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Peter’s Incorrectness Logic

• In POPL 2020, Peter O’Hearn introduced the nonconformist idea of an 
incorrectness logic

• Is it?
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Incorrectness Logic
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Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.
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1 INTRODUCTION

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask “will the program crash
if we give it a large string?”, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for finding bugs in software.

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on specifications of the form

{pre-condition}code{post-condition}

which say that the post-condition over-approximates (describes a superset of) the states reachable
upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a specification form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the final states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a different but equivalent definition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that “testing can be quite effective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,” and he made this remark while arguing for the
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Peter’s Incorrectness Logic

• And he moderately enjoyed other approaches to incorrectness
• Such as ``necessary preconditions’’

• That he do

10:28 Peter W. O’Hearn

I call under-approximate triples, and I was amazed to see that they had almost the same rules for
triples with ok conclusions. This coincidence suggests that the rules are natural or perhaps even
inevitable. They do not include error specs or make the connection to proving the presence of bugs,
the main topic of the present paper. But, I acknowledge the priority of de Vries and Koutavas in
their discovery of the under-approximate triple.
I also acknowledge that many if not all the rules for triples with ok post-assertions can be

obtained via compilation into dynamic logic; see Section 5.3.
There has been important related research on test-case generation by symbolic execution, as

in the pioneering work of King [1976]. This whole area (see Cadar and Sen [2013] for a survey)
provided inspiration for the current article. We were particularly motivated by compositional
methods for symbolic execution [Godefroid 2007], which shows cases where under-approximate
summaries can be computed in a way that helps the reasoning to scale to larger programs.

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for
a program is a predicate which, whenever falsified, leads to divergence or an error, but never to
successful termination. If p is a necessary pre-condition, then ¬p need not be a presumption which
leads to an error in incorrectness logic, because the possibility of divergence from a necessary pre-
condition leads to false positives. Additionally, when [presumption]C[er: result] holds it can be that
C delivers successful states as well as erroneous ones when starting from the presumption. Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()),
but where perfectly fine presumptions exist for incorrectness logic.
Another related work is on the Thresher tool [Blackshear et al. 2013], which includes a proof

system for refuting spurious counterexamples. They have a reversed rule of consequence but their
post-assertions do not under-approximate, allowing for unreachable states. Where our triple is
defined by under-approximating the strongest postcondition, theirs can be thought of as over-
approximating the weakest possible precondition wpp (C )q, which describes the states that can
possibly lead to q (i.e., ⟨C⟩q) in dynamic logic) . Thresher makes use of the capability of enlarging
the pre-assertion, by dropping conjuncts in a bid to over-approximate a loop going backwards, and
it may be that such a facility could prove useful for incorrectness logic as well.
Another backwards transformer, the weakest liberal preconditon wlp (C )q (‘liberal’ allowing

for divergence), can be used to characterize Hoare’s triple: p ⊆ wlp (C )q and post (C )p ⊆ q give
equivalent characterizations of {p}C{q}. Curiously, flipping the subset relation gives two inequiva-
lent notions, p ⊇ wlp (C )q and post (C )p ⊇ q. Replacingwlp with the weakest possible preconditon
wpp (C )q leads to a relationship p ⊇ wpp (C )q which is as in Thresher and in necessary precondi-
tions, the difference being that in Thresher q describes error states where Cousot et al. [2013] use
q to describe success states. I am grateful to Benno Stein for discussions on Thresher, necessary
preconditions, andwpp.

8 CONCLUSION AND OPEN PROBLEMS

Techniques for reasoning about program correctness have been extensively developed. Turing
[1949], used logical assertions to reason about a particular program. and in the 1960s Floyd [1967]
and Hoare [1969] created systematic methods for reasoning about classes of programs. In all these
cases the assertions were arranged to over-approximate the reachable program states. Further
developments in verification, including temporal logic [Pnueli 1981] and separation logic [O’Hearn
2019; Reynolds 2002], have expanded the techniques available for proving absence of errors.

In this paper we have suggested that reasoning about program incorrectness (or, the presence of
bugs) can be placed on a logical footing, related to but different from the well developed foundations
for showing correctness (or, the absence of bugs). Each form of reasoning is as fundamental as the
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• And he moderately enjoyed other approaches to incorrectness
• Such as ``necessary preconditions’’

• But he doesn’t really like it!
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leads to an error in incorrectness logic, because the possibility of divergence from a necessary pre-
condition leads to false positives. Additionally, when [presumption]C[er: result] holds it can be that
C delivers successful states as well as erroneous ones when starting from the presumption. Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()),
but where perfectly fine presumptions exist for incorrectness logic.
Another related work is on the Thresher tool [Blackshear et al. 2013], which includes a proof
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possibly lead to q (i.e., ⟨C⟩q) in dynamic logic) . Thresher makes use of the capability of enlarging
the pre-assertion, by dropping conjuncts in a bid to over-approximate a loop going backwards, and
it may be that such a facility could prove useful for incorrectness logic as well.
Another backwards transformer, the weakest liberal preconditon wlp (C )q (‘liberal’ allowing

for divergence), can be used to characterize Hoare’s triple: p ⊆ wlp (C )q and post (C )p ⊆ q give
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tions, the difference being that in Thresher q describes error states where Cousot et al. [2013] use
q to describe success states. I am grateful to Benno Stein for discussions on Thresher, necessary
preconditions, andwpp.

8 CONCLUSION AND OPEN PROBLEMS

Techniques for reasoning about program correctness have been extensively developed. Turing
[1949], used logical assertions to reason about a particular program. and in the 1960s Floyd [1967]
and Hoare [1969] created systematic methods for reasoning about classes of programs. In all these
cases the assertions were arranged to over-approximate the reachable program states. Further
developments in verification, including temporal logic [Pnueli 1981] and separation logic [O’Hearn
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q to describe success states. I am grateful to Benno Stein for discussions on Thresher, necessary
preconditions, andwpp.

8 CONCLUSION AND OPEN PROBLEMS
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[1949], used logical assertions to reason about a particular program. and in the 1960s Floyd [1967]
and Hoare [1969] created systematic methods for reasoning about classes of programs. In all these
cases the assertions were arranged to over-approximate the reachable program states. Further
developments in verification, including temporal logic [Pnueli 1981] and separation logic [O’Hearn
2019; Reynolds 2002], have expanded the techniques available for proving absence of errors.

In this paper we have suggested that reasoning about program incorrectness (or, the presence of
bugs) can be placed on a logical footing, related to but different from the well developed foundations
for showing correctness (or, the absence of bugs). Each form of reasoning is as fundamental as the
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In addition to providing a foundation for further development of static and mixed static/dynamic
bug catchers, it is hoped that theory can help expand the effectiveness of such tools.

Termination Proving. The under-approximate triple [p]c[q] does not guarantee termination on all
inputs, but nevertheless guarantees existence of some terminating paths. A variety of techniques
have been developed for automatically inferring loop variants and other forms of termination
argument [Cook et al. 2011]. We speculate that such techniques might be brought to bear on
automatic reasoning about incorrectness, both to accelerate reasoning techniques within one
procedure and to infer more general summaries for under-approximate inter-procedural analysis.

Abstract Interpretation. Abstract interpretation is a general theory of semantics which can in
principle be used to describe under-approximation as well as over [Cousot and Cousot 1977]. There
have been papers on under-approximation (e.g., [Ranzato 2013; Rival 2005; Schmidt 2007]), but
the vast majority of work has concentrated on over-approximation. We hope that incorrectness
logic can be neatly characterized in abstract interpretation terms, perhaps adapting the account for
over-approximate logics of Cousot [2002]. More generally, we expect that abstract interpretation
can eventually play a guiding and explanatory role for a wide range of static and dynamic under-
approximate tools for bug catching, similar to what it already does for over-approximate analyses.

Testing. We described the relationship with testing at a high level in the discussion of the
Principle of Denial in Section 2. We wonder whether logic might be used to make testing faster,
perhaps in a similar way to how symbolic model checking achieved striking gains over explicit
state [Burch et al. 1992]. Another avenue to explore is to attack the problem of flaky tests using
logic. Generally, it seems that there is muchmore that can be done to exploit logic in program testing.

In summary, there is a rich variety of problems for both experimental and theoretical work to
bring the foundations of reasoning about program incorrectness onto a par with the extensively
developed foundations for correctness.
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Emptiness versus Universality

• Emptiness: some programs satisfy no formula of the logic
• Ex. 1: a potentially nonterminating program satisfies no formula of 

the Manna-Pnueli total correctness logic
• Ex. 2: Peter’s example for  n̏ecessary preconditions’’
• Universality: some programs satisfy all formulae of the logic
• Ex. 1:  W = while (true) skip satisfies all Hoare triples {P} W {Q}
• i.e. false is always false and true is always true



O'Hearn Fest, POPL 2024, London                                                                                                                                                                                                                    © P. Cousot6

Emptiness versus Universality

• Emptiness: some programs satisfy no formula of the logic
• Ex. 1: a potentially nonterminating program satisfies no formula of 

the Manna-Pnueli total correctness logic
• Ex. 2: Peter’s example for  n̏ecessary preconditions’’
• Universality: some programs satisfy all formulas of the logic
• Ex. 1:  W = while (true) skip satisfies all Hoare triples {P} W {Q}
• i.e. false is always false and true is always true



O'Hearn Fest, POPL 2024, London                                                                                                                                                                                                                    © P. Cousot6

Emptiness versus Universality

• Emptiness: some programs satisfy no formula of the logic
• Ex. 1: a potentially nonterminating satisfies no formula of the Manna-

Pnueli total correctness logic
• Ex. 2: Peter’s example for ``necessary preconditions’’
• Universality: some programs satisfy all formulae of the logic
• Ex. 1:  W = while (true) skip satisfies all Hoare triples {P} W {Q}
• Same in logic:  false is never satisfied and true is always satisfied
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1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in 

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting 

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence 
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Method to design a program transformational logics
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1.  Angelic relational semantics ⟦S⟧e
• Syntax*: 

• States:     

• Angelic relational semantics:
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abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)
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𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)
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𝑐
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𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

ends

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.



O'Hearn Fest, POPL 2024, London                                                                                                                                                                                                                    © P. Cousot13

1.  Angelic relational semantics ⟦S⟧ (in deductive form)
• Notations using judgements: 

•     for  

•    for  leads to ′ after 0 or more iterations

• Semantics of the conditional iteration*                                   : 
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1.  Angelic relational semantics ⟦S⟧ (in deductive form)
• Notations using judgements: 

•     for  

•    for  leads to ′ after 0 or more iterations

• Semantics of the conditional iteration*                                   : 
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• Semantics of the conditional iteration*                                   :

• Derived using Aczel correspondence between deductive systems and set-
theoretic fixpoints (forthcoming)
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1.  Angelic relational semantics ⟦S⟧ (in fixpoint form)
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II) Abstraction of 
the semantics to the theory
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Exact abstractions
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Abstraction
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a 
function relation):…/…
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Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
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complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
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• Negation abstraction:

19

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:15

TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄
𝑋 ∈ ℘(X ), 𝛼¬(𝑋) ≜ ¬𝑋 (where ¬𝑋 ≜ X ∖𝑋 )

⟨℘(X ), ⊆⟩ −−−−→%→←←%−−−−
𝛼¬
𝛼¬ ⟨℘(X ), ⊇⟩ and ⟨℘(X ), ⊇⟩ −−−−→%→←←%−−−−

𝛼¬
𝛼¬ ⟨℘(X ), ⊆⟩
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• The component wise approximation:

• Over-approximation:

• Under-approximation:

21
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𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}
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𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}
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⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)
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complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)
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FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)
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FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)
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⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
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that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
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TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
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complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
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⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)
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p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
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complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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Comparing logics through their theories 

• Strongest postcondition logic (SL):

• Hoare logic (HL):

• Incorrectness logic (IL):

• Hoare incorrectness logic (HL):

7:14 Patrick Cousot

⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
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Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}
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TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄
𝑋 ∈ ℘(X ), 𝛼¬(𝑋) ≜ ¬𝑋 (where ¬𝑋 ≜ X ∖𝑋 )

⟨℘(X ), ⊆⟩ −−−−→%→←←%−−−−
𝛼¬
𝛼¬ ⟨℘(X ), ⊇⟩ and ⟨℘(X ), ⊇⟩ −−−−→%→←←%−−−−

𝛼¬
𝛼¬ ⟨℘(X ), ⊆⟩

TIL(S) ≜ post(⊆.⊇) ○ T (S)
Received 2023-07-11; accepted 2023-11-07
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2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$ !
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• Hoare logic (HL):
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⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
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= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
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TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄
𝑋 ∈ ℘(X ), 𝛼¬(𝑋) ≜ ¬𝑋 (where ¬𝑋 ≜ X ∖𝑋 )

⟨℘(X ), ⊆⟩ −−−−→%→←←%−−−−
𝛼¬
𝛼¬ ⟨℘(X ), ⊇⟩ and ⟨℘(X ), ⊇⟩ −−−−→%→←←%−−−−

𝛼¬
𝛼¬ ⟨℘(X ), ⊆⟩

TIL(S) ≜ post(⊆.⊇) ○ T (S)
Received 2023-07-11; accepted 2023-11-07
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𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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• Strongest postcondition logic (SL):

• Hoare logic (HL):

• Incorrectness logic (IL):

• Hoare incorrectness logic (HL):
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T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
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= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
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Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}
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TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄
𝑋 ∈ ℘(X ), 𝛼¬(𝑋) ≜ ¬𝑋 (where ¬𝑋 ≜ X ∖𝑋 )

⟨℘(X ), ⊆⟩ −−−−→%→←←%−−−−
𝛼¬
𝛼¬ ⟨℘(X ), ⊇⟩ and ⟨℘(X ), ⊇⟩ −−−−→%→←←%−−−−

𝛼¬
𝛼¬ ⟨℘(X ), ⊆⟩

TIL(S) ≜ post(⊆.⊇) ○ T (S)
Received 2023-07-11; accepted 2023-11-07
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Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄
𝑋 ∈ ℘(X ), 𝛼¬(𝑋) ≜ ¬𝑋 (where ¬𝑋 ≜ X ∖𝑋 )

⟨℘(X ), ⊆⟩ −−−−→%→←←%−−−−
𝛼¬
𝛼¬ ⟨℘(X ), ⊇⟩ and ⟨℘(X ), ⊇⟩ −−−−→%→←←%−−−−

𝛼¬
𝛼¬ ⟨℘(X ), ⊆⟩

TIL(S) ≜ post(⊆.⊇) ○ T (S)
THL(S) ≜ post(⊇.⊆) ○ T (S)

THL(S) ≜ post(⊇.⊆) ○ 𝛼¬ ○ THL(S)
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⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
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pre!S"! ●

p̃re!S"! ●

pre!S"●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

[Ascari et al. 2023, (NC)]↓
11◯●

[Zilberstein et al. 2023] ●
[Dijkstra 1982] 13◯

[Cousot and Cousot 1982, (i−1 )]
[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Cousot et al. 2013]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
post(⊆,⊇) ○ 𝛼𝐺

Hoare incorrectness logic
23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●

●

Galois connection (different logics to prove the same property)

Fig. 3. Hierarchical taxonomy of transformational assertional logics

D.5 Partial Possible Accessibility of All Non-Final States From Some Non-Initial State
p̃ost!S"𝑃 ⊆ 𝑄⇔ ¬𝑄 ⊆ post!S"¬𝑃 ⇔ ¬𝑄 ⊆ post!S"!¬𝑃 ⇔ ¬𝑄 ⊆ ¬p̃ost!S"!𝑃 ⇔ p̃ost!S"!𝑃 ⊆ 𝑄

Thesignification is that for any state𝜎′ not in𝑄 there exists at least one initial state𝜎 not in 𝑃 and an execution
from 𝜎 that will terminate in state 𝜎′. Letting 𝑃 ′ = ¬𝑃 and 𝑄′ = ¬𝑄 , this is partial possible accessibility of all
final states from some initial state𝑄′ ⊆ post!S"𝑃 ′ from Sect. I.3.14.3.This shows that the under approximation
𝑄 ⊆ post!S"𝑃 is equivalent to an over approximation p̃ost!S"¬𝑃 ⊆ ¬𝑄 of the complement, that is, a proof by
contradiction.
D.6 Total Definite Accessibility of Some Final State From Some Initial State p̃re!S"𝑄 ∩ 𝑃 ≠ ∅⇔

p̃re!S"!𝑄 ∩ 𝑃 ≠ ∅, 𝑃,𝑄 ∈ ℘(Σ)
This states that there is at least one initial state in 𝑃 from which all executions do terminate in 𝑄 .

PRoof of (43).
𝛼∩⟨𝜏1, 𝜏2⟩ ..⊇ 𝜏

⇔ 𝛼∩⟨𝜏1, 𝜏2⟩(𝑟) .⊇ 𝜏(𝑟) #pointwise def.
..⊆$

⇔ 𝜏1(𝑟) .∩ 𝜏2(𝑟) .⊇ 𝜏(𝑟) #def. 𝛼∩$
⇔ 𝜏1(𝑟) .⊇ 𝜏(𝑟) ∧ 𝜏2(𝑟) .⊇ 𝜏(𝑟) #def. .∩$
⇔ ⟨𝜏1(𝑟), 𝜏2(𝑟)⟩ ..⊇ ⟨𝜏(𝑟), 𝜏(𝑟)⟩ #componentwise def.

..⊇ for pairs$
⇔ ⟨𝜏1(𝑟), 𝜏2(𝑟)⟩ ..⊇ 𝛿(𝜏(𝑟)) #def. 𝛿$
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2.  Abstraction

• The abstraction of a fixpoint is a fixpoint (POPL 79)

• We get a fixpoint definition of the theory of strongest postconditions 
logic (SL)

• For the iteration   :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).
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where ⟨℘(Σ × Σ!), ⊑, Σ × {#}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ (Σ × Σ)) ⊆ (𝑌 ∩ (Σ × Σ)) ∧ (𝑋 ∩ (Σ × {#})) ⊇ (𝑌 ∩ (Σ × {#})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[16,Theorem 9] (but termination !S"𝑒 and break !S"𝑏 cannot be mixed without losing information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨𝛼↓2 , 𝛾↓2⟩ for asser-
tions and ⟨ .𝛼↓2 , .

𝛾↓2⟩ for relations in (24). This can be implemented using auxiliary variables without
modification of the semantics A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [16], [18, Ch. 18] to abstract the fixpoint definition
of the program relational semantics into a fixpoint definition of transformers (or their graph).

TheoRem II.2.1 (Fixpoint abstRaction [21]). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖#→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖#→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓 )𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖#→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓 ) = 𝛼¬(gfp⊆ 𝑓 ).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, # is the infimum of a poset and possibly unrelated
to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =#{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, #, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖#→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post!𝑆"(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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2.  Abstraction

• The abstraction of a fixpoint is a fixpoint (POPL 79)

• We get a fixpoint definition of the theory of strongest postconditions 
logic (SL)

• For the iteration   :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).
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where ⟨℘(Σ × Σ!), ⊑, Σ × {#}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ (Σ × Σ)) ⊆ (𝑌 ∩ (Σ × Σ)) ∧ (𝑋 ∩ (Σ × {#})) ⊇ (𝑌 ∩ (Σ × {#})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[16,Theorem 9] (but termination !S"𝑒 and break !S"𝑏 cannot be mixed without losing information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨𝛼↓2 , 𝛾↓2⟩ for asser-
tions and ⟨ .𝛼↓2 , .

𝛾↓2⟩ for relations in (24). This can be implemented using auxiliary variables without
modification of the semantics A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [16], [18, Ch. 18] to abstract the fixpoint definition
of the program relational semantics into a fixpoint definition of transformers (or their graph).

TheoRem II.2.1 (Fixpoint abstRaction [21]). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖#→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖#→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓 )𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖#→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓 ) = 𝛼¬(gfp⊆ 𝑓 ).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, # is the infimum of a poset and possibly unrelated
to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =#{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, #, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖#→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post!𝑆"(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post!S"𝑃 ′ ⊆ 𝑄 ′}
#(⊆) by Galois connection (12), post is increasing so that 𝑃 ′ ⊆ 𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′ implies
post!S"𝑃 ′ ⊆ post!S"𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′ hence post!S"𝑃 ′ ⊆ 𝑄 ′ by transitivity;
(⊇) take 𝑃 = 𝑃 ′$

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ = 𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post!S"𝑃⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. =,⊆$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post!S"𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ T (S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #Lem. 1.3$
= post(=,⊆)(T (S)) #def. (10) of post$
= post(=,⊆) ○ T (S) #def. function composition ○$ !

For simplicity, we consider conditional iteration W = while (B) S with no break.

Lemma 1.5 (Commutation). post ○ 𝐹 ′𝑒 = 𝐹𝑒 ○ post where 𝐹𝑒(𝑋) ≜ id
.∪ (post(!B" % !S"𝑒) ○ 𝑋)

and 𝐹 ′𝑒 ≜ 𝝀𝑋 . id ∪ (𝑋 % !B" % !S"𝑒), 𝑋 ∈ ℘(Σ × Σ) by (70).

PRoof of Lem. 1.5.
post(𝐹 ′𝑒(𝑋)) #where 𝑋 ∈ ℘(Σ)$

= post(id ∪ (𝑋 % !B" % !S"𝑒)) #def. 𝐹𝑒$
= post(id) .∪ post(𝑋 % !B" % !S"𝑒) #join preservation in Galois connection (12)$
= id

.∪ (post(!B" % !S"𝑒) ○ post(𝑋)) #def. post and composition Lem. 1.1$
= 𝐹𝑒(post(𝑋)) #def. 𝐹𝑒$ !

Lemma 1.6 (Pointwise commutation). ∀𝑋 ∈ ℘(Σ) → ℘(Σ) . ∀𝑃 ∈ ℘(Σ) . 𝐹𝑒(𝑋)𝑃 ≜ ¯̄𝐹𝑒𝑃(𝑋(𝑃))
where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of Lem. 1.6.
𝐹𝑒(𝑋)𝑃

= (id .∪ (post(!B" % !S"𝑒) ○ 𝑋))𝑃 #def. 𝐹𝑒$
= id(𝑃) ∪ (post(!B" % !S"𝑒) ○ 𝑋)(𝑃) #pointwise def. .∪ and function composition ○$
= 𝑃 ∪ post(!B" % !S"𝑒)(𝑋(𝑃)) #def. identity id and function application$
= ¯̄𝐹𝑒𝑃(𝑋(𝑃)) #def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$ !

TheoRem 1.7 (IteRation stRongest postcondition). post!W"𝑃 = post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) where
¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of Th. 1.7.
post!W"

= post(lfp⊆ 𝐹𝑒 % !¬B") #def. (49) of !W" in absence of break$
= post!¬B" ○ post(lfp⊆ 𝐹𝑒) #composition Lem. 1.1$
= post!¬B" ○ post(lfp⊆ 𝐹 ′𝑒) #since lfp⊆ 𝐹𝑒 = lfp⊆ 𝐹 ′𝑒 in (70)$
= post!¬B"(lfp⊆ 𝐹𝑒) #commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2$
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1 PROPERTIES OF STRONGEST POSTCONDITIONS
Lemma 1.1 (Composition). post(𝑋 !𝑌) = post(𝑌) ○ post(𝑋).
PRoof of Lem. 1.1.
post(𝑋 !𝑌)

= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′′⟩ ∈ 𝑋 !𝑌} "def. post#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. !#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ . 𝜎 ′ ∈ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋} ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. ∃ and ∈#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ ∈ post(𝑋)𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. post#
= 𝝀𝑃 .post(𝑌)(post(𝑋)𝑃) "def. post#
= post(𝑌) ○ post(𝑋) "def. function composition ○# !

Lemma 1.2 (test). post$B%𝑃 = 𝑃 ∩B$B%.

PRoof of Lem. 1.2.
post$B%𝑃

= {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $B%} "def. post#
= {𝜎 ∣ 𝜎 ∈ 𝑃 ∧ 𝜎 ∈ B$B%} "def. $B% ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ B$B%}#
= 𝑃 ∩B$B% "def. intersection ∪# !

Lemma 1.3 (StRongest postcondition). T (S) = 𝛼G ○ post$S% = {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}.
PRoof of Lem. 1.3.
T (S)

= 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({$S%#}) "def. T #
= 𝛼G ○ post ○ 𝛼/#($S%#) "def. 𝛼𝐶#
= 𝛼G ○ post($S%# ∩ (Σ × Σ)) "def. 𝛼/##
= 𝛼G ○ post$S% "def. (1) of the angelic semantics $S%#
= {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. 𝛼G# !

Lemma 1.4 (StRongest postcondition oveR appRoximation).
THL(S) ≜ post(⊇.⊆) ○ T (S) = {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} = post(=,⊆) ○ T (S)

PRoof of Lem. 1.4.
post(⊇.⊆) ○ T (S)

= post(⊇.⊆)(T (S)) "def. function composition ○#
= post(⊇.⊆)({⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}) "Lem. 1.3#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. (10) of post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ ⊇.⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ⊇ 𝑃 ′ ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇.⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇#
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.
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= post!¬B" ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃
#pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2$ !

CoRollaRy 1.8 (Conditional iteRation stRongest postcondition gRaph). T (W) = {⟨𝑃,
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of CoR. 1.8.
T (W)

= 𝛼G ○ post(!W") #Lem. 1.3$
= 𝛼G ○ post!¬B" ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃 #Th. 1.7$
= {⟨𝑃, post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} #def. (7) of 𝛼G$ !
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IV) Design of the proof system
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Aczel correspondence
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Aczel correspondence between deductive systems and fixpoints

• Rules:      (    universe,                    premiss,          conclusion,      axiom)

• Deductive system :

• Subset of the universe  defined by  :

• Deductive system defining            :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑃
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𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
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𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})
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post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
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T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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Aczel correspondence between deductive systems and fixpoints

• Rules:      (    universe,                    premiss,          conclusion,      axiom)

• Deductive system :

• Subset of the universe  defined by  :

• Deductive system defining            :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}
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T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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correctness
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Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
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Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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8◯ Hoare partial
correctness
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Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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●
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●
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post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
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𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
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𝑐
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
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𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓 ) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓 ) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓 ) ⪯ lfp⪯ 𝑓 ).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.



O'Hearn Fest, POPL 2024, London                                                                                                                                                                                                                    © P. Cousot31

Why not using Aczel method to get the proof system at this point?

• We get a sound and complete proof system

• BUT impractical:

• your first prove the strongest consequence, end then

• the consequence rule to approximate!
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Why not using Aczel method to get the proof system at this point?

• We get a sound and complete proof system

• BUT impractical:

• you first prove the strongest postcondition, and then

• use the consequence rule to approximate!
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Fixpoint induction
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7:52 Patrick Cousot

For soundness, we have 𝑋 0 ⊓ 𝑃 ≠ " since 𝑃 ≠ ". If 𝑋𝛿 ⊓ 𝑃 ≠ " then 𝑓 (𝑋𝛿) = 𝑋𝛿+1 ⊑ 𝑋𝛿 implies
𝑓 (𝑋𝛿)⊓ 𝑃 ≠ " by hypothesis, that is, 𝑋𝛿+1 ⊓ 𝑃 ≠ ". If, by induction hypothesis, 𝑋 𝛽 ⊓ 𝑃 ≠ " for all 𝛽 < 𝜆 then
𝑋𝜆 ⊓ 𝑃 = (!𝛽<𝜆 𝑋 𝛽) ⊓ 𝑃 = !

𝛽<𝜆(𝑋 𝛽 ⊓ 𝑃) ≠ " since ⟨𝑋 𝛽 , 𝛽 < 𝜆⟩ is decreasing and so is ⟨𝑋 𝛽 ⊓ 𝑃, 𝛽 < 𝜆⟩. By
transfinite induction, we conclude that ∀𝛿 ∈ O . 𝑋𝛿 ⊓ 𝑃 ≠ " and so gfp⊑ 𝑓 ⊓ 𝑃 ≠ ".

For completeness, gfp⊑ 𝑓 ⊓𝑃 ≠ " then 𝑃 ≠ ". If gfp⊑ 𝑓 ⊑ 𝑋 ∧ 𝑓 (𝑋) ⊑ 𝑋 ∧𝑋 ⊓𝑃 ≠ " then gfp⊑ 𝑓 = 𝑓 (gfp⊑ ) ⊑
𝑓 (𝑋) since 𝑓 is increasing so gfp⊑ 𝑓 ⊓ 𝑃 ≠ " implies 𝑓 (𝑋) ⊓ 𝑃 ≠ ". !

TheoRem H.3 (Non empty inteRsection with abstRaction of least fixpoint). Assume that (1) ⟨𝐿, ⊑,
", ⊺, ⊓, ⊔⟩ is an atomic complete lattice; (2) 𝑓 ∈ 𝐿 → 𝐿 preserves nonempty joins ⊔; (3) ⟨𝐿, ⊑⟩ −−−→"→←−−−−−

𝛼

𝛾 ⟨𝐿, ⪯, ⋏⟩;
(4) 𝑄 ∈ 𝐿 ∖ {0} where 0 ≜ 𝛼("); (5) There exists an inductive invariant 𝐼 ∈ 𝐿 of 𝑓 (i.e. 𝑓 (𝐼) ⊑ 𝐼 ); (6) ⟨𝑊 , ⩽⟩ is
a well-founded set and 𝜈 ∈ atoms(𝐼) →𝑊 is a (variant) function; (7) There exists a sequence ⟨𝑎𝑖 ∈ atoms(𝐼),
𝑖 ∈ [1,∞]⟩ that (7.a) 𝑎1 ∈ 𝑓 ("), (7.b) ∀𝑖 ∈ [1,∞] . 𝑎𝑖+1 ∈ atoms(𝑓 (𝑎𝑖)), (7.c) ∀𝑖 ∈ [1,∞] . (𝑎𝑖 ≠ 𝑎𝑖+1) ⇒(𝜈(𝑎𝑖) > 𝜈(𝑎𝑖+1), (7.d) ∀𝑖 ∈ [1,∞] . (𝜈(𝑎𝑖) /> 𝜈(𝑎𝑖+1) ⇒ 𝛼(𝑎𝑖) ⋏ 𝑄 ≠ 0; Then, hypotheses (1) to (7) imply
𝛼(lfp⊑ 𝑓 ) ⋏𝑄 ≠ 0. Conversely (1) to (4) and lfp⊑ 𝑓 ⊓𝛾(𝑄) ≠ " imply (5) to (7).

Notice that if 𝐿 = ℘(Σ) then atoms(𝐿) = {{𝑥} ∣ 𝑥 ∈ 𝐿} so that 𝐼 ∈ ℘(Σ) and 𝜈 can be chosen in 𝐼 →𝑊
instead of {{𝑥} ∣ 𝑥 ∈ 𝐼}→𝑊 .

PRoof of Th. 6. By (1) and (2), lfp⊑ 𝑓 = ⊔𝑛∈N 𝑓 𝑛(") where the iterates of 𝑓 from 𝑥 ∈ 𝐿 are 𝑓 0(𝑥) = 𝑥
and 𝑓 𝑛+1(𝑥) = 𝑓 (𝑓 𝑛(𝑥)) [Cousot and Cousot 1979a]. By (5), 𝑓 (𝐼) ⊑ 𝐼 so that lfp⊑ 𝑓 ⊑ 𝐼 by Tarski’s fixpoint
theorem [Tarski 1955]. Consider ⟨𝑎𝑖 ∈ atoms(𝐼), 𝑖 ∈ [1,∞]⟩. By (7.a), 𝑎1 ∈ 𝑓 (") so 𝑎1 ∈ atoms(𝑓 1(")).
Assume 𝑎𝑛 ∈ atoms(𝑓 𝑛(")) so that 𝑎𝑛 ⊑ 𝑓 𝑛("). By (2), 𝑓 is increasing so 𝑓 (𝑎𝑛) ⊑ 𝑓 (𝑓 𝑛(")) = 𝑓 𝑛+1("). By
(7.b), 𝑎𝑛+1 ∈ atoms(𝑓 (𝑎𝑛)) ⊆ atoms(𝑓 𝑛+1(")). By recurrence ∀𝑛 ∈ N . 𝑎𝑛 ∈ atoms(𝑓 𝑛(")). This implies
𝑎𝑛 ⊑ 𝑓 𝑛(") ⊑ ⊔𝑛∈N 𝑓 𝑛(") = lfp⊑ 𝑓 ⊆ 𝐼 so that 𝑎𝑛 ∈ atoms(𝐼) proving that 𝜈(𝑎𝑛) is well-defined for all
𝑛 ∈ N. By (6), the sequence ⟨𝜈(𝑎𝑛), 𝑛 ∈ N⟩ cannot be strictly >-decreasing. So there is some ℓ ∈ N such that
𝜈(𝑎ℓ) = 𝜈(𝑎ℓ+1). By (7.d), this implies that 𝛼(𝑎ℓ) ⋏𝑄 ≠ 0. By (3), ⟨𝛼(𝐿), ⪯, 0, 1, ⋏, ⋎⟩ is a complete lattice.
We have 𝛼(lfp⊑ 𝑓 ) = 𝛼(⊔𝑛∈N 𝑓 𝑛(")) = "

𝑛∈N 𝛼(𝑓 𝑛(")) ⪰ 𝛼(𝑓 ℓ(")) ⪰ 𝛼(𝑎ℓ) so that 𝛼(𝑎ℓ) ⋏𝑄 ≠ 0 implies
𝛼(lfp⊑ 𝑓 ) ⋏𝑄 ≠ 0.

Conversely assume (1) to (4) and lfp⊑ 𝑓 ⊓ 𝛾(𝑄) ≠ ". Let 𝑥0 be an atom common to lfp⊑ 𝑓 and 𝛾(𝑄) so
that 𝑥0 ∈ atoms(𝑓 𝑛(")) for some 𝑛 > 0. Assume we have constructed 𝑥0, . . . ,𝑥𝑛−𝑖 , 0 < 𝑖 ⩽ 𝑛 such that
∀𝑘 ∈ [0, 𝑖] . 𝑥𝑘 ∈ atoms(𝑓 𝑛−𝑘) which elements are two by two different. There are two cases.
(1) If 𝑥𝑛−𝑖 ∈ 𝑓 (") then define the finite sequence 𝑎1 = 𝑥𝑛−𝑖 , 𝑎2 = 𝑥𝑛−𝑖+1, …, 𝑎𝑛−𝑖+1 = 𝑥0. Define 𝐼 = lfp⊑ 𝑓 ,⟨𝑊 , ⩽⟩ = ⟨[1,𝑛 − 𝑖 + 1], ⩽⟩, 𝜈(𝑥) = #𝑥 = 𝑎𝑖 ? 𝑖 : 1 $, which is well-founded since the elements of 𝑎1, …,

𝑎𝑛−𝑖+1 are two by two different. Then (5) to (7) are satisfied, Q.E.D.
(2) Otherwise 𝑥𝑛−𝑖 /∈ 𝑓 (") and 𝑥𝑛−𝑖 ∈ atoms(𝑓 𝑛−𝑖) = atoms(𝑓 (𝑓 𝑛−𝑖−1)). Pick 𝑥𝑛−𝑖−1 as an atom of 𝑓 𝑛−𝑖−1

different from 𝑥0, …, 𝑥𝑛−𝑖 . Notice that if there no such 𝑥𝑛−𝑖−1, we are in the previous case (1). This extends
the sequence by one element, and wemust terminate ultimately at 𝑓 1(") for which case (1) concludes. !

I AUXILIARY MATERIAL FOR SECTION II.5 (THE SEMANTICS OF DEDUCTIVE SYSTEMS)
Example I.1 (Design of the deductive natural relational semantics). The rule-based deductive natural rela-

tional semantics of Sect. I.1.1 is derived from its fixpoint definition of Sect. II.1, by structural induction. The
base cases in (47) are understood as constant fixpoints 𝑆 = lfp⊆ 𝝀𝑋 .𝑆 so that Sect. II.5.2 yields axioms. For
the assignment, we get 𝜎 ⊢ x = A

𝑒⇒ 𝜎[x← A%A&𝜎]. Since there are no rules for 𝑏⇒ and ∞⇒, %x = A&𝑏 and
%x = A&∞ are empty.

For the induction cases, consider for example %S1;S2&𝑒 ≜ %S1&𝑒 ' %S2&𝑒 in (48). By structural induction
hypothesis and definition of ', we get 𝜎⊢S1 𝑒⇒𝜎′, 𝜎 ′⊢S2 𝑒⇒𝜎′′

𝜎⊢S1;S2 𝑒⇒𝜎′′ where the comma means conjunction. We are in
the constant fixpoint case, so the rule is actually an axiom for S1;S2 and, more rigorously, the premiss should
be a side condition.
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HL does not need a consequence rule
Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(S) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(S) = 𝛼¬ ○ THL(S)

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(S) = post(⊆,⊇) ○ 𝛼¬ ○ THL(S) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#S$𝑃 ⊆ 𝑄}) !Lem. 1.4 and def. (30) of 𝛼¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#S$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#S$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#S$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#S$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#S$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#S$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#S$𝑃 ⊆ post#S$𝑃 ′ by (12) so that post#S$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#S$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#S$𝑃 ′, then ∃𝑃 . post#S$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#S$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#S$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#S$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#S$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#S$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#S$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(S) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL). W = while (B) S

THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B#B$ ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 , ⊆, and post, which is ∅-strict"
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.
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4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄}) !Lem. 1.4 and def. (30) of 𝛼¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B#B$ ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 , ⊆, and post, which is ∅-strict"
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= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(!B" # !S"𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,
𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre!¬B"(¬𝑄)}

$since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(!B" # !S"𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre!¬B"(¬𝑄)}

$(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre!¬B"(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(!B" # !S"𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. pre%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B!B" ∧ 𝜎𝑛 /∈ 𝑄} $𝐼 is not used and can always be chosen to be Σ%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . post(!B"#!S"𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B!B" ∧ 𝜎𝑛 /∈ 𝑄} $since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . post(!B" # !S"𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. ¬𝑋 = Σ ∖𝑋%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post(!B" # !S"𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post(!S"𝑒)(B!B" ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. post, !B", and #%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ⟨B!B" ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post(!S"𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. ∈%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B!B"∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B!B" ∧ 𝜎𝑛 ∈ 𝑄} $def. THL(S)% !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation).

∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B!B" ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄
&𝑃 ' while (B) S &𝑄 '

(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B!B" ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄 where &B!B" ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !
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= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(!B" # !S"𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,
𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre!¬B"(¬𝑄)}

$since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(!B" # !S"𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre!¬B"(¬𝑄)}

$(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre!¬B"(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(!B" # !S"𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. pre%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . {𝜎𝑖+1} ⊆ post(!B" # !S"𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B!B" ∧ 𝜎𝑛 /∈ 𝑄} $𝐼 is not used and can always be chosen to be Σ%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . post(!B"#!S"𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B!B" ∧ 𝜎𝑛 /∈ 𝑄} $since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . post(!B" # !S"𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. ¬𝑋 = Σ ∖𝑋%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post(!B" # !S"𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post(!S"𝑒)(B!B" ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. post, !B", and #%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ⟨B!B" ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post(!S"𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄} $def. ∈%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B!B"∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B!B" ∧ 𝜎𝑛 ∈ 𝑄} $def. THL(S)% !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation).

∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B!B" ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄
&𝑃 ' while (B) S &𝑄 '

(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B!B" ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B!B" ∧ 𝜎𝑛 /∈ 𝑄 where &B!B" ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !
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4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(S) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(S) = 𝛼¬ ○ THL(S)

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(S) = post(⊆,⊇) ○ 𝛼¬ ○ THL(S) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#S$𝑃 ⊆ 𝑄}) !Lem. 1.4 and def. (30) of 𝛼¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#S$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#S$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#S$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#S$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#S$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#S$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#S$𝑃 ⊆ post#S$𝑃 ′ by (12) so that post#S$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#S$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#S$𝑃 ′, then ∃𝑃 . post#S$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#S$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#S$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#S$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#S$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#S$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#S$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(S) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL). W = while (B) S

THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B#B$ ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 , ⊆, and post, which is ∅-strict"
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!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post("B# $ "S#𝑒)𝑋 , ⊆, and post, which is ∅-strict%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre"¬B#(¬𝑄)}
!since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre"¬B#(¬𝑄)}
!(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre"¬B#(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[ . {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. pre%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 /∈ 𝑄} !𝐼 is not used and can always be chosen to be Σ%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . post("B#$"S#𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 /∈ 𝑄} !since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . post("B# $ "S#𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. ¬𝑋 = Σ ∖𝑋%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post("B# $ "S#𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ¬(post("S#𝑒)(B"B# ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. post, "B#, and $%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . ⟨B"B# ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post("S#𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. ∈%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[ . ⟨B"B#∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 ∈ 𝑄} !def. THL(S)% !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation).
∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B"B# ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄

&𝑃 ' while (B) S &𝑄 '
(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[ . &B"B# ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄 where &B"B# ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !
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• IL is not Hoare incorrectness logic (sufficient, not necessary)

38

About incorrectness

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:15

TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄
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Conclusion
• Was Peter correct or incorrect?

• Of course he was correct 

• BUT he took the hardest path

• Hoare incorrectness logic is the easiest and most popular way

• It has proof verifiers and theorem provers

• They are called debuggers

• It makes debugging a formal activity relying on a formal logic!
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The End,  Thank You

Happy Sixties to Peter
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