.3. Interpretations
This is better explained with the notion of interpretation of formulæ: An interpretation I for a
signature �f , p✏ is a couple �IV, I�✏ such that

— IV is a non-empty set of values,
— ⇧c ⌅ f0 : I�(c) ⌅ IV, ⇧n ⇥ 1 : ⇧f ⌅ fn : I�(f) ⌅ In

V⇥ IV, interprets functions, and
— ⇧n ⇥ 0 : ⇧p ⌅ pn : I�(p) ⌅ In

V⇥B, interprets predicates,

where B � {false, true} are the Booleans. Let I be the class of all such interpretations I. In a given
interpretation I ⌅ I, an environment 1 is a function from variables to values

⇥ ⌅ RI � x⇥ IV environments

An interpretation I and an environment ⇥ satisfy a formula�, written I |=⇥ �, in the following way:

I |=⇥ a � �a⇥I⇥ I |=⇥ � ↵ �⇤ � (I |=⇥ �) ↵ (I |=⇥ �⇤)
I |=⇥ ¬� � ¬(I |=⇥ �) I |=⇥ ⌃x : � � ⌃v ⌅ IV : I |=⇥[x�v] �

2

where the value/evaluation �a⇥I⇥ ⌅ B of an atomic formula a ⌅ A(x, f ,p) in environment ⇥ ⌅ RI
is

�ff⇥I⇥ � false
�p(t1, . . . , tn)⇥I⇥ � I�(p)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(p) ⌅ In

V⇥B
�¬a⇥I⇥ � ¬�a⇥I⇥, where ¬true = false, ¬false = true

and the value/evaluation �t⇥I⇥ ⌅ IV of the term t ⌅ T(x, f) in environment ⇥ ⌅ RI is

�x⇥I⇥ � ⇥(x)
�c⇥I⇥ � I�(c), where I�(c) ⌅ IV

�f(t1, . . . , tn)⇥I⇥ � I�(f)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(f) ⌅ IVn⇥ IV, n ⇥ 1

In addition, in a first-order logic with equality the satisfaction of equality is always

I |=⇥ t1 = t2 � �t1⇥I⇥ =I �t2⇥I⇥

where the equality relation =I is the unique reflexive, symmetric, antisymmetric, and transitive
relation on IV.

1 Environments are also called variable assignments, valuations, etc. For programming languages, environments may also
contain the program counter, stack, etc.
2 ⇥[x� v] is the assignment of v to x in ⇥ such that ⇥[x� v](x) � v and ⇥[x� v](y) � ⇥(y) when x � y.
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Programs (concrete semantics)
• The program semantics is usually specified relative to 

a standard interpretation 

• The concrete semantics is given in post-fixpoint form 
(in case the least fixpoint which is also the least post-
fixpoint does not exist, e.g. inexpressibility in Hoare 
logic)
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satisfiable (a su⇥cient condition for the combination of theories with disjoint signatures 4 to be
satisfiable is that they both have an infinite model [Tinelli and Harandi 1996, Cor. 3.3]).

3. CONCRETE SEMANTICS
Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with di�erent memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in Sect. 3.2 and 3.3.

3.1. Programs
We let P(x, f ,p) be the set of programs P over a signature  x, f , p⌦.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature  x, f , p⌦. Programs are built out of basic expressions e ⌅ E(x, f ,p)
and imperative commands including assignments and tests

P, . . . ⌅ P(x, f ,p) P ::= x := e | � | . . . programs

Tests/guards appear in conditionals and loops whose syntax, as well as that of programs, is irrele-
vant. �↵
Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
often multi-interpreted (section 3.3), since their executions may vary on di�erent machines or may
di�er from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics
A mono-interpreted concrete semantics C⌃�P⇥ of programs P as defined by a program interpretation
⌃ ⌅ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties  P⌃, �⌦ and a concrete
transformer F⌃�P⇥. We define postfp⇥ f �

⇥
x
��� f (x) ⇥ x

⇤
.

R⌃ concrete observables5

P⌃ � ⇥(R⌃) concrete properties 6

F⌃�P⇥ ⌅ P⌃ ⇤P⌃ concrete transformer of program P
C⌃�P⇥ � postfp� F⌃�P⇥ ⌅ ⇥(P⌃) concrete semantics of program P

where the concrete transformer F⌃�P⇥ of program P is built out of the set primitives ⇧, R⌃, ⌥, �,
. . . and the forward and backward transformers f, b ⌅ P⌃ ⇤ P⌃ for assignment, the transformer
p ⌅ P⌃ ⇤B for tests, . . . .

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).

4
F(x, f1,p1) and F(x, f2,p2) such that (f1⌥p1)�(f2⌥p2) = {=} and all equalities in common have the same interpretation.

6Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6A property is understood as the set of elements satisfying this property.
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6Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6A property is understood as the set of elements satisfying this property.
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satisfiable (a su⇥cient condition for the combination of theories with disjoint signatures 4 to be
satisfiable is that they both have an infinite model [Tinelli and Harandi 1996, Cor. 3.3]).

3. CONCRETE SEMANTICS
Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with di�erent memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in Sect. 3.2 and 3.3.

3.1. Programs
We let P(x, f ,p) be the set of programs P over a signature  x, f , p⌦.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature  x, f , p⌦. Programs are built out of basic expressions e ⌅ E(x, f ,p)
and imperative commands including assignments and tests

P, . . . ⌅ P(x, f ,p) P ::= x := e | � | . . . programs

Tests/guards appear in conditionals and loops whose syntax, as well as that of programs, is irrele-
vant. �↵
Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
often multi-interpreted (section 3.3), since their executions may vary on di�erent machines or may
di�er from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics
A mono-interpreted concrete semantics C⌃�P⇥ of programs P as defined by a program interpretation
⌃ ⌅ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties  P⌃, �⌦ and a concrete
transformer F⌃�P⇥. We define postfp⇥ f �
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C⌃�P⇥ � postfp� F⌃�P⇥ ⌅ ⇥(P⌃) concrete semantics of program P
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. . . and the forward and backward transformers f, b ⌅ P⌃ ⇤ P⌃ for assignment, the transformer
p ⌅ P⌃ ⇤B for tests, . . . .

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).
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Example 3.2. In the context of invariance properties for imperative languages with program
interpretation � ⌥ I, we can take a concrete state to be a function from variables 7 to elements in
the set �V, so that properties are sets of such functions.

R� � x⇧�V concrete environments
P� � ⌅(R�) concrete invariance properties

The transformer F��P⇥ for the invariance semantics is defined by structural induction on the pro-
gram P in terms of the complete lattice operations ⌘⌅(R�), ⇤, ↵, R�, �, ✏✓ and the following local
invariance transformers

f��x := e⇥P � {�[x⌅ �e⇥��] | � ⌥ P)} Floyd’s assignment post-condition
p��⇤⇥P � {� ⌥ P | �⇤⇥�� = true} test

Example 3.3. The program P � x=1; while true {x=incr(x)} with the arithmetic inter-
pretation � on integers �V = Z has loop invariant lfp⇤ F��P⇥ where F��P⇥(X) � {� ⌥ R� | �(x) =
1} � {�[x⌅ �(x) + 1] | � ⌥ X}. The increasing chain of iterates F��P⇥

n = {� ⌥ R� | 0 < �(x) < n}
has limit lfp⇤ F��P⇥ =

�
n⇥0 F��P⇥

n = {� ⌥ R� | 0 < �(x)}. ◆
3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I ⌥ ⌅(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
RI program observables for interpretation I ⌥ I
PI � I ⌥ I � ⇧ ⌅(RI) interpreted properties for the set of interpretations I
⌃ ⌅({⌘I, �✓ | I ⌥ I ⇣ � ⌥ RI}) 8

The multi-interpreted semantics of a program P in the context of I is
FI�P⇥ ⌥ PI⇧PI multi-interpreted concrete transformer of program P

� �P ⌥ PI . � I ⌥ I . FI�P⇥(P(I))
CI�P⇥ ⌥ ⌅(PI) multi-interpreted concrete semantics

� postfp⇤̇ FI�P⇥
where ⇤̇ is the pointwise subset ordering.

Example 3.4. In the context of invariance properties for imperative languages with multiple
program interpretations I ⌥ ⌅(I), Ex. 3.2 can be generalized by taking

RI � x⇧ IV concrete interpreted environments for interpretation I ⌥ I.
The multi-interpreted concrete semantic transformer FI�P⇥ ⌥ PI  ⇧ PI for the invariance semantics
is defined by structural induction on the program P in terms of the complete lattice operations ⌘PI,
⇤, ↵, �I, �, ✏✓where�I � {⌘I, �✓ | I ⌥ I⇣� ⌥ RI} and the following local invariance transformers

fI�x := e⇥P � {⌘I, �[x⌅ �e⇥I�]✓ | I ⌥ I ⇣ ⌘I, �✓ ⌥ P)} assignment post-condition
bI�x := e⇥P � {⌘I, �✓ | I ⌥ I ⇣ ⌘I, �[x⌅ �e⇥I�]✓ ⌥ P} assignment pre-condition (1)

pI�⇤⇥P � {⌘I, �✓ ⌥ P | I ⌥ I ⇣ �⇤⇥I� = true} test.
In particular for I = {�}, we get the transformers of Ex. 3.2, up to the isomorphism ⇥�(P) � {⌘�,
�✓ | � ⌥ P} with inverse ⇥�1

� (Q) � {� | ⌘�, �✓ ⌥ Q}. Observe that the transformers are complete
morphisms for union and intersection and so are increasing for the subset ordering. In general, it
follows that the transformer FI�P⇥ for the invariance semantics has the same properties. ◆

7 maybe including the program counter etc.
8A partial function f ⌥ A � B with domain dom( f ) ⌥ ⌅(A) is understood as the relation {⌘x, f (x)✓ ⌥ A ⇥ B | x ⌥ dom( f )}
and maps x ⌥ A to f (x) ⌥ B, written x ⌥ A � ⇧ f (x) ⌥ B or x ⌥ A � ⇧ Bx when ⌦x ⌥ A : f (x) ⌥ Bs ⇤ B.
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The transformer F��P⇥ for the invariance semantics is defined by structural induction on the pro-
gram P in terms of the complete lattice operations ⌘⌅(R�), ⇤, ↵, R�, �, ✏✓ and the following local
invariance transformers

f��x := e⇥P � {�[x⌅ �e⇥��] | � ⌥ P)} Floyd’s assignment post-condition
p��⇤⇥P � {� ⌥ P | �⇤⇥�� = true} test

Example 3.3. The program P � x=1; while true {x=incr(x)} with the arithmetic inter-
pretation � on integers �V = Z has loop invariant lfp⇤ F��P⇥ where F��P⇥(X) � {� ⌥ R� | �(x) =
1} � {�[x⌅ �(x) + 1] | � ⌥ X}. The increasing chain of iterates F��P⇥

n = {� ⌥ R� | 0 < �(x) < n}
has limit lfp⇤ F��P⇥ =

�
n⇥0 F��P⇥

n = {� ⌥ R� | 0 < �(x)}. ◆
3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I ⌥ ⌅(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
RI program observables for interpretation I ⌥ I
PI � I ⌥ I � ⇧ ⌅(RI) interpreted properties for the set of interpretations I
⌃ ⌅({⌘I, �✓ | I ⌥ I ⇣ � ⌥ RI}) 8

The multi-interpreted semantics of a program P in the context of I is
FI�P⇥ ⌥ PI⇧PI multi-interpreted concrete transformer of program P

� �P ⌥ PI . � I ⌥ I . FI�P⇥(P(I))
CI�P⇥ ⌥ ⌅(PI) multi-interpreted concrete semantics

� postfp⇤̇ FI�P⇥
where ⇤̇ is the pointwise subset ordering.

Example 3.4. In the context of invariance properties for imperative languages with multiple
program interpretations I ⌥ ⌅(I), Ex. 3.2 can be generalized by taking

RI � x⇧ IV concrete interpreted environments for interpretation I ⌥ I.
The multi-interpreted concrete semantic transformer FI�P⇥ ⌥ PI  ⇧ PI for the invariance semantics
is defined by structural induction on the program P in terms of the complete lattice operations ⌘PI,
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In particular for I = {�}, we get the transformers of Ex. 3.2, up to the isomorphism ⇥�(P) � {⌘�,
�✓ | � ⌥ P} with inverse ⇥�1

� (Q) � {� | ⌘�, �✓ ⌥ Q}. Observe that the transformers are complete
morphisms for union and intersection and so are increasing for the subset ordering. In general, it
follows that the transformer FI�P⇥ for the invariance semantics has the same properties. ◆

7 maybe including the program counter etc.
8A partial function f ⌥ A � B with domain dom( f ) ⌥ ⌅(A) is understood as the relation {⌘x, f (x)✓ ⌥ A ⇥ B | x ⌥ dom( f )}
and maps x ⌥ A to f (x) ⌥ B, written x ⌥ A � ⇧ f (x) ⌥ B or x ⌥ A � ⇧ Bx when ⌦x ⌥ A : f (x) ⌥ Bs ⇤ B.
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satisfiable (a su⇥cient condition for the combination of theories with disjoint signatures 4 to be
satisfiable is that they both have an infinite model [Tinelli and Harandi 1996, Cor. 3.3]).

3. CONCRETE SEMANTICS
Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with di�erent memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in Sect. 3.2 and 3.3.

3.1. Programs
We let P(x, f ,p) be the set of programs P over a signature  x, f , p⌦.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature  x, f , p⌦. Programs are built out of basic expressions e ⌅ E(x, f ,p)
and imperative commands including assignments and tests

P, . . . ⌅ P(x, f ,p) P ::= x := e | � | . . . programs

Tests/guards appear in conditionals and loops whose syntax, as well as that of programs, is irrele-
vant. �↵
Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
often multi-interpreted (section 3.3), since their executions may vary on di�erent machines or may
di�er from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics
A mono-interpreted concrete semantics C⌃�P⇥ of programs P as defined by a program interpretation
⌃ ⌅ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties  P⌃, �⌦ and a concrete
transformer F⌃�P⇥. We define postfp⇥ f �

⇤
x
��� f (x) ⇥ x

⌅
.

R⌃ concrete observables5

P⌃ � ⇥(R⌃) concrete properties 6

F⌃�P⇥ ⌅ P⌃ ⇤P⌃ concrete transformer of program P
C⌃�P⇥ � postfp� F⌃�P⇥ ⌅ ⇥(P⌃) concrete semantics of program P

where the concrete transformer F⌃�P⇥ of program P is built out of the set primitives ⇧, R⌃, ⌥, �,
. . . and the forward and backward transformers f, b ⌅ P⌃ ⇤ P⌃ for assignment, the transformer
p ⌅ P⌃ ⇤B for tests, . . . .

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).

Example 3.2 (Least fixpoint).  P⌃, �, ⇧, R⌃, ⌥, �⌦ is a complete lattice so if the transformer
F⌃�P⇥ is increasing then by [Tarski 1955] we have lfp� F⌃�P⇥ = ⇥postfp� F⌃�P⇥ ⌅ postfp� F⌃�P⇥
which is the strongest post-fixpoint. �↵

4
F(x, f1,p1) and F(x, f2,p2) such that (f1⌥p1)�(f2⌥p2) = {=} and all equalities in common have the same interpretation.

5Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6A property is understood as the set of elements satisfying this property.
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Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
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F(x, f1,p1) and F(x, f2,p2) such that (f1⌥p1)�(f2⌥p2) = {=} and all equalities in common have the same interpretation.
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• The standard semantics describes computations of a 
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The properties                (a property is the set of 
elements with that property) form a complete lattice
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satisfiable (a su⇥cient condition for the combination of theories with disjoint signatures 4 to be
satisfiable is that they both have an infinite model [Tinelli and Harandi 1996, Cor. 3.3]).

3. CONCRETE SEMANTICS
Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with di�erent memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in Sect. 3.2 and 3.3.

3.1. Programs
We let P(x, f ,p) be the set of programs P over a signature  x, f , p⌦.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature  x, f , p⌦. Programs are built out of basic expressions e ⌅ E(x, f ,p)
and imperative commands including assignments and tests

P, . . . ⌅ P(x, f ,p) P ::= x := e | � | . . . programs

Tests/guards appear in conditionals and loops whose syntax, as well as that of programs, is irrele-
vant. �↵
Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
often multi-interpreted (section 3.3), since their executions may vary on di�erent machines or may
di�er from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics
A mono-interpreted concrete semantics C⌃�P⇥ of programs P as defined by a program interpretation
⌃ ⌅ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties  P⌃, �⌦ and a concrete
transformer F⌃�P⇥. We define postfp⇥ f �

⇥
x
��� f (x) ⇥ x

⇤
.

R⌃ concrete observables5

P⌃ � ⇥(R⌃) concrete properties 6

F⌃�P⇥ ⌅ P⌃ ⇤P⌃ concrete transformer of program P
C⌃�P⇥ � postfp� F⌃�P⇥ ⌅ ⇥(P⌃) concrete semantics of program P

where the concrete transformer F⌃�P⇥ of program P is built out of the set primitives ⇧, R⌃, ⌥, �,
. . . and the forward and backward transformers f, b ⌅ P⌃ ⇤ P⌃ for assignment, the transformer
p ⌅ P⌃ ⇤B for tests, . . . .

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).

4
F(x, f1,p1) and F(x, f2,p2) such that (f1⌥p1)�(f2⌥p2) = {=} and all equalities in common have the same interpretation.

5Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6A property is understood as the set of elements satisfying this property.
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di�er from their mathematical semantics.

3.2. Mono-Interpreted Concrete Semantics
A mono-interpreted concrete semantics C⌃�P⇥ of programs P as defined by a program interpretation
⌃ ⌅ I. Most often (e.g. when looking for safety properties), we can define that concrete semantics
as a set of post-fixpoints in a complete lattice/cpo of concrete properties  P⌃, �⌦ and a concrete
transformer F⌃�P⇥. We define postfp⇥ f �

⇥
x
��� f (x) ⇥ x

⇤
.

R⌃ concrete observables5

P⌃ � ⇥(R⌃) concrete properties 6

F⌃�P⇥ ⌅ P⌃ ⇤P⌃ concrete transformer of program P
C⌃�P⇥ � postfp� F⌃�P⇥ ⌅ ⇥(P⌃) concrete semantics of program P

where the concrete transformer F⌃�P⇥ of program P is built out of the set primitives ⇧, R⌃, ⌥, �,
. . . and the forward and backward transformers f, b ⌅ P⌃ ⇤ P⌃ for assignment, the transformer
p ⌅ P⌃ ⇤B for tests, . . . .

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).

4
F(x, f1,p1) and F(x, f2,p2) such that (f1⌥p1)�(f2⌥p2) = {=} and all equalities in common have the same interpretation.

5Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6A property is understood as the set of elements satisfying this property.
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satisfiable (a su⇥cient condition for the combination of theories with disjoint signatures 4 to be
satisfiable is that they both have an infinite model [Tinelli and Harandi 1996, Cor. 3.3]).

3. CONCRETE SEMANTICS
Abstractions in abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c], are
relative to a concrete semantics specifying the possible executions of programs of a programming
language. The concrete semantics of a language can be defined with respect to a single interpretation
of symbols (e.g. the mathematical semantics of a specification language with integers and reals) or
with respect to several possible interpretations of symbols (e.g. the float semantics of a programming
language with di�erent memory word sizes and rounding modes). Although the classical mono-
interpreted semantics is a particular case of multi-interpreted semantics, both cases are considered
in Sect. 3.2 and 3.3.

3.1. Programs
We let P(x, f ,p) be the set of programs P over a signature  x, f , p⌦.

Example 3.1 (Imperative programs). In our examples, we consider an imperative programming
language on a given signature  x, f , p⌦. Programs are built out of basic expressions e ⌅ E(x, f ,p)
and imperative commands including assignments and tests

P, . . . ⌅ P(x, f ,p) P ::= x := e | � | . . . programs

Tests/guards appear in conditionals and loops whose syntax, as well as that of programs, is irrele-
vant. �↵
Programs are usually intended to be mono-interpreted (section 3.2), that is to have a unique inter-
pretation (defining e.g. their possible executions on an abstract machine). However, programs are
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Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).

Example 3.2 (Least fixpoint).  P⌃, �, ⇧, R⌃, ⌥, �⌦ is a complete lattice so if the transformer
F⌃�P⇥ is increasing then by [Tarski 1955] we have lfp� F⌃�P⇥ = ⇥postfp� F⌃�P⇥ ⌅ postfp� F⌃�P⇥
which is the strongest post-fixpoint. �↵
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lfp⇥ F↵�P⇥ ⇥ P} are all valid program properties but only the elements of postfp⇥ F↵�P⇥ are induc-
tive properties. ◆✓
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).

Example 3.3. In the context of invariance properties for imperative languages with program
interpretation ↵ ⌃ I, we can take a concrete state to be a function from variables 7 to elements in
the set ↵V, so that properties are sets of such functions.

R↵ � x⌅↵V concrete environments
P↵ � ⇤(R↵) concrete invariance properties

The transformer F↵�P⇥ for the invariance semantics is defined by structural induction on the pro-
gram P in terms of the complete lattice operations ⇣⇤(R↵), ⇥, ⌦, R↵, �, �⌘ and the following local
invariance transformers

f↵�x := e⇥P � {�[x⇤ �e⇥↵�] | � ⌃ P)} Floyd’s assignment post-condition
p↵�⇥⇥P � {� ⌃ P | �⇥⇥↵� = true} test

Example 3.4. The program P � x=1; while true {x=incr(x)} with the arithmetic inter-
pretation ↵ on integers ↵V = Z has loop invariant lfp⇥ F↵�P⇥ where F↵�P⇥(X) � {� ⌃ R↵ | �(x) =
1} � {�[x⇤ �(x) + 1] | � ⌃ X}. The increasing chain of iterates F↵�P⇥n = {� ⌃ R↵ | 0 < �(x) < n}
has limit lfp⇥ F↵�P⇥ =�n⇥0 F↵�P⇥n = {� ⌃ R↵ | 0 < �(x)}. ◆✓

3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I ⌃ ⇤(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.

RI program observables for interpretation I ⌃ I
PI � I ⌃ I ⌥�⌅ ⇤(RI) interpreted properties for the set of interpretations I

⇧ ⇤({⇣I, �⌘ | I ⌃ I ✏ � ⌃ RI}) 8

The multi-interpreted semantics of a program P in the context of I is

FI�P⇥ ⌃ PI⌅PI multi-interpreted concrete transformer of program P
� �P ⌃ PI . � I ⌃ I . FI�P⇥(P(I))

CI�P⇥ ⌃ ⇤(PI) multi-interpreted concrete semantics
� postfp⇥̇ FI�P⇥

where ⇥̇ is the pointwise subset ordering.

Example 3.5. In the context of invariance properties for imperative languages with multiple
program interpretations I ⌃ ⇤(I), Ex. 3.3 can be generalized by taking

RI � x⌅ IV concrete interpreted environments for interpretation I ⌃ I.

The multi-interpreted concrete semantic transformer FI�P⇥ ⌃ PI �⌅ PI for the invariance semantics
is defined by structural induction on the program P in terms of the complete lattice operations ⇣PI,
⇥, ⌦, �I, �, �⌘where�I � {⇣I, �⌘ | I ⌃ I✏� ⌃ RI} and the following local invariance transformers

7 maybe including the program counter etc.
8A partial function f ⌃ A � B with domain dom( f ) ⌃ ⇤(A) is understood as the relation {⇣x, f (x)⌘ ⌃ A � B | x ⌃ dom( f )}
and maps x ⌃ A to f (x) ⌃ B, written x ⌃ A ⌥�⌅ f (x) ⌃ B or x ⌃ A ⌥�⌅ Bx when  x ⌃ A : f (x) ⌃ Bs ⇥ B.
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Concrete property satisfaction

• A program        satisfies a property        if and only if
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4.2. Abstract Semantics
The abstract semantics CJPK 2 }(A) of a program P is assumed to be given as a set of post-
fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfp

v FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK 2 A!A is the abstract transformer of program P built out of the prim-
itives ?,>,t,u,`,a, f̄, b̄, p̄, . . . 10. As was the case for the concrete semantics, we preferably use
least fixpoints when that is possible.

4.3. Soundness of Abstract Domains
Soundness relates abstract properties to concrete properties using a function � such that

� 2 A 1!P= concretization 11

The soundness of abstract domains, is defined as, for all P,Q 2 A,

(P v Q)) (�(P) ✓ �(Q)) order �(?) = ; infimum
�(P t Q) ◆ (�(P) [ �(Q)) join �(>) = >= supremum 12

...

Observe that defining an abstraction consists in choosing the domain A of abstract properties and the
concretization �. So, this essentially consists in choosing a set of concrete properties �[A] (where
�[X] , {�(x) | x 2 X}) which can be exactly represented in the abstract while the other concrete
properties P 2 P= \ �[A] cannot and so must be over-approximated by some P 2 A such that
P ✓ �(P). By assuming the existence of an element > of A with concretization >=, there always
exists such a P. For precision, the minimum one, or else the minimal ones, if any, are to be preferred.
In case of existence of a best abstraction, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi where
↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.
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↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.
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4.2. Abstract Semantics
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fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfp

v FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK 2 A!A is the abstract transformer of program P built out of the prim-
itives ?,>,t,u,`,a, f̄, b̄, p̄, . . . 10. As was the case for the concrete semantics, we preferably use
least fixpoints when that is possible.
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The soundness of abstract domains, is defined as, for all P,Q 2 A,
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�(P t Q) ◆ (�(P) [ �(Q)) join �(>) = >= supremum 12

...
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4 Mathematical preliminaries

The following classical definitions and theorems are taken from the appendix of [15].

4.1 Posets

A poset hP, �i is a set P equipped with a partial order � [2]. If X ✓ P then
b

X denotes the least upper bound
(lub) of X and

c
X denotes its greatest lower bound (glb), if any. A complete lattice has all lubs whence

all glbs, an infimum 0 and a suppremum 1. A complete Boolean lattice is a complete lattice with unique
complement ¬ (i.e. 8x 2 P : (x g ¬x = 1) ^ (x f ¬x = 0).

4.2 Booleans

Let B , {false, true} be the Booleans, which, when partially ordered by false =) false =)
true =) true, have a complete Boolean lattice structure hB, =) , false, true, _, ^, ¬i where
=) is the partial order, false is the infimum, . true is the supremum, _ is the lub (least upper bound), ^
is the glb (greatest lower bound), and ¬ is the complement. Observe that if b1 =) b2 and b2 =) b1 then
b1 = b2 (whereas b1 and b2 might be di↵erent in syntactic representations with terms, in which case b1 = b2
is b1 () b2). The conditional (b ? x : y) is x if b holds and y otherwise that is (true ? x : y) = x
and (false ? x : y) = y. We sometimes write (b ? true : false) for b, a redundancy emphasizing the
computer boolean encoding of b.

TODO: Revoir ci-dessous

4.3 Maps

If hQ, v, ti is a poset, we say that the map f 2 P ! Q is increasing (or monotone, istotone, etc) if and only
if 8x, y 2 P : (x � y) =) ( f (x) v f (y)). f is lub-preserving whenever the existence of

b
� x� in P implies

the existence of
F
� f (x�) in Q such that f (

b
� x�) =

F
� f (x�). f is upper-continuous (continuous for short) if

and only if it preserves existing lubs of increasing denumerable chains xn, n 2 N, that is if 8n 2 N : xn � xn+1
and the lub

b
n2N xn does exist then

F
n2N f (xn) exists such that f (

b
n2N xn) =

F
n2N f (xn). The composition

of maps is f � g(x) = f (g(x)).

4.4 Galois connections

A Galois connection hP, �i ���! ���↵
�
hQ, vi is, by definition, such that hP, �i and hQ, vi are posets, ↵ 2 P ! Q

and � 2 Q! P satisfy 8x 2 P : 8y 2 Q : ↵(x) v y () x � �(y). It follows that ↵ preserves lubs existing in
P and, by duality, � preserves greatest glbs existing in Q. Given a lub-preserving ↵ (resp. glb-preserving �),
there exists a unique � (resp. ↵) such that hP, �i ���! ���↵

�
hQ, vi. ↵ is onto if and only if � is one-to-one, written

hP, �i ���!�! ����↵
�
hQ, vi. Dually, � is onto if and only if ↵ is one-to-one, written hP, �i ����!  ����↵

�
hQ, vi. A Galois

isomorphism is written hP, �i ���!�!  ����↵
�
hQ, vi. The composition of Galois connections hP, �i ����! ����↵1

�1 hQ, vi and

hQ, vi ����! ����↵2

�2 hR, 6i is a Galois connection hP, �i ������! ������
↵2�↵1

�1��2 hR, 6i.

Example 11 (Right-image isomorphism) A relation r 2 (X⇥Y)! B is isomorphic to its right image ◆ f (r) 2
X ! Y ! B where currying is ◆ f (r) , � x . � y . r(hx, yi) with uncurrying inverse ◆r( f ) , � hx, yi . y 2 f (x)
such that h(X ⇥ Y) ! B, ✓̇i ���!�!  ����◆ f

◆r hX ! Y ! B, ✓̈i and hX ! Y), ✓̈i ���!�!  ����◆r
◆ f

h}(X ⇥ Y), ✓i where the
pointwise orderings are ✓̇ such that f ✓̇ g if and only if 8x 2 X : f (x) ✓ g(x) and ✓̈ such that f ✓̈ g if and
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Why using post-fixpoints is more 
general than using the least fixpoint?

• The least fixpoint may not exist (inexpressive logic)
while post-fixpoints do exist (invariants)

• When the least fixpoint does exist, there is a 
bijection with the post-fixpoints (Tarski [1955])
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from variables 7 to elements in the set =V, so that properties, that is global invariants, are sets of
such functions.

R= , x!=V concrete environments
P= , }(R=) concrete invariance properties

The concrete transformer F=JPK of program P defines the (set-theoretic version of the) verification
condition F=JPK(I) ✓ I for I 2 R= to be a program inductive invariant (assigning possible values to
program variables at each program point). This concrete transformer F=JPK is defined by structural
induction on the program P in terms of the complete lattice operations h}(R=), ✓, ;, R=, [, \i and
the following local invariance transformers

f=Jx := eKP , {⌘[x JeK=⌘] | ⌘ 2 P)} Floyd’s assignment post-condition
p=J'KP , {⌘ 2 P | J'K=⌘ = true} test/guards

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).

Example 3.3 (Least fixpoint concrete semantics). hP=, ✓, ;, R=, [, \i is a complete lat-
tice so if the transformer F=JPK is increasing then, by [Tarski 1955], we have lfp

✓ F=JPK =
T

postfp

✓ F=JPK 2 postfp

✓ F=JPK which is the strongest post-fixpoint. Notice that all {P 2 P= |
lfp

✓ F=JPK ✓ P} are all valid program properties but only the elements of postfp

✓ F=JPK are induc-
tive properties as needed to make proofs. This is the case in example 3.2, where lfp

✓ F=JPK defines
the strongest invariant for [Floyd 1967] program proof method. ut

Example 3.4. The program P , x=1; while true {x=incr(x)} with the arithmetic interpre-
tation = on integers =V = Z has loop invariant lfp

✓ F=JPK where F=JPK(X) , {⌘ 2 R= | ⌘(x) =
1} [ {⌘[x ⌘(x) + 1] | ⌘ 2 X}. The increasing chain of iterates F=JPKn = {⌘ 2 R= | 0 < ⌘(x) < n}
has limit lfp

✓ F=JPK =Sn>0 F=JPKn = {⌘ 2 R= | 0 < ⌘(x)}. ut
Otherwise, if the concrete transformer of a program has no least fixpoint, the whole set of post-
fixpoints is defined by the concrete semantics although only one of them is needed to make a given
proof (so the concrete semantics defines all the possible ways to make proofs).

3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I 2 }(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
RI program observables for interpretation I 2 I
PI , I 2 I 67! }(RI) interpreted properties for the set of interpretations I
' }({hI, ⌘i | I 2 I ^ ⌘ 2 RI}) 8

The multi-interpreted semantics of a program P in the context of I is
FIJPK 2 PI!PI multi-interpreted concrete transformer of program P

, �P 2 PI . � I 2 I . FIJPK(P(I))
CIJPK 2 }(PI) multi-interpreted concrete semantics

, postfp

✓̇ FIJPK
where ✓̇ is the pointwise subset ordering.

7 maybe including the program counter etc.
8 A partial function f 2 A 9 B with domain dom( f ) 2 }(A) is understood as the relation {hx, f (x)i 2 A ⇥ B | x 2 dom( f )}
and maps x 2 A to f (x) 2 B, written x 2 A 67! f (x) 2 B or x 2 A 67! Bx when 8x 2 A : f (x) 2 Bs ✓ B.
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About mathematical verification
• A verification relative to a purely mathematical 

semantics is of poor practical interest.

• Example (Muller’s scheme as analyzed by Kahan)

• With exact reals, converges to 6 (repulsive fixpoint)

• With any finite precision, converges to 100 
(attractive fixpoint)

• Programs have many interpretations

17

12 Eric Goubault and Sylvie Putot

RAM, running under MacOS Snow Leopard, and include all the mechanisms
used in Fluctuat, including for instance alias analysis.

Let us first come back to the introductory example of Section 1: with the
relational domain using 1000 subdivisions, in 78 seconds we get for the real
value of t, r

t 2 [�2.10�6
, 2.10�6] instead of [�1.95, 1.94] without subdivision,

and [�8, 8] with the non-relational domain. We already saw that the rounding
errors where negligible, we now also have that the two computations for y and
z are functionally very close in real numbers.

Example 2. Take the following simple program that implements 100 iterations
of a scheme proposed by Muller [23] and analyzed by Kahan, to demonstrate
the e↵ect of finite precision on computation.

1 x0 = 11/2 . 0 ;
2 x1 = 61/11 . 0 ;
3 for ( i=1 ; i <=100 ; i++) {
4 x2 = 111 � (1130 � 3000/x0 ) / x1 ;
5 x0 = x1 ; x1 = x2 ; }

Computed with exact numbers, this sequence should converge to 6. However,
this fixed point is repulsive, while the fixed point 100 is attractive. This means
that any perturbation from the exact sequence converging to this repulsive fixed
point will eventually lead to the attractive one. Thus, when computed in finite
precision, whatever the precision used, this sequence will eventually converge
to 100. Fluctuat, with the interval abstract domain, and using floating-point
numbers with 500 bits of precision, indeed finds in less than 0.15 second that x2
after the loop has a float value equal to 100, a real value equal to 5.999..., and a
global error equal to �94.000..., due to lines 2 and 4, and to higher order errors.
As a matter of fact, it is in particular because x1 is not represented exactly that
the dynamical system converges towards the attractive fixpoint (in floating-point
numbers). The fixed point for an arbitrary number of iterations will be > for the
real value and error. Using APRON with Polka (polyhedra) and linearization,
we find x1 equal to 5.999... in real-numbers and x1 equal to top (since the eighth
iterate) in floating-point numbers, even though we unravelled all 100 iterations
and infinite precision computation is made by the analyzer - this is due to the
linearization scheme.

Example 3. The function below computes (Householder method) the inverse of
the square root of the input I. The loop stops when the di↵erence between two
successive iterates is below a criterion that depends on a value eps.

1 xn = 1.0/ I ; i = 0 ; r e s i du = 2.0⇤ eps ;
2 while ( f abs ( r e s i du ) > eps ) {
3 xnp1 = xn⇤(1.875+ I ⇤xn⇤xn⇤(�1.25+0.375⇤ I ⇤xn⇤xn ) ) ;
4 r e s i du = 2 .0⇤ ( xnp1�xn )/( xn+xnp1 ) ;
5 xn = xnp1 ; i++; }
6 O = 1.0/ xnp1 ; sbz = O� s q r t ( I ) ;
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lfp⇥ F↵�P⇥ ⇥ P} are all valid program properties but only the elements of postfp⇥ F↵�P⇥ are induc-
tive properties as needed to make proofs. ◆✓
Otherwise, the whole set of post-fixpoints is defined by the semantics but only one is needed to
make proofs (so the semantics defines all the possible ways to make proofs).

Example 3.3. In the context of invariance properties for imperative languages with program
interpretation ↵ ⌃ I, we can take a concrete state to be a function from variables 7 to elements in
the set ↵V, so that properties are sets of such functions.

R↵ � x⌅↵V concrete environments
P↵ � ⇤(R↵) concrete invariance properties

The transformer F↵�P⇥ for the invariance semantics is defined by structural induction on the pro-
gram P in terms of the complete lattice operations ⇣⇤(R↵), ⇥, ⌦, R↵, �, �⌘ and the following local
invariance transformers

f↵�x := e⇥P � {�[x⇤ �e⇥↵�] | � ⌃ P)} Floyd’s assignment post-condition
p↵�⇥⇥P � {� ⌃ P | �⇥⇥↵� = true} test

Example 3.4. The program P � x=1; while true {x=incr(x)} with the arithmetic inter-
pretation ↵ on integers ↵V = Z has loop invariant lfp⇥ F↵�P⇥ where F↵�P⇥(X) � {� ⌃ R↵ | �(x) =
1} � {�[x⇤ �(x) + 1] | � ⌃ X}. The increasing chain of iterates F↵�P⇥n = {� ⌃ R↵ | 0 < �(x) < n}
has limit lfp⇥ F↵�P⇥ =�n⇥0 F↵�P⇥n = {� ⌃ R↵ | 0 < �(x)}. ◆✓

3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I ⌃ ⇤(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
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The multi-interpreted semantics of a program P in the context of I is
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7 maybe including the program counter etc.
8A partial function f ⌃ A � B with domain dom( f ) ⌃ ⇤(A) is understood as the relation {⇣x, f (x)⌘ ⌃ A � B | x ⌃ dom( f )}
and maps x ⌃ A to f (x) ⌃ B, written x ⌃ A ⌥�⌅ f (x) ⌃ B or x ⌃ A ⌥�⌅ Bx when  x ⌃ A : f (x) ⌃ Bs ⇥ B.
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4 Mathematical preliminaries

The following classical definitions and theorems are taken from the appendix of [15].

4.1 Posets

A poset hP, �i is a set P equipped with a partial order � [2]. If X ✓ P then
b

X denotes the least upper bound
(lub) of X and

c
X denotes its greatest lower bound (glb), if any. A complete lattice has all lubs whence

all glbs, an infimum 0 and a suppremum 1. A complete Boolean lattice is a complete lattice with unique
complement ¬ (i.e. 8x 2 P : (x g ¬x = 1) ^ (x f ¬x = 0).

4.2 Booleans

Let B , {false, true} be the Booleans, which, when partially ordered by false =) false =)
true =) true, have a complete Boolean lattice structure hB, =) , false, true, _, ^, ¬i where
=) is the partial order, false is the infimum, . true is the supremum, _ is the lub (least upper bound), ^
is the glb (greatest lower bound), and ¬ is the complement. Observe that if b1 =) b2 and b2 =) b1 then
b1 = b2 (whereas b1 and b2 might be di↵erent in syntactic representations with terms, in which case b1 = b2
is b1 () b2). The conditional (b ? x : y) is x if b holds and y otherwise that is (true ? x : y) = x
and (false ? x : y) = y. We sometimes write (b ? true : false) for b, a redundancy emphasizing the
computer boolean encoding of b.

TODO: Revoir ci-dessous

4.3 Maps

If hQ, v, ti is a poset, we say that the map f 2 P ! Q is increasing (or monotone, istotone, etc) if and only
if 8x, y 2 P : (x � y) =) ( f (x) v f (y)). f is lub-preserving whenever the existence of

b
� x� in P implies

the existence of
F
� f (x�) in Q such that f (

b
� x�) =

F
� f (x�). f is upper-continuous (continuous for short) if

and only if it preserves existing lubs of increasing denumerable chains xn, n 2 N, that is if 8n 2 N : xn � xn+1
and the lub

b
n2N xn does exist then

F
n2N f (xn) exists such that f (

b
n2N xn) =

F
n2N f (xn). The composition

of maps is f � g(x) = f (g(x)).

4.4 Galois connections

A Galois connection hP, �i ���! ���↵
�
hQ, vi is, by definition, such that hP, �i and hQ, vi are posets, ↵ 2 P ! Q

and � 2 Q! P satisfy 8x 2 P : 8y 2 Q : ↵(x) v y () x � �(y). It follows that ↵ preserves lubs existing in
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there exists a unique � (resp. ↵) such that hP, �i ���! ���↵

�
hQ, vi. ↵ is onto if and only if � is one-to-one, written

hP, �i ���!�! ����↵
�
hQ, vi. Dually, � is onto if and only if ↵ is one-to-one, written hP, �i ����!  ����↵

�
hQ, vi. A Galois

isomorphism is written hP, �i ���!�!  ����↵
�
hQ, vi. The composition of Galois connections hP, �i ����! ����↵1

�1 hQ, vi and

hQ, vi ����! ����↵2

�2 hR, 6i is a Galois connection hP, �i ������! ������
↵2�↵1

�1��2 hR, 6i.

Example 11 (Right-image isomorphism) A relation r 2 (X⇥Y)! B is isomorphic to its right image ◆ f (r) 2
X ! Y ! B where currying is ◆ f (r) , � x . � y . r(hx, yi) with uncurrying inverse ◆r( f ) , � hx, yi . y 2 f (x)
such that h(X ⇥ Y) ! B, ✓̇i ���!�!  ����◆ f

◆r hX ! Y ! B, ✓̈i and hX ! Y), ✓̈i ���!�!  ����◆r
◆ f

h}(X ⇥ Y), ✓i where the
pointwise orderings are ✓̇ such that f ✓̇ g if and only if 8x 2 X : f (x) ✓ g(x) and ✓̈ such that f ✓̈ g if and
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Multi-interpreted semantics
• A generalization consists in considering multiple 

interpretations of logics and programs

• Multi-interpreted properties:

• Multi-interpreted transformer:

• Multi-interpreted semantics:
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from variables 7 to elements in the set =V, so that properties, that is global invariants, are sets of
such functions.

R= , x!=V concrete environments
P= , }(R=) concrete invariance properties

The concrete transformer F=JPK of program P defines the (set-theoretic version of the) verification
condition F=JPK(I) ✓ I for I 2 R= to be a program inductive invariant (assigning possible values to
program variables at each program point). This concrete transformer F=JPK is defined by structural
induction on the program P in terms of the complete lattice operations h}(R=), ✓, ;, R=, [, \i and
the following local invariance transformers

f=Jx := eKP , {⌘[x JeK=⌘] | ⌘ 2 P)} Floyd’s assignment post-condition
p=J'KP , {⌘ 2 P | J'K=⌘ = true} test/guards

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).

Example 3.3 (Least fixpoint concrete semantics). hP=, ✓, ;, R=, [, \i is a complete lat-
tice so if the transformer F=JPK is increasing then, by [Tarski 1955], we have lfp

✓ F=JPK =
T

postfp

✓ F=JPK 2 postfp

✓ F=JPK which is the strongest post-fixpoint. Notice that all {P 2 P= |
lfp

✓ F=JPK ✓ P} are all valid program properties but only the elements of postfp

✓ F=JPK are induc-
tive properties as needed to make proofs. This is the case in example 3.2, where lfp

✓ F=JPK defines
the strongest invariant for [Floyd 1967] program proof method. ut

Example 3.4. The program P , x=1; while true {x=incr(x)} with the arithmetic interpre-
tation = on integers =V = Z has loop invariant lfp

✓ F=JPK where F=JPK(X) , {⌘ 2 R= | ⌘(x) =
1} [ {⌘[x ⌘(x) + 1] | ⌘ 2 X}. The increasing chain of iterates F=JPKn = {⌘ 2 R= | 0 < ⌘(x) < n}
has limit lfp

✓ F=JPK =Sn>0 F=JPKn = {⌘ 2 R= | 0 < ⌘(x)}. ut
Otherwise, if the concrete transformer of a program has no least fixpoint, the whole set of post-
fixpoints is defined by the concrete semantics although only one of them is needed to make a given
proof (so the concrete semantics defines all the possible ways to make proofs).

3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I 2 }(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
RI program observables for interpretation I 2 I
PI , I 2 I 67! }(RI) interpreted properties for the set of interpretations I
' }({hI, ⌘i | I 2 I ^ ⌘ 2 RI}) 8

The multi-interpreted semantics of a program P in the context of I is
FIJPK 2 PI!PI multi-interpreted concrete transformer of program P

, �P 2 PI . � I 2 I . FIJPK(P(I))
CIJPK 2 }(PI) multi-interpreted concrete semantics

, postfp

✓̇ FIJPK
where ✓̇ is the pointwise subset ordering.

7 maybe including the program counter etc.
8 A partial function f 2 A 9 B with domain dom( f ) 2 }(A) is understood as the relation {hx, f (x)i 2 A ⇥ B | x 2 dom( f )}
and maps x 2 A to f (x) 2 B, written x 2 A 67! f (x) 2 B or x 2 A 67! Bx when 8x 2 A : f (x) 2 Bs ✓ B.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Patrick Cousot et al.

from variables 7 to elements in the set =V, so that properties, that is global invariants, are sets of
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R= , x!=V concrete environments
P= , }(R=) concrete invariance properties
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induction on the program P in terms of the complete lattice operations h}(R=), ✓, ;, R=, [, \i and
the following local invariance transformers

f=Jx := eKP , {⌘[x JeK=⌘] | ⌘ 2 P)} Floyd’s assignment post-condition
p=J'KP , {⌘ 2 P | J'K=⌘ = true} test/guards

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).

Example 3.3 (Least fixpoint concrete semantics). hP=, ✓, ;, R=, [, \i is a complete lat-
tice so if the transformer F=JPK is increasing then, by [Tarski 1955], we have lfp

✓ F=JPK =
T

postfp

✓ F=JPK 2 postfp

✓ F=JPK which is the strongest post-fixpoint. Notice that all {P 2 P= |
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✓ F=JPK ✓ P} are all valid program properties but only the elements of postfp

✓ F=JPK are induc-
tive properties as needed to make proofs. This is the case in example 3.2, where lfp

✓ F=JPK defines
the strongest invariant for [Floyd 1967] program proof method. ut

Example 3.4. The program P , x=1; while true {x=incr(x)} with the arithmetic interpre-
tation = on integers =V = Z has loop invariant lfp

✓ F=JPK where F=JPK(X) , {⌘ 2 R= | ⌘(x) =
1} [ {⌘[x ⌘(x) + 1] | ⌘ 2 X}. The increasing chain of iterates F=JPKn = {⌘ 2 R= | 0 < ⌘(x) < n}
has limit lfp

✓ F=JPK =Sn>0 F=JPKn = {⌘ 2 R= | 0 < ⌘(x)}. ut
Otherwise, if the concrete transformer of a program has no least fixpoint, the whole set of post-
fixpoints is defined by the concrete semantics although only one of them is needed to make a given
proof (so the concrete semantics defines all the possible ways to make proofs).

3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I 2 }(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
RI program observables for interpretation I 2 I
PI , I 2 I 67! }(RI) interpreted properties for the set of interpretations I
' }({hI, ⌘i | I 2 I ^ ⌘ 2 RI}) 8

The multi-interpreted semantics of a program P in the context of I is
FIJPK 2 PI!PI multi-interpreted concrete transformer of program P

, �P 2 PI . � I 2 I . FIJPK(P(I))
CIJPK 2 }(PI) multi-interpreted concrete semantics

, postfp

✓̇ FIJPK
where ✓̇ is the pointwise subset ordering.

7 maybe including the program counter etc.
8 A partial function f 2 A 9 B with domain dom( f ) 2 }(A) is understood as the relation {hx, f (x)i 2 A ⇥ B | x 2 dom( f )}
and maps x 2 A to f (x) 2 B, written x 2 A 67! f (x) 2 B or x 2 A 67! Bx when 8x 2 A : f (x) 2 Bs ✓ B.
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from variables 7 to elements in the set =V, so that properties, that is global invariants, are sets of
such functions.

R= , x!=V concrete environments
P= , }(R=) concrete invariance properties

The concrete transformer F=JPK of program P defines the (set-theoretic version of the) verification
condition F=JPK(I) ✓ I for I 2 R= to be a program inductive invariant (assigning possible values to
program variables at each program point). This concrete transformer F=JPK is defined by structural
induction on the program P in terms of the complete lattice operations h}(R=), ✓, ;, R=, [, \i and
the following local invariance transformers

f=Jx := eKP , {⌘[x JeK=⌘] | ⌘ 2 P)} Floyd’s assignment post-condition
p=J'KP , {⌘ 2 P | J'K=⌘ = true} test/guards

Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).

Example 3.3 (Least fixpoint concrete semantics). hP=, ✓, ;, R=, [, \i is a complete lat-
tice so if the transformer F=JPK is increasing then, by [Tarski 1955], we have lfp

✓ F=JPK =
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postfp

✓ F=JPK 2 postfp

✓ F=JPK which is the strongest post-fixpoint. Notice that all {P 2 P= |
lfp

✓ F=JPK ✓ P} are all valid program properties but only the elements of postfp

✓ F=JPK are induc-
tive properties as needed to make proofs. This is the case in example 3.2, where lfp

✓ F=JPK defines
the strongest invariant for [Floyd 1967] program proof method. ut

Example 3.4. The program P , x=1; while true {x=incr(x)} with the arithmetic interpre-
tation = on integers =V = Z has loop invariant lfp

✓ F=JPK where F=JPK(X) , {⌘ 2 R= | ⌘(x) =
1} [ {⌘[x ⌘(x) + 1] | ⌘ 2 X}. The increasing chain of iterates F=JPKn = {⌘ 2 R= | 0 < ⌘(x) < n}
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✓ F=JPK =Sn>0 F=JPKn = {⌘ 2 R= | 0 < ⌘(x)}. ut
Otherwise, if the concrete transformer of a program has no least fixpoint, the whole set of post-
fixpoints is defined by the concrete semantics although only one of them is needed to make a given
proof (so the concrete semantics defines all the possible ways to make proofs).

3.3. Multi-Interpreted Concrete Semantics
A multi-interpreted concrete semantics, provides a semantics for programs P in the context of a set
of interpretations I 2 }(I). Then a program property in PI provides for each interpretation in I, a
set of program observables satisfying that property in that interpretation.
RI program observables for interpretation I 2 I
PI , I 2 I 67! }(RI) interpreted properties for the set of interpretations I
' }({hI, ⌘i | I 2 I ^ ⌘ 2 RI}) 8

The multi-interpreted semantics of a program P in the context of I is
FIJPK 2 PI!PI multi-interpreted concrete transformer of program P

, �P 2 PI . � I 2 I . FIJPK(P(I))
CIJPK 2 }(PI) multi-interpreted concrete semantics

, postfp

✓̇ FIJPK
where ✓̇ is the pointwise subset ordering.

7 maybe including the program counter etc.
8 A partial function f 2 A 9 B with domain dom( f ) 2 }(A) is understood as the relation {hx, f (x)i 2 A ⇥ B | x 2 dom( f )}
and maps x 2 A to f (x) 2 B, written x 2 A 67! f (x) 2 B or x 2 A 67! Bx when 8x 2 A : f (x) 2 Bs ✓ B.
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such functions.

R= , x!=V concrete environments
P= , }(R=) concrete invariance properties
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Note that if the concrete transformer admits a least fixpoint, then it is enough to consider only
that least fixpoint and we don’t need to compute the whole set of post-fixpoints (see also Sect. 4.3).
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Otherwise, if the concrete transformer of a program has no least fixpoint, the whole set of post-
fixpoints is defined by the concrete semantics although only one of them is needed to make a given
proof (so the concrete semantics defines all the possible ways to make proofs).
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Example I of abstraction of a multi-interpreted semantics

• The float operations have 4 possible interpretations 
depending on the rounding mode (towards -∞, +∞, 
0, closest) 

• ASTRÉE over-approximates all four semantics

• Ignore some interpretations
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Example II of abstraction of a multi-interpreted semantics

Theories, Solvers and Abstract Interpretation A:13

5. ABSTRACTION OF MULTI-INTERPRETED CONCRETE SEMANTICS
The interpreted concrete semantics of Sect. 3.2 is relative to one interpretation = of the program-
ming language data, functions, and predicates. But the theories used in theorem provers or SMT
solvers can have many di↵erent models, corresponding to possible interpretations. In fact, the same
holds for programs: they can be executed on di↵erent platforms, and it can be useful to collect all
the possible behaviors, e.g. to provide a more general proof of correctness (e.g. valid for all imple-
mentations according to the considered interpretations). In this case the multi-interpreted concrete
semantics of Sect. 3.3 is useful.

5.1. Abstractions Between Multi-Interpretations
If we can only compute properties on one interpretation =, as in the case of Sect. 3.2, then we can
approximate a multi-interpreted program saying that we know the possible behaviors when the in-
terpretation is = and we know nothing (so all properties are possible) for the other interpretations of
the program. On the other hand, if we analyze a program that can only have one possible interpre-
tation with a multi-interpreted property, then we are doing an abstraction in the sense that we add
more behaviors and forget the actual property that should be associated with the program. So, in
general, we have two sets of interpretations, one I is the context of interpretations for the program
and the other I] is the set of interpretations used in the analysis. The relations between the two is a
Galois connection.

Lemma 5.1. hPI, ✓i �������! �������
↵I!I]

�I]!I hPI] , ✓i is a Galois connection where

↵I!I] (P) , P \ PI]
�I]!I(Q) ,

(

hI, ⌘i
�

�

�

�

�

�

I 2 I ^ ⌘ 2 RI ^
⇣

I 2 I] ) hI, ⌘i 2 Q
⌘

)

ut

Proof of lemma 5.1. Suppose P 2 PI and Q 2 PI] . Then
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Example 3.5. In the context of invariance properties for imperative languages with multiple
program interpretations I 2 }(I), ex. 3.2 can be generalized by taking

RI , x! IV concrete interpreted environments for interpretation I 2 I.

The multi-interpreted concrete semantic transformer FIJPK 2 PI 7! PI for the invariance semantics
is defined by structural induction on the program P in terms of the complete lattice operations hPI,
✓, ;, >I, [, \iwhere>I , {hI, ⌘i | I 2 I^⌘ 2 RI} and the following local invariance transformers

fIJx := eKP , {hI, ⌘[x JeKI⌘]i | I 2 I ^ hI, ⌘i 2 P)} assignment post-condition
bIJx := eKP , {hI, ⌘i | I 2 I ^ hI, ⌘[x JeKI⌘]i 2 P} assignment pre-condition (7)

pIJ'KP , {hI, ⌘i 2 P | I 2 I ^ J'KI⌘ = true} test.

In particular for I = {=}, we get the transformers of ex. 3.2, up to the isomorphism ◆=(P) , {h=,
⌘i | ⌘ 2 P} with inverse ◆�1

= (Q) , {⌘ | h=, ⌘i 2 Q}. Observe that the transformers are complete
morphisms for union and intersection and so are increasing for the subset ordering. In general, it
follows that the transformer FIJPK for the invariance semantics has the same properties. ut

The natural ordering to express abstraction (or precision) on multi-interpreted semantics is the
subset ordering, which gives a lattice structure to the set of multi-interpreted properties: a property
P2 is more abstract than P1 when P1 ⇢ P2, meaning that P2 allows more behaviors for some in-
terpretations, and maybe that it allows new interpretations. Following that ordering, we can express
systematic abstractions of the multi-interpreted semantics in section 5. But first we will recall the
fundations of static analysis of program properties by abstract interpretation in section 4.

4. BACKGROUND ON ABSTRACT INTERPRETATION
4.1. Abstract Domains
In static analysis by abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c],
abstract domains are used to encapsulate abstract program properties and abstract operations (in-
cluding the logical lattice structure, elementary transformers, convergence acceleration operators,
etc.).

Example 4.1. Typically, an abstract domain for an imperative language would be a tuple

hA,v,?,>,t,u,`,a, f̄, b̄, p̄, . . .i
where

P,Q, . . . 2 A abstract properties
v 2 A ⇥ A!B abstract partial order 9

?,> 2 A infimum, supremum (8P 2 A : ? v P v >)
t,u,`,a 2 A ⇥ A!A abstract join, meet, widening, narrowing

. . .
f̄ 2 (x ⇥E(x, f ,p))!A!A abstract forward assignment transformer
b̄ 2 (x ⇥E(x, f ,p))!A!A abstract backward assignment transformer
p̄ 2 C(x, f ,p)!A!A abstract condition transformer.

A procedural language would include a projection (to handle procedure calls) and the analysis of
a higher-order functional language would require the domain to provide an operation to abstract
partial application of a function to a subset of its arguments. ut

9 If v is a pre-order then A is assumed to be quotiented by the equivalence relation ⌘ , v \ v�1.
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fI�x := e⇥P � {�I, �[x⇧ �e⇥I�]� | I ⌥ I � �I, �� ⌥ P)} assignment post-condition
bI�x := e⇥P � {�I, �� | I ⌥ I � �I, �[x⇧ �e⇥I�]� ⌥ P} assignment pre-condition (1)

pI�⇤⇥P � {�I, �� ⌥ P | I ⌥ I � �⇤⇥I� = true} test.

In particular for I = {�}, we get the transformers of Ex. 3.3, up to the isomorphism ⇥�(P) � {��,
�� | � ⌥ P} with inverse ⇥�1

� (Q) � {� | ��, �� ⌥ Q}. Observe that the transformers are complete
morphisms for union and intersection and so are increasing for the subset ordering. In general, it
follows that the transformer FI�P⇥ for the invariance semantics has the same properties. ⇣✏

The natural ordering to express abstraction (or precision) on multi-interpreted semantics is the
subset ordering, which gives a lattice structure to the set of multi-interpreted properties: a property
P1 is more abstract than P2 when P2 ⌅ P1, meaning that P1 allows more behaviors for some in-
terpretations, and maybe that it allows new interpretations. Following that ordering, we can express
systematic abstractions of the multi-interpreted semantics.

4. BACKGROUND ON ABSTRACT INTERPRETATION
In this section, we recall the fundations of static analysis of program properties by abstract interpre-
tation.

4.1. Abstract Domains
In static analysis by abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c],
abstract domains are used to encapsulate abstract program properties and abstract operations (in-
cluding the logical lattice structure, elementary transformers, convergence acceleration operators,
etc.).

Example 4.1. Typically, an abstract domain for an imperative language would be

�A,⌘,⌦, ,✏,⇣,�,⇥, f̄, b̄, p̄, . . .�
where
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⌘ ⌥ A ⇥ A⌃B abstract partial order 9

⌦, ⌥ A infimum, supremum
✏,⇣,�,⇥ ⌥ A ⇥ A⌃A abstract join, meet, widening, narrowing

. . .
f̄ ⌥ (x ⇥E(x, f ,p))⌃A⌃A abstract forward assignment transformer
b̄ ⌥ (x ⇥E(x, f ,p))⌃A⌃A abstract backward assignment transformer
p̄ ⌥ C(x, f ,p)⌃A⌃A abstract condition transformer.

A procedural language would include a projection (to handle procedure calls) and the analysis of
a higher-order functional language would require the domain to provide an operation to abstract
partial application of a function to a subset of its arguments. ⇣✏

4.2. Abstract Semantics
The abstract semantics of a program P is assumed to be given as a set of post-fixpoints
C�P⇥ � {P | F�P⇥(P) ⌘ P} or in least fixpoint form C�P⇥ � {lfp⌘ F�P⇥} (or, by the singleton
isomorphism, the more frequent lfp⌘ F�P⇥) when such a least fixpoint does exist (e.g. [Tarski
1955]) where F�P⇥ ⌥ A ⌃ A is the abstract transformer of program P built out of the primitives

9If ⌘ is a pre-order then A is assumed to be quotiented by the equivalence relation ⇤ � ⌘ ↵ ⌘�1.
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fI�x := e⇥P � {�I, �[x⇧ �e⇥I�]� | I ⌥ I � �I, �� ⌥ P)} assignment post-condition
bI�x := e⇥P � {�I, �� | I ⌥ I � �I, �[x⇧ �e⇥I�]� ⌥ P} assignment pre-condition (1)

pI�⇤⇥P � {�I, �� ⌥ P | I ⌥ I � �⇤⇥I� = true} test.

In particular for I = {�}, we get the transformers of Ex. 3.3, up to the isomorphism ⇥�(P) � {��,
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� (Q) � {� | ��, �� ⌥ Q}. Observe that the transformers are complete
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The natural ordering to express abstraction (or precision) on multi-interpreted semantics is the
subset ordering, which gives a lattice structure to the set of multi-interpreted properties: a property
P1 is more abstract than P2 when P2 ⌅ P1, meaning that P1 allows more behaviors for some in-
terpretations, and maybe that it allows new interpretations. Following that ordering, we can express
systematic abstractions of the multi-interpreted semantics.

4. BACKGROUND ON ABSTRACT INTERPRETATION
In this section, we recall the fundations of static analysis of program properties by abstract interpre-
tation.

4.1. Abstract Domains
In static analysis by abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c],
abstract domains are used to encapsulate abstract program properties and abstract operations (in-
cluding the logical lattice structure, elementary transformers, convergence acceleration operators,
etc.).

Example 4.1. Typically, an abstract domain for an imperative language would be

�A,⌘,⌦, ,✏,⇣,�,⇥, f̄, b̄, p̄, . . .�
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. . .
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4.2. Abstract Semantics
The abstract semantics of a program P is assumed to be given as a set of post-fixpoints C�P⇥ �
{P | F�P⇥(P) ⌘ P} or in least fixpoint form C�P⇥ � {lfp⌘ F�P⇥} (or, by the singleton isomor-
phism, the more frequent lfp⌘ F�P⇥) when such a least fixpoint does exist (e.g. [Tarski 1955])
where F�P⇥ ⌥ A ⌃ A is the abstract transformer of program P built out of the primitives

9If ⌘ is a pre-order then A is assumed to be quotiented by the equivalence relation ⇤ � ⌘ ↵ ⌘�1.
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4.2. Abstract Semantics
The abstract semantics CJPK 2 }(A) of a program P is assumed to be given as a set of post-
fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfp

v FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK 2 A!A is the abstract transformer of program P built out of the prim-
itives ?,>,t,u,`,a, f̄, b̄, p̄, . . . 10. As was the case for the concrete semantics, we preferably use
least fixpoints when that is possible.

4.3. Soundness of Abstract Domains
Soundness relates abstract properties to concrete properties using a function � such that

� 2 A 1!P= concretization 11

The soundness of abstract domains, is defined as, for all P,Q 2 A,

(P v Q)) (�(P) ✓ �(Q)) order �(?) = ; infimum
�(P t Q) ◆ (�(P) [ �(Q)) join �(>) = >= supremum 12

...

Observe that defining an abstraction consists in choosing the domain A of abstract properties and the
concretization �. So, this essentially consists in choosing a set of concrete properties �[A] (where
�[X] , {�(x) | x 2 X}) which can be exactly represented in the abstract while the other concrete
properties P 2 P= \ �[A] cannot and so must be over-approximated by some P 2 A such that
P ✓ �(P). By assuming the existence of an element > of A with concretization >=, there always
exists such a P. For precision, the minimum one, or else the minimal ones, if any, are to be preferred.
In case of existence of a best abstraction, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi where
↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.
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for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Patrick Cousot et al.
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The abstract semantics CJPK 2 }(A) of a program P is assumed to be given as a set of post-
fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfp

v FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK 2 A!A is the abstract transformer of program P built out of the prim-
itives ?,>,t,u,`,a, f̄, b̄, p̄, . . . 10. As was the case for the concrete semantics, we preferably use
least fixpoints when that is possible.
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The soundness of abstract domains, is defined as, for all P,Q 2 A,
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�(P t Q) ◆ (�(P) [ �(Q)) join �(>) = >= supremum 12
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Observe that defining an abstraction consists in choosing the domain A of abstract properties and the
concretization �. So, this essentially consists in choosing a set of concrete properties �[A] (where
�[X] , {�(x) | x 2 X}) which can be exactly represented in the abstract while the other concrete
properties P 2 P= \ �[A] cannot and so must be over-approximated by some P 2 A such that
P ✓ �(P). By assuming the existence of an element > of A with concretization >=, there always
exists such a P. For precision, the minimum one, or else the minimal ones, if any, are to be preferred.
In case of existence of a best abstraction, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi where
↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.
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fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfp

v FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK 2 A!A is the abstract transformer of program P built out of the prim-
itives ?,>,t,u,`,a, f̄, b̄, p̄, . . . 10. As was the case for the concrete semantics, we preferably use
least fixpoints when that is possible.

4.3. Soundness of Abstract Domains
Soundness relates abstract properties to concrete properties using a function � such that
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The soundness of abstract domains, is defined as, for all P,Q 2 A,

(P v Q)) (�(P) ✓ �(Q)) order �(?) = ; infimum
�(P t Q) ◆ (�(P) [ �(Q)) join �(>) = >= supremum 12

...

Observe that defining an abstraction consists in choosing the domain A of abstract properties and the
concretization �. So, this essentially consists in choosing a set of concrete properties �[A] (where
�[X] , {�(x) | x 2 X}) which can be exactly represented in the abstract while the other concrete
properties P 2 P= \ �[A] cannot and so must be over-approximated by some P 2 A such that
P ✓ �(P). By assuming the existence of an element > of A with concretization >=, there always
exists such a P. For precision, the minimum one, or else the minimal ones, if any, are to be preferred.
In case of existence of a best abstraction, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi where
↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.
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• The abstract semantics is sound iff

(any abstract proof of an abstract property can be 
done in the concrete)

• The abstract semantics is complete iff

(any concrete proof of an abstract property can be 
done in the abstract)
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semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever
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exists such a P. For precision, the minimum one, or else the minimal ones, if any, are to be preferred.
In case of existence of a best abstraction, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi where
↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).
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CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever
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(so that any proof in the abstract can be done in the concrete). It is complete whenever
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10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
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Theorem 4.3 (Compositionality of abstractions). The composition of sound (resp. complete)
abstractions is sound (resp. complete).

Proof of theorem 4.3. Assume (8) respectively for A1, v1, C1JPK and A2, v2, C2 with �21 2
A2

1!A1 and C2JPK and A3, v3, C3JPK with �32 2 A3
1!A2. For all P 2 A3, we have

(9C3 2 C3JPK : C3 v3 P)
) (9C2 2 C2JPK : C2 v2 �32(P)) Hby (8) for A2, v2, C2JPK and A3, v3, C3JPK with �32I
) (9C1 2 C1JPK : C1 v1 �21 � �32(P)) Hby (8) for A1, v1, C1JPK and A2, v2, C2JPK with �21I
proving (8) for A1, v1, C1JPK and A3, v3, C3JPK with �21 � �32. The proof for completeness is
similar.

It follows from th. 4.3 that the soundness (resp. completeness) of an abstract semantics with respect
to the concrete semantics of section 3 can be proved directly or using the composition of intermedi-
ate abstractions.

When the concrete and abstract semantics are defined in post-fixpoint form, the soundness of the
abstract semantics follows from the soundness of the abstraction in Sect. 4.3 and the soundness of
the abstract transformer [Cousot and Cousot 1977; Cousot and Cousot 1979c]

8P 2 A : FJPK � �(P) 6 � � FJPK(P)13 (9)

Theorem 4.4 (Soundness of an abstract post-fixpoint semantics). If CJPK , postfp

6 FJPK,
CJPK , postfp

v FJPK and � : A!C increasing, then (9) implies (8). ut
Proof of theorem 4.4. For all P 2 A, we have

9C 2 CJPK : C v P
) 9C : FJPK(C) v C ^C v P Hdef. CJPK , postfp

v FJPK = {P | FJPK(P) v P}I
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6 FJPK , {C | FJPK(C) 6 C}I
Example 4.5. Continuing Ex. 3.2 in the context of invariance properties for imperative lan-

guages, the soundness of the abstract transformer generally follows from the following local sound-
ness conditions on abstract transformers, for all P 2 A,

�(f̄Jx := eKP) ◆ f=Jx := eK�(P) assignment post-condition
�(b̄Jx := eKP) ◆ b=Jx := eK�(P) assignment pre-condition
�(p̄J'KP) ◆ p=J'K�(P) test/guard

Observe that soundness is preserved by composition of increasing concretizations.

4.5. Iterates with Widening
When the abstract domain does not satisfy the ascending chain condition, a widening is needed both
to cope with the absence of infinite disjunctions and to enforce the convergence of iterations to a
post-fixpoint. Let us recall the following definitions and results [Cousot and Cousot 1976; Cousot
and Cousot 1977; Cousot 1978].

13 The composition of functions is defined such that f � g(x) = f (g(x)) where x 2 dom(g) and g(x) 2 dom( f ).
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• If the concretization preserves existing meets then 

we have a Galois connection

• If no two abstract properties have the same 
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4.2. Abstract Semantics
The abstract semantics CJPK 2 }(A) of a program P is assumed to be given as a set of post-
fixpoints CJPK , {P | FJPK(P) v P} or in least fixpoint form CJPK , {lfpv FJPK} (or, by the
singleton isomorphism, the more frequent lfp

v FJPK) when such a least fixpoint does exist (e.g.
[Tarski 1955]) where FJPK 2 A!A is the abstract transformer of program P built out of the prim-
itives ?,>,t,u,`,a, f̄, b̄, p̄, . . . 10. As was the case for the concrete semantics, we preferably use
least fixpoints when that is possible.

4.3. Soundness of Abstract Domains
Soundness relates abstract properties to concrete properties using a function � such that

� 2 A 1!P= concretization 11

The soundness of abstract domains, is defined as, for all P,Q 2 A,

(P v Q)) (�(P) ✓ �(Q)) order �(?) = ; infimum
�(P t Q) ◆ (�(P) [ �(Q)) join �(>) = >= supremum 12

...

Observe that defining an abstraction consists in choosing the domain A of abstract properties and the
concretization �. So, this essentially consists in choosing a set of concrete properties �[A] (where
�[X] , {�(x) | x 2 X}) which can be exactly represented in the abstract while the other concrete
properties P 2 P= \ �[A] cannot and so must be over-approximated by some P 2 A such that
P ✓ �(P). By assuming the existence of an element > of A with concretization >=, there always
exists such a P. For precision, the minimum one, or else the minimal ones, if any, are to be preferred.
In case of existence of a best abstraction, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi where
↵(P) is the best abstraction of the concrete property P such that, by definition, 8P 2 P= : 8P 2 A :
↵(P) v P, P ✓ �(P) [Cousot and Cousot 1979c]. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto,

for example hP=, ✓i ���! ���↵
� hA, vi implies hP=, ✓i ���!�! ����↵

� h↵[P=], vi. Notice that Galois connection
hypotheses are equivalent to the hypotheses that the corresponding concretization preserves existing
greatest lower bounds (glbs) or equivalently that the corresponding abstraction preserves existing
least upper bounds (lubs).

4.4. Soundness of Abstract Semantics
Definition 4.2 (Soundness and completeness of abstract semantics). The abstract semantics

CJPK 2 }(A) for an abstract domain hA, vi of a program P is sound which respect to a concrete
semantics CJPK 2 }(C) for a concrete domain hC, 6i and an increasing concretization � 2 A 7! C
whenever

8P 2 A : (9C 2 CJPK : C v P)) (9C 2 CJPK : C 6 �(P)) (8)

(so that any proof in the abstract can be done in the concrete). It is complete whenever

8P 2 A : (9C 2 CJPK : C 6 �(P))) (9C 2 CJPK : C v P)

(so that any proof in the concrete of an abstract property can also be done directly in the abstract).
ut

10 In general, this is more complex, with formulæ involving many fixpoints, but this simple setting already exhibits all
di�culties.
11 Given posets hL, vi and hP, 6i, we let L 1!P to be the set of increasing (isotone, monotone, . . . ) maps f of L into P i.e.
8x, y 2 L : x v y implies f (x) 6 f (y).
12 For example >= , R= in the context of invariance properties for imperative languages in ex. 3.2.
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Definition 4.6 (Widening). Let hA, vi be a poset. Then an over-approximating widening
` 2

A ⇥ A 7! A is such that

(a) 8x, y 2 A : x v x
`

y ^ y 6 x
`

y14.

A terminating widening
` 2 A ⇥ A 7! A is such that

(a) Given any sequence hxn, n > 0i, the sequence y0 = x0, . . . , yn+1 = yn `
xn,

. . . converges (i.e. 9` 2 N : 8n > ` : yn = y` in which case y` is called the limit
of the widened sequence hyn, n > 0i).

Traditionally a widening is considered to be both over-approximating and terminating. ut
Definition 4.7 (Iterates with widening). The iterates of a transformer FJPK 2 A 7! A from the

infimum ? 2 A with widening
` 2 A⇥A 7! A in a poset hA, vi are defined by recurrence as F

0
= ?,

F
n+1
= F

n
when FJPK(F

n
) v F

n
and F

n+1
= F

n `
FJPK(F

n
) otherwise. ut

Theorem 4.8 (Limit of the iterates with widening). The iterates in a poset hA, v, ?i of a trans-
former FJPK from the infimum ? with widening

`
converge and their limit is a post-fixpoint of the

transformer. ut
Proof of theorem 4.8. The assumption that the iterates diverge (that is 8n 2 N : F

n+1
, F

n
)

would be in contradiction with condition (a) of definition 4.6. By reductio ad absurdum, the limit F
`

does exist. By definition 4.7, either FJPK(F
`
) v F

`
or else F

`
= F

`+1
= F

` `
FJPK(F

`
) w FJPK(F

`
)

by condition (a) of definition 4.6. In both cases, F
` 2 postfp

v FJPK.

4.6. Best Abstraction
Let us recall from [Cousot and Cousot 1979c] that if any concrete property P 2 P= has a best
abstraction in the abstract domain hA, vi, we have a Galois connection hP=, ✓i ���! ���↵

� hA, vi such
that, by definition, 8P 2 P= : 8P 2 A : ↵(P) v P , P ✓ �(P). This implies that ↵(P) is a sound
abstraction of P since P ✓ �(↵(P)). Moreover ↵(P) is the best sound abstraction of P since if P is
another sound abstraction of P then P ✓ �(P) which implies ↵(P) v P and so ↵(P) is more precise
than P in the abstract (and so also in the concrete since � is necessarily increasing). Moreover the
abstraction ↵ preserves existing least upper bounds and so is increasing i.e. preserves the concrete
implication ✓ and by duality � preserves existing greatest lower bounds and so is increasing i.e.
preserves the abstract implication v. We write hP=, ✓i ���!�! ����↵

� hA, vi when ↵ is onto (or equivalently
� is injective or equivalently ↵ � � = 1A is the identity).

In case of existence of a best abstraction, � � ↵ is an upper closure operator (increasing, extensive
and idempotent) characterizing the abstraction (up to isomorphic representations A of the abstract
domain � � ↵(P=)). If hP=,✓i is a complete lattice then so is its image h� � ↵(P=),✓i by the an upper
closure operator � � ↵ [Ward 1942, Th. 4.1], [Monteiro and Ribeiro 1942, Th. 8.2]. Moreover, all
possible best abstractions are, up to concretization, given by the complete lattice of upper closure
operators ordered pointwise on the complete lattice hP=, ✓i [Ward 1942, Th. 4.2], [Cousot and
Cousot 1979a, Th. 4.3] (a result extended to CPOs by [Ranzato 1999]).

Given a concrete transformer FIJPK 2 PI ! PI the best abstract transformer is FIJPK , ↵ �
FIJPK � � which yields hP= 1!P=, ✓̇i ����������! ����������

�F .↵�F��

�F . ��F�↵ hA 1!A, v̇i. In practice, the best transformer may

be di�cult to compute algorithmically, so that a strict over-approximation has to be used FIJPK Ȧ
↵ � FIJPK � � instead.

14Note that in theorem 4.8, only condition 8y 2 A : y ^ y 6 x
`

y is needed.
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4.6. Best Abstraction
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� hA, vi such
that, by definition, 8P 2 P= : 8P 2 A : ↵(P) v P , P ✓ �(P). This implies that ↵(P) is a sound
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14Note that in theorem 4.8, only condition 8y 2 A : y ^ y 6 x
`

y is needed.
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fI�x := e⇥P � {�I, �[x⇧ �e⇥I�]� | I ⌥ I � �I, �� ⌥ P)} assignment post-condition
bI�x := e⇥P � {�I, �� | I ⌥ I � �I, �[x⇧ �e⇥I�]� ⌥ P} assignment pre-condition (1)

pI�⇤⇥P � {�I, �� ⌥ P | I ⌥ I � �⇤⇥I� = true} test.

In particular for I = {�}, we get the transformers of Ex. 3.3, up to the isomorphism ⇥�(P) � {��,
�� | � ⌥ P} with inverse ⇥�1

� (Q) � {� | ��, �� ⌥ Q}. Observe that the transformers are complete
morphisms for union and intersection and so are increasing for the subset ordering. In general, it
follows that the transformer FI�P⇥ for the invariance semantics has the same properties. ⇣✏

The natural ordering to express abstraction (or precision) on multi-interpreted semantics is the
subset ordering, which gives a lattice structure to the set of multi-interpreted properties: a property
P1 is more abstract than P2 when P2 ⌅ P1, meaning that P1 allows more behaviors for some in-
terpretations, and maybe that it allows new interpretations. Following that ordering, we can express
systematic abstractions of the multi-interpreted semantics.

4. BACKGROUND ON ABSTRACT INTERPRETATION
In this section, we recall the fundations of static analysis of program properties by abstract interpre-
tation.

4.1. Abstract Domains
In static analysis by abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot 1979c],
abstract domains are used to encapsulate abstract program properties and abstract operations (in-
cluding the logical lattice structure, elementary transformers, convergence acceleration operators,
etc.).

Example 4.1. Typically, an abstract domain for an imperative language would be

�A,⌘,⌦, ,✏,⇣,�,⇥, f̄, b̄, p̄, . . .�
where

P,Q, . . . ⌥ A abstract properties
⌘ ⌥ A ⇥ A⌃B abstract partial order 9

⌦, ⌥ A infimum, supremum
✏,⇣,�,⇥ ⌥ A ⇥ A⌃A abstract join, meet, widening, narrowing

. . .
f̄ ⌥ (x ⇥E(x, f ,p))⌃A⌃A abstract forward assignment transformer
b̄ ⌥ (x ⇥E(x, f ,p))⌃A⌃A abstract backward assignment transformer
p̄ ⌥ C(x, f ,p)⌃A⌃A abstract condition transformer.

A procedural language would include a projection (to handle procedure calls) and the analysis of
a higher-order functional language would require the domain to provide an operation to abstract
partial application of a function to a subset of its arguments. ⇣✏

4.2. Abstract Semantics
The abstract semantics of a program P is assumed to be given as a set of post-fixpoints C�P⇥ �
{P | F�P⇥(P) ⌘ P} or in least fixpoint form C�P⇥ � {lfp⌘ F�P⇥} (or, by the singleton isomor-
phism, the more frequent lfp⌘ F�P⇥) when such a least fixpoint does exist (e.g. [Tarski 1955])
where F�P⇥ ⌥ A ⌃ A is the abstract transformer of program P built out of the primitives

9If ⌘ is a pre-order then A is assumed to be quotiented by the equivalence relation ⇤ � ⌘ ↵ ⌘�1.
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� ⌅ F(x, f ,p) � ::= a | ¬� | � ⌥ � | ⌃x : � quantified first-order formulæ

In first order logics with equality, there is a distinguished predicate = (t1, t2) which we write t1 = t2.

2.2. Theories
The set ⇤x� of free variables of a formula � is defined inductively as the set of variables in the
formula which are not in the scope of an existential quantifier. A sentence of F(x, f ,p) is a formula
with no free variable. A theory is a set of sentences [Chang and Keisler 1990] (called the theorems
of the theory) and a signature, which should contain at least all the predicates and function symbols
that appear in the theorems. The language of a theory is the set of quantified first-order formulæ
that contain no predicate or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of functions and predicates in order to
reason under these hypotheses. The meanings which are allowed are the meanings which make the
sentences of the theory true.

2.3. Interpretations
This is better explained with the notion of interpretation of formulæ: An interpretation I for a
signature �f , p is a couple �IV, I� such that

— IV is a non-empty set of values,
— ⇧c ⌅ f0 : I�(c) ⌅ IV, ⇧n ⇥ 1 : ⇧f ⌅ fn : I�(f) ⌅ In

V⇥ IV, and
— ⇧n ⇥ 0 : ⇧p ⌅ pn : I�(p) ⌅ In

V⇥B.

Let I be the class of all such interpretations I. In a given interpretation I ⌅ I, an environment 1 is a
function from variables to values

⇥ ⌅ RI � x⇥ IV environments

An interpretation I and an environment ⇥ satisfy a formula�, written I |=⇥ �, in the following way:

I |=⇥ a � �a⇥I⇥ I |=⇥ � ⌥ �⇤ � (I |=⇥ �) ⌥ (I |=⇥ �⇤)
I |=⇥ ¬� � ¬(I |=⇥ �) I |=⇥ ⌃x : � � ⌃v ⌅ IV : I |=⇥[x�v] �

2

where the value �a⇥I⇥ ⌅ B of an atomic formula a ⌅ A(x, f ,p) in environment ⇥ ⌅ RI is

�ff⇥I⇥ � false
�p(t1, . . . , tn)⇥I⇥ � I�(p)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(p) ⌅ In

V⇥B
�¬a⇥I⇥ � ¬�a⇥I⇥, where ¬true = false, ¬false = true

and the value �t⇥I⇥ ⌅ IV of the term t ⌅ T(x, f) in environment ⇥ ⌅ RI is

�x⇥I⇥ � ⇥(x)
�c⇥I⇥ � I�(c), where I�(c) ⌅ IV

�f(t1, . . . , tn)⇥I⇥ � I�(f)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(f) ⌅ IVn ⇥ IV, n ⇥ 1

In addition, in a first-order logic with equality the interpretation of equality is always

I |=⇥ t1 = t2 � �t1⇥I⇥ =I �t2⇥I⇥

where =I is the unique reflexive, symmetric, antisymmetric, and transitive relation on IV.

1 Environments are also called variable assignments, valuations, etc. For programming languages, environments may also
contain the program counter, stack, etc.
2⇥[x� v] is the assignment of v to x in ⇥ such that ⇥[x� v](x) � v and ⇥[x� v](y) � ⇥(y) when x � y.
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2.2. Theories
The set ⇤x� of free variables of a formula � is defined inductively as the set of variables in the
formula which are not in the scope of an existential quantifier. A sentence of F(x, f ,p) is a formula
with no free variable. A theory is a set of sentences [Chang and Keisler 1990] (called the theorems
of the theory) and a signature, which should contain at least all the predicates and function symbols
that appear in the theorems. The language of a theory is the set of quantified first-order formulæ
that contain no predicate or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of functions and predicates in order to
reason under these hypotheses. The meanings which are allowed are the meanings which make the
sentences of the theory true.

2.3. Interpretations
This is better explained with the notion of interpretation of formulæ: An interpretation I for a
signature �f , p is a couple �IV, I� such that

— IV is a non-empty set of values,
— ⇧c ⌅ f0 : I�(c) ⌅ IV, ⇧n ⇥ 1 : ⇧f ⌅ fn : I�(f) ⌅ In

V⇥ IV, and
— ⇧n ⇥ 0 : ⇧p ⌅ pn : I�(p) ⌅ In

V⇥B.

Let I be the class of all such interpretations I. In a given interpretation I ⌅ I, an environment 1 is a
function from variables to values

⇥ ⌅ RI � x⇥ IV environments

An interpretation I and an environment ⇥ satisfy a formula�, written I |=⇥ �, in the following way:

I |=⇥ a � �a⇥I⇥ I |=⇥ � ⌥ �⇤ � (I |=⇥ �) ⌥ (I |=⇥ �⇤)
I |=⇥ ¬� � ¬(I |=⇥ �) I |=⇥ ⌃x : � � ⌃v ⌅ IV : I |=⇥[x�v] �

2

where the value �a⇥I⇥ ⌅ B of an atomic formula a ⌅ A(x, f ,p) in environment ⇥ ⌅ RI is

�ff⇥I⇥ � false
�p(t1, . . . , tn)⇥I⇥ � I�(p)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(p) ⌅ In

V⇥B
�¬a⇥I⇥ � ¬�a⇥I⇥, where ¬true = false, ¬false = true

and the value �t⇥I⇥ ⌅ IV of the term t ⌅ T(x, f) in environment ⇥ ⌅ RI is

�x⇥I⇥ � ⇥(x)
�c⇥I⇥ � I�(c), where I�(c) ⌅ IV

�f(t1, . . . , tn)⇥I⇥ � I�(f)(�t1⇥I⇥, . . . , �tn⇥I⇥), where I�(f) ⌅ IVn ⇥ IV, n ⇥ 1

In addition, in a first-order logic with equality the interpretation of equality is always

I |=⇥ t1 = t2 � �t1⇥I⇥ =I �t2⇥I⇥

where =I is the unique reflexive, symmetric, antisymmetric, and transitive relation on IV.

1 Environments are also called variable assignments, valuations, etc. For programming languages, environments may also
contain the program counter, stack, etc.
2⇥[x� v] is the assignment of v to x in ⇥ such that ⇥[x� v](x) � v and ⇥[x� v](y) � ⇥(y) when x � y.
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2.4. Models
An interpretation I ⌅ I is said to be a model of � when ⌃� : I |=� � (i.e. I makes � true). An
interpretation is a model of a theory i⇥ it is a model of all the theorems of the theory (i.e. makes true
all theorems of the theory). The class of all models of a theory T is

M(T ) � {I ⌅ I | ⇧� ⌅ T : ⌃� : I |=� �}
= {I ⌅ I | ⇧� ⌅ T : ⇧� : I |=� �}

since if � is a sentence and if there is a I and a � such that I |=� �, then for all �⇤, I |=�⇤ �.
Quite often, the set of sentences of a theory is not defined extensively, but using a (generally

finite) set of axioms which generate the set of theorems of the theory by implication. A theory is
said to be deductive i⇥ it is closed by deduction
⇧� ⌅ T : ⇧�⇤ ⌅ F(x, f ,p), if � ⇥ �⇤ implies �⇤ ⌅ T , that is all theorems that are true on all
models of the theory are in the theory.

Let us recall that, by Gödel compactness theorem, a first-order theory has a model if and only
if every finite subset of it has a model and, by Löwenheim-Skolem-Tarski theorem, no countable
first-order theory with an infinite model can have exactly one model up to isomorphism [Poizat
2000].

The theory of an interpretation I is the set of sentences � such that I is a model of �. Such a
theory is trivially deductive and satisfiable (i.e. has at least one model).

2.5. Satisfiability and Validity (Modulo Interpretations and Theory)
A formula � is satisfiable (with respect to the class of interpretations I defined in Sect. 2.3) if there
exists an interpretation I and an environment � that make the formula true (
satisfiable(�) � ⌃ I ⌅ I : ⌃� : I |=� �). A formula is valid if all such interpretations make the
formula true (valid(�) � ⇧I ⌅ I : ⇧� : I |=� �). The negations of the concepts are unsatisfiability
(¬satisfiable(�) = ⇧I ⌅ I : ⇧� : I |=� ¬�) and invalidity (¬valid(�) = ⌃ I ⌅ I : ⌃� : I |=� ¬�). So
� is satisfiable i⇥ ¬� is invalid and � is valid i⇥ ¬� is unsatisfiable.

These notions can be put in perspective in satisfiability and validity modulo interpretations I ⌅
⇥(I), where we only consider interpretations I ⌅ I. So satisfiableI(�) � ⌃ I ⌅ I : ⌃� : I |=� � and
validI(�) � ⇧I ⌅ I : ⇧� : I |=� � (also denoted I |= �).

The case I = M(T ) corresponds to satisfiability and validity modulo a theory T , where we only
consider interpretations I ⌅ M(T ) that are models of the theory (i.e. make true all theorems of the
theory). So satisfiableT (�) � satisfiableM(T )(�) = ⌃ I ⌅ M(T ) : ⌃� : I |=� � and validT (�) �
validM(T )(�) = ⇧I ⌅ M(T ) : ⇧� : I |=� � (also denoted T |= �).

The four concepts can be extended to theories: a theory is satisfiable 3 (valid) if one (all) of the
interpretations is a (are) model(s) of the theory i.e. M(T ) � ⌥ (resp. M(T ) = I), and a theory is
unsatisfiable (invalid) if all (one) of the interpretations make(s) each of the theorems of the theory
false.

2.6. Decidable Theories
A theory T is decidable i⇥ there is an algorithm decideT ⌅ F(x, f ,p)�B that can decide in finite
time if a given formula is in the theory or not, ⇧� ⌅ F(x, f ,p) : decideT (�) � (� ⌅ T ).

Decidable theories provide approximations for the satisfiability problem: a formula � is satisfi-
able i⇥ there is an interpretation I and an environment � such that I |=� � is true (satisfiable(�) �
⌃ I ⌅ I : ⌃� : I |=� �). So a formula � with free variables ⇤x� is satisfiable i⇥ the sentence ⌃⇤x� : �
obtained from the formula by existentially quantifying the free variables is satisfiable. So if we
know that this sentence is in a satisfiable theory, then the original formula is also satisfiable and, in
addition, we know that it is satisfiable for all models of that theory.

decideT (⌃⇤x� : �) ⇥ satisfiableT (�) (when T is decidable and satisfiable)

3 Model theorists often use “consistent” as a synonym for “satisfiable”.
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The abstraction is described by ⇣PI, ⇤⌘ ����⇧⌅����
�I

⇥I ⇣�I IRI , ⇤⌘ where

⇥I(E) �
⇥
⇣I, ⇤⌘

��� I  I ✏ ⇤  E
⇤

and �I(P) �
⇥
⇤
��� ↵ I  I : ⇣I, ⇤⌘  P

⇤
.

5.3. Abstraction by a Theory
In some cases it can be di⇥cult to represent exactly an infinite set I of interpretations as proposed in
Sect. 5.1. A solution is to use theories (preferably deductive with a recursively enumerable number
of axioms) to represent the set I = M(T ) of interpretations which are models of these theories. The
relationship between theories and multi-interpreted semantics is expressed by the concretization
function:

⇥M(T ) �
⇥
⇣I, ⇤⌘

��� I  M(T )
⇤

(3)

Notice, though, that because the lattice of theories is not complete, there is no best abstraction of
a set of interpretations by a theory in general.

Example 5.4. If � interprets programs over the natural numbers N, then by Gödel’s first incom-
pleteness theorem there is no enumerable first-order theory characterizing this interpretation, so the
poset has no best abstraction of {�}. ◆✓
Once an (arbitrary) theory T has been chosen to abstract a set I of interpretations there is a best
abstraction �I⇧⇥M(T )(P) � P � ⇥M(T ) of interpreted properties in P  PI by abstract properties

in P⇥M(T ). By lemma 5.1, ⇣PI, ⇤⌘ �����������⇧⌅�����������
�I⇧⇥M (T )(P)

⇥⇥M (T )⇧I(P)
⇣P⇥M(T ), ⇤⌘, so the best abstract transformer is

FM(T )�P⇥ � �I⇧⇥M(T ) ⇥ FI�P⇥ ⇥ �⇥M(T )⇧I. However there might be no finite formula to encode
these best abstraction and best abstract transformer.

5.4. Algebraic Abstraction of Interpretations
Another direction for abstraction is to keep the context of interpretations and forget about the proper-
ties on variables. This is simply a projection on the first component of the pairs of interpretation and
environment. Given a set I of interpretations, and for each interpretation I  I, an algebraic abstrac-
tion ⇣⌅(RI), ⇤⌘ ����⇧⌅����

�I

⇥I ⇣AI , I⌘, we have an abstraction ⇣PI, ⇤⌘ ���⇧⌅���
�̇

⇥̇
⇣�I I AI , ̇⌘ of PI ⌃ ⌅({⇣I,

⇤⌘ | I  I✏⇤  RI}) by defining �̇(P) �
�

I I �I({⇤ | ⇣I, ⇤⌘  P}), ⇥̇(P) � {⇣I, ⇤⌘ | I  I✏⇤  ⇥I(PI)},
and P ̇ Q � ⌦I  I : PI I QI . Of course if I is infinite, one may have to group interpretations in
a finite partition, each block being abstracted uniformly e.g. as proposed in Sect. 5.2.

6. FIRST ORDER LOGICAL SEMANTICS
For theorem-prover based program verification, the multi-interpreted semantics of Sect. 3.3 must
be expressed using first-order logical formulæ. This involves an abstraction since, on one hand, not
all concrete program properties and property transformers can be exactly expressed with logical
formulæ and, on the other hand, not all concrete set-theoretic inclusions can be proved by logical
implications.

6.1. Multi-Interpretation of First-Order Logic Formulæ
A logical formula �  F(x, f ,p) describes a property ⇥aI(�) for multi-interpretations I  ⌅(I) as
follows

⇥aI  F(x, f ,p) 1⇧PI
⇥aI(�) � {⇣I, ⇤⌘ | I  I ✏ I |=⇤ �} (4)

By definition of I |=⇤ �, ⇥aI is increasing in that for all �,��  F(x, f ,p), � ⇤⌥ �� implies that
⇥aI(�) ⇤ ⇥aI(��).
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2.4. Models
An interpretation I ⌅ I is said to be a model of � when ⌃� : I |=� � (i.e. I makes � true). An
interpretation is a model of a theory i⇥ it is a model of all the theorems of the theory (i.e. makes true
all theorems of the theory). The class of all models of a theory T is

M(T ) � {I ⌅ I | ⇧� ⌅ T : ⌃� : I |=� �}
= {I ⌅ I | ⇧� ⌅ T : ⇧� : I |=� �}

since if � is a sentence and if there is a I and a � such that I |=� �, then for all �⇤, I |=�⇤ �.
Quite often, the set of sentences of a theory is not defined extensively, but using a (generally

finite) set of axioms which generate the set of theorems of the theory by implication. A theory is
said to be deductive i⇥ it is closed by deduction, that is all theorems that are true on all models of
the theory are in the theory.

Let us recall that, by Gödel compactness theorem, a first-order theory has a model if and only
if every finite subset of it has a model and, by Löwenheim-Skolem-Tarski theorem, no countable
first-order theory with an infinite model can have exactly one model up to isomorphism [Poizat
2000].

The theory of an interpretation I is the set of sentences � such that I is a model of �. Such a
theory is trivially deductive and satisfiable (i.e. has at least one model).

2.5. Satisfiability and Validity (Modulo Interpretations and Theory)
A formula � is satisfiable (with respect to the class of interpretations I defined in Sect. 2.3) if there
exists an interpretation I and an environment � that make the formula true (satisfiable(�) � ⌃ I ⌅
I : ⌃� : I |=� �). A formula is valid if all such interpretations make the formula true (valid(�) �
⇧I ⌅ I : ⇧� : I |=� �). The negations of the concepts are unsatisfiability (¬satisfiable(�) = ⇧I ⌅
I : ⇧� : I |=� ¬�) and invalidity (¬valid(�) = ⌃ I ⌅ I : ⌃� : I |=� ¬�). So � is satisfiable i⇥ ¬� is
invalid and � is valid i⇥ ¬� is unsatisfiable.

These notions can be put in perspective in satisfiability and validity modulo interpretations I ⌅
⇥(I), where we only consider interpretations I ⌅ I. So satisfiableI(�) � ⌃ I ⌅ I : ⌃� : I |=� � and
validI(�) � ⇧I ⌅ I : ⇧� : I |=� � (also denoted I |= �).

The case I = M(T ) corresponds to satisfiability and validity modulo a theory T , where we only
consider interpretations I ⌅ M(T ) that are models of the theory (i.e. make true all theorems of the
theory). So satisfiableT (�) � satisfiableM(T )(�) = ⌃ I ⌅ M(T ) : ⌃� : I |=� � and validT (�) �
validM(T )(�) = ⇧I ⌅ M(T ) : ⇧� : I |=� � (also denoted T |= �).

The four concepts can be extended to theories: a theory is satisfiable 3 (valid) if one (all) of the
interpretations is a (are) model(s) of the theory i.e. M(T ) � ⌥ (resp. M(T ) = I), and a theory is
unsatisfiable (invalid) if all (one) of the interpretations make(s) each of the theorems of the theory
false.

2.6. Decidable Theories
A theory T is decidable i⇥ there is an algorithm decideT ⌅ F(x, f ,p)�B that can decide in finite
time if a given formula is in the theory or not.

Decidable theories provide approximations for the satisfiability problem: a formula � is satisfi-
able i⇥ there is an interpretation I and an environment � such that I |=� � is true (satisfiable(�) �
⌃ I ⌅ I : ⌃� : I |=� �). So a formula � with free variables ⇤x� is satisfiable i⇥ the sentence ⌃⇤x� : �
obtained from the formula by existentially quantifying the free variables is satisfiable. So if we
know that this sentence is in a satisfiable theory, then the original formula is also satisfiable and, in
addition, we know that it is satisfiable for all models of that theory.

decideT (⌃⇤x� : �) ⇥ satisfiableT (�) (when T is decidable and satisfiable)

3 Model theorists often use “consistent” as a synonym for “satisfiable”.
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false.
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A theory T is decidable i⇥ there is an algorithm decideT ⌅ F(x, f ,p)�B that can decide in finite
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addition, we know that it is satisfiable for all models of that theory.
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Proof.
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⇥ (⌃⇥x� : �) ⌅ T �def. decision procedure⇥
� ⇧I ⌅ M(T ) : ⌃� : I |=� ⌃⇥x� : � �def.M(T ) � {I ⌅ I | ⇧�⇤ ⌅ T : ⌃�⇤ : I |=�⇤ �⇤}⇥
⇥ ⇧I ⌅ M(T ) : ⌃� : I |=� � �def. I |=� ⌃x : � in Sect. 2.3⇥
� ⌃ I ⌅ M(T ) : ⌃� : I |=� � �T is satisfiable soM(T ) � ⌥⇥
⇥ satisfiableT (�) �def. satisfiableT (�) � ⌃ I ⌅ M(T ) : ⌃� : I |=� �⇥

So the problem of satisfiability modulo a theory T can be approximated by decidability in T in the
sense that if the decision is true then the formula is satisfiable, otherwise we don’t know in general.

The same result holds for validity:
decideT (⇧⇥x� : �) � validT (�) (when T is decidable)
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�since ⇧⇥x� : � has no free variable so I |=� ⇧⇥x� : � does not depend on �⇥
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It is possible to obtain implications in the other direction so that we solve exactly the validity or
satisfiability problem, when the theory is deductive.

validT (�) ⇥ decideT (⇧⇥x� : �) (when T is decidable and deductive)

Proof. T is deductive, hence all valid sentences are theorems of the theory, so if validT (�) then
⇧⇥x� : � is a valid sentence of T and so it is in T .

From that, we can obtain satisfiability of any formula:

satisfiableT (�) ⇥ ¬ �decideT (⇧⇥x� : ¬�)
⇥

(when T is decidable and deductive)
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⇥ �since T is decidable and deductive⇥

But in many tools, decision of formulæ with universal quantifiers is problematic. If we want an
exact resolution of satisfiability using just existential quantifiers, we need stronger hypotheses. One
su⇥cient condition is that the theory is complete. In the context of classical first order logic, a theory
can be defined to be complete if for all sentences � in the language of the theory, either � is in the
theory or ¬� is in the theory.
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returns true and we conclude satisfiableT (�). Or ¬(⌃⇥x� : �) ⌅ T so decideT (¬(⌃⇥x� : �)) returns
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2.4. Models
An interpretation I ⌅ I is said to be a model of � when ⌃� : I |=� � (i.e. I makes � true). An
interpretation is a model of a theory i⇥ it is a model of all the theorems of the theory (i.e. makes true
all theorems of the theory). The class of all models of a theory T is

M(T ) � {I ⌅ I | ⇧� ⌅ T : ⌃� : I |=� �}
= {I ⌅ I | ⇧� ⌅ T : ⇧� : I |=� �}

since if � is a sentence and if there is a I and a � such that I |=� �, then for all �⇤, I |=�⇤ �.
Quite often, the set of sentences of a theory is not defined extensively, but using a (generally

finite) set of axioms which generate the set of theorems of the theory by implication. A theory is
said to be deductive i⇥ it is closed by deduction
⇧� ⌅ T : ⇧�⇤ ⌅ F(x, f ,p), if � ⇥ �⇤ implies �⇤ ⌅ T , that is all theorems that are true on all
models of the theory are in the theory.

Let us recall that, by Gödel compactness theorem, a first-order theory has a model if and only
if every finite subset of it has a model and, by Löwenheim-Skolem-Tarski theorem, no countable
first-order theory with an infinite model can have exactly one model up to isomorphism [Poizat
2000].

The theory of an interpretation I is the set of sentences � such that I is a model of �. Such a
theory is trivially deductive and satisfiable (i.e. has at least one model).

2.5. Satisfiability and Validity (Modulo Interpretations and Theory)
A formula � is satisfiable (with respect to the class of interpretations I defined in Sect. 2.3) if there
exists an interpretation I and an environment � that make the formula true (
satisfiable(�) � ⌃ I ⌅ I : ⌃� : I |=� �). A formula is valid if all such interpretations make the
formula true (valid(�) � ⇧I ⌅ I : ⇧� : I |=� �). The negations of the concepts are unsatisfiability
(¬satisfiable(�) = ⇧I ⌅ I : ⇧� : I |=� ¬�) and invalidity (¬valid(�) = ⌃ I ⌅ I : ⌃� : I |=� ¬�). So
� is satisfiable i⇥ ¬� is invalid and � is valid i⇥ ¬� is unsatisfiable.

These notions can be put in perspective in satisfiability and validity modulo interpretations I ⌅
⇥(I), where we only consider interpretations I ⌅ I. So satisfiableI(�) � ⌃ I ⌅ I : ⌃� : I |=� � and
validI(�) � ⇧I ⌅ I : ⇧� : I |=� � (also denoted I |= �).

The case I = M(T ) corresponds to satisfiability and validity modulo a theory T , where we only
consider interpretations I ⌅ M(T ) that are models of the theory (i.e. make true all theorems of the
theory). So satisfiableT (�) � satisfiableM(T )(�) = ⌃ I ⌅ M(T ) : ⌃� : I |=� � and validT (�) �
validM(T )(�) = ⇧I ⌅ M(T ) : ⇧� : I |=� � (also denoted T |= �).

The four concepts can be extended to theories: a theory is satisfiable 3 (valid) if one (all) of the
interpretations is a (are) model(s) of the theory i.e. M(T ) � ⌥ (resp. M(T ) = I), and a theory is
unsatisfiable (invalid) if all (one) of the interpretations make(s) each of the theorems of the theory
false.

2.6. Decidable Theories
A theory T is decidable i⇥ there is an algorithm decideT ⌅ F(x, f ,p)�B that can decide in finite
time if a given formula is in the theory or not, ⇧� ⌅ F(x, f ,p) : decideT (�) � (� ⌅ T ).

Decidable theories provide approximations for the satisfiability problem: a formula � is satisfi-
able i⇥ there is an interpretation I and an environment � such that I |=� � is true (satisfiable(�) �
⌃ I ⌅ I : ⌃� : I |=� �). So a formula � with free variables ⇤x� is satisfiable i⇥ the sentence ⌃⇤x� : �
obtained from the formula by existentially quantifying the free variables is satisfiable. So if we
know that this sentence is in a satisfiable theory, then the original formula is also satisfiable and, in
addition, we know that it is satisfiable for all models of that theory.

decideT (⌃⇤x� : �) ⇥ satisfiableT (�) (when T is decidable and satisfiable)

3 Model theorists often use “consistent” as a synonym for “satisfiable”.
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Proof.

decideT (⌃⇥x� : �)
⇥ (⌃⇥x� : �) ⌅ T �def. decision procedure⇥
� ⇧I ⌅ M(T ) : ⌃� : I |=� ⌃⇥x� : � �def.M(T ) � {I ⌅ I | ⇧�⇤ ⌅ T : ⌃�⇤ : I |=�⇤ �⇤}⇥
⇥ ⇧I ⌅ M(T ) : ⌃� : I |=� � �def. I |=� ⌃x : � in Sect. 2.3⇥
� ⌃ I ⌅ M(T ) : ⌃� : I |=� � �T is satisfiable soM(T ) � ⌥⇥
⇥ satisfiableT (�) �def. satisfiableT (�) � ⌃ I ⌅ M(T ) : ⌃� : I |=� �⇥

So the problem of satisfiability modulo a theory T can be approximated by decidability in T in the
sense that if the decision is true then the formula is satisfiable, otherwise we don’t know in general.

The same result holds for validity:
decideT (⇧⇥x� : �) � validT (�) (when T is decidable)

Proof.
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⇥ ⇧I ⌅ M(T ) : ⇧� : I |=� ⇧⇥x� : �

�since ⇧⇥x� : � has no free variable so I |=� ⇧⇥x� : � does not depend on �⇥
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⇥ validT (�) �validT (�) � ⇧I ⌅ M(T ) : ⇧� : I |=� �⇥

It is possible to obtain implications in the other direction so that we solve exactly the validity or
satisfiability problem, when the theory is deductive.

validT (�) ⇥ decideT (⇧⇥x� : �) (when T is decidable and deductive)

Proof. T is deductive, hence all valid sentences are theorems of the theory, so if validT (�) then
⇧⇥x� : � is a valid sentence of T and so it is in T .

From that, we can obtain satisfiability of any formula:

satisfiableT (�) ⇥ ¬ �decideT (⇧⇥x� : ¬�)
⇥

(when T is decidable and deductive)

Proof.
satisfiableT (�)
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⇥ ¬ �decideT (⇧⇥x� : ¬�)

⇥ �since T is decidable and deductive⇥

But in many tools, decision of formulæ with universal quantifiers is problematic. If we want an
exact resolution of satisfiability using just existential quantifiers, we need stronger hypotheses. One
su⇥cient condition is that the theory is complete. In the context of classical first order logic, a theory
can be defined to be complete if for all sentences � in the language of the theory, either � is in the
theory or ¬� is in the theory.

satisfiableT (�) ⇥ �decideT (⌃⇥x� : �)
⇥

(when T is decidable and complete)

Proof. Assume T is complete. Then, either ⌃⇥x� : � ⌅ T , in which case decideT (⌃⇥x� : �)
returns true and we conclude satisfiableT (�). Or ¬(⌃⇥x� : �) ⌅ T so decideT (¬(⌃⇥x� : �)) returns
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Example 6.4. Note that in the case of the axiomatic invariance semantics for imperative lan-
guages of Ex. 6.3, the interpretation of the axiomatic semantics is exactly the multi-interpreted
concrete semantics. For example, for assignment,

�aI(fa⇤x := t⌅�)
� �aI(⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) �def. fa⇤x := t⌅� � ⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]⇥
= {⌦I, ⇥↵ | I ⇧ I  I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅])} �def. (4) of �aI⇥
= {⌦I, ⇥⌅[x⇥ ⇤t⌅I⇥

⌅]↵ | I ⇧ I  I |=⇥⌅ �}
�since I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) if and only if ⌥⇥⌅ : I |=⇥⌅ � and ⇥ =
⇥⌅[x⇥ ⇤t⌅I⇥

⌅] as defined in Sect. 2.3⇥
= {⌦I, ⇥[x⇥ ⇤t⌅I⇥]↵ | I ⇧ I  ⌦I, ⇥↵ ⇧ {⌦I, ⇥↵ | I |=⇥ �}} �renaming ⇥⌅ into ⇥ and def. ⇧⇥
= {⌦I, ⇥[x⇥ ⇤t⌅I⇥]↵ | I ⇧ I  ⌦I, ⇥↵ ⇧ �aI(�)} �def. (4 ) of �aI⇥
= fI⇤x := t⌅ � �aI(�) �def. (1) of fI⇤x := t⌅P⇥ ��

Example 6.5 (Uninterpreted axiomatic semantics). The uninterpreted axiomatic semantics cor-
responds to the universal interpretation of Ex. 6.1, that is I = I. ��

Example 6.6 (Axiomatic semantics modulo theory). An axiomatic semantics modulo a theory
T corresponds to the choice I = M(T ) so that the di⇥erence with the uninterpreted axiomatic
semantics of Ex. 6.5 is uniquely in the way implication can be proved with or without using the
theorem of the theory T . ��

7. LOGICAL ABSTRACT DOMAINS
When performing program verification in the first-order logic setting, computing the predicate trans-
former Fa⇤P⌅ is usually quite immediate. The two hard points are (1) the computation of the least
fixpoint (or an approximation of it since the logical lattice is not complete) and (2) proving that
the final formula implies the desired property. To solve the first problem, a usual (but not entirely
satisfactory) solution is to restrict the set of formulæ used to represent program properties such that
the ascending chain condition (ACC) is enforced. Using an infinite abstract domain not satisfying
the ACC and a widening can be much more precise [Cousot and Cousot 1992b]. For the proof of
implication, a decidable theory can be used.

7.1. Definition of Logical Abstract Domains
We define logical abstract domains in the following general setting (without ACC restriction):

Definition 7.1. A logical abstract domain is a pair ⌦A, T ↵ of a set A ⇧ ⇤(F(x, f ,p)) of logical
formulæ and of a theory T of F(x, f ,p) (which may be decidable (and may be deductive) (and
may be complete on A)). The abstract properties � ⇧ A define the concrete properties �aT (�) �⇥
⌦I, ⇥↵

���� I ⇧ M(T )  I |=⇥ �
⇤

relative to the modelsM(T ) of theory T . The abstract order � on the
abstract domain ⌦A, �↵ is defined as (� � �⌅) � ((⌃⌅x� � ⌅x�⌅ : �⇤ �⌅) ⇧ T ). ��

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developped by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The
main di⇥erence with our approach is that we give semantics with respect to a concrete semantics
corresponding to the actual behavior of the program, whereas in the work of Gulwani and Tiwari,
the behavior of the program is assumed to be described by formulæ in the same theory as the the-
ory of the logical abstract domain which yields unsoundness. Our approach allows the description
of the abstraction mechanism, comparisons of logical abstract domains, and to provide proofs of
soundness on a formal basis.
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the ascending chain condition (ACC) is enforced. Using an infinite abstract domain not satisfying
the ACC and a widening can be much more precise [Cousot and Cousot 1992b]. For the proof of
implication, a decidable theory can be used.

7.1. Definition of Logical Abstract Domains
We define logical abstract domains in the following general setting (without ACC restriction):

Definition 7.1. A logical abstract domain is a pair ⌦A, T ↵ of a set A ⇧ ⇤(F(x, f ,p)) of logical
formulæ and of a theory T of F(x, f ,p) (which may be decidable (and may be deductive) (and
may be complete on A)). The abstract properties � ⇧ A define the concrete properties �aT (�) �⇥
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���� I ⇧ M(T )  I |=⇥ �
⇤

relative to the modelsM(T ) of theory T . The abstract order � on the
abstract domain ⌦A, �↵ is defined as (� � �⌅) � ((⌃⌅x� � ⌅x�⌅ : �⇤ �⌅) ⇧ T ). ��

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developped by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The
main di⇥erence with our approach is that we give semantics with respect to a concrete semantics
corresponding to the actual behavior of the program, whereas in the work of Gulwani and Tiwari,
the behavior of the program is assumed to be described by formulæ in the same theory as the the-
ory of the logical abstract domain which yields unsoundness. Our approach allows the description
of the abstraction mechanism, comparisons of logical abstract domains, and to provide proofs of
soundness on a formal basis.
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Example 6.4. Note that in the case of the axiomatic invariance semantics for imperative lan-
guages of Ex. 6.3, the interpretation of the axiomatic semantics is exactly the multi-interpreted
concrete semantics. For example, for assignment,
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� �aI(⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) �def. fa⇤x := t⌅� � ⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]⇥
= {⌦I, ⇥↵ | I ⇧ I  I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅])} �def. (4) of �aI⇥
= {⌦I, ⇥⌅[x⇥ ⇤t⌅I⇥

⌅]↵ | I ⇧ I  I |=⇥⌅ �}
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= fI⇤x := t⌅ � �aI(�) �def. (1) of fI⇤x := t⌅P⇥ ��

Example 6.5 (Uninterpreted axiomatic semantics). The uninterpreted axiomatic semantics cor-
responds to the universal interpretation of Ex. 6.1, that is I = I. ��

Example 6.6 (Axiomatic semantics modulo theory). An axiomatic semantics modulo a theory
T corresponds to the choice I = M(T ) so that the di⇥erence with the uninterpreted axiomatic
semantics of Ex. 6.5 is uniquely in the way implication can be proved with or without using the
theorem of the theory T . ��
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Replacing the unknown constant c by a variable c in min(c, x,�), a solver might be able to determine
a suitable value for c. Otherwise the maximality requirement of c might be dropped to get a coarser
abstraction and true returned in case of complete failure of the solver. �⌥

7.3. Logical Abstract Transformers
For soundness with respect to a set of interpretations I, the abstract transformers must be chosen
such that [Cousot and Cousot 1977; Cousot and Cousot 1979c] for each program P

Fa�P⇥ ⌅ A⇥A abstract transformer
⇧� ⌅ A,⇧I ⌅ I : : I |= (Fa�P⇥� ⇤ Fa�P⇥�) abstract transformer soundness

Again, the abstract program transformer Fa�P⇥ can be defined in terms of primitive operations (e.g.
fa, ba, and pa of Ex. 4.1) satisfying local soundness conditions which imply the soundness of the pro-
gram transformer. In many static analyzers, the abstract transfer functions are most often designed,
proved correct and implemented by hand.

Example 7.5. Continuing Ex. 6.3, the abstract logical transformers should be designed so as to
satisfy the foolowing local soundness conditions

fa ⌅ (x �T(x, f))⇥A⇥A abstract forward assignment trans-
former

⇧� ⌅ A,⇧I ⌅ I : : I |= f�x := t⇥� ⇤ fa�x := t⇥� abstract postcondition soundness

ba ⌅ (x �T(x, f))⇥A⇥A abstract backward assignment
transformer

⇧� ⌅ A,⇧I ⌅ I : : I |= b�x := t⇥� ⇤ ba�x := t⇥� abstract precondition soundness

pa ⌅ L⇥A⇥A condition abstract transformer
⇧� ⌅ A,⇧I ⌅ I : p�l⇥� ⇤ pa�l⇥� abstract test soundness

It follows from the definition of the uninterpreted axiomatic semantics in Ex. 6.5 that we can define
the abstract transformer to be the axiomatic transformer. This requires closure hypothesis on A to
ensure that they map a formula in A to a formula in A. Otherwise, an overapproximation may be
necessary. For example, A may just contain formulæ without disjunction ⌃ so that disjunction must
be overapproximated. This is one of the uses of widening [Cousot 1978] (the other being to enforce
convergence of iterates as in Sect. 7.4).

⇧�1,�2 ⌅ A,⇧I ⌅ I : I |= (�1 ⌃ �2 ⇤ �1
�
a �2) widening soundness �⌥

This design and implementation would better be totally automatized, going back to the manual so-
lution when automation is too ine⇥cient or imprecise. For example, in case an abstraction algorithm
�IA is available (Sect. 7.2), a simple sound implementation of the abstract transformers would be

Fa�P⇥� � �IA(Fa�P⇥�) .

Example 7.6. Continuing Ex. 6.3 for an abstraction �IA of Sect. 7.2, the abstract logical trans-
formers would be

fa�x := t⇥� � �IA(fa�x := t⇥�) abstract forward assignment transformer

ba�x := t⇥� � �IA(ba�x := t⇥�) abstract backward assignment transformer

pa��⇥� � �IA(pa��⇥�) abstract transformer for program test of condition �
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Example 6.1 (Universal interpretation). The universal interpretation consists in describing the
properties encoded by a formula on all possible interpretations. Thus, the concretization of a formula
will be given by �aI = {⌘I, ⇥✓ | I ⌦ I ✏ I |=⇥ �}. ◆

Example 6.2 (Strict approximation). The use of first-order logic instead of set theory may en-
force strict approximations in program verification [Cook 1978]. For example, in the context of
Presburger arithmetics with interpretation N on the natural numbers, a program may compute a
multiplication by successive additions, in which case the concrete set-theoretic property involving
a multiplication (such as P = {⌘N, ⇥✓ | ⇥(x) = ⇥(y) � ⇥(z)}) may not be expressible by a first-order
logical formula involving only addition. ◆

6.2. Axiomatic Semantics Modulo a Multi-Interpretation
Once concrete program properties have been abstracted by first-order logic formulæ, the concrete
program semantics of Sect. 3 must be abstracted in terms of first order logic. Because this sound
abstraction step will not lead to an e⇥ectively computable analysis, we should go for the most precise
semantics at this point, and in fact in most cases we can be as precise as the concrete semantics.

As shown in [Cousot 2002] for safety properties, an axiomatic semantics Ca�P⇥ of a program P
will be given as a set of post-fixpoints:

Ca�P⇥ �
⇥
�
��� Fa�P⇥(�) ⇤⌥ �

⇤

where Fa�P⇥ ⌦ F(x, f ,p) 1⇧F(x, f ,p)

is the predicate transformer defining the axiomatic semantics of program P. So, program properties
will be represented by formulæ in F(x, f ,p) which is a lattice ⌘F(x, f ,p), ⇤⌥✓ (although not a
complete lattice) for the pre-order (� ⇤⌥ � ) � valid(�⌥ � ) hence is considered to be quotiented
by (� ⌃ ⌅⇤⌥ � ) � valid(� � � ). The verification condition for I ⌦ F(x, f ,p) to be an inductive
invariant for program P will be Fa�P⇥(I) ⇤⌥ I.

Again the program transformer Fa can be defined in terms of primitive operations
�,�,◆,,�,⇥, f̄, b̄, p̄, . . . which local soundness conditions imply the soundness of the program
transformer and the verification condition.

Example 6.3. Continuing Ex. 3.3 in the context of invariance properties for imperative lan-
guages, the primitive operations will be false, true, ⇣ for control flow joins, and the following
primitives for assignments and tests:

fa ⌦ (x � T(x, f))⇧F(x, f ,p)⇧F(x, f ,p) axiomatic forward assignment trans-
formerfa�x := t⇥� � �x : �[x⌅ x ] ✏ x = t[x⌅ x ]

ba ⌦ (x � T(x, f))⇧F(x, f ,p)⇧F(x, f ,p) axiomatic backward assignment trans-
formerba�x := t⇥� � �[x⌅ t]

pa ⌦ C(x, f ,p)⇧F(x, f ,p)⇧F(x, f ,p) axiomatic transformer for program test
of condition ⇤.pa�⇤⇥� � � ✏ ⇤ ◆

6.3. Soundness of the Axiomatic Semantics Modulo a Multi-Interpretation
In general, the soundness of the axiomatic semantics directly follows from the soundness (2) of
transformers

↵� ⌦ F(x, f ,p) : FI�P⇥ ⇥ �aI(�) ⇤ �aI ⇥ Fa�P⇥(�),

itself following from local soundness conditions on the operations of the abstract domain (see e.g.
Ex. 4.2). Notice that in general we don’t have equality since there may be no logical formula to
exactly encode FI�P⇥ ⇥ �aI(�).
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Definition 7.1. A logical abstract domain is ↵A,✏, ff, tt,⌦, ,�,⇥, f̄a, b̄a, p̄a, . . .� defined by a
pair ↵A, T � of a set A ⇧ ⇤(F(x, f ,p)) of logical formulæ and of a theory T of F(x, f ,p) (which
may be decidable (and may be deductive) (and may be complete on A)). The abstract properties
� ⇧ A define the concrete properties �aT (�) �

⇥
↵I, ⇥�

���� I ⇧ M(T )  I |=⇥ �
⇤

relative to the models
M(T ) of theory T . The abstract order ✏ on the abstract domain ↵A, ✏� is defined as (� ✏ �⌅) �
((⌃⌅x� � ⌅x�⌅ : �⇤ �⌅) ⇧ T ). ��

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developped by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The
main di⇥erence with our approach is that we give semantics with respect to a concrete semantics
corresponding to the actual behavior of the program, whereas in the work of Gulwani and Tiwari,
the behavior of the program is assumed to be described by formulæ in the same theory as the the-
ory of the logical abstract domain which yields unsoundness. Our approach allows the description
of the abstraction mechanism, comparisons of logical abstract domains, and to provide proofs of
soundness on a formal basis.
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Replacing the unknown constant c by a variable c in min(c, x,�), a solver might be able to determine
a suitable value for c. Otherwise the maximality requirement of c might be dropped to get a coarser
abstraction and true returned in case of complete failure of the solver. �⌥

7.3. Logical Abstract Transformers
For soundness with respect to a set of interpretations I, the abstract transformers must be chosen
such that [Cousot and Cousot 1977; Cousot and Cousot 1979c] for each program P

Fa�P⇥ ⌅ A⇥A abstract transformer
⇧� ⌅ A,⇧I ⌅ I : : I |= (Fa�P⇥� ⇤ Fa�P⇥�) abstract transformer soundness

Again, the abstract program transformer Fa�P⇥ can be defined in terms of primitive operations (e.g.
fa, ba, and pa of Ex. 4.1) satisfying local soundness conditions which imply the soundness of the pro-
gram transformer. In many static analyzers, the abstract transfer functions are most often designed,
proved correct and implemented by hand.

Example 7.5. Continuing Ex. 6.3, the abstract logical transformers should be designed so as to
satisfy the foolowing local soundness conditions

fa ⌅ (x �T(x, f))⇥A⇥A abstract forward assignment trans-
former

⇧� ⌅ A,⇧I ⌅ I : : I |= f�x := t⇥� ⇤ fa�x := t⇥� abstract postcondition soundness

ba ⌅ (x �T(x, f))⇥A⇥A abstract backward assignment
transformer

⇧� ⌅ A,⇧I ⌅ I : : I |= b�x := t⇥� ⇤ ba�x := t⇥� abstract precondition soundness

pa ⌅ L⇥A⇥A condition abstract transformer
⇧� ⌅ A,⇧I ⌅ I : p�l⇥� ⇤ pa�l⇥� abstract test soundness

It follows from the definition of the uninterpreted axiomatic semantics in Ex. 6.5 that we can define
the abstract transformer to be the axiomatic transformer. This requires closure hypothesis on A to
ensure that they map a formula in A to a formula in A. Otherwise, an overapproximation may be
necessary. For example, A may just contain formulæ without disjunction ⌃ so that disjunction must
be overapproximated. This is one of the uses of widening [Cousot 1978] (the other being to enforce
convergence of iterates as in Sect. 7.4).

⇧�1,�2 ⌅ A,⇧I ⌅ I : I |= (�1 ⌃ �2 ⇤ �1
�
a �2) widening soundness �⌥

This design and implementation would better be totally automatized, going back to the manual so-
lution when automation is too ine⇥cient or imprecise. For example, in case an abstraction algorithm
�IA is available (Sect. 7.2), a simple sound implementation of the abstract transformers would be

Fa�P⇥� � �IA(Fa�P⇥�) .

Example 7.6. Continuing Ex. 6.3 for an abstraction �IA of Sect. 7.2, the abstract logical trans-
formers would be

fa�x := t⇥� � �IA(fa�x := t⇥�) abstract forward assignment transformer

ba�x := t⇥� � �IA(ba�x := t⇥�) abstract backward assignment transformer

pa��⇥� � �IA(pa��⇥�) abstract transformer for program test of condition �
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• Universal representation of abstract properties by 
logical formulæ

• Trivial implementations of logical operations

• Provers or SMT solvers can be used for the abstract 
implication

• Concrete transformers are purely syntactic

Implementation notes ...
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Example 6.4. Note that in the case of the axiomatic invariance semantics for imperative lan-
guages of Ex. 6.3, the interpretation of the axiomatic semantics is exactly the multi-interpreted
concrete semantics. For example, for assignment,

�aI(fa⇤x := t⌅�)
� �aI(⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) �def. fa⇤x := t⌅� � ⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]⇥
= {↵I, ⇥� | I ⇧ I  I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅])} �def. (4) of �aI⇥
= {↵I, ⇥⌅[x⇥ ⇤t⌅I⇥

⌅]� | I ⇧ I  I |=⇥⌅ �}
�since I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) if and only if ⌥⇥⌅ : I |=⇥⌅ � and ⇥ =
⇥⌅[x⇥ ⇤t⌅I⇥

⌅] as defined in Sect. 2.3⇥
= {↵I, ⇥[x⇥ ⇤t⌅I⇥]� | I ⇧ I  ↵I, ⇥� ⇧ {↵I, ⇥� | I |=⇥ �}} �renaming ⇥⌅ into ⇥ and def. ⇧⇥
= {↵I, ⇥[x⇥ ⇤t⌅I⇥]� | I ⇧ I  ↵I, ⇥� ⇧ �aI(�)} �def. (4 ) of �aI⇥
= fI⇤x := t⌅ � �aI(�) �def. (1) of fI⇤x := t⌅P⇥ ��

Example 6.5 (Uninterpreted axiomatic semantics). The uninterpreted axiomatic semantics cor-
responds to the universal interpretation of Ex. 6.1, that is I = I. ��

Example 6.6 (Axiomatic semantics modulo theory). An axiomatic semantics modulo a theory
T corresponds to the choice I = M(T ) so that the di⇥erence with the uninterpreted axiomatic
semantics of Ex. 6.5 is uniquely in the way implication can be proved with or without using the
theorem of the theory T . ��

7. LOGICAL ABSTRACT DOMAINS
When performing program verification in the first-order logic setting, computing the predicate trans-
former Fa⇤P⌅ is usually quite immediate. The two hard points are (1) the computation of the least
fixpoint (or an approximation of it since the logical lattice is not complete) and (2) proving that
the final formula implies the desired property. To solve the first problem, a usual (but not entirely
satisfactory) solution is to restrict the set of formulæ used to represent program properties such that
the ascending chain condition (ACC) is enforced. Using an infinite abstract domain not satisfying
the ACC and a widening can be much more precise [Cousot and Cousot 1992b]. For the proof of
implication, a decidable theory can be used.

7.1. Definition of Logical Abstract Domains
We define logical abstract domains in the following general setting (without ACC restriction):

Definition 7.1. A logical abstract domain is ↵A,✏, ff, tt,⌦, ,�,⇥, f̄a, b̄a, p̄a, . . .� defined by a
pair ↵A, T � of a set A ⇧ ⇤(F(x, f ,p)) of logical formulæ and of a theory T of F(x, f ,p) (which
may be decidable (and may be deductive) (and may be complete on A)). The abstract properties
� ⇧ A define the concrete properties �aT (�) �

⇥
↵I, ⇥�

���� I ⇧ M(T )  I |=⇥ �
⇤

relative to the models
M(T ) of theory T . The abstract order ✏ on the abstract domain ↵A, ✏� is defined as (� ✏ �⌅) �
((⌃⌅x� � ⌅x�⌅ : �⇤ �⌅) ⇧ T ). ��

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developped by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The
main di⇥erence with our approach is that we give semantics with respect to a concrete semantics
corresponding to the actual behavior of the program, whereas in the work of Gulwani and Tiwari,
the behavior of the program is assumed to be described by formulæ in the same theory as the the-
ory of the logical abstract domain which yields unsoundness. Our approach allows the description
of the abstraction mechanism, comparisons of logical abstract domains, and to provide proofs of
soundness on a formal basis.
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fixpoint (or an approximation of it since the logical lattice is not complete) and (2) proving that
the final formula implies the desired property. To solve the first problem, a usual (but not entirely
satisfactory) solution is to restrict the set of formulæ used to represent program properties such that
the ascending chain condition (ACC) is enforced. Using an infinite abstract domain not satisfying
the ACC and a widening can be much more precise [Cousot and Cousot 1992b]. For the proof of
implication, a decidable theory can be used.
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We define logical abstract domains in the following general setting (without ACC restriction):

Definition 7.1. A logical abstract domain is ↵A,✏, ff, tt,⌦, ,�,⇥, f̄a, b̄a, p̄a, . . .� defined by a
pair ↵A, T � of a set A ⇧ ⇤(F(x, f ,p)) of logical formulæ and of a theory T of F(x, f ,p) (which
may be decidable (and may be deductive) (and may be complete on A)). The abstract properties
� ⇧ A define the concrete properties �aT (�) �

⇥
↵I, ⇥�

���� I ⇧ M(T )  I |=⇥ �
⇤

relative to the models
M(T ) of theory T . The abstract order ✏ on the abstract domain ↵A, ✏� is defined as (� ✏ �⌅) �
((⌃⌅x� � ⌅x�⌅ : �⇤ �⌅) ⇧ T ). ��

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developped by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The
main di⇥erence with our approach is that we give semantics with respect to a concrete semantics
corresponding to the actual behavior of the program, whereas in the work of Gulwani and Tiwari,
the behavior of the program is assumed to be described by formulæ in the same theory as the the-
ory of the logical abstract domain which yields unsoundness. Our approach allows the description
of the abstraction mechanism, comparisons of logical abstract domains, and to provide proofs of
soundness on a formal basis.
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Example 6.1 (Universal interpretation). The universal interpretation consists in describing the
properties encoded by a formula on all possible interpretations. Thus, the concretization of a formula
will be given by �aI = {⌘I, ⇥✓ | I ⌦ I ✏ I |=⇥ �}. ◆

Example 6.2 (Strict approximation). The use of first-order logic instead of set theory may en-
force strict approximations in program verification [Cook 1978]. For example, in the context of
Presburger arithmetics with interpretation N on the natural numbers, a program may compute a
multiplication by successive additions, in which case the concrete set-theoretic property involving
a multiplication (such as P = {⌘N, ⇥✓ | ⇥(x) = ⇥(y) � ⇥(z)}) may not be expressible by a first-order
logical formula involving only addition. ◆

6.2. Axiomatic Semantics Modulo a Multi-Interpretation
Once concrete program properties have been abstracted by first-order logic formulæ, the concrete
program semantics of Sect. 3 must be abstracted in terms of first order logic. Because this sound
abstraction step will not lead to an e⇥ectively computable analysis, we should go for the most precise
semantics at this point, and in fact in most cases we can be as precise as the concrete semantics.

As shown in [Cousot 2002] for safety properties, an axiomatic semantics Ca�P⇥ of a program P
will be given as a set of post-fixpoints:

Ca�P⇥ �
⇥
�
��� Fa�P⇥(�) ⇤⌥ �

⇤

where Fa�P⇥ ⌦ F(x, f ,p) 1⇧F(x, f ,p)

is the predicate transformer defining the axiomatic semantics of program P. So, program properties
will be represented by formulæ in F(x, f ,p) which is a lattice ⌘F(x, f ,p), ⇤⌥✓ (although not a
complete lattice) for the pre-order (� ⇤⌥ � ) � valid(�⌥ � ) hence is considered to be quotiented
by (� ⌃ ⌅⇤⌥ � ) � valid(� � � ). The verification condition for I ⌦ F(x, f ,p) to be an inductive
invariant for program P will be Fa�P⇥(I) ⇤⌥ I.

Again the program transformer Fa can be defined in terms of primitive operations
�,�,◆,,�,⇥, f̄, b̄, p̄, . . . which local soundness conditions imply the soundness of the program
transformer and the verification condition.

Example 6.3. Continuing Ex. 3.3 in the context of invariance properties for imperative lan-
guages, the primitive operations will be false, true, ⇣ for control flow joins, and the following
primitives for assignments and tests:

fa ⌦ (x � T(x, f))⇧F(x, f ,p)⇧F(x, f ,p) axiomatic forward assignment trans-
formerfa�x := t⇥� � �x : �[x⌅ x ] ✏ x = t[x⌅ x ]

ba ⌦ (x � T(x, f))⇧F(x, f ,p)⇧F(x, f ,p) axiomatic backward assignment trans-
formerba�x := t⇥� � �[x⌅ t]

pa ⌦ C(x, f ,p)⇧F(x, f ,p)⇧F(x, f ,p) axiomatic transformer for program test
of condition ⇤.pa�⇤⇥� � � ✏ ⇤ ◆

6.3. Soundness of the Axiomatic Semantics Modulo a Multi-Interpretation
In general, the soundness of the axiomatic semantics directly follows from the soundness (2) of
transformers

↵� ⌦ F(x, f ,p) : FI�P⇥ ⇥ �aI(�) ⇤ �aI ⇥ Fa�P⇥(�),

itself following from local soundness conditions on the operations of the abstract domain (see e.g.
Ex. 4.2). Notice that in general we don’t have equality since there may be no logical formula to
exactly encode FI�P⇥ ⇥ �aI(�).
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    so the abstract transformers follow by abstraction

• The abstraction algorithm                            to 
abstract properties in   may be non-trivial (e.g. 
quantifiers elimination)

• A widening          is needed to ensure convergence of 
the fixpoint iterates (or else ask the end-user) 

but ...
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Replacing the unknown constant c by a variable c in min(c, x,�), a solver might be able to determine
a suitable value for c. Otherwise the maximality requirement of c might be dropped to get a coarser
abstraction and true returned in case of complete failure of the solver. �⌥

7.3. Logical Abstract Transformers
For soundness with respect to a set of interpretations I, the abstract transformers must be chosen
such that [Cousot and Cousot 1977; Cousot and Cousot 1979c] for each program P

Fa�P⇥ ⌅ A⇥A abstract transformer
⇧� ⌅ A,⇧I ⌅ I : : I |= (Fa�P⇥� ⇤ Fa�P⇥�) abstract transformer soundness

Again, the abstract program transformer Fa�P⇥ can be defined in terms of primitive operations (e.g.
fa, ba, and pa of Ex. 4.1) satisfying local soundness conditions which imply the soundness of the pro-
gram transformer. In many static analyzers, the abstract transfer functions are most often designed,
proved correct and implemented by hand.
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�
a �2) widening soundness �⌥
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7.2. Abstraction to Logical Abstract Domains
Because A ⌅ �(F(x, f ,p)), we need to approximate formulæ in �(F(x, f ,p)) \ A by a formula in
A. The alternatives [Cousot and Cousot 1992a] are either to choose a context-dependent abstraction
(a di⇥erent abstraction is chosen in di⇥erent circumstances, which can be understood as a widening
[Cousot 1978]) or to define an abstraction function to use a uniform context-independent approxi-
mation whenever needed. The abstraction

�IA ⌅ F(x, f ,p)⇥A abstraction (function/algorithm)

abstracts a concrete first-order logic formula appearing in the axiomatic semantics into a formula in
the logical abstract domain A. It is must to be sound in that

⇧� ⌅ F(x, f ,p), ⇧I ⌅ I : I |= (�⇤ �IA(�)) soundness (5)

The abstraction �IA can be chosen to be computable in which case we speak of an abstraction al-
gorithm, which can be directly used in the implementation of the abstract semantics. When the
abstraction �IA is not computable we speak of an abstraction specification, which has to be elimi-
nated from the definition of the abstract semantics (e.g. by automatic or manual design of an over-
approximation of the abstract operations).

Example 7.2 (Literal elimination). Assume that the axiomatic semantics is defined on
F(x, f ,p) and that the logical abstract domain is A = F(x, fA,pA) where fA � f and pA � p.
The abstraction �IA(�) of � ⌅ F(x, f ,p) can be defined by repeating the following approximations
until stabilization.

— If the formula � contains one or several occurrences of a term t ⌅ f \ fA (so is of the form
�[t, . . . , t]), they can all be approximated by ⌃x : �[x, . . . , x];

— If the formula � contains one or several occurrences of an atomic formula a ⌅ p \ pA (so is of
the form �[a, . . . , a]), this atomic formula can be replaced by true in the positive positions and
by false in the negative positions.

In both cases, this implies soundness (5) and the abstraction algorithm terminates since � is finite.
 �

Example 7.3 (Quantifier elimination). If the abstract domain A � C(x, fA,pA) is quantifier-
free then the quantifiers must be eliminated which is possible without loss of precision in some
theories such as Presburger arithmetic (but with a potential blow-up of the formula size see e.g.
[Cooper 1972; Ferrante and Racko⇥ 1975; Ferrante and Geiser 1977]). Otherwise, besides simple
simplifications of formulæ (e.g. replacing ⌃x : x = t ⌥ �[x] by �[t]), a very coarse abstraction to
A � C(x, f ,p) would eliminate quantifiers bottom up, putting the formula in disjunctive normal
form and eliminating the literals containing existentially quantified variables (or dually [McMillan
2002]), again with a potential blow-up. Other proposals of abstraction functions (often not identified
as such) include the quantifier elimination heuristics defined in Simplify [Detlefs et al. 2005, Sect.
5], [de Moura et al. 2003, Sect. 6], or the (doubly-exponential) methods of [Ge et al. 2007; Ge
and de Moura 2009] (which might even be made more e⇤cient when exploiting the fact that an
implication rather than an equivalence is required).  �

Example 7.4 (Interval abstraction). Let us consider the mimimal abstraction �m (which reduced
product with the maximal abstraction �M , yields the interval abstraction [Cousot and Cousot 1976;
Cousot and Cousot 1977]).

�m(�) �
�

x⌅x

{c ⇥ x | c ⌅ c ⌥ min(c, x,�)}

min(c, x,�) � ⇧x : (⌃⇥x� \ {x} : �) ⇤ (c ⇥ x) ⌥
⇧m : (⇧x : (⌃⇥x� \ {x} : �) ⇤ (m ⇥ x)) ⇤ m ⇥ c
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Example 6.4. Note that in the case of the axiomatic invariance semantics for imperative lan-
guages of Ex. 6.3, the interpretation of the axiomatic semantics is exactly the multi-interpreted
concrete semantics. For example, for assignment,

�aI(fa⇤x := t⌅�)
� �aI(⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) �def. fa⇤x := t⌅� � ⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]⇥
= {↵I, ⇥� | I ⇧ I  I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅])} �def. (4) of �aI⇥
= {↵I, ⇥⌅[x⇥ ⇤t⌅I⇥

⌅]� | I ⇧ I  I |=⇥⌅ �}
�since I |=⇥ (⌥x⌅ : �[x⇥ x⌅]  x = t[x⇥ x⌅]) if and only if ⌥⇥⌅ : I |=⇥⌅ � and ⇥ =
⇥⌅[x⇥ ⇤t⌅I⇥

⌅] as defined in Sect. 2.3⇥
= {↵I, ⇥[x⇥ ⇤t⌅I⇥]� | I ⇧ I  ↵I, ⇥� ⇧ {↵I, ⇥� | I |=⇥ �}} �renaming ⇥⌅ into ⇥ and def. ⇧⇥
= {↵I, ⇥[x⇥ ⇤t⌅I⇥]� | I ⇧ I  ↵I, ⇥� ⇧ �aI(�)} �def. (4 ) of �aI⇥
= fI⇤x := t⌅ � �aI(�) �def. (1) of fI⇤x := t⌅P⇥ ��

Example 6.5 (Uninterpreted axiomatic semantics). The uninterpreted axiomatic semantics cor-
responds to the universal interpretation of Ex. 6.1, that is I = I. ��

Example 6.6 (Axiomatic semantics modulo theory). An axiomatic semantics modulo a theory
T corresponds to the choice I = M(T ) so that the di⇥erence with the uninterpreted axiomatic
semantics of Ex. 6.5 is uniquely in the way implication can be proved with or without using the
theorem of the theory T . ��

7. LOGICAL ABSTRACT DOMAINS
When performing program verification in the first-order logic setting, computing the predicate trans-
former Fa⇤P⌅ is usually quite immediate. The two hard points are (1) the computation of the least
fixpoint (or an approximation of it since the logical lattice is not complete) and (2) proving that
the final formula implies the desired property. To solve the first problem, a usual (but not entirely
satisfactory) solution is to restrict the set of formulæ used to represent program properties such that
the ascending chain condition (ACC) is enforced. Using an infinite abstract domain not satisfying
the ACC and a widening can be much more precise [Cousot and Cousot 1992b]. For the proof of
implication, a decidable theory can be used.

7.1. Definition of Logical Abstract Domains
We define logical abstract domains in the following general setting (without ACC restriction):

Definition 7.1. A logical abstract domain is ↵A,✏, ff, tt,⌦, ,�,⇥, f̄a, b̄a, p̄a, . . .� defined by a
pair ↵A, T � of a set A ⇧ ⇤(F(x, f ,p)) of logical formulæ and of a theory T of F(x, f ,p) (which
may be decidable (and may be deductive) (and may be complete on A)). The abstract properties
� ⇧ A define the concrete properties �aT (�) �

⇥
↵I, ⇥�

���� I ⇧ M(T )  I |=⇥ �
⇤

relative to the models
M(T ) of theory T . The abstract order ✏ on the abstract domain ↵A, ✏� is defined as (� ✏ �⌅) �
((⌃⌅x� � ⌅x�⌅ : �⇤ �⌅) ⇧ T ). ��

This definition of logical abstract domains is close to the logical abstract interpretation frame-
work developped by Gulwani and Tiwari [Gulwani and Tiwari 2006; Gulwani et al. 2008]. The
main di⇥erence with our approach is that we give semantics with respect to a concrete semantics
corresponding to the actual behavior of the program, whereas in the work of Gulwani and Tiwari,
the behavior of the program is assumed to be described by formulæ in the same theory as the the-
ory of the logical abstract domain which yields unsoundness. Our approach allows the description
of the abstraction mechanism, comparisons of logical abstract domains, and to provide proofs of
soundness on a formal basis.
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⇥1
�
a ⇥2 � �IA(⇥1 � ⇥2) abstract lub widening. ⌦ 

These abstract transformers (or some over-approximations satisfying local soundness conditions as
in Ex. 7.5) might be automatically computable using solvers (see e.g. [Reps et al. 2004] when A
satisfies the ascending chain condition).

Example 7.7. With the interval abstraction of Ex. 7.4, where the abstract domain is A =
{�x⌅x cx ⇥ x | ⇧x ⌅ x : cx ⌅ f0} and �IA = �m, a SMT solver (e.g. with linear arithmetics or
even simple inequalities [Pratt 1977]) might be usable when restricting � in �m(�) to the formulæ
obtained by the transformation of formulæ of A by the abstract transformers of Ex. 7.6. ⌦ 

Finally the logical abstract transformer can be defined using a specific local abstraction.

Example 7.8 (Abstract assignment). The non-invertible assignment transformer returns a quan-
tified formula

f�x := t⇥� � ⌃x⇤ : �[x/x⇤] ⌥ x = t[x/x⇤] non-invertible assignment
which may have to be abstracted to A can be done using the abstraction � of Sect. 7.2 or the widening
of Sect. 7.4 or on the fly, using program specificities. For example, in straight line code outside of
iteration or recursion, the existential quantifier can be eliminated

— using logical equivalence, by Skolemization where ⇧x1 : . . .⇧xn : ⌃y : p(x1, . . . , xn, y) is
replaced by the equi-satisfiable formula ⇧x1 : . . .⇧xn : p(x1, . . . , xn, fy(x1, . . . , xn)) where fy is
a fresh symbol function;

— using a program transformation, since x⇤ denotes the value of the variable x before the assign-
ment we can use a program equivalence introducing new fresh program variable x⇤ to store this
value since “x := t” is equivalent to “x⇤ := x; x := t[x� x⇤]” 14. We get

fa�x := t⇥⇥ � ⇥[x� x⇤] ⌥ x = t[x� x⇤] abstract non-invertible assignment
which may be a formula in A. This ensures soundness by program equivalence.

These local solutions cannot be used with iterations or recursions (but with a k-limiting abstraction
as in bounded model checking) since a fresh auxiliary function/variable is needed for each itera-
tion/recursive call, which number may be unbounded. ⌦ 
7.4. Widening and Narrowing
When the abstract domain does not satisfy the ascending chain condition, a widening is needed both
to cope with the absence of infinite disjunctions and to enforce the convergence of fixpoint interation
[Cousot and Cousot 1977; Cousot 1978]. Designing a universal widening for logical abstract do-
main is di⇤cult since powerful widenings prevent infinite evolutions in the semantic computation,
evolutions which are not always well reflected as a syntactic evolution in logical abstract domains.
Nevertheless, we can propose several possible widenings .

(1) Widen to a finite sub-domain W of A organized in a partial order choosing X
�

Y to be � ⌅ W
such that Y ⇥ � and starting from the smallest elements of W (or use a further abstraction into
W as in Sect. 7.2);

(2) Limit the size of formulæ to k > 0, eliminating new literals in the simple conjunctive normal
form appearing beyond the fixed maximal size (e.g. depth) k (the above widenings are always
sound and terminating but not very satisfactory, see [Cousot and Cousot 1992b]);

(3) Follow the syntactic evolution of successive formulæ and reduce the evolving parts as proposed
by [Mauborgne 1998] for Typed Decision Graphs.

(4) Make generalizations (e.g. l(1) � l(2) � . . . implies ⌃k ⇤ 0 : l(k) and abstract the existential
quantifier, see Ex. 7.3) or use saturation 15 [Cousot 1996].

14 This is similar to but di⇥erent from Skolemization since we use auxiliary program variables instead of auxiliary functions.
15 Saturation means to compute the closure of a given set of formulas under a given set of inference rules.
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(2) Limit the size of formulæ to k > 0, eliminating new literals in the simple conjunctive normal
form appearing beyond the fixed maximal size (e.g. depth) k (the above widenings are always
sound and terminating but not very satisfactory, see [Cousot and Cousot 1992b]);

(3) Follow the syntactic evolution of successive formulæ and reduce the evolving parts as proposed
by [Mauborgne 1998] for Typed Decision Graphs.

(4) Make generalizations (e.g. l(1) � l(2) � . . . implies ⌃k ⇤ 0 : l(k) and abstract the existential
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14 This is similar to but di⇥erent from Skolemization since we use auxiliary program variables instead of auxiliary functions.
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• Definition of the Cartesian product:

A:26 Patrick Cousot et al.

= �
⇥ I . ⇥ y . y=x ? �e⇥I :⌅I (y),P
I ( x : (x = e � ⇤)) �def. extend(x,�e⇥) (⇤[x ⌅ e]) �  x : (x = e � ⇤)⇥

=
⌦
�I, ⇥✏ ⌥ R⇥PI

⇤⇤⇤ �I, ⇥ x⌃ . �⇥ y . y = x ? ⇤e⌅I : ⌅I(y)
⇥

(x⌃)⇥✏ ⌥ �⇥OI ( x : (x = e � ⇤))
↵

�def. �⌅,PI ⇥
=
⌦
�I, ⇥✏ ⌥ R⇥PI

⇤⇤⇤ �I, ⇥ x⌃ . �x⌃ = x ? ⇤e⌅I (⇥) : ⌅I(x⌃)⇥
⇥✏ ⌥ �⇥OI ( x : (x = e � ⇤))

↵

�def. application⇥
=
⌦
�I, ⇥✏ ⌥ R⇥PI

⇤⇤⇤ I ⌥ I � I |=⇥ x⌃ . (x⌃=x ? �e⇥I (⇥) :⌅I (x⌃)⇥)  x : (x = e � ⇤)
↵

�def. �⇥OI (⇤) �
⌦
�I, ⇥✏

⇤⇤⇤⇤ I ⌥ I � I |=⇥ ⇤)
↵
⇥

=
⌦
�I, ⇥✏ ⌥ R⇥PI

⇤⇤⇤ I ⌥ I � I |=⇥ x⌃ .⌅I (x⌃)⇥ ⇤[x ⌅ e]
↵

�def. substitution⇥
=
⌦
�I, ⇥✏ ⌥ R⇥PI

⇤⇤⇤ �I, ⇥ x⌃ .⌅I(x⌃)⇥✏ ⌥ �⇥OI (⇤[x ⌅ e])
↵

�def. �⇥OI ⇥
= �⌅,PI (⇤[x ⌅ e]) �def. �⌅,PI ⇥

This extension operation can also be used for vectors of fresh variables and vectors of observables
in the natural way.

Definition 8.11 (Extension of observable properties with new observables). Let A⇥OI be an ab-
stract domain with partial ordering ✓ abstracting multi-interpreted properties in P⇥OI for signature
⇥O with observable identifiers xO ⇥ x, set of interpretations I , and observables named by ⌅ such
that �I ⌥ I : ⌅I ⌥ xO⇧O⇥PI .

Consider the new observables ⌅⌃ such that �I ⌥ I : ⌅⌃I ⌥ (xO⌃ \ xO) ⇧ O⇥PI where xO⌃ are
the new observable names such that xO ⇥ xO⌃ . The abstraction now uses the abstract domain
A⇥O⌃I with partial ordering ✓⌃ abstracting multi-interpreted properties in P⇥O⌃I for signature ⇥O⌃ with
observable identifiers xO⌃ ⇥ x . A sound extension extend⌅⌃ ⌥ A⇥OI ⇧ A⇥O⌃I satisfies the soundness
condition

�
⇥ I . ⇥ y . y ⌥ xO⌃ \ xO ?⌅⌃

I(y) : ⌅I(y), P
I

⌅
extend⌅⌃

⌅
P
⇧⇧

⇤ �⌅,PI
⌅
P
⇧
. ⌘⇣

Given A ⇥ A⇥OI , we write extend⌅⌃ (A) �
⌃

extend⌅⌃
⌅
P
⇧ ⇤⇤⇤⇤⇤⇤ P ⌥ A

⌥
.

9. REDUCED PRODUCT
9.1. Cartesian and Reduced Product
The Cartesian product can be used for the conjunction of static analyzes [Cousot and Cousot 1979c].

Definition 9.1 (Cartesian product).

Let �Ai, ✓i✏, i ⌥ �, � finite, be abstract domains with
increasing concretization �i ⌥ Ai

1⇧ P⇥OI . Their Carte-
sian product is �⌅A, ⌅✓✏ where ⌅A �

�

i⌥� Ai, (⌅P ⌅✓ ⌅Q) � 
i⌥�(⌅Pi ✓i ⌅Qi) and ⌅� ⌥ ⌅A⇧P⇥OI is ⌅�(⌅P) �

�
i⌥� �i(⌅Pi).

⌘⇣
In particular the product �Ai � Aj, ✓i j✏ is such that �x, y✏ ✓i j �x⌃, y⌃✏ � (x ✓i x⌃) � (y ✓ j y⌃) and
�i j(�x, y✏) � �i(x) � � j(y). Notice that instead of �P⇥OI , ⇥, ⌦, R

⇥O
I , ↵, �✏ where P⇥OI � ⇤(R⇥OI ), the
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• Definition of the Reduced product:

• In practice, the reduced product may be complex to 
compute but we can use approximations such as the 
iterated pairwise reduction of the Cartesian product

Reduced product
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Let ✏Ai, ◆i⇣, i ⌦ �, � finite, be abstract domains with in-
creasing concretization ⇥i ⌦ Ai

1⌥P⇥OI where ⇧A �
�

i⌦� Ai

is their Cartesian product. Their reduced product is ✏⇧A/⇧⇤,
⇧◆⇣ where (⇧P ⇧⇤ ⇧Q) � (⇧⇥(⇧P) = ⇧⇥( ⇧Q)) and ⇧⇥ as well as ⇧◆
are naturally extended to the equivalence classes [⇧P]/⇧⇤,
⇧P ⌦ ⇧A, of ⇧⇤ by ⇧⇥([⇧P]/⇧⇤) = ⇧⇥(⇧P) and [⇧P]/⇧⇤ ⇧◆ [ ⇧Q]/⇧⇤ �
�⇧P ⌦ [⇧P]/⇧⇤ : � ⇧Q ⌦ [ ⇧Q]/⇧⇤ : ⇧P ⇧◆ ⇧Q . ✓⌘
The reduced product can yield much more precise results than the Cartesian product by computing
more precise abstract values for each abstract domain, while staying in the same class of the re-
duced product. Computing such abstract values is naturally a reduction where information from one
abstract domain is transferred to other abstract domains to increase their precision.

Example 9.3. A classical example [Cousot and Cousot 1979c] is the product of a sign and a
parity analysis where the discovery that x = 0 by the sign analysis and that xmod2 = 1 by the parity
analysis in a test/guard yields � (non-reachability) for both abstract domains, a fact that none of the
separate abstractions may be able to infer by itself thus missing unreachability of subsequent code
(which may also be the case of their conjunction for this subsequent code). Sign and parity reduction
[Cousot and Cousot 1979c] was generalized to intervals and simple congruences in [Granger 1989].

✓⌘

9.2. The Reduced Product is the Greatest Lower Bound in the Poset of Abstract Domains
We can compare the expressiveness of abstract domains by defining an abstract domain A1 to be
more precise than A2 whenever any property exactly expressible by A2 is also expressible by A1.
Two abstract domains are equivalent when they are equally expressive.

Definition 9.4 (Precision of abstractions). Let ✏Ai, ◆i⇣, i ⌦ {1, 2}, be abstract domains with
concretization ⇥i ⌦ Ai ⌥ L into the concrete domain ✏L, ⇥⇣. We say that A2 is less precise 19 than
A1 (written A1 � A2) whenever ⇥2(A2) ⌅ ⇥1(A1). They are equivalent whenever ⇥1(A1) = ⇥2(A2)
(written A1 �⇥ A2). ✓⌘

So ✏⌅(L), ⇧⇣ is isomorphic to the complete lattice of all abstract domains quotiented by �⇥ and
ordered by precision �. Each abstract domain ✏A, ◆⇣ is �⇥-equivalent to an element of this lattice
⌅(L) of all abstract domains [Cousot and Cousot 1979c]. In case of abstractions A1 � ⇤1(L) and
A2 � ⇤2(L) defined by upper closures ⇤1 and ⇤2 on ✏L, ⇥⇣, we have A1 � A2 � ⇤2(L) ⌅ ⇤1(L)
� ⇤1 ⇥̇ ⇤2 [Cousot and Cousot 1979c]. In case of abstractions defined by Galois connections ✏L,
⇥⇣ ����⌥⌃����

�1

⇥1 ✏A1, ◆1⇣ and ✏L, ⇥⇣ ����⌥⌃����
�2

⇥2 ✏A2, ◆2⇣, we have A1 � A2 � ⇥1 ⇥ �1(L) ⇥̇ ⇥2 ⇥ �2(L) [Cousot
and Cousot 1979c].

Definition 9.5 (Closure by intersection). An abstract domain ✏A, ◆⇣ with concretization ⇥ ⌦
A 1⌥ L into a meet semi-lattice (resp. complete lattice) ✏L, ⇥, �⇣ is closed by finite (resp. infinite)
intersection if and only if ↵P,Q ⌦ A : �R ⌦ A : ⇥(R) = ⇥(P) � ⇥(Q) (resp. ↵P ⌦ ⌅(A) : �R ⌦ A :
⇥(R) =

�
⇥(P)). ✓⌘

19 also expressive, refined, etc..
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• Example: intervals x congruences

ρ( x ∈ [-1,5] ⋀ x = 2 mod 4)  ≡  x ∈ [2,2] ⋀ x = 2 mod 0

are equivalent

•  Meaning-preserving reduction:

Reduction

45
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Let �A, � be a poset which is an abstract domain with
concretization ⇥ ⌃ A 1⌅ C where �C, ⇥ is the concrete
domain. A meaning-preserving map is ⇤ ⌃ A ⌅ A such
that ⌥P ⌃ A : ⇥(⇤(P)) = ⇥(P). The map is a reduction if
and only if it is reductive that is ⌥P ⌃ A : ⇤(P) � P. ↵⌦

Theorem 9.13 (Equivalent definition of the reduced product (III)). Assume that �L, ⇥ is a
poset, �Ai, �i, 0i, 1i, ⌦i, ↵i , i ⌃ � are complete lattices such that ⌥i ⌃ � : �L, ⇥ ����⌅⇤����

�i

⇥i �Ai,

�i .
Let �⌅A, ⌅� be the Cartesian product of the �Ai, �i , i ⌃ � with concretization ⌅⇥ as in def. 9.1.

Define ⌅� � � x . ⇣i⌃� �i(x) such that �L, ⇥ ���⌅⇤���
⌅�

⌅⇥
�⌅A, ⌅� .

Let ⌅⇤ � � ⌅P .⇥{⌅P⇧ | ⌅⇥(⌅P) ⇥ ⌅⇥(⌅P⇧)} such that �L, ⇥ �����⌅�⌅⇤�������
⌅⇤ ⇥ ⌅�

⌅⇥
�⌅⇤(⌅A), ⌅� .

Then ⌅⇤ is meaning-preserving and �⌅⇤(⌅A), ⌅� is the reduced product of the �Ai, �i , i ⌃ �. ↵⌦

Proof of theorem 9.13. �L, ⇥ ���⌅⇤���
⌅�

⌅⇥
�⌅A, ⌅� and �L, ⇥ �����⌅�⌅⇤�������

⌅⇤ ⇥ ⌅�

⌅⇥
�⌅⇤(⌅A), ⌅� follow directly

from the hypothesis ⌥i ⌃ � : �L, ⇥ ����⌅⇤����
�i

⇥i �Ai, �i .
Let us show that ⌅⇤ is meaning-preserving.

⌅⇥ ⇥ ⌅⇤(⌅P)
= ⌅⇥(

⇥
{⌅P⇧ | ⌅⇥(⌅P) ⇥ ⌅⇥(⌅P⇧)}) �def. ⌅⇤⇥

=
⇥
{⌅⇥(⌅P⇧) | ⌅⇥(⌅P) ⇥ ⌅⇥(⌅P⇧)} ��L, ⇥ ���⌅⇤���

⌅�

⌅⇥
�⌅A, ⌅� so ⌅⇥ preserves existing glb⇥

= ⌅⇥(⌅P) �choosing ⌅P⇧ = ⌅P and def. glb⇥

It follows that �⌅⇤(⌅A), ⌅� is more precise that the �Ai, �i in that ⌅⇥ ⇥ ⌅⇤ ⇥ ⌅� ⇥̇ ⇥i ⇥ �i as follows.

⌅⇥ ⇥ ⌅⇤ ⇥ ⌅�(x)
= ⌅⇥ ⇥ ⌅�(x) �⌅⇤ is meaning-preserving⇥
=
⇥

k⌃�
⇥k((
⌘

i⌃�
�i(x))k) �def. ⌅⇥ and ⌅�⇥

=
⇥

k⌃�
⇥k(�k(x)) �def. index selection⇥

⌅� ⇥i ⇥ �i(x) �for any i ⌃ �, by def. glb⇥

Let be given any other abstraction �L, ⇥ ����⌅⇤����
⌅�⇧

⌅⇥⇧

�M, ⌅� which is more precise than the �Ai,

�i , i ⌃ � in that ⌥i ⌃ � : ⌅⇥⇧ ⇥ ⌅�⇧ �̇ ⇥i ⇥ �i. So ⌅⇥⇧ ⇥ ⌅�⇧ �̇ �̇i⌃� ⇥i ⇥ �i = ⌅⇥ ⇥ (⌅⇤ ⇥ ⌅�) as just shown above,
so �⌅⇤(⌅A), ⌅� is less precise than �M, ⌅� 

In conclusion, for all i ⌃ �, �⌅⇤(⌅A), ⌅� ⇤ �Ai, �i and if ⌥i ⌃ � : �M, ⌅� ⇤ �Ai, �i then
�M, ⌅� ⇤ �⌅⇤(⌅A), ⌅� proving, by theorem 9.6, that �⌅⇤(⌅A), ⌅� is the reduced product of the �Ai, �i ,
i ⌃ �.
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Implementing the reduced product
• Mathematically, we can choose any representant of 

the equivalence class (and normalize to this 
rerpesentant)

• In practice, normalization is hard to do

• It is better to choose a minimal representant

46
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Why is reduction to a minimal representant important?

• Without reduction (signs and parity):

\\ x ≥ 0 – odd(x)
if (x ≤ 0) then
   // x == 0 – odd(x)

• With reduction:

\\ x ≥ 0 – odd(x)
\\ x > 0 – odd(x)     ☜ minimal representant

if (x ≤ 0) then
   // false – odd(x)
   // false – false   ☜ minimal representant
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Iterated reduction
• Definition of iterated reduction:

48

A:32 Patrick Cousot et al.

Let ⌃A, ⌦⌥ be a poset which is an abstract domain with
concretization ⇥ ⌅ A 1⇤C where ⌃C, ⇥⌥ is the concrete do-
main and ⇧ ⌅ A⇤A be a meaning-preserving reduction.

The iterates of the reduction are ⇧0 � �P . P, ⇧⌅+1 =

⇧(⇧⌅) for successor ordinals and ⇧⌅ = �<⌅ ⇧
� for limit

ordinals.
The iterates are well-defined when the greatest lower

bounds (glb) do exist in the poset ⌃A, ⌦⌥.  �
Theorem 10.2 (Finite iterated reduction). The finite iterates ⇧n, n ⌅ N of a meaning-

preserving reduction ⇧ on ⌃A, ⌦⌥ are meaning-preserving and more precise in the abstract.  �
Proof of theorem 10.2. Let ⌃⇧n, n ⌅ N⌥ be the iterates of a meaning-preserving reduction ⇧.

Observe, by recurrence, that the iterates form a descending chain since ⇧ is reductive so ⇧n < m :
⇧n(P) ⌦ ⇧n(P) ⌦ P. Meaning-preservation follows by recurrence. For the basis ⇥(⇧0(P)) = ⇥(P) by
def. of ⇧0. For induction, ⇥(⇧n+1(P)) � ⇥(⇧(⇧n(P))) = ⇥(⇧n(P)) = ⇥(P) since ⇧ is meaning-preserving
and by induction hypothesis.

Notice however that the limit of the iterates of a meaning-preserving reduction may be not be
meaning-preserving.

Theorem 10.3 (Limit of an iterated reduction). Let ⇧ be a meaning-preserving reduction
which iterates from P are well-defined. Then their limit ⇧�(P) exists. We have ⇧� < ⌅ : ⇧�(P) ⌦
⇧⌅(P) ⌦ ⇧�(P) ⌦ P but the limit is in general not meaning-preserving.  �

Proof of theorem 10.3. Assuming the iterates of ⇧ from P ⌅ A to be well-defined, we observe,
by transfinite induction, that the iterates form a descending chain since ⇧ is reductive and by de-
finition of the glb

�
. By antisymmetry of ⌦ in the poset ⌃A, ⌦⌥, a fixpoint must be reached at

rank ⇤ of the iterates when the ordinal ⇤ has a cardinality greater than that of A since, otherwise,
the iterates all contained in A would have a cardinality strictly greater than that of A. The iter-
ates must be stationary beyond ⇤ so that the limit ⇧�(P) � ⇧⇤(P) is well-defined. It follows that
⇧� < ⌅ : ⇧�(P) ⌦ ⇧⌅(P) ⌦ ⇧�(P) ⌦ P since the iterates are ⌦-decreasing.

To prove that the limit is in general unsound, consider the following example.

C A

0
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1

2
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ωω
γ

γ

...

ρ
ρ
ρ
ρ
...

ρ
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Finite versus infinite iterated reduction
• Finite iterations of a meaning preserving reduction 

are meaning preserving (and more precise)

•

49
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10.1. Iterated Weak Reduction
By iterating a weak reduction, one can improve even more the precision of a static analysis without
altering its soundness. A particular case of iterated reduction was proposed by [Granger 1992]
following [Cousot and Cousot 1979c].

Definition 10.1 (Iterated Reduction).
Let ⌃A, ⌦⌥ be a poset which is an abstract domain with concretization ⇥ ⌅ A 1⇤ C where ⌃C,

⇥⌥ is the concrete domain and ⇧ ⌅ A ⇤ A be a meaning-preserving reduction. The iterates of the
reduction are ⇧0 � �P . P, ⇧⌅+1 = ⇧(⇧⌅) for successor ordinals and ⇧⌅ =

�
�<⌅ ⇧

� for limit ordinals.
The iterates are well-defined when the greatest lower bounds

�
(glb) do exist in the poset ⌃A, ⌦⌥.

 �
Theorem 10.2 (Finite iterated reduction). The finite iterates ⇧n, n ⌅ N of a meaning-

preserving reduction ⇧ on ⌃A, ⌦⌥ are meaning-preserving and more precise in the abstract.  �
Proof of theorem 10.2. Let ⌃⇧n, n ⌅ N⌥ be the iterates of a meaning-preserving reduction ⇧.

Observe, by recurrence, that the iterates form a descending chain since ⇧ is reductive so ⇧n < m :
⇧n(P) ⌦ ⇧n(P) ⌦ P. Meaning-preservation follows by recurrence. For the basis ⇥(⇧0(P)) = ⇥(P) by
def. of ⇧0. For induction, ⇥(⇧n+1(P)) � ⇥(⇧(⇧n(P))) = ⇥(⇧n(P)) = ⇥(P) since ⇧ is meaning-preserving
and by induction hypothesis.

Notice however that the limit of the iterates of a meaning-preserving reduction may be not be
meaning-preserving.

Theorem 10.3 (Limit of an iterated reduction). Let ⇧ be a meaning-preserving reduction
which iterates from P are well-defined. Then their limit ⇧�(P) exists. We have ⇧� < ⌅ : ⇧�(P) ⌦
⇧⌅(P) ⌦ ⇧�(P) ⌦ P but the limit is in general not meaning-preserving.

Proof of theorem 10.3. Assuming the iterates of ⇧ from P ⌅ A to be well-defined, we observe,
by transfinite induction, that the iterates form a descending chain since ⇧ is reductive and by de-
finition of the glb

�
. By antisymmetry of ⌦ in the poset ⌃A, ⌦⌥, a fixpoint must be reached at

rank ⇤ of the iterates when the ordinal ⇤ has a cardinality greater than that of A since, otherwise,
the iterates all contained in A would have a cardinality strictly greater than that of A. The iter-
ates must be stationary beyond ⇤ so that the limit ⇧�(P) � ⇧⇤(P) is well-defined. It follows that
⇧� < ⌅ : ⇧�(P) ⌦ ⇧⌅(P) ⌦ ⇧�(P) ⌦ P since the iterates are ⌦-decreasing.

To prove that the limit is in general unsound, consider the following example.

C A

0

0

1

2

3

ωω
γ

γ

...

ρ
ρ
ρ
ρ

...

ρ

The finite iterates of the reduction ⇧ from 0 form a decreasing chain which elements are all meaning-
preserving since ⇥(⇧n(0)) = ⇥(0). These iterates have a well-defined limit ⇧�(0) =

�
n⌅N ⇧

n(0) = ⌃
which would be a reduction but not meaning-preserving since ⇥(⌃) � ⇥(0).

We now study su�cient conditions for the limit of a meaning-preserving reduction to be meaning-
preserving. To do so we study how to improve a meaning-preserving map or to combine several
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when     preserves glbs.

Theories, Solvers and Abstract Interpretation A:29

sound meaning-preserving maps on the abstract domain into a more precise one, to get a meaning-
preserving lower closure operator.

Definition 10.4. Let �L, �, ⌥, ⌃, ⌦, ↵ be a complete lattice and f ⌅ L⇥L. Define

I( f ) � � x . ⇤ ⌅
f (y)
⇤⇤⇤ x � y

⇧
. ↵⌦

I( f ) is the greatest increasing operator on L less than of equal to f (dual of [Cousot 1978, Th.
2.4.0.2]) and so I is a lower closure operator on L ⇧⇥ L such that I(L ⇧⇥ L) = L 1⇥L is the complete
lattice of increasing operators on L ordered pointwise. We observe that if f is a meaning-preserving
map then so is I( f ). Because I( f ) �̇ f , it is a more precise meaning-preserving map in the abstract.

Lemma 10.5. If � preserves existing greatest lower bounds 17 and f is a meaning-preserving
map (i.e. �( f (x)) = �(x)) then I( f ) is a meaning-preserving map (i.e. �(I( f )(x)) = �(x)). ↵⌦

Proof of lemma 10.5.

�(I( f )(x))
= �(

⇤ ⌅
f (y)
⇤⇤⇤ x � y

⇧
) �def. I⇥

=
⇤ ⌅
�( f (y))

⇤⇤⇤ x � y
⇧

�� preserves glbs⇥
=

⇤ ⌅
�(y)
⇤⇤⇤ x � y

⇧
� f is a meaning-preserving map so �( f (x)) = �(x)⇥

= �(
⇤ �

y
⇤⇤⇤ x � y

⇥
) �� preserves glbs⇥

= �(x) �def. glb⇥

Definition 10.6. Let �L, �, ⌥, ⌃, ⌦, ↵ be a complete lattice and f ⌅ L⇥L. Define
R( f ) � � x . x ↵ f (x). ↵⌦

By the dual of [Cousot 1978, Th. 4.2.3.0.3], R( f ) is the greatest reductive operator on L less than
of equal to f and so R is a lower closure operator on L ⇧⇥ L such that R(L ⇧⇥ L) = L ⇤⇥ L is the
complete lattice of reductive operators on L ordered pointwise. We observe that if f is a meaning-
preserving map then so is R( f ). Because R( f ) �̇ f , it is a more precise meaning-preserving map in
the abstract.

Lemma 10.7. If � preserves existing greatest lower bounds and f is a meaning-preserving map
(i.e. �( f (x)) = �(x)) then R( f ) is a meaning-preserving map (i.e. �(R( f )(x)) = �(x)). ↵⌦

Proof of lemma 10.7.

�(R( f )(x))
= �(x ↵ f (x) �def. R⇥
= �(x) ↵ �( f (x)) �� preserves greatest lower bounds⇥
= �(x) ↵ �(x) � f is a meaning-preserving map⇥
= �(x) �def. glb⇥

Given a meaning-preserving map f , it can be improved as I � R( f ) = R � I( f ). However to get a
normal form of abstract properties, we need a meaning-preserving map which is idempotent (since
the which normal form of a normal form is itself). The normal form can be obtained by iterating
the meaning-preserving map f or better I � R( f ) = R � I( f ). Because theorem 10.3 shows that

17 or, equivalently, � is the upper adjoint of a Galois connection.
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• Definition of pairwise reduction

Pairwise reduction (cont’d)
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Let �Ai, ⇣i� be abstract domains with increasing con-
cretization �i  Ai

1⌥L into the concrete domain �L, ⇥�.
For i, j  �, i � j, let ⌅i j  �Ai�Aj, ⇣i j� ⌦⌥ �Ai�Aj, ⇣i j�

be pairwise meaning-preserving reductions (so that ↵�x,
y�  Ai � Aj : ⌅i j(�x, y�) ⇣i j �x, y� and (�i � � j) ⌅ ⌅i j =

(�i � � j) 24).
Define the pairwise reductions ⌃⌅i j  �⌃A, ⌃⇣� ⌦⌥ �⌃A, ⌃⇣� of

the Cartesian product as

⌃⌅i j(⌃P) � let �⌃P�
i ,
⌃P�

j� � ⌅i j(�⌃Pi, ⌃Pj�) in ⌃P[i ⌃ ⌃P�
i][ j ⌃ ⌃P�

j]

where ⌃P[i ⌃ x]i = x and ⌃P[i ⌃ x] j = ⌃Pj when i � j.
Following Def. 10.1 and Th. 10.3, d
Define the iterated pairwise reductions ⌃⌅ n, ⌃⌅ ⇥, ⌃⌅ ⇥  �⌃A,
⌃⇣� ⌦⌥ �⌃A, ⌃⇣�, n ⇤ 0 of the Cartesian product for

⌃⌅ � ⇤
i, j  �,
i� j

⌃⌅i j (17)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition

for some arbitrary permutation ⇤ of [1, n]. ✏�
Observe that ⌃⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌃⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌃P  ⌃A : ↵n  N+ : ⌃⌅ ⇧(⌃P) ⌃⇣
⌃⌅ n(⌃P) ⌃⇣ ⌃⌅i j(⌃P) ⌃⇣ ⌃P, i, j  �, i � j and meaning-preserving since ⌃⌅ ⇥(⌃P), ⌃⌅i j(⌃P), ⌃P  [⌃P]/⌃⇧. If,
moreover, � preserves greatest lower bounds then ⌃⌅ ⇧(⌃P)  [⌃P]/⌃⇧. ✏�
PC,RC:TODO: Refaire la preuve

24 We define ( f � g)(�x, y�) � � f (x), g(y)�.
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Let �Ai, ⇣i� be abstract domains with increasing con-
cretization �i  Ai

1⌥L into the concrete domain �L, ⇥�.
For i, j  �, i � j, let ⌅i j  �Ai�Aj, ⇣i j� ⌦⌥ �Ai�Aj, ⇣i j�

be pairwise meaning-preserving reductions (so that ↵�x,
y�  Ai � Aj : ⌅i j(�x, y�) ⇣i j �x, y� and (�i � � j) ⌅ ⌅i j =

(�i � � j) 24).
Define the pairwise reductions ⌃⌅i j  �⌃A, ⌃⇣� ⌦⌥ �⌃A, ⌃⇣� of

the Cartesian product as

⌃⌅i j(⌃P) � let �⌃P�
i ,
⌃P�

j� � ⌅i j(�⌃Pi, ⌃Pj�) in ⌃P[i ⌃ ⌃P�
i][ j ⌃ ⌃P�

j]

where ⌃P[i ⌃ x]i = x and ⌃P[i ⌃ x] j = ⌃Pj when i � j.
Following Def. 10.1 and Th. 10.3, d
Define the iterated pairwise reductions ⌃⌅ n, ⌃⌅ ⇥, ⌃⌅ ⇥  �⌃A,
⌃⇣� ⌦⌥ �⌃A, ⌃⇣�, n ⇤ 0 of the Cartesian product for

⌃⌅ � ⇤
i, j  �,
i� j

⌃⌅i j (17)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition

for some arbitrary permutation ⇤ of [1, n]. ✏�
Observe that ⌃⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌃⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌃P  ⌃A : ↵n  N+ : ⌃⌅ ⇧(⌃P) ⌃⇣
⌃⌅ n(⌃P) ⌃⇣ ⌃⌅i j(⌃P) ⌃⇣ ⌃P, i, j  �, i � j and meaning-preserving since ⌃⌅ ⇥(⌃P), ⌃⌅i j(⌃P), ⌃P  [⌃P]/⌃⇧. If,
moreover, � preserves greatest lower bounds then ⌃⌅ ⇧(⌃P)  [⌃P]/⌃⇧. ✏�
PC,RC:TODO: Refaire la preuve

24 We define ( f � g)(�x, y�) � � f (x), g(y)�.
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Let �Ai, ⇣i� be abstract domains with increasing con-
cretization �i  Ai

1⌥L into the concrete domain �L, ⇥�.
For i, j  �, i � j, let ⌅i j  �Ai�Aj, ⇣i j� ⌦⌥ �Ai�Aj, ⇣i j�

be pairwise meaning-preserving reductions (so that ↵�x,
y�  Ai � Aj : ⌅i j(�x, y�) ⇣i j �x, y� and (�i � � j) ⌅ ⌅i j =

(�i � � j) 24).
Define the pairwise reductions ⌃⌅i j  �⌃A, ⌃⇣� ⌦⌥ �⌃A, ⌃⇣� of

the Cartesian product as

⌃⌅i j(⌃P) � let �⌃P�
i ,
⌃P�

j� � ⌅i j(�⌃Pi, ⌃Pj�) in ⌃P[i ⌃ ⌃P�
i][ j ⌃ ⌃P�

j]

where ⌃P[i ⌃ x]i = x and ⌃P[i ⌃ x] j = ⌃Pj when i � j.
Following Def. 10.1 and Th. 10.3, d
Define the iterated pairwise reductions ⌃⌅ n, ⌃⌅ ⇥, ⌃⌅ ⇥  �⌃A,
⌃⇣� ⌦⌥ �⌃A, ⌃⇣�, n ⇤ 0 of the Cartesian product for

⌃⌅ � ⇤
i, j  �,
i� j

⌃⌅i j (17)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition

for some arbitrary permutation ⇤ of [1, n]. ✏�
Observe that ⌃⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌃⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌃P  ⌃A : ↵n  N+ : ⌃⌅ ⇧(⌃P) ⌃⇣
⌃⌅ n(⌃P) ⌃⇣ ⌃⌅i j(⌃P) ⌃⇣ ⌃P, i, j  �, i � j and meaning-preserving since ⌃⌅ ⇥(⌃P), ⌃⌅i j(⌃P), ⌃P  [⌃P]/⌃⇧. If,
moreover, � preserves greatest lower bounds then ⌃⌅ ⇧(⌃P)  [⌃P]/⌃⇧. ✏�
PC,RC:TODO: Refaire la preuve

24 We define ( f � g)(�x, y�) � � f (x), g(y)�.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Pairwise reduction (cont’d)

51

Invited talk, SAS 2011,Ca’ Foscari, Venezia, Wednesday, September 14th, 2011, 14:00-15:00.                                                                                                                                                © P. Cousot

• The iterated pairwise reduction of the Cartesian 
product is meaning preserving 

Iterated pairwise reduction

52
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If the limit ⌥⇤ � of the iterated reductions is well defined
then the reductions are such that ⌥⌥P ⌃ ⌥A : ⌥n ⌃ N+ :
⌥⇤
⇧(⌥P) ⌥✏ ⌥⇤ n(⌥P) ⌥✏ ⌥⇤i j(⌥P) ⌥✏ ⌥P, i, j ⌃ �, i � j and meaning-

preserving since ⌥⇤ ⇥(⌥P), ⌥⇤i j(⌥P), ⌥P ⌃ [⌥P]/⌥⇥.
If, moreover, � preserves greatest lower bounds then
⌥⇤
⇧(⌥P) ⌃ [⌥P]/⌥⇥. ��

PC,RC:TODO: Refaire la preuve

Proof theorem 10.15. The inequalities ⌥⇤ ⇧(⌥P) ⌥✏ ⌥⇤ ⇥(⌥P) ⌥✏ ⌥⇤i j(⌥P) ⌥✏ ⌥P follow from the obser-
vation that the composition ⌥⇤ of reductions is a reduction and Th. ??. By def. of the quotient
we have ⌥P ⌃ [⌥P]/⌥⇥ so, by def. of the reduced product ⌥�([⌥P]/⌥⇥) = ⌥�(⌥P) = ⌥�(⌥⇤(⌥P)) since ⌥⇤ is
sound proving the reduced product to be sound. It follows, by transfinite induction on the iter-
ates, that ⌥⇥ : ⌥⇤ ⇥(⌥P) = ⌥�([⌥P]/⌥⇥) and so, passing to the limit, that if � preserves lower bounds,
⌥⇤ ⇧(⌥P) = ⌥�([⌥P]/⌥⇥) proving ⌥⇤ ⇧(⌥P), ⌥⇤ ⇥(⌥P), ⌥⇤i j(⌥P), ⌥P ⌃ [⌥P]/⌥⇥ by def. of equivalence classes of ⌥⇥ as
well as soundness since ⌥⇤ is sound.

The following theorem proves that the iterated reduction may not be as precise as the reduced
product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.16. In general ⌥⇤ ⇧(⌥P) may not be a minimal element of the reduced product class
[⌥P]/⌥⇥ (in which case � ⌥Q ⌃ [⌥P]/⌥⇥ : ⌥Q ⌥⇥ ⌥⇤ ⇧(⌥P) ). ��

Proof of theorem 10.16. Let L = ⌃({a, b, c}), A1 = { , {a},⌦}, A2 = { , {a, b},⌦}, A3 =

{ , {a, c},⌦}, and ⌥P = ↵⌦, {a, b}, {a, c}� where ⌦ = {a, b, c}. We have ↵⌦, {a, b}, {a, c}�/⌥⇥ = ↵{a},
{a, b}, {a, c}�. However ⌥⇤⌥i j(↵⌦, {a, b}, {a, c}�) = ↵⌦, {a, b}, {a, c}� for � = {1, 2, 3}, i, j ⌃ �, i � j and
so
⌥⇤ �(↵⌦, {a, b}, {a, c}�) = ↵⌦, {a, b}, {a, c}� proving, for that example, that ⌥⇤ ⇧(↵⌦, {a, b}, {a, c}�) is not
a minimal element of [↵⌦, {a, b}, {a, c}�]/⌥⇥.

Su⇥cient conditions exist for the iterated pairwise reduction to be a total reduction to the reduced
product.

Theorem 10.17. If the ↵Ai, ✏i, �i�, i ⌃ � are complete lattices, the ⌥⇤i j, i, j ⌃ �,

i � j, are lower closure operators, ⌥� is glb-preserving, and ⌥⌥P, ⌥Q :
⇧
⌥�
⇤
⌥P
⌅

⇤ ⌥�
⇤
⌥Q
⌅⌃

⇧⇧
� n � 0 :

⇧
⌥̇⇤

i, j ⌃ �,
i� j

⌥⇤i j

⌃n
(⌥P) ⌥✏ ⌥Q

⌃
then ⌥⌥P : ⌥⇤ ⇧(⌥P) is the minimum of the class ⌥P/⌥⇥. ��

Proof of theorem 10.17. TODO: A faire

10.4. (Reduced) Product Transformers
The transformers fI �x := e⇥, bI �x := e⇥, and pI �⌅⇥ for the (pairwise iterated) reduced product
proceed componentwise and reduce the result. This can be improved in the abstract, as follows.

Lemma 10.18. Let us consider a reduced product ↵��i⌃� Ai
⇥
/⌥⇥, ⌥✏� of abstract domains ↵Ai, ✏i�,

i ⌃ � with concretizations �i ⌃ Ai
1⌅C and sound transformers f̄i�x := t⇥ such that f�x := t⇥�i(P) ⇤

�i(f̄i�x := t⇥P) where f�x := t⇥ ⌃ C 1⌅C is the increasing concrete transformer. The corresponding
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• In general, the iterated pairwise reduction of the 
Cartesian product is not as precise as the reduced 
product

• Sufficient conditions do exist for their equivalence
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Counter-example
•    

•  

•  

•  

•  

•  

•                                                                     is not 
a minimal element of 
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Definition 10.14 (Iterated pairwise reduction). Let ✏Ai, ◆i⇣ be abstract domains with increas-
ing concretization �i  Ai

1⌥L into the concrete domain ✏L, ⇥⇣.
For i, j  �, i � j, let ⌅i j  ✏Ai � Aj, ◆i j⇣ ⌦⌥ ✏Ai � Aj, ◆i j⇣ be pairwise meaning-preserving

reductions (so that ↵✏x, y⇣  Ai � Aj : ⌅i j(✏x, y⇣) ◆i j ✏x, y⇣ and (�i � � j) ⌅ ⌅i j = (�i � � j) 21).
Define the pairwise reductions ⌥⌅i j  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣ of the Cartesian product as

⌥⌅i j(⌥P) � let ✏⌥P�
i ,
⌥P�

j⇣ � ⌅i j(✏⌥Pi, ⌥Pj⇣) in ⌥P[i ⌃ ⌥P�
i][ j ⌃ ⌥P�

j]

where ⌥P[i ⌃ x]i = x and ⌥P[i ⌃ x] j = ⌥Pj when i � j. Following Def. 10.1 and Th. 10.3, define the
iterated pairwise reductions ⌥⌅ n, ⌥⌅ ⇥, ⌥⌅ ⇥  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣, n ⇤ 0 of the Cartesian product for

⌥⌅ � ⇤ i, j  �,
i� j

⌥⌅i j (6)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition for some arbitrary permutation ⇤ of [1, n].

✓⌘
Observe that ⌥⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌥⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌥P  ⌥A : ↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆
⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j and meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧. If,
moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

It the limit ⌥⌅ ⇥ of the iterated reductions is well defined then the iterated reductions ↵⌥P  ⌥A :
↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j are meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P),
⌥P  [⌥P]/⌥⇧. If, moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

✓⌘
PC,RC:TODO: Refaire la preuve

Proof theorem 10.15. The inequalities ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ ⇥(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P follow from the obser-
vation that the composition ⌥⌅ of reductions is a reduction and Th. ??. By def. of the quotient
we have ⌥P  [⌥P]/⌥⇧ so, by def. of the reduced product ⌥�([⌥P]/⌥⇧) = ⌥�(⌥P) = ⌥�(⌥⌅(⌥P)) since ⌥⌅ is
sound proving the reduced product to be sound. It follows, by transfinite induction on the iter-
ates, that ↵⇥ : ⌥⌅ ⇥(⌥P) = ⌥�([⌥P]/⌥⇧) and so, passing to the limit, that if � preserves lower bounds,
⌥⌅ ⇧(⌥P) = ⌥�([⌥P]/⌥⇧) proving ⌥⌅ ⇧(⌥P), ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧ by def. of equivalence classes of ⌥⇧ as
well as soundness since ⌥⌅ is sound.

The following theorem proves that the iterated reduction may not be as precise as the reduced
product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.16. In general ⌥⌅ ⇧(⌥P) may not be a minimal element of the reduced product class
[⌥P]/⌥⇧ (in which case � ⌥Q  [⌥P]/⌥⇧ : ⌥Q ⌥⌅ ⌥⌅ ⇧(⌥P) ). ✓⌘

Proof of theorem 10.16. Let L = ⌃({a, b, c}), A1 = {�, {a},�}, A2 = {�, {a, b},�} et A3 =
{�, {a, c},�} where � = {a, b, c}. We have ✏�, {a, b}, {a, c}⇣/⌥⇧ = ✏{a}, {a, b}, {a, c}⇣. However ⌥⌅⌥i j(✏�,

21 We define ( f � g)(✏x, y⇣) � ✏ f (x), g(y)⇣.
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Definition 10.14 (Iterated pairwise reduction). Let ✏Ai, ◆i⇣ be abstract domains with increas-
ing concretization �i  Ai

1⌥L into the concrete domain ✏L, ⇥⇣.
For i, j  �, i � j, let ⌅i j  ✏Ai � Aj, ◆i j⇣ ⌦⌥ ✏Ai � Aj, ◆i j⇣ be pairwise meaning-preserving

reductions (so that ↵✏x, y⇣  Ai � Aj : ⌅i j(✏x, y⇣) ◆i j ✏x, y⇣ and (�i � � j) ⌅ ⌅i j = (�i � � j) 21).
Define the pairwise reductions ⌥⌅i j  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣ of the Cartesian product as

⌥⌅i j(⌥P) � let ✏⌥P�
i ,
⌥P�

j⇣ � ⌅i j(✏⌥Pi, ⌥Pj⇣) in ⌥P[i ⌃ ⌥P�
i][ j ⌃ ⌥P�

j]

where ⌥P[i ⌃ x]i = x and ⌥P[i ⌃ x] j = ⌥Pj when i � j. Following Def. 10.1 and Th. 10.3, define the
iterated pairwise reductions ⌥⌅ n, ⌥⌅ ⇥, ⌥⌅ ⇥  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣, n ⇤ 0 of the Cartesian product for

⌥⌅ � ⇤ i, j  �,
i� j

⌥⌅i j (6)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition for some arbitrary permutation ⇤ of [1, n].

✓⌘
Observe that ⌥⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌥⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌥P  ⌥A : ↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆
⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j and meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧. If,
moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

It the limit ⌥⌅ ⇥ of the iterated reductions is well defined then the iterated reductions ↵⌥P  ⌥A :
↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j are meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P),
⌥P  [⌥P]/⌥⇧. If, moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

✓⌘
PC,RC:TODO: Refaire la preuve

Proof theorem 10.15. The inequalities ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ ⇥(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P follow from the obser-
vation that the composition ⌥⌅ of reductions is a reduction and Th. ??. By def. of the quotient
we have ⌥P  [⌥P]/⌥⇧ so, by def. of the reduced product ⌥�([⌥P]/⌥⇧) = ⌥�(⌥P) = ⌥�(⌥⌅(⌥P)) since ⌥⌅ is
sound proving the reduced product to be sound. It follows, by transfinite induction on the iter-
ates, that ↵⇥ : ⌥⌅ ⇥(⌥P) = ⌥�([⌥P]/⌥⇧) and so, passing to the limit, that if � preserves lower bounds,
⌥⌅ ⇧(⌥P) = ⌥�([⌥P]/⌥⇧) proving ⌥⌅ ⇧(⌥P), ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧ by def. of equivalence classes of ⌥⇧ as
well as soundness since ⌥⌅ is sound.

The following theorem proves that the iterated reduction may not be as precise as the reduced
product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.16. In general ⌥⌅ ⇧(⌥P) may not be a minimal element of the reduced product class
[⌥P]/⌥⇧ (in which case � ⌥Q  [⌥P]/⌥⇧ : ⌥Q ⌥⌅ ⌥⌅ ⇧(⌥P) ). ✓⌘

Proof of theorem 10.16. Let L = ⌃({a, b, c}), A1 = {�, {a},�}, A2 = {�, {a, b},�} et A3 =
{�, {a, c},�} where � = {a, b, c}. We have ✏�, {a, b}, {a, c}⇣/⌥⇧ = ✏{a}, {a, b}, {a, c}⇣. However ⌥⌅⌥i j(✏�,

21 We define ( f � g)(✏x, y⇣) � ✏ f (x), g(y)⇣.
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Definition 10.14 (Iterated pairwise reduction). Let ✏Ai, ◆i⇣ be abstract domains with increas-
ing concretization �i  Ai

1⌥L into the concrete domain ✏L, ⇥⇣.
For i, j  �, i � j, let ⌅i j  ✏Ai � Aj, ◆i j⇣ ⌦⌥ ✏Ai � Aj, ◆i j⇣ be pairwise meaning-preserving

reductions (so that ↵✏x, y⇣  Ai � Aj : ⌅i j(✏x, y⇣) ◆i j ✏x, y⇣ and (�i � � j) ⌅ ⌅i j = (�i � � j) 21).
Define the pairwise reductions ⌥⌅i j  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣ of the Cartesian product as

⌥⌅i j(⌥P) � let ✏⌥P�
i ,
⌥P�

j⇣ � ⌅i j(✏⌥Pi, ⌥Pj⇣) in ⌥P[i ⌃ ⌥P�
i][ j ⌃ ⌥P�

j]

where ⌥P[i ⌃ x]i = x and ⌥P[i ⌃ x] j = ⌥Pj when i � j. Following Def. 10.1 and Th. 10.3, define the
iterated pairwise reductions ⌥⌅ n, ⌥⌅ ⇥, ⌥⌅ ⇥  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣, n ⇤ 0 of the Cartesian product for

⌥⌅ � ⇤ i, j  �,
i� j

⌥⌅i j (6)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition for some arbitrary permutation ⇤ of [1, n].

✓⌘
Observe that ⌥⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌥⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌥P  ⌥A : ↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆
⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j and meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧. If,
moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

It the limit ⌥⌅ ⇥ of the iterated reductions is well defined then the iterated reductions ↵⌥P  ⌥A :
↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j are meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P),
⌥P  [⌥P]/⌥⇧. If, moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

✓⌘
PC,RC:TODO: Refaire la preuve

Proof theorem 10.15. The inequalities ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ ⇥(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P follow from the obser-
vation that the composition ⌥⌅ of reductions is a reduction and Th. ??. By def. of the quotient
we have ⌥P  [⌥P]/⌥⇧ so, by def. of the reduced product ⌥�([⌥P]/⌥⇧) = ⌥�(⌥P) = ⌥�(⌥⌅(⌥P)) since ⌥⌅ is
sound proving the reduced product to be sound. It follows, by transfinite induction on the iter-
ates, that ↵⇥ : ⌥⌅ ⇥(⌥P) = ⌥�([⌥P]/⌥⇧) and so, passing to the limit, that if � preserves lower bounds,
⌥⌅ ⇧(⌥P) = ⌥�([⌥P]/⌥⇧) proving ⌥⌅ ⇧(⌥P), ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧ by def. of equivalence classes of ⌥⇧ as
well as soundness since ⌥⌅ is sound.

The following theorem proves that the iterated reduction may not be as precise as the reduced
product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.16. In general ⌥⌅ ⇧(⌥P) may not be a minimal element of the reduced product class
[⌥P]/⌥⇧ (in which case � ⌥Q  [⌥P]/⌥⇧ : ⌥Q ⌥⌅ ⌥⌅ ⇧(⌥P) ). ✓⌘

Proof of theorem 10.16. Let L = ⌃({a, b, c}), A1 = {�, {a},�}, A2 = {�, {a, b},�} et A3 =
{�, {a, c},�} where � = {a, b, c}. We have ✏�, {a, b}, {a, c}⇣/⌥⇧ = ✏{a}, {a, b}, {a, c}⇣. However ⌥⌅⌥i j(✏�,

21 We define ( f � g)(✏x, y⇣) � ✏ f (x), g(y)⇣.
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Definition 10.14 (Iterated pairwise reduction). Let ✏Ai, ◆i⇣ be abstract domains with increas-
ing concretization �i  Ai

1⌥L into the concrete domain ✏L, ⇥⇣.
For i, j  �, i � j, let ⌅i j  ✏Ai � Aj, ◆i j⇣ ⌦⌥ ✏Ai � Aj, ◆i j⇣ be pairwise meaning-preserving

reductions (so that ↵✏x, y⇣  Ai � Aj : ⌅i j(✏x, y⇣) ◆i j ✏x, y⇣ and (�i � � j) ⌅ ⌅i j = (�i � � j) 21).
Define the pairwise reductions ⌥⌅i j  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣ of the Cartesian product as

⌥⌅i j(⌥P) � let ✏⌥P�
i ,
⌥P�

j⇣ � ⌅i j(✏⌥Pi, ⌥Pj⇣) in ⌥P[i ⌃ ⌥P�
i][ j ⌃ ⌥P�

j]

where ⌥P[i ⌃ x]i = x and ⌥P[i ⌃ x] j = ⌥Pj when i � j. Following Def. 10.1 and Th. 10.3, define the
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⌅ . . . ⌅ f⇤n is the function composition for some arbitrary permutation ⇤ of [1, n].

✓⌘
Observe that ⌥⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌥⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌥P  ⌥A : ↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆
⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j and meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧. If,
moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

It the limit ⌥⌅ ⇥ of the iterated reductions is well defined then the iterated reductions ↵⌥P  ⌥A :
↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j are meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P),
⌥P  [⌥P]/⌥⇧. If, moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.
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Proof theorem 10.15. The inequalities ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ ⇥(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P follow from the obser-
vation that the composition ⌥⌅ of reductions is a reduction and Th. ??. By def. of the quotient
we have ⌥P  [⌥P]/⌥⇧ so, by def. of the reduced product ⌥�([⌥P]/⌥⇧) = ⌥�(⌥P) = ⌥�(⌥⌅(⌥P)) since ⌥⌅ is
sound proving the reduced product to be sound. It follows, by transfinite induction on the iter-
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⌥⌅ ⇧(⌥P) = ⌥�([⌥P]/⌥⇧) proving ⌥⌅ ⇧(⌥P), ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧ by def. of equivalence classes of ⌥⇧ as
well as soundness since ⌥⌅ is sound.

The following theorem proves that the iterated reduction may not be as precise as the reduced
product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.16. In general ⌥⌅ ⇧(⌥P) may not be a minimal element of the reduced product class
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product, a fact underestimated in the literature. It is nevertheless easier to implement.

Theorem 10.16. In general ⌥⌅ ⇧(⌥P) may not be a minimal element of the reduced product class
[⌥P]/⌥⇧ (in which case � ⌥Q  [⌥P]/⌥⇧ : ⌥Q ⌥⌅ ⌥⌅ ⇧(⌥P) ). ✓⌘

Proof of theorem 10.16. Let L = ⌃({a, b, c}), A1 = {�, {a},�}, A2 = {�, {a, b},�} and
A3 = {�, {a, c},�} where � = {a, b, c}. We have ✏�, {a, b}, {a, c}⇣/⌥⇧ = ✏{a}, {a, b}, {a, c}⇣. However
⌥⌅⌥i j(✏�, {a, b}, {a, c}⇣) = ✏�, {a, b}, {a, c}⇣ for � = {1, 2, 3}, i, j  �, i � j and so ⌥⌅ ⇥(✏�, {a, b},

21 We define ( f � g)(✏x, y⇣) � ✏ f (x), g(y)⇣.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Theories, Solvers and Abstract Interpretation A:33

Definition 10.14 (Iterated pairwise reduction). Let ✏Ai, ◆i⇣ be abstract domains with increas-
ing concretization �i  Ai

1⌥L into the concrete domain ✏L, ⇥⇣.
For i, j  �, i � j, let ⌅i j  ✏Ai � Aj, ◆i j⇣ ⌦⌥ ✏Ai � Aj, ◆i j⇣ be pairwise meaning-preserving

reductions (so that ↵✏x, y⇣  Ai � Aj : ⌅i j(✏x, y⇣) ◆i j ✏x, y⇣ and (�i � � j) ⌅ ⌅i j = (�i � � j) 21).
Define the pairwise reductions ⌥⌅i j  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣ of the Cartesian product as

⌥⌅i j(⌥P) � let ✏⌥P�
i ,
⌥P�

j⇣ � ⌅i j(✏⌥Pi, ⌥Pj⇣) in ⌥P[i ⌃ ⌥P�
i][ j ⌃ ⌥P�

j]

where ⌥P[i ⌃ x]i = x and ⌥P[i ⌃ x] j = ⌥Pj when i � j. Following Def. 10.1 and Th. 10.3, define the
iterated pairwise reductions ⌥⌅ n, ⌥⌅ ⇥, ⌥⌅ ⇥  ✏⌥A, ⌥◆⇣ ⌦⌥ ✏⌥A, ⌥◆⇣, n ⇤ 0 of the Cartesian product for

⌥⌅ � ⇤ i, j  �,
i� j

⌥⌅i j (6)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition for some arbitrary permutation ⇤ of [1, n].

✓⌘
Observe that ⌥⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous

Theorem 10.15. Assume in definition 10.14 that the limit ⌥⌅ ⇥ of the iterated reductions is well
defined (in the sense of Def. 10.1). Then the reductions are such that ↵⌥P  ⌥A : ↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆
⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j and meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P), ⌥P  [⌥P]/⌥⇧. If,
moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

It the limit ⌥⌅ ⇥ of the iterated reductions is well defined then the iterated reductions ↵⌥P  ⌥A :
↵n  N : ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ n(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P, i, j  �, i � j are meaning-preserving since ⌥⌅ ⇥(⌥P), ⌥⌅i j(⌥P),
⌥P  [⌥P]/⌥⇧. If, moreover, � preserves lower bounds then ⌥⌅ ⇧(⌥P)  [⌥P]/⌥⇧.

✓⌘
PC,RC:TODO: Refaire la preuve

Proof theorem 10.15. The inequalities ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ ⇥(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P follow from the obser-
vation that the composition ⌥⌅ of reductions is a reduction and Th. ??. By def. of the quotient
we have ⌥P  [⌥P]/⌥⇧ so, by def. of the reduced product ⌥�([⌥P]/⌥⇧) = ⌥�(⌥P) = ⌥�(⌥⌅(⌥P)) since ⌥⌅ is
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The following theorem proves that the iterated reduction may not be as precise as the reduced
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⌥⌅ � ⇤ i, j  �,
i� j

⌥⌅i j (6)

where
n
⇤
i=1

fi � f⇤1
⌅ . . . ⌅ f⇤n is the function composition for some arbitrary permutation ⇤ of [1, n].

✓⌘
Observe that ⌥⌅ is the composition of meaning-preserving reductions and so is a meaning-preserving
reduction so theorems 10.2, 10.3, and 10.11 do apply to get over-approximations of the reduced
product.

PC,RC:TODO: Relire ci-dessous
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✓⌘
PC,RC:TODO: Refaire la preuve

Proof theorem 10.15. The inequalities ⌥⌅ ⇧(⌥P) ⌥◆ ⌥⌅ ⇥(⌥P) ⌥◆ ⌥⌅i j(⌥P) ⌥◆ ⌥P follow from the obser-
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Proof of theorem 10.16. Let L = ⌃({a, b, c}), A1 = {�, {a},�}, A2 = {�, {a, b},�} and
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21 We define ( f � g)(✏x, y⇣) � ✏ f (x), g(y)⇣.
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⇧⇥ �(↵⌦, {a, b}, {a, c}�) = ↵⌦, {a, b}, {a, c}� proving, for that example, that ⇧⇥ ⌅(⇧P) is not a minimal
element of [⇧P]/⇧⇥.

Su⇥cient conditions exist for the iterated pairwise reduction to be a total reduction to the reduced
product.

Theorem 10.17. If the ↵Ai, ✏i, �i�, i ⌥ � are complete lattices, the ⇧⇥i j, i, j ⌥ �,

i � j, are lower closure operators, ⇧� is glb-preserving, and �⇧P, ⇧Q :
⇧
⇧�
⇤
⇧P
⌅
⇤ ⇧�

⇤
⇧Q
⌅⌃

⌃⇧
 n � 0 :

⇧
⇧̇⇧

i, j ⌥ �,
i� j

⇧⇥i j

⌃n
(⇧P) ⇧✏ ⇧Q

⌃
then �⇧P : ⇧⇥ ⌅(⇧P) is the minimum of the class ⇧P/⇧⇥. ��

Proof of theorem 10.17. TODO: A faire

10.4. (Reduced) Product Transformers
The transformers fI ⇤x := e⌅, bI ⇤x := e⌅, and pI ⇤⇤⌅ for the (pairwise iterated) reduced product
proceed componentwise and reduce the result. This can be improved in the abstract, as follows.

Lemma 10.18. Let us consider a reduced product ↵�⇣i⌥� Ai
⇥
/⇧⇥, ⇧✏� of abstract domains ↵Ai, ✏i�,

i ⌥ � with concretizations �i ⌥ Ai
1⇧C and sound transformers f̄i⇤x := t⌅ such that f⇤x := t⌅�i(P) ⇤

�i(f̄i⇤x := t⌅P) where f⇤x := t⌅ ⌥ C 1⇧C is the increasing concrete transformer. The corresponding
transformer of a property ⇧P ⌥⇣i⌥� Ai in the product is the reduction

⇤
⇣

i⌥� f̄i⇤x := t⌅(⇧Pi)
⌅
/⇧⇥ of the

componentwise transformation. This is sound since ⇧�
⇤⇤
⇣

i⌥� f̄i⇤x := t⌅(⇧Pi)
⌅

/⇧⇥

⌅
= f⇤x := t⌅(⇧�(⇧P))

and similarly for other transformers. ��
Proof of lemma 10.18.

⇧�

⌥
↵↵↵↵↵ 

⌥
↵↵↵↵↵ 
⌘

i⌥�
f̄i⇤x := t⌅(⇧Pi)

�
�����⌦ /⇧⇥

�
�����⌦

= ⇧�

⌥
↵↵↵↵↵ 
⌘

i⌥�
f̄i⇤x := t⌅(⇧Pi)

�
�����⌦ �def. reduced product⇥

=
�

i⌥�
�i(f̄i⇤x := t⌅(⇧Pi)) �def. ⇧�⇥

⌅
�

i⌥�
f⇤x := t⌅(�i(⇧Pi)) �soundness of the f̄i⇤x := t⌅⇥

⌅ f⇤x := t⌅
⌥
↵↵↵↵↵ 
�

i⌥�
�i(⇧Pi)

�
�����⌦ �f⇤x := t⌅ increasing⇥

= f⇤x := t⌅(⇧�(⇧P)) �def. ⇧� .⇥

However this definition of the product transformer is not modular since it must be entirely re-
designed when adding a new abstract domain to the product. Notice however, that abstract trans-
formers themselves are elements of a reduced product, by defining their concretization as

Lemma 10.19. ⇧�
⇤
⇣

i⌥� f̄i⇤x := t⌅(⇧Pi)
⌅
= ⇧̇�

⇤
⇣

i⌥� f̄i⇤x := t⌅
⌅

(⇧P). ��
Proof of lemma 10.19.

⇧�

⌥
↵↵↵↵↵ 
⌘

i⌥�
f̄i⇤x := t⌅(⇧Pi)

�
�����⌦
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However this definition of the product transformer is not modular since it must be entirely re-
designed when adding a new abstract domain to the product. Notice however, that abstract trans-
formers themselves are elements of a reduced product, by defining their concretization as

Lemma 10.19. ⇧�
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exchanging equalities and disequalities

• Example:

• Purify: introduce auxiliary variables to separate 
alien terms and put in conjunctive form
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Example 11.3. Let ⇥ � (x = a ⇤ x = b) ⇥ f(x) � f(a) ⇥ f(x) � f(b) 22. The purification yields
⇥ � ⇥1 ⇥ ⇥2 where ⇥1 � (x = a ⇤ x = b) ⇥ y = a ⇥ z = b and ⇥2 � f(x) � f(y) ⇥ f(x) � f(z). We
have E12 � (x = y) ⇤ (x = z) and E21 � (x � y) ⇥ (x � z) so that ⇤� � (⇥) = ff. ⇧⌅
Observe that the result of the iterated pairwise reduction may not be as precise as the reduced
product.

Example 11.4. A classical example showing that the Nelson-Oppen reduction may not be as
precise as the reduced product is given by [Tinelli and Harandi 1996, p. 11] where ⇥1 � f(x) � f(y)
in the theory of Booleans admitting models of cardinality at most 2 and ⇥2 � g(x) � g(z) ⇥ g(y) �
g(z) in a disjoint theory admitting models of any cardinality so that ⇥ = ⇥1 ⇥ ⇥2 is purified. The
reduction yields ⇥⇥x � y⇥x � z⇥y⇥z and not ff since the cardinality information is not propagated
whereas it would be propagated by the reduced product which is defined at the interpretation level.
Therefore the pairwise reduction ought to be refined to include cardinality information, as proposed
by [Tinelli and Zarba 2005]. ⇧⌅

11.2.3. Formula Reduction and the Reduced Product. A formula over a set of theories is equivalent
to its purification, so that to find an invariant or to check that a formula is invariant, we could first
purify it and then proceed with the computation of the transformer of the program. This would
lead to the same result as simply using one mixed formula if the reduction is total at each step of
the computation. Such a process would be unnecessarily expensive if decision procedures could
handle arbitrary formulæ. But this is not the case actually: most of the time, they cannot deal with
quantifiers, and assignments introduce existential quantifiers which have to be approximated. Such
approximations have to be redesigned for each set of formulæ. Using a reduced product of formulæ
on base theories allows reusing the approximations on each theory (as in [Gulwani and Tiwari 2006],
even if the authors didn’t recognize the reduced product). In that way, a reduced product of logical
abstract domains will provide a modular approach to invariant proofs.

11.3. Formula Satisfiability
After purification and reduction, the Nelson-Oppen combination procedure [Nelson and Oppen
1979] includes a decision phase to decide satisfiability of the formula by testing the satisfiability
of its purified components. This phase can also be performed during the program static analysis
since an unsatisfiability result means unreachability encoded by ff. The satisfiability decision can
also be used as an approximation to check for a postfixpoint and that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination procedure
[Nelson and Oppen 1979] but Shostak combination procedure [Shostak 1984a; Shankar and Rueß
2002a] can be handled in exactly the same way. The idea of iterated reduction also applies to theo-
rem proving [McIlraith and Amir 2001].

12. REDUCED PRODUCT OF LOGICAL AND ALGEBRAIC ABSTRACT DOMAINS
12.1. Combining Logical and Algebraic Abstract Domains
Static analyzers such as Astrée [Bertrane et al. 2010; Cousot et al. 2005] and Clousot [Ferrara
et al. 2008] are based on an iterated pairwise reduction of a product of abstract domains over-
approximating their reduced product [Cousot et al. 2008]. Since logical abstract domains as com-
bined by the Nelson-Oppen combination procedure are indeed an iterated pairwise reduction of
a product of abstract domains over-approximating their reduced product, as shown in Sect. 11.2,
the design of abstract interpreters based on an approximation of the reduced product can use both
logical and algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that the reduction
mechanism can be implemented once for all while the addition of a new abstract domain to improve

22where a, b and f are in di�erent theories
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a product of abstract domains over-approximating their reduced product, as shown in Sect. 11.2,
the design of abstract interpreters based on an approximation of the reduced product can use both
logical and algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that the reduction
mechanism can be implemented once for all while the addition of a new abstract domain to improve
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Example 11.3. Let ⇥ � (x = a ⇤ x = b) ⇥ f(x) � f(a) ⇥ f(x) � f(b) 22. The purification yields
⇥ � ⇥1 ⇥ ⇥2 where ⇥1 � (x = a ⇤ x = b) ⇥ y = a ⇥ z = b and ⇥2 � f(x) � f(y) ⇥ f(x) � f(z). We
have E12 � (x = y) ⇤ (x = z) and E21 � (x � y) ⇥ (x � z) so that ⇤� � (⇥) = ff. ⇧⌅
Observe that the result of the iterated pairwise reduction may not be as precise as the reduced
product.

Example 11.4. A classical example showing that the Nelson-Oppen reduction may not be as
precise as the reduced product is given by [Tinelli and Harandi 1996, p. 11] where ⇥1 � f(x) � f(y)
in the theory of Booleans admitting models of cardinality at most 2 and ⇥2 � g(x) � g(z) ⇥ g(y) �
g(z) in a disjoint theory admitting models of any cardinality so that ⇥ = ⇥1 ⇥ ⇥2 is purified. The
reduction yields ⇥⇥x � y⇥x � z⇥y⇥z and not ff since the cardinality information is not propagated
whereas it would be propagated by the reduced product which is defined at the interpretation level.
Therefore the pairwise reduction ought to be refined to include cardinality information, as proposed
by [Tinelli and Zarba 2005]. ⇧⌅

11.2.3. Formula Reduction and the Reduced Product. A formula over a set of theories is equivalent
to its purification, so that to find an invariant or to check that a formula is invariant, we could first
purify it and then proceed with the computation of the transformer of the program. This would
lead to the same result as simply using one mixed formula if the reduction is total at each step of
the computation. Such a process would be unnecessarily expensive if decision procedures could
handle arbitrary formulæ. But this is not the case actually: most of the time, they cannot deal with
quantifiers, and assignments introduce existential quantifiers which have to be approximated. Such
approximations have to be redesigned for each set of formulæ. Using a reduced product of formulæ
on base theories allows reusing the approximations on each theory (as in [Gulwani and Tiwari 2006],
even if the authors didn’t recognize the reduced product). In that way, a reduced product of logical
abstract domains will provide a modular approach to invariant proofs.

11.3. Formula Satisfiability
After purification and reduction, the Nelson-Oppen combination procedure [Nelson and Oppen
1979] includes a decision phase to decide satisfiability of the formula by testing the satisfiability
of its purified components. This phase can also be performed during the program static analysis
since an unsatisfiability result means unreachability encoded by ff. The satisfiability decision can
also be used as an approximation to check for a postfixpoint and that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination procedure
[Nelson and Oppen 1979] but Shostak combination procedure [Shostak 1984a; Shankar and Rueß
2002a] can be handled in exactly the same way. The idea of iterated reduction also applies to theo-
rem proving [McIlraith and Amir 2001].
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After purification, the components of the observational cartesian product are not yet the most
precise ones.

11.2. Formula Reduction
11.2.1. Formula Reduction in the Nelson-Oppen Theory Combination Procedure. After purification,

the Nelson-Oppen combination procedure [Nelson and Oppen 1979] includes a reduction phase
where all variable equalities x = y and inequalities x � y deducible from one component ⌅i in
its theory Ti are propagated to all components ⌅ j (in practice only to those components ⌅ j where
the information is useful, that is those ⌅ j, including ⌅i, sharing free variables x and y with ⌅i).
The decision procedure for Ti is used to determine all possible disjunctions of conjunctions of
(in)equalities that are implied by ⌅i. These are determined by exhaustively trying all possibilities in
the nondeterministic version of the procedure or by an incremental construction in the deterministic
version, which is more e⇤cient for convex theories [Tinelli and Harandi 1996]. The reduction is
iterated until no new disjunction of (in)equalities is found.

11.2.2. The Nelson-Oppen Reduction as an Iterated Fixpoint Reduction of the Product. Let 1S �⇤ �s, s�
⇧⇧⇧ s  S
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Example 11.3. Let ⇥ � (x = a ⇤ x = b) ⇥ f(x) � f(a) ⇥ f(x) � f(b) 22. The purification yields
⇥ � ⇥1 ⇥ ⇥2 where ⇥1 � (x = a ⇤ x = b) ⇥ y = a ⇥ z = b and ⇥2 � f(x) � f(y) ⇥ f(x) � f(z). We
have E12 � (x = y) ⇤ (x = z) and E21 � (x � y) ⇥ (x � z) so that ⇤� � (⇥) = ff. ⇧⌅
Observe that the result of the iterated pairwise reduction may not be as precise as the reduced
product.

Example 11.4. A classical example showing that the Nelson-Oppen reduction may not be as
precise as the reduced product is given by [Tinelli and Harandi 1996, p. 11] where ⇥1 � f(x) � f(y)
in the theory of Booleans admitting models of cardinality at most 2 and ⇥2 � g(x) � g(z) ⇥ g(y) �
g(z) in a disjoint theory admitting models of any cardinality so that ⇥ = ⇥1 ⇥ ⇥2 is purified. The
reduction yields ⇥⇥x � y⇥x � z⇥y⇥z and not ff since the cardinality information is not propagated
whereas it would be propagated by the reduced product which is defined at the interpretation level.
Therefore the pairwise reduction ought to be refined to include cardinality information, as proposed
by [Tinelli and Zarba 2005]. ⇧⌅

11.2.3. Formula Reduction and the Reduced Product. A formula over a set of theories is equivalent
to its purification, so that to find an invariant or to check that a formula is invariant, we could first
purify it and then proceed with the computation of the transformer of the program. This would
lead to the same result as simply using one mixed formula if the reduction is total at each step of
the computation. Such a process would be unnecessarily expensive if decision procedures could
handle arbitrary formulæ. But this is not the case actually: most of the time, they cannot deal with
quantifiers, and assignments introduce existential quantifiers which have to be approximated. Such
approximations have to be redesigned for each set of formulæ. Using a reduced product of formulæ
on base theories allows reusing the approximations on each theory (as in [Gulwani and Tiwari 2006],
even if the authors didn’t recognize the reduced product). In that way, a reduced product of logical
abstract domains will provide a modular approach to invariant proofs.

11.3. Formula Satisfiability
After purification and reduction, the Nelson-Oppen combination procedure [Nelson and Oppen
1979] includes a decision phase to decide satisfiability of the formula by testing the satisfiability
of its purified components. This phase can also be performed during the program static analysis
since an unsatisfiability result means unreachability encoded by ff. The satisfiability decision can
also be used as an approximation to check for a postfixpoint and that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination procedure
[Nelson and Oppen 1979] but Shostak combination procedure [Shostak 1984a; Shankar and Rueß
2002a] can be handled in exactly the same way. The idea of iterated reduction also applies to theo-
rem proving [McIlraith and Amir 2001].

12. REDUCED PRODUCT OF LOGICAL AND ALGEBRAIC ABSTRACT DOMAINS
12.1. Combining Logical and Algebraic Abstract Domains
Static analyzers such as Astrée [Bertrane et al. 2010; Cousot et al. 2005] and Clousot [Ferrara
et al. 2008] are based on an iterated pairwise reduction of a product of abstract domains over-
approximating their reduced product [Cousot et al. 2008]. Since logical abstract domains as com-
bined by the Nelson-Oppen combination procedure are indeed an iterated pairwise reduction of
a product of abstract domains over-approximating their reduced product, as shown in Sect. 11.2,
the design of abstract interpreters based on an approximation of the reduced product can use both
logical and algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that the reduction
mechanism can be implemented once for all while the addition of a new abstract domain to improve

22where a, b and f are in di�erent theories
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After purification, the components of the observational cartesian product are not yet the most
precise ones.
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Example 11.3. Let ⇥ � (x = a ⇤ x = b) ⇥ f(x) � f(a) ⇥ f(x) � f(b) 22. The purification yields
⇥ � ⇥1 ⇥ ⇥2 where ⇥1 � (x = a ⇤ x = b) ⇥ y = a ⇥ z = b and ⇥2 � f(x) � f(y) ⇥ f(x) � f(z). We
have E12 � (x = y) ⇤ (x = z) and E21 � (x � y) ⇥ (x � z) so that ⇤� � (⇥) = ff. ⇧⌅
Observe that the result of the iterated pairwise reduction may not be as precise as the reduced
product.

Example 11.4. A classical example showing that the Nelson-Oppen reduction may not be as
precise as the reduced product is given by [Tinelli and Harandi 1996, p. 11] where ⇥1 � f(x) � f(y)
in the theory of Booleans admitting models of cardinality at most 2 and ⇥2 � g(x) � g(z) ⇥ g(y) �
g(z) in a disjoint theory admitting models of any cardinality so that ⇥ = ⇥1 ⇥ ⇥2 is purified. The
reduction yields ⇥⇥x � y⇥x � z⇥y⇥z and not ff since the cardinality information is not propagated
whereas it would be propagated by the reduced product which is defined at the interpretation level.
Therefore the pairwise reduction ought to be refined to include cardinality information, as proposed
by [Tinelli and Zarba 2005]. ⇧⌅

11.2.3. Formula Reduction and the Reduced Product. A formula over a set of theories is equivalent
to its purification, so that to find an invariant or to check that a formula is invariant, we could first
purify it and then proceed with the computation of the transformer of the program. This would
lead to the same result as simply using one mixed formula if the reduction is total at each step of
the computation. Such a process would be unnecessarily expensive if decision procedures could
handle arbitrary formulæ. But this is not the case actually: most of the time, they cannot deal with
quantifiers, and assignments introduce existential quantifiers which have to be approximated. Such
approximations have to be redesigned for each set of formulæ. Using a reduced product of formulæ
on base theories allows reusing the approximations on each theory (as in [Gulwani and Tiwari 2006],
even if the authors didn’t recognize the reduced product). In that way, a reduced product of logical
abstract domains will provide a modular approach to invariant proofs.

11.3. Formula Satisfiability
After purification and reduction, the Nelson-Oppen combination procedure [Nelson and Oppen
1979] includes a decision phase to decide satisfiability of the formula by testing the satisfiability
of its purified components. This phase can also be performed during the program static analysis
since an unsatisfiability result means unreachability encoded by ff. The satisfiability decision can
also be used as an approximation to check for a postfixpoint and that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination procedure
[Nelson and Oppen 1979] but Shostak combination procedure [Shostak 1984a; Shankar and Rueß
2002a] can be handled in exactly the same way. The idea of iterated reduction also applies to theo-
rem proving [McIlraith and Amir 2001].

12. REDUCED PRODUCT OF LOGICAL AND ALGEBRAIC ABSTRACT DOMAINS
12.1. Combining Logical and Algebraic Abstract Domains
Static analyzers such as Astrée [Bertrane et al. 2010; Cousot et al. 2005] and Clousot [Ferrara
et al. 2008] are based on an iterated pairwise reduction of a product of abstract domains over-
approximating their reduced product [Cousot et al. 2008]. Since logical abstract domains as com-
bined by the Nelson-Oppen combination procedure are indeed an iterated pairwise reduction of
a product of abstract domains over-approximating their reduced product, as shown in Sect. 11.2,
the design of abstract interpreters based on an approximation of the reduced product can use both
logical and algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that the reduction
mechanism can be implemented once for all while the addition of a new abstract domain to improve
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The Nelson-Oppen combination procedure

• Terminates (finitely many possible (dis)equalities)

• Is sound (meaning-preserving)

• Is complete (always succeeds if formula is satisfiable)

• Similar techniques are used in theorem provers

58

Under appropriate hypotheses (disjointness of the 
theory signatures, stably-infiniteness/shininess, 
convexity to avoid disjunctions, etc), the Nelson-
Oppen procedure:
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Is completeness of the Nelson-Oppen procedure needed?

• Yes, if you want to win the SMT-COMP competition (*)

• No, for program static analysis/verification

• Verification is undecidable anyway so requiring 
completeness is useless. 

• Therefore these hypotheses (disjointness of the 
theory signatures, stably-infiniteness/shininess, 
convexity, etc) can be lifted, the procedure is then 
sound and incomplete.  

• No change to SMT solvers is needed.

59

(*) congratulations to Z3 for SMT-COMP 2011, http://www.smtexec.org/exec/?jobs=856 
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The Nelson-Oppen 
procedure is an iterated 

pairwise reduced 
product
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Observables in Abstract Interpretation

61

• (Relational) abstractions of values (v1,...,vn) of 
program variables (x1,...,xn) is often too imprecise.

• An observable is specified as the value of a function f 
of the values (v1,...,vn) of the program variables 
(x1,...,xn) assigned to a fresh auxiliary variable xo 

(with a precise abstraction of f)

xo ==  f(v1,...,vn)

Example : when analyzing quaternions (a,b,c,d) we 
need to observe the evolution of √a2+b2+c2+d2 
during execution to get a precise analysis of the 
normalization
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Purification = Observables in A.I.

62

• The purification phase consists in introducing new 
observables

• The program can be purified by introducing auxiliary 
assignments of pure sub-expressions so that forward/
backward transformers of purified formulæ always 
yield purified formulæ

• Example (f and a,b are in different theories):
     y = f(x) == f(a+1) & f(x) == f(2*b)
becomes
     z=a+1; t=2*b; y = f(x) == f(z) & f(x) = f(t)
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Reduction
• The transfer of a (disjunction of) conjunctions of 

variable (dis-)equalities is a pairwise iterated 
reduction

• This can be incomplete when the signatures are not 
disjoint

63
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Static analysis combining 
logical and algebraic 

abstractions

64



Invited talk, SAS 2011,Ca’ Foscari, Venezia, Wednesday, September 14th, 2011, 14:00-15:00.                                                                                                                                                © P. Cousot

Reduced product of logical and algebraic domains

65

• When checking satisfiability of φ1 ∧  φ2 ∧ ... ∧  φn, the 
Nelson-Oppen procedure generates (dis)-equalities that 
can be propagated by ρ  la to reduce the Pi, i=1,...,m, or

• αi(φ1 ∧  φ2 ∧ ... ∧  φn) can be propagated by ρ  la to 
reduce the Pi, i=1,...,m

• The purification to theory Ti   of !i(Pi) can be propagated 
to φi by ρ  al in order to reduce it to φi ∧ !i(Pi) (in Ti   )

A1 A2 Am

... ...
T1 T2 Tn

Logical theories Algebraic domains

P1 P2 Pmφ1 φ2 φn

ρaρl ρ  al ρ  la
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Advantages
• No need for completeness hypotheses on theories

• Bidirectional reduction between logical and algebraic 
abstractions

• No need for end-users to provide inductive 
invariants (discovered by static analysis)(*)

• Easy interaction with end-user (through logical 
formulæ)

• Easy introduction of new abstractions on either side⟹ Extensible expressive static analyzers / verifiers

66

(*) may need occasionally to be strengthened by the end-user
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Future work
• Still at a conceptual stage

• More experimental work on a prototype is needed 
to validate the concept

67
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Conclusion
• Future convergence between logic-based proof-

theoretic deductive methods using SMT solvers/
theorem provers and algebraic methods using 
abstract interpretation for infinite-state systems?

• Expressiveness is important

• Efficiency is decisive

• Reproducibility is crucial
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The End
Thank You
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