Is Peter Correct or Incorrect?

Patrick Cousot

Courant Institute, New York University

Peter's Incorrectness Logic

- In POPL 2020, Peter O'Hearn introduced the nonconformist idea of an incorrectness logic

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare's logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather than correctness.

Peter's Incorrectness Logic

- In POPL 2020, Peter O’Hearn introduced the nonconformist idea of an incorrectness logic

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare's logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather than correctness.

- Is it?

Peter's Incorrectness Logic

- And he moderately enjoyed other approaches to incorrectness
- Such as "necessary preconditions"

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for a program is a predicate which, whenever falsified, leads to divergence or an error, but never to successful termination.

Peter's Incorrectness Logic

- And he moderately enjoyed other approaches to incorrectness
- Such as "necessary preconditions"

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for a program is a predicate which, whenever falsified, leads to divergence or an error, but never to successful termination.

- But he doesn't really like it!
... Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()), but where perfectly fine presumptions exist for incorrectness logic.

Peter's Incorrectness Logic

- And he moderately enjoyed other approaches to incorrectness
- Such as "necessary preconditions"

The concept of necessary preconditon [Cousot et al. 2013] is related. A necessary precondition for a program is a predicate which, whenever falsified, leads to divergence or an error, but never to successful termination.

- But he doesn't really like it!
... Finally,
there are programs for which no non-trivial necessary pre-condition exists (e.g., skip + error()), but where perfectly fine presumptions exist for incorrectness logic.
- Should he?

Peter's Incorrectness Logic

In summary, there is a rich variety of problems for both experimental and theoretical work to bring the foundations of reasoning about program incorrectness onto a par with the extensively developed foundations for correctness.

An A Parte on

Singularities of Logics

Emptiness versus Universality

- Emptiness: some programs satisfy no formula of the logic
- Ex. I: a potentially nonterminating program satisfies no formula of the Manna-Pnueli total correctness logic
- Ex. 2: Peter's example for "necessary preconditions"

Emptiness versus Universality

- Emptiness: some programs satisfy no formula of the logic
- Ex. I: a potentially nonterminating program satisfies no formula of the Manna-Pnueli total correctness logic
- Ex. 2: Peter's example for "necessary preconditions"
- Universality: some programs satisfy all formulas of the logic
- Ex. I: w = while (true) skip satisfies all Hoare triples $\{P\}$ w $\{Q\}$

Emptiness versus Universality

- Emptiness: some programs satisfy no formula of the logic
- Ex. I: a potentially nonterminating satisfies no formula of the MannaPnueli total correctness logic
- Ex. 2: Peter's example for "necessary preconditions"
- Universality: some programs satisfy all formulae of the logic
- Ex. I: $w=$ while (true) skip satisfies all Hoare triples $\{P\}$ w $\{Q\}$
- Same in logic: false is never satisfied and true is always satisfied

Foundations of Reasoning on Logics

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)
2. Define the theory of the logics as an abstraction $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ of the collecting semantics $\left\{\llbracket S \mathbb{1}_{\perp}\right\}$ (strongest (hyper) property)

Theory of a logic $=$ the subset of all true formulas

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)
2. Define the theory of the logics as an abstraction $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ of the collecting semantics $\left\{\mathbb{[} \mathrm{S} \mathbb{1}_{\perp}\right\}$ (strongest (hyper) property)
3. Calculate the theory $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ in structural fixpoint form by fixpoint abstraction

Method to design a program transformational logics

I. Define the natural relational semantics $\llbracket S \rrbracket_{\perp}$ of the programming language (in structural fixpoint form)
2. Define the theory of the logics as an abstraction $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ of the collecting semantics $\left\{\mathbb{I} S \mathbb{1}_{\perp}\right\}$ (strongest (hyper) property)
3. Calculate the theory $\alpha\left(\left\{\llbracket S \rrbracket_{\perp}\right\}\right)$ in structural fixpoint form by fixpoint abstraction
4. Calculate the proof system by fixpoint induction and Aczel correspondence between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

The Design of

Hoare Incorrectness Logic ($\overline{\mathrm{HL}})$

I) Relational semantics

I. Angelic relational semantics $\llbracket S \rrbracket e$

- Syntax*:

$$
S \in \mathbb{S}::=x=A \mid \text { skip }|S ; S| \text { if (B) } S \text { else } S \mid \text { while (B) } S
$$

- States: Σ
- Angelic relational semantics: $\llbracket S \rrbracket^{e} \in \wp(\Sigma \times \Sigma)$

I. Angelic relational semantics $\llbracket \mathbb{S \rrbracket}$ (in deductive form)

- Notations using judgements:
- $\sigma \vdash \mathrm{S} \stackrel{e}{\Rightarrow} \sigma^{\prime}$ for $\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket^{e}$
- $\sigma \vdash$ while(B$) \mathrm{S} \stackrel{i}{\Rightarrow} \sigma^{\prime}$ for σ leads to σ^{\prime} after 0 or more iterations

I. Angelic relational semantics $\llbracket S \rrbracket$ (in deductive form)

- Notations using judgements:
- $\sigma \vdash \mathrm{S} \stackrel{e}{\Rightarrow} \sigma^{\prime}$ for $\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{s} \rrbracket^{e}$
- $\sigma \vdash$ while(B$) \mathrm{S} \stackrel{i}{\Rightarrow} \sigma^{\prime}$ for σ leads to σ^{\prime} after 0 or more iterations
- Semantics of the conditional iteration* $W=$ while(B) S :
(a) $\sigma \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma \quad$ (b) $\frac{\mathcal{B} \llbracket \mathrm{B} \rrbracket \sigma, \quad \sigma \vdash \mathrm{S} \stackrel{e}{\Rightarrow} \sigma^{\prime}, \quad \sigma^{\prime} \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma^{\prime \prime}}{\sigma \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma^{\prime \prime}}$

$$
\begin{equation*}
\text { (a) } \frac{\sigma \vdash \mathrm{W} \stackrel{i}{\Rightarrow} \sigma^{\prime}, \quad \mathcal{B} \llbracket \neg \mathrm{B} \rrbracket \sigma^{\prime}}{\sigma \vdash \mathrm{W} \stackrel{e}{\Rightarrow} \sigma^{\prime}} \tag{2}
\end{equation*}
$$

I. Angelic relational semantics $\llbracket S \rrbracket$ (in fixpoint form)

- Semantics of the conditional iteration* $W=$ while(B) S :

$$
\begin{array}{rlrl}
F^{e}(X) & \triangleq \mathrm{id} \cup\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~S} \rrbracket^{e} ;(X),\right. & X \in \wp(\Sigma \times \Sigma) \\
\llbracket \text { while }(\mathrm{B}) \mathrm{S} \rrbracket^{e} & \triangleq \mathrm{Ifp}^{\subseteq} F^{e} ; \llbracket \llbracket \mathrm{B} \rrbracket \tag{51}
\end{array}
$$

- Derived using Aczel correspondence between deductive systems and settheoretic fixpoints (forthcoming)

II) Abstraction of the semantics to the theory

Exact abstractions

Abstraction

- Hyper properties to properties abstraction:

$$
\langle\wp(\wp(\Sigma \times \Sigma)), \subseteq\rangle \underset{\alpha_{C}}{\stackrel{\gamma C}{\leftrightarrows}}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \quad \alpha_{C}(P) \triangleq \bigcup P
$$

$$
\gamma_{C}(S) \triangleq \wp(S)
$$

Abstraction

- Hyper properties to properties abstraction:

$$
\begin{equation*}
\langle\wp(\wp(\Sigma \times \Sigma)), \subseteq\rangle \stackrel{\alpha_{C}}{\leftrightarrows}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \quad \alpha_{C}(P) \triangleq \bigcup P \tag{C}
\end{equation*}
$$

- Post-image isomorphism:

$$
\begin{aligned}
\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \underset{\text { post }}{\leftrightarrows}\langle\wp(\Sigma) \rightarrow \wp(\Sigma), \subseteq\rangle & \operatorname{post}(R) \triangleq \lambda P \cdot\left\{\sigma^{\prime} \mid \exists \sigma \in P \wedge\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\} \\
& \widetilde{\operatorname{pre}}(R) \triangleq \lambda X \cdot\left\{\sigma \mid \forall \sigma^{\prime} \in Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\}
\end{aligned}
$$

Abstraction

- Hyper properties to properties abstraction:

$$
\langle\wp(\wp(\Sigma \times \Sigma)), \subseteq\rangle \underset{\alpha_{C}}{\stackrel{\gamma C}{\leftrightarrows}}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \quad \alpha_{C}(P) \triangleq \bigcup P \quad \gamma_{C}(S) \triangleq \wp(S)
$$

- Post-image isomorphism:

$$
\begin{aligned}
\langle\wp(\Sigma \times \Sigma), \subseteq\rangle \stackrel{\text { post }}{\stackrel{\text { pre }}{\leftrightarrows}}\langle\wp(\Sigma) \rightarrow \wp(\Sigma), \subseteq\rangle & \operatorname{post}(R) \triangleq \lambda P \cdot\left\{\sigma^{\prime} \mid \exists \sigma \in P \wedge\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\} \\
& \widetilde{\operatorname{pre}}(R) \triangleq \lambda X \cdot\left\{\sigma \mid \forall \sigma^{\prime} \in Q \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in R\right\}
\end{aligned}
$$

- Graph isomorphism (a function is isomorphic to its graph, which is a functional relation):.../...

$$
\left.\begin{array}{rl}
\langle\wp(\Sigma) \rightarrow \wp(\Sigma),=\rangle \stackrel{\alpha_{\mathrm{G}}}{\leftrightarrows}
\end{array} \wp_{\mathrm{fun}}(\wp(\Sigma) \times \wp(\Sigma)), \Rightarrow\right\rangle \quad f \in \wp(\Sigma) \rightarrow \wp(\Sigma), \begin{array}{ll}
\stackrel{\alpha_{\mathrm{G}}}{ } & \alpha_{\mathrm{G}}(f)=\{\langle P, f(P)\rangle \mid P \in \wp(\Sigma)\} \\
& \gamma_{\mathrm{G}}(R) \triangleq \lambda P \cdot(Q \text { such that }\langle P, S\rangle \in R)
\end{array}
$$

Abstraction

- Negation abstraction:

$$
\begin{aligned}
& X \in \wp(\mathcal{X}), \alpha\urcorner(X) \triangleq \neg X(\text { where } \neg X \triangleq \mathcal{X} \backslash X) \\
& \quad\langle\wp(\mathcal{X}), \subseteq\rangle \underset{\alpha\urcorner}{\longleftrightarrow}\langle\wp(\mathcal{X}), \supseteq\rangle \quad \text { and } \quad\langle\wp(\mathcal{X}), \supseteq\rangle \underset{\alpha\urcorner}{\longleftrightarrow}\langle\wp(\mathcal{X}), \subseteq\rangle
\end{aligned}
$$

Consequence approximation

Approximation abstraction

- The component wise approximation:

$$
\langle x, y\rangle \sqsubseteq, \leq\left\langle x^{\prime}, y^{\prime}\right\rangle \triangleq x \sqsubseteq x^{\prime} \wedge y \leq y^{\prime}
$$

Approximation abstraction

- The component wise approximation:

$$
\langle x, y\rangle \sqsubseteq, \leq\left\langle x^{\prime}, y^{\prime}\right\rangle \triangleq x \sqsubseteq x^{\prime} \wedge y \leq y^{\prime}
$$

- Over-approximation:

$$
\operatorname{post}(\subseteq, \supseteq)=\lambda R \cdot\left\{\langle P, Q\rangle \mid \exists\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R \cdot P \subseteq P^{\prime} \wedge Q^{\prime} \subseteq Q\right\}
$$

Approximation abstraction

- The component wise approximation:

$$
\langle x, y\rangle \sqsubseteq, \leq\left\langle x^{\prime}, y^{\prime}\right\rangle \triangleq x \sqsubseteq x^{\prime} \wedge y \leq y^{\prime}
$$

- Over-approximation:

$$
\operatorname{post}(\subseteq, \supseteq)=\lambda R \cdot\left\{\langle P, Q\rangle \mid \exists\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R \cdot P \subseteq P^{\prime} \wedge Q^{\prime} \subseteq Q\right\}
$$

- Under-approximation:

$$
\operatorname{post}(\supseteq, \subseteq)=\lambda R \cdot\left\{\langle P, Q\rangle \mid \exists\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R \cdot P^{\prime} \subseteq P \wedge Q \subseteq Q^{\prime}\right\}
$$

Comparing logics through their theories

Comparing logics through their theories

- Strongest postcondition logic $(\mathrm{SL}): \mathcal{T}(\mathrm{s}) \triangleq \alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{C}(\{\llbracket \varsigma \rrbracket\})$

$$
=\{\langle P, \operatorname{post} \llbracket s \rrbracket P\rangle \mid P \in \wp(\Sigma)\}
$$

Comparing logics through their theories

- Strongest postcondition logic $(\mathrm{SL}): \mathcal{T}(\mathrm{s}) \triangleq \alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{C}(\{\llbracket \varsigma \rrbracket\})$

$$
=\{\langle P, \operatorname{post} \llbracket s \rrbracket P\rangle \mid P \in \wp(\Sigma)\}
$$

- Hoare logic (HL):

$$
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})
$$

Comparing logics through their theories

- Strongest postcondition logic $(\mathrm{SL}): \mathcal{T}(\mathrm{s}) \triangleq \alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{C}(\{\llbracket \varsigma \rrbracket\})$

$$
=\{\langle P, \operatorname{post} \llbracket s \rrbracket P\rangle \mid P \in \wp(\Sigma)\}
$$

- Hoare logic (HL):

$$
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})
$$

- Incorrectness logic (IL):

$$
\mathcal{T}_{\mathrm{IL}}(\mathrm{~s}) \triangleq \operatorname{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathrm{s})
$$

Comparing logics through their theories

- Strongest postcondition logic $(\mathrm{SL}): \mathcal{T}(\mathrm{s}) \triangleq \alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{C}(\{\llbracket \varsigma \rrbracket\})$

$$
=\{\langle P, \operatorname{post} \llbracket s \rrbracket P\rangle \mid P \in \wp(\Sigma)\}
$$

- Hoare logic (HL):

$$
\mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \mathcal{T}(\mathrm{s})
$$

- Incorrectness logic (IL):

$$
\mathcal{T}_{\mathrm{IL}}(\mathrm{~s}) \triangleq \operatorname{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathrm{s})
$$

- Hoare incorrectness logic $(\overline{\mathrm{HL}})$:

$$
\left.\mathcal{T}_{\overline{\overline{\mathrm{HL}}}}(\mathrm{~S}) \triangleq \operatorname{post}(\supseteq . \subseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{\mathrm{HL}}(\mathrm{~S})
$$

Comparing logics through their theories

Galois connection (different logics to prove the same property)
Fig. 3. Hierarchical taxonomy of transformational assertional logics

Fixpoint abstraction

2. Abstraction

- The abstraction of a fixpoint is a fixpoint (POPL 79)

Theorem II.2.1 (Fixpoint abstraction). If $\langle C, \sqsubseteq\rangle \stackrel{\diamond}{\longleftrightarrow}\langle A, \leq\rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq\rangle$ and $\langle A, \leq\rangle, f \in C \xrightarrow{i} C$ and $\bar{f} \in A \xrightarrow{i} A$ are increasing and commuting, that is, $\alpha \circ f=\bar{f} \circ \alpha$, then $\alpha\left(\operatorname{Ifp}{ }^{\sqsubseteq} f\right)=\operatorname{Ifp}^{\leq} \bar{f}$ (while semi-commutation $\alpha \circ f \leq \bar{f} \circ \alpha$ implies $\left.\alpha\left(\operatorname{Ifp}^{〔} f\right) \leq \operatorname{Ifp}^{\leq} \bar{f}\right)$.

2. Abstraction

- The abstraction of a fixpoint is a fixpoint (POPL 79)

Theorem II.2.1 (Fixpoint abstraction). If $\langle C, \sqsubseteq\rangle \stackrel{\diamond}{\longleftrightarrow}\langle A, \leq\rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq\rangle$ and $\langle A, \leq\rangle, f \in C \xrightarrow{i} C$ and $\bar{f} \in A \xrightarrow{i} A$ are increasing and commuting, that is, $\alpha \circ f=\bar{f} \circ \alpha$, then $\alpha\left(\operatorname{Ifp}{ }^{\sqsubseteq} f\right)=\operatorname{Ifp}^{\leq} \bar{f}$ (while semi-commutation $\alpha \circ f \leq \bar{f} \circ \alpha$ implies $\left.\alpha\left(\operatorname{Ifp}^{〔} f\right) \leq \operatorname{Ifp}^{\leq} \bar{f}\right)$.

- We get a fixpoint definition of the theory of strongest postconditions logic (SL)
- For the iteration $\mathrm{W}=$ while (B) S :
$\mathcal{T}(\mathrm{w}) \triangleq\left\{\left\langle P, \operatorname{post} \llbracket \neg \mathrm{~B} \rrbracket\left(\operatorname{Ifp}{ }^{\subseteq} \lambda X \cdot P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q 9 \llbracket \mathrm{~s} \rrbracket^{e}\right) X\right)\right\rangle \mid P \in \wp(\Sigma)\right\}$

1 PROPERTIES OF STRONGEST POSTCONDITIONS

Lemma $1.1($ Composition）． $\operatorname{post}(X ; Y)=\operatorname{post}(Y) \circ \operatorname{post}(X)$
Proof of Lem．1．1．
$\operatorname{post}(X ; Y)$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime \prime}\right\rangle \in X ; Y\right\} \quad$ 2def．post $\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma \in P \cdot \exists \sigma^{\prime} \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in X \wedge\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\} \quad$ 2def．$\left.\%\right\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} \cdot \sigma^{\prime} \in\left\{\sigma^{\prime} \mid \exists \sigma \in P \cdot\left\langle\sigma, \sigma^{\prime}\right\rangle \in X\right\} \wedge\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$
$=\lambda P \cdot\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} \in \operatorname{post}(X) P \cdot\left\langle\sigma^{\prime}, \sigma^{\prime \prime}\right\rangle \in Y\right\}$
$=\lambda P \cdot \operatorname{post}(Y)(\operatorname{post}(X) P)$
$=\operatorname{post}(Y) \circ \operatorname{post}(X)$
（def．function composition
Lemma 1.2 （Test）．post $\llbracket \mathrm{B} \rrbracket P=P \cap \mathcal{B} \llbracket \mathrm{~B} \rrbracket$ ．
Proof of Lem．1．2．
post $\llbracket \mathbb{B} \rrbracket P$
$=\left\{\sigma^{\prime} \mid \exists \sigma \in P .\left\langle\sigma, \sigma^{\prime}\right\rangle \in \llbracket \mathrm{B} \rrbracket\right\}$
2def．post）
$=\{\sigma \mid \sigma \in P \wedge \sigma \in \mathcal{B} \llbracket \mathbb{B} \rrbracket\}$
2def．$\llbracket \mathrm{B} \rrbracket \triangleq\{\langle\sigma, \sigma\rangle \mid \sigma \in \mathcal{B} \llbracket \mathbb{B} \rrbracket\}$
$=P \cap \mathcal{B}[\mathrm{~B}]$ \｛def．intersection $\cup\}^{\square}$
Lemma 1.3 （Strongest postcondition）． $\mathcal{T}(\mathrm{s})=\alpha_{\mathrm{G}} \circ$ post $\llbracket \mathrm{s} \rrbracket=\{\langle P$ ，pos $\llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\}$ ．
Proof of Lem．1．3．
\mathcal{T}（s）
$=\alpha_{\mathrm{G}} \circ$ post $\circ \alpha_{\neq} \circ \alpha_{C}\left(\left\{\llbracket \mathrm{~s} \rrbracket_{\perp}\right\}\right) \quad \quad$ def． $\left.\mathcal{T}\right\}$
$=\alpha_{G} \circ$ post $\circ \alpha_{f}\left(\llbracket \mathrm{~S} \rrbracket_{\perp}\right)$
（def．α_{C}
$=\alpha_{G} \circ \operatorname{post}\left(\llbracket s \rrbracket_{\perp} \cap(\Sigma \times \Sigma)\right)$
$=\alpha_{G} \circ$ post $\llbracket \mathrm{s} \rrbracket$
def．（1）of the angelic semantics ${ }_{f}$ S
$=\{\langle P$ ，post $\llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\}$
2 def．$\left.\alpha_{G}\right\} \quad \square$
Lemma 1.4 （Strongest postcondition over approximation）
$\mathcal{T}_{\mathrm{HL}}(\mathrm{s}) \xlongequal{\varrho} \operatorname{post}(\mathrm{I} . \subseteq) \circ \mathcal{T}(\mathrm{s})=\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q\}=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s})$
Proof of Lem．1．4．
$\operatorname{post}($ ㄹ．$\subseteq) \circ \mathcal{T}(\mathrm{s})$
$=\operatorname{post}(\mathcal{I} . \subseteq)(\mathcal{T}(\mathrm{s})) \quad$（def．function composition 0 ）
$=\operatorname{post}(\beth . \subseteq)(\{\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\}) \quad$ LLem．1．3
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P\right.$, post $\left.\llbracket \varsigma \rrbracket P\rangle \mid P \in \wp(\Sigma)\} .\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in \supseteq . \subseteq\right\} \quad$ 2def．（10）of post ς
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\left\langle\langle P\right.\right.$ ，post $\left.\left.\llbracket \varsigma \rrbracket P\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in \mathcal{Z} . \subseteq\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle \supseteq . \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\}$
2def．ϵ S
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P \supseteq P^{\prime} \wedge\right.$ post $\left.\llbracket \varsigma \rrbracket P \subseteq Q^{\prime}\right\} \quad$ ใdef．$\left.\supseteq . \subseteq\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P^{\prime} \subseteq P \wedge \operatorname{post} \llbracket \S \rrbracket P \subseteq Q^{\prime}\right\}$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \operatorname{post} \llbracket \subseteq \mathbb{S} \rrbracket P^{\prime} \subseteq Q^{\prime}\right\}$
$\chi(\subseteq)$ by Galois connection（12），post is increasing so that $P^{\prime} \subseteq P \wedge$ post $\llbracket \mathrm{s} \rrbracket P \subseteq Q^{\prime}$ implie post $\llbracket \varsigma \rrbracket P^{\prime} \subseteq$ post $\llbracket \varsigma \rrbracket P \wedge$ post $\llbracket \varsigma \rrbracket P \subseteq Q^{\prime}$ hence post $\llbracket \varsigma \rrbracket P^{\prime} \subseteq Q^{\prime}$ by transitivity； post $\left\lfloor\leq P^{\prime} \leq P^{\prime}\right.$
（こ）take $P=P^{\prime} S$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P . P^{\prime}=P \wedge \operatorname{post} \llbracket \mathrm{~s} \rrbracket P \subseteq Q^{\prime}\right\}$
2def．$=$ S
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P .\langle P, \operatorname{post} \llbracket \varsigma \rrbracket P\rangle=, \subseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\}$
2def．$=, \subseteq$
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists P \cdot\left\langle\langle P\right.\right.$, post $\left.\left.\llbracket \rrbracket \rrbracket P\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\} \quad$ def．ϵ
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P, \operatorname{post} \llbracket \mathrm{~S} \rrbracket P\rangle \mid P \in \wp(\Sigma)\} \cdot\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\}$
2def．ϵ ）
$=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in \mathcal{T}(\mathrm{s}) \cdot\left\langle\langle P, Q\rangle,\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\rangle \in=, \subseteq\right\}$
（Lem． 1.35
$=\operatorname{post}(=, \subseteq)(\mathcal{T}(\mathrm{s}))$
2def．（10）of post $\}$
$=\operatorname{post}(=, \subseteq) \circ \mathcal{T}(\mathrm{s})$
（def．function composition of
For simplicity，we consider conditional iteration $W=$ while（B）S with no break
Lemma $1.5($ Commutation $)$ ．post $\circ F^{\prime e}=\bar{F}^{e} \circ$ post where $\bar{F}^{e}(X) \xlongequal{\triangleq}$ id $\dot{\cup}\left(\operatorname{post}\left(\llbracket \mathrm{B} \rrbracket ๆ \llbracket \mathrm{q} \rrbracket \rrbracket^{e}\right) \circ X\right)$ and $\left.F^{\prime e} \xlongequal{=} \lambda X \cdot \mathrm{id} \cup(X ;[\mathrm{B}] ; \llbracket \mathrm{S}]^{\prime}\right), X \in \wp(\Sigma \times \Sigma)$ by (70) ．
Proof of Lem．1．5．

$\operatorname{post}\left(F^{\prime e}(X)\right)$

2where $X \in \wp(\Sigma)$ ）

$=\operatorname{post}(\mathrm{id}) \cup \dot{\operatorname{post}}\left(X ; \llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{S} \rrbracket^{e}\right) \quad$ 2join preservation in Galois connection（12）S

def．post and composition Lem．1．15
$=\bar{F}^{e}(\operatorname{post}(X))$
2def． $\bar{F}^{e} \mathrm{~S}$
Lemma 1.6 （Pointwise commutation）．$\forall X \in \wp(\Sigma) \rightarrow \wp(\Sigma) \cdot \forall P \in \wp(\Sigma) \cdot \bar{F}^{e}(X) P \triangleq \overline{\bar{F}}_{P}^{e}(X(P))$ where $\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathbb{B} \rrbracket ; \llbracket \llbracket \rrbracket^{e}\right) X$ ．

Proof of Lem．1．6．

$\bar{F}^{e}(X) P$
$=\left(\operatorname{id} \dot{\cup}\left(\operatorname{post}\left(\llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket \rrbracket^{e}\right) \circ \mathrm{X}\right)\right) P$
$=\operatorname{id}(P) \cup\left(\operatorname{post}\left(\llbracket \mathbb{B} \rrbracket \circ \llbracket \mathbb{S} \rrbracket^{e}\right) \circ X\right)(P)$
$=P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \mathrm{q} \rrbracket^{e}\right)(X(P))$
$=\overline{\bar{F}}_{P}^{e}(X(P)) \quad \quad$ def．$\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket q \llbracket \mathrm{~s} \rrbracket \rrbracket^{e}\right) X \rho \quad \square$
（def．identity id and function application

Theorem 1.7 （Iteration strongest postcondition）．post $\llbracket \mathbb{W} \rrbracket P=\operatorname{post} \llbracket \neg \mathrm{B}]\left(\operatorname{Ifp}{ }^{\varsigma} \overline{\bar{F}}_{P}^{e}\right)$ where $\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\left[\mathbb{B} \rrbracket q \llbracket \llbracket \rrbracket^{e}\right) X\right.$ ．

Proof of Th． 1.7

post【W】
$=\operatorname{post}\left(\mid f \mathrm{ff}^{\varsigma} F^{e}{ }_{9} \llbracket \neg \mathrm{~B} \rrbracket\right) \quad$ 2def．（49）of $\llbracket \mathbb{W} \rrbracket$ in absence of break
$=\operatorname{post} \llbracket \rightarrow \mathrm{B} \rrbracket \circ \operatorname{post}\left(I \mathrm{Ifp} \mathrm{F}^{\varsigma}\right) \quad \quad$ 2composition Lem．1．1）
$=\operatorname{post} \llbracket\urcorner \mathrm{B} \rrbracket \circ \operatorname{post}\left(\mid \mathrm{If}{ }^{\varsigma} F^{\prime e}\right) \quad \quad$ since $\operatorname{Ifp}{ }^{\varsigma} F^{e}=\operatorname{Ifp}{ }^{\varsigma} F^{\prime e}$ in $\left.(70)\right\}$
$=$ post $\llbracket \neg \mathbb{B} \rrbracket\left(\operatorname{Ifp} p^{\varsigma} \bar{F}^{e}\right) \quad$ 2commutation Lem． 1.5 and fixpoint abstraction Th．II．2．2
$=\operatorname{post}\left[\neg B \rrbracket \vee \lambda P \cdot \mid f p^{\mathrm{s}} \overline{\hat{F}}_{P}^{e}\right.$
Conouny 18 （Contwe corination Len． 1.6 and poit wise abstraction Cor．If．2．2

Proof of Cor．1．8．

$\mathcal{T}(w)$

$=\alpha_{G} \circ \operatorname{post}([\mathbb{W W}])$
$=\alpha_{\mathrm{G}} \circ \operatorname{post}[\neg \mathbb{B}] \circ \lambda P \cdot \mid \mathrm{If} \mathrm{p}^{\mathrm{E}} \overline{\bar{F}}_{P}^{e}$

IV) Design of the proof system

Aczel correspondence

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system : $R=\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}, \quad R \in \wp\left(\wp_{\mathrm{fin}}(\mathcal{U}) \times \mathcal{U}\right)$

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system : $R=\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}, \quad R \in \wp\left(\wp \wp_{\mathrm{fin}}(\mathcal{U}) \times \mathcal{U}\right)$
- Subset of the universe \mathcal{U} defined by R :

$$
\begin{aligned}
& \left\{t_{n} \in \mathcal{U} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathcal{U} . \forall k \in[1, n] . \exists \frac{P}{c} \in R . P \subseteq\left\{t_{1}, \ldots, t_{k-1}\right\} \wedge t_{k}=c\right\} \\
& =\quad \operatorname{Ifp}{ }^{\subseteq} F(R) \\
& F(R) X \triangleq\left\{c \left\lvert\, \exists \frac{P}{c} \in R . P \subseteq X\right.\right\} \\
& \leftarrow \text { model theoretic (gfp for coinduction) } \\
& \leftarrow \text { consequence operator }
\end{aligned}
$$

Aczel correspondence between deductive systems and fixpoints

- Rules: $\frac{P}{c}\left(\mathcal{U}\right.$ universe, $P \in \wp_{\mathrm{fin}}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system : $R=\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}, \quad R \in \wp\left(\wp \wp_{\mathrm{fin}}(\mathcal{U}) \times \mathcal{U}\right)$
- Subset of the universe \mathcal{U} defined by R :

$$
\begin{aligned}
& \text { proof theoretic } \downarrow \\
& =\begin{array}{l}
\left\{t_{n} \in \mathcal{U} \mid \exists t_{1}, \ldots, t_{n-1} \in \mathcal{U} . \forall k \in[1, n] . \exists \frac{P}{c} \in R . P \subseteq\left\{t_{1}, \ldots, t_{k-1}\right\} \wedge t_{k}=c\right\} \\
\operatorname{Ifp}^{\varsigma} F(R) \quad \leftarrow \text { model theoretic (gfp for coinduction) }
\end{array} \\
& F(R) X \triangleq\left\{c \left\lvert\, \exists \frac{P}{c} \in R . P \subseteq X\right.\right\} \\
& \leftarrow \text { consequence operator }
\end{aligned}
$$

- Deductive system defining Ifp $^{\subseteq} F: \quad R_{F} \triangleq\left\{\left.\frac{P}{c} \right\rvert\, P \subseteq \mathcal{U} \wedge c \in F(P)\right\}$

Why not using Aczel method to get the proof system at this point?

- We get a sound and complete proof system

Why not using Aczel method to get the proof system at this point?

- We get a sound and complete proof system
- BUT impractical:
- you first prove the strongest postcondition, and then
- use the consequence rule to approximate!

Fixpoint induction

Fixpoint induction

Theorem H. 3 (Non empty intersection with abstraction of least fixpoint). Assume that (1) 〈L, ᄃ, $\perp, \top, \sqcap, \sqcup\rangle$ is an atomic complete lattice; (2) $f \in L \rightarrow L$ preserves nonempty joins \sqcup; (3) $\langle L, \sqsubseteq\rangle \stackrel{\gamma}{\longleftrightarrow}\langle\bar{L}, \leq, \wedge\rangle$; (4) $\bar{Q} \in \bar{L} \backslash\{0\}$ where $0 \triangleq \alpha(\perp)$; (5) There exists an inductive invariant $I \in L$ of f (i.e. $f(I) \sqsubseteq I)$; (6) $\langle W, \leqslant\rangle$ is a well-founded set and $v \in \operatorname{atoms}(I) \rightarrow W$ is a (variant) function; (7) There exists a sequence $\left\langle a_{i} \in \operatorname{atoms}(I)\right.$, $i \in[1, \infty]\rangle$ that (7.a) $a_{1} \in f(\perp),(7 . b) \forall i \in[1, \infty] . a_{i+1} \in \operatorname{atoms}\left(f\left(a_{i}\right)\right),(7 . c) \forall i \in[1, \infty] .\left(a_{i} \neq a_{i+1}\right) \Rightarrow$ $\left(v\left(a_{i}\right)>v\left(a_{i+1}\right)\right.$, (7.d) $\forall i \in[1, \infty] .\left(v\left(a_{i}\right) \ngtr v\left(a_{i+1}\right) \Rightarrow \alpha\left(a_{i}\right) \wedge \bar{Q} \neq 0\right.$; Then, hypotheses (1) to (7) imply $\alpha\left(\operatorname{Ifp}{ }^{\sqsubseteq} f\right) \wedge \bar{Q} \neq 0$. Conversely (1) to (4) and lfp ${ }^{\sqsubseteq} f \sqcap \gamma(\bar{Q}) \neq \perp$ imply (5) to (7).

Calculational design of the proof system

HL does not need a consequence rule

Theorem 4.1 (EQuivalent definitions of $\overline{\mathrm{HL}}$ theories).

$$
\left.\left.\mathcal{T}_{\overline{H L}}(\mathrm{~s}) \triangleq \operatorname{post}(\subseteq, \supseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{H L}(\mathrm{~s})=\alpha\right\urcorner \circ \mathcal{T}_{H L}(\mathrm{~s})
$$

Observe that Th. 4.1 shows that post (\subseteq, \supseteq) can be dispensed with. This implies that the consequence rule is useless for Hoare incorrectness logic.

Proof of Th. 4.1.

$$
\begin{aligned}
& \left.\mathcal{T}_{\overline{\overline{H L}}}(\mathrm{~s})=\operatorname{post}(\subseteq, \supseteq) \circ \alpha\right\urcorner \circ \mathcal{T}_{\mathrm{HL}}(\mathrm{~s}) \quad \quad \text { def. } \mathcal{T}_{\overline{\mathrm{HL}}} \int \\
& =\operatorname{post}((\subseteq, \supseteq)(\neg\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q\}) \quad \text { 2Lem. } 1.4 \text { and def. (30) of } \alpha\urcorner S \\
& =\operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q\rangle \mid \neg(\operatorname{post} \llbracket \mathrm{s} \rrbracket P \subseteq Q)\}) \quad \quad \text { def. } \neg\} \\
& =\operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing\}) \quad \text { 2def. } \subseteq \text { and } \neg\} \\
& \left.=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \in\{\langle P, Q\rangle \mid \text { post } \llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing\} .\langle P, Q\rangle \subseteq \supseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad \text { 2def. post }\right\} \\
& \left.=\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle \cdot \operatorname{post} \llbracket \varsigma \rrbracket P \cap \neg Q \neq \varnothing \wedge\langle P, Q\rangle \subseteq, \supseteq\left\langle P^{\prime}, Q^{\prime}\right\rangle\right\} \quad \text { 2def. } \epsilon\right\} \\
& =\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists\langle P, Q\rangle . \operatorname{post} \llbracket \varsigma \rrbracket P \cap \neg Q \neq \varnothing \wedge P \subseteq P^{\prime} \wedge Q \supseteq Q^{\prime}\right\} \quad \text { (component wise def. of } \subseteq, \supseteq \bigcirc \\
& =\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \exists Q . \text { post } \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \wedge Q \supseteq Q^{\prime}\right\} \\
& \mathcal{~ (\subseteq) ~ i f ~} P \subseteq P^{\prime} \text { then post } \llbracket \mathrm{s} \rrbracket P \subseteq \operatorname{post} \llbracket \mathrm{~s} \rrbracket P^{\prime} \text { by (12) so that post } \llbracket \mathrm{s} \rrbracket P \cap \neg Q \neq \varnothing \text { implies } \\
& \text { post } \llbracket \rrbracket \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \text {; } \\
& \text { (Э) conversely, if } \exists Q \text {. post } \llbracket \mathrm{s} \rrbracket P^{\prime} \text {, then } \exists P \text {. post } \llbracket \llbracket \rrbracket P \cap \neg Q \neq \varnothing \wedge P \subseteq P^{\prime} \text { by choosing } \\
& P=P^{\prime} . S \\
& =\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid \operatorname{post} \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing\right\} \\
& \text { 2(〔) if } Q \supseteq Q^{\prime} \text { then } \neg Q^{\prime} \supseteq \neg Q \text { so post } \llbracket \varsigma \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \text { implies post } \llbracket \varsigma \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing \text {; } \\
& (\supseteq) \text { conversely post } \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q^{\prime} \neq \varnothing \text { implies } \exists Q \text {. post } \llbracket \mathrm{s} \rrbracket P^{\prime} \cap \neg Q \neq \varnothing \wedge Q \supseteq Q^{\prime} \text { by choosing } \\
& Q=Q^{\prime} . \int \\
& =\{\langle P, Q\rangle \mid \neg(\text { post } \llbracket \mathrm{s} \rrbracket P \subseteq Q)\} \\
& =\alpha\urcorner \circ \mathcal{T}_{\mathrm{HL}}(\mathrm{~s})
\end{aligned}
$$

Theory of HL

Theorem 4.2 (Theory of $\overline{\mathrm{HL}}$).

$$
\begin{aligned}
& \mathcal{T}_{\overline{H L}}(\mathrm{~W})=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge\right. \\
& \forall i \in\left[1, n\left[.\left\langle\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in \mathcal{T}_{\overline{H L}}(\mathrm{~s}) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\}\right.
\end{aligned}
$$

Proof of Th. 4.2. $W=$ while (B) S

$\mathcal{T}_{\overline{\text { HIL }}}(\mathrm{w})$
$\left.=\{\langle P, Q\rangle \mid \operatorname{post} \llbracket \neg \mathrm{B}]\left(\mid \mathrm{Ifp}{ }^{\mathrm{E}} \overline{\bar{F}}_{P}^{e}\right) \cap \neg Q \neq \varnothing\right\} \quad$ LLem. 1.3, where $\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \llbracket \rrbracket^{e}\right) X S$
$=\left\{\langle P, Q\rangle| | f p^{\varsigma} \overline{\hat{F}}_{P}^{e} \cap \operatorname{pre} \llbracket \neg B \rrbracket(\neg Q) \neq \varnothing\right\}$
2(39.d) $\}$
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . \overline{\bar{F}}_{P}^{e}(I) \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{B} \boldsymbol{f} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I, i \in[1, \infty]\right\rangle . \sigma_{1} \in\right.$ $\overline{\bar{F}}_{P}^{e}(\varnothing) \wedge \forall i \in[1, \infty] . \sigma_{i+1} \in \overline{\bar{F}}_{P}^{e}\left(\left\{\sigma_{i}\right\}\right) \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in\right.$ $[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow\left\{\sigma_{i}\right\} \cap \operatorname{pre} \llbracket \neg \mathrm{B} \rrbracket(\neg Q) \neq 0\right\}$ 2induction principle Th. H.3S
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \stackrel{q}{\square} \llbracket \rrbracket^{e}\right) I \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{B} f . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I\right.\right.$, $i \in[1, \infty]\rangle . \sigma_{1} \in P \wedge \forall i \in[1, \infty] .\left(\sigma_{i+1} \in P \vee\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket 9\right.\right.$ g $\left.\left.\llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\}\right) \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq\right.$ $\left.\sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right.$

2def. $\overline{\bar{F}}_{P}^{e}(X) \triangleq P \cup \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ף \llbracket \mathrm{~s} \rrbracket^{e}\right) X, \subseteq$, and post, which is \varnothing-strict \oint
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket \mathfrak{q} \llbracket \mathrm{~s} \rrbracket^{e}\right) I \subseteq I \wedge \exists\langle W, \leqslant\rangle \in \mathfrak{W} \mathfrak{f} . \exists v \in I \rightarrow W . \exists\left\langle\sigma_{i} \in I\right.\right.$, $i \in[1, \infty]\rangle . \sigma_{1} \in P \wedge \forall i \in[1, \infty] .\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket\right.$ g $\left.\llbracket \mathrm{S} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow$ $\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right) \wedge \forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right.$

2since if $\sigma_{i+1} \in P$, we can equivalently consider the sequence $\left\langle\sigma_{j} \in I, j \in[i+1, \infty]\right\rangle S$
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e}\right) I \subseteq I \wedge \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\right.$ $\left\lfloor 1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \mathfrak{g} \llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \in \operatorname{pre} \llbracket \neg \mathrm{~B} \rrbracket(\neg Q)\right\}\right.$

ح(ভ) $\quad \mathrm{By}\langle W, \leqslant\rangle \in \mathfrak{M} \mathfrak{\mathfrak { f }}, v \in I \rightarrow W, \forall i \in[1, \infty] .\left(\sigma_{i} \neq \sigma_{i+1}\right) \Rightarrow\left(v\left(\sigma_{i}\right)>v\left(\sigma_{i+1}\right)\right.$, the sequence is ultimately stationary at some rank n. For then on, $\sigma_{i+1}=\sigma_{i}, i \geqslant n$ and so $v\left(\sigma_{i}\right)=v\left(\sigma_{i+1}\right)$. Therefore $\forall i \in[1, \infty] .\left(v\left(\sigma_{i}\right) \ngtr v\left(\sigma_{i+1}\right) \Rightarrow \sigma_{i} \notin Q\right.$ implies that $\sigma_{n} \in$ pre【 $\neg \mathrm{B} \rrbracket(\neg Q)$;
(ミ) Conversely, from $\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle$ we can define $W=\left\{\sigma_{i} \mid i \in[1, n]\right\} \cup\{-\infty\}$ with $-\infty<\sigma_{i}<\sigma_{i+1}$ and $v(x)=\left(x \in\left\{\sigma_{i} \mid i \in[1, n]\right.\right.$ ว $\left.x:-\infty\right)$ and the sequence $\left\langle\sigma_{j} \in I\right.$, $j \in[1, \infty]\rangle$ repeats σ_{n} ad infimum for $j \geqslant n . S$
$=\left\{\langle P, Q\rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \wedge \operatorname{post}\left(\llbracket \mathrm{~B} \rrbracket ; \llbracket \llbracket \rrbracket^{e}\right) I \subseteq I \wedge \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\right.$ $\left[1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket ; \llbracket \mathrm{s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\}\right.$ 2def. preS
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left\{\sigma_{i+1}\right\} \subseteq \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket 9\right.\right.\right.\right.$ g $\left.\llbracket \mathrm{S} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \wedge \sigma_{n} \notin$ $\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad\{I$ is not used and can always be chosen to be ΣS
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \operatorname{post}(\llbracket \mathrm{B}] q \llbracket \llbracket \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \cap\left\{\sigma_{i+1}\right\} \neq \varnothing \wedge \sigma_{n} \notin\right.\right.$ $\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad$ (since $x \in X \Leftrightarrow X \cap\{x\} \neq \varnothing S$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \mathfrak{g} \llbracket \mathrm{S} \rrbracket \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \cap \neg\left(\neg\left\{\sigma_{i+1}\right\}\right) \neq\right.\right.\right.$ $\left.\varnothing \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad$ 2def. $\neg X=\Sigma \backslash X \rho$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \neg\left(\operatorname{post}\left(\llbracket \mathrm{B} \rrbracket \stackrel{q}{g} \llbracket \mathrm{~s} \rrbracket^{e}\right)\left\{\sigma_{i}\right\} \subseteq\right.\right.\right.\right.$ $\left.\left.\left(\neg\left\{\sigma_{i+1}\right\}\right)\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad \neg \neg(X \subseteq Y) \Leftrightarrow(X \cap \neg Y \neq \varnothing \rho$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[. \neg\left(\operatorname{post}\left(\llbracket \mathrm{s} \rrbracket^{e}\right)\left(\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}\right) \subseteq\right.\right.\right.\right.$ $\left.\left.\left(\neg\left\{\sigma_{i+1}\right\}\right)\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\}$
(def. post, $\llbracket \mathrm{B} \rrbracket$, and $\stackrel{\rho}{9}$)
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\langle\mathcal{B} \llbracket \mathrm{B}] \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in\{\langle P\right.\right.$, $\left.\left.Q\rangle \mid \neg\left(\operatorname{post}\left(\llbracket \mathrm{s} \rrbracket^{e}\right) P \subseteq Q\right)\right\} \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right\} \quad$ 2def. $\in S$
$=\left\{\langle P, Q\rangle \mid \exists n \geqslant 1 . \exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\langle\mathcal{B} \llbracket \mathrm{B}] \cap\left\{\sigma_{i}\right\}, \neg\left\{\sigma_{i+1}\right\}\right\rangle \in \mathcal{T}_{\overline{\overline{H L}}}(\mathrm{~s}) \wedge \sigma_{n} \notin\right.\right.$ $\left.\mathcal{B} \llbracket \mathrm{B} \rrbracket \wedge \sigma_{n} \in Q\right\}$
(def. $\mathcal{T}_{\overline{\mathrm{HL}}}(\mathrm{s}) \rho \quad \square$

Proof system of $\overline{H L}$

Theorem 4.3 ($\overline{\mathrm{HL}}$ RUles for conditional iteration).

$$
\begin{equation*}
\frac{\exists\left\langle\sigma_{i} \in I, i \in[1, n]\right\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left(\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}\right) \mathrm{S}\left(\neg\left\{\sigma_{i+1}\right\}\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right.\right.}{(P) \text { while }(\mathrm{B}) \mathrm{S}(Q)} \tag{3}
\end{equation*}
$$

Proof of (3). We write $(P) \mathrm{s}(Q) \triangleq\langle P, Q\rangle \in \overline{\mathrm{HL}}(\mathrm{s})$;
By structural induction (S being a strict component of while (B) S), the rule for $(P \backslash \mathrm{~S}(Q)$ have already been defined;

By Aczel method, the (constant) fixpoint Ifp $\subseteq \lambda X \cdot S$ is defined by $\left\{\left.\frac{\varnothing}{c} \right\rvert\, c \in S\right\}$;
So for while (B) S we have an axiom $\frac{\varnothing}{(P) \text { while (B) } \mathrm{S}(Q)}$ with side condition $\exists\left\langle\sigma_{i} \in I, i \in\right.$ $[1, n]\rangle . \sigma_{1} \in P \wedge \forall i \in\left[1, n\left[.\left(\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap\left\{\sigma_{i}\right\}\right) \mathrm{S}\left(\neg\left\{\sigma_{i+1}\right\}\right) \wedge \sigma_{n} \notin \mathcal{B} \llbracket \mathrm{~B} \rrbracket \wedge \sigma_{n} \notin Q\right.\right.$ where $(\mathcal{B} \llbracket \mathrm{B} \rrbracket \cap$ $\left.\left\{\sigma_{i}\right\}\right) \mathrm{S}\left(\neg\left\{\sigma_{i+1}\right\}\right)$ is well-defined by structural induction;

Traditionally, the side condition is written as a premiss, to get (3).

About incorrectness

- IL is not Hoare incorrectness logic (sufficient, not necessary)

$$
\begin{aligned}
\neg(\{P\} \mathrm{s}\{Q\}) & \stackrel{\nLeftarrow}{\rightleftarrows}[P] \mathrm{s}[\neg Q] \\
& \Leftrightarrow \exists R \in \wp(\Sigma) \cdot[P] \mathrm{s}[R] \wedge R \cap \neg Q \neq \varnothing \\
& \Leftrightarrow \exists \sigma \in \Sigma \cdot[P] \mathrm{s}[\{\sigma\}] \wedge \sigma \notin Q
\end{aligned}
$$

Conclusion

- Was Peter correct or incorrect?

Conclusion

- Was Peter correct or incorrect?
- In a certain sense, he was correct
- BUT he took the hardest path

Conclusion

- Was Peter correct or incorrect?
- In a certain sense, he was correct
- BUT he took the hardest path
- Hoare incorrectness logic is the easiest and most popular way

Conclusion

- Was Peter correct or incorrect?
- In a certain sense, he was correct
- BUT he took the hardest path
- Hoare incorrectness logic is the easiest and most popular way
- It has proof verifiers and theorem provers

Conclusion

- Was Peter correct or incorrect?
- In a certain sense, he was correct
- BUT he took the hardest path
- Hoare incorrectness logic is the easiest and most popular way
- It has proof verifiers and theorem provers
- They are called debuggers

Conclusion

- Was Peter correct or incorrect?
- In a certain sense, he was correct
- BUT he took the hardest path
- Hoare incorrectness logic is the easiest and most popular way
- It has proof verifiers and theorem provers
- They are called debuggers
- Which are therefore formal tools based on a formal logic!

Conclusion

- Was Peter correct or incorrect?
- In a certain sense, he was correct
- BUT he took the hardest path
- Hoare incorrectness logic is the easiest and most popular way
- It has proof verifiers and theorem provers
- They are called debuggers
- Which are therefore formal tools based on a formal logic! 상

The End, Thank You

The End, Thank You

Happy Sixties to Peter

