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Mycroft’s PhD thesis
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Strictness analysis
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Strictness analysis

2 

Abstract 
This thesis describes methods for transforming applicative 

programs with the aim of improving their efficiency. The general 
justification for these techniques is presented via the concept of 
abstract interpretation. The work can be seen as providing 
mechanisms to optimise applicative programs for sequential von 
Neumann machines. The chapters address the following subjects. 

Chapter 1 gives an overview and gentle introduction to the 
following technical chapters. 

Chapter 2 gives an introduction to and motivation for the 
concept of abstract interpretation necessary for the detailed 
understanding of the rest of the work. It includes certain 
theoretical developments, of which I believe the most important is 
the incorporation of the concept of partial functions into our 
notion of abstract interpretation. This is done by associating 
non-standard denotations with functions just as denotational 
semantics gives the standard denotations. 

Chapter 3 gives an example of the ease with which we can talk 
about function objects within abstract interpretive schemes. It 
uses this to show how a simple language using call-by-need 
semantics can be augmented with a system that annotates places in a 
program at which call-by-value can be used without violating the 
call-by-need semantics. 

Chapter 4 extends the work of chapter 3 by showing that under 
some sequentiality restriction, the incorporation of call-by-value 
for call-by-need can be made complete in the sense that the 
resulting program will only possess strict functions except for the 
conditional. 

Chapter 5 is an attempt to apply the concepts of abstract 
interpretation to a completely different problem, that of 
incorporating destructive operators into an applicative program. 
We do this in order to increase the efficiency of implementation 
without violating the applicative semantics by introducing 
destructive operators into our language. 

Finally, chapter 6 contains a discussion of the implications of 
such techniques for real languages, and in particular presents 
arguments whereby applicative languages should be seen as whole 
systems and not merely the applicative subset of some larger 
language. 
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• Abstraction of the reachable states of a transition system

•  

• Collecting semantics  

• Galois connection

• Abstract reachability is “ find   such that   ”

⟨Σ, τ⟩

post(τ*)P = lfp⊆FP, P ∈ ℘(Σ), FP(X) = P ∪ post(τ)X

Q α(lfp⊆FP) ⊆ Q

 5

State of the art in the 80’s

⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A, ≼⟩
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• Fixpoint abstraction theorem:
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State of the art in the 80’s

2.1 Alan Mycroft’s starting point

The state of the theory of abstract interpretation that Alan Mycroft relied on,
was for reachability/invariant verification/analysis of transition systems ⟨Σ, τ⟩ 1.

The objective is to infer an invariant I ∈ ℘(Σ) over approximating the reach-
able states {σ′ | ∃σ ∈ P . ⟨σ, σ′⟩ ∈ τ∗} ⊆ I from initial states P ∈ ℘(Σ) where
τ∗ ! ⋃

n∈N τn = lfp⊆ T with T ! λX . τ0 ∪ τ ◦ X is the reflexive transitive
closure of τ ∈ ℘(Σ × Σ), τ0 is the identity relation on the set of states Σ, and
τn+1 ! τn ◦ τ is the relation power. Define post(r)P ! {σ′ | ∃σ ∈ P . ⟨σ,
σ′⟩ ∈ r} to be the right-image of the states in P by the relation r on states. We
look for an invariant I such that post(lfp⊆ T ) ⊆ I. The method is explained in
proposition 2 thereafter, proofs are relegated to the appendix.

Proposition 1. Given P ∈ ℘(Σ), we have the Galois connection ⟨℘(Σ × Σ),

⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
λr . post(r)P

γP ⟨℘(Σ), ⊆⟩2.

Proposition 2. For all P ∈ ℘(Σ), we have the following commutation property
λr . post(r)P ◦ T = FP ◦ λr . post(r)P with T (X) ! τ0 ∪ τ ◦ X and FP (X) !
P ∪ post(τ)X.

By the fixpoint exact abstraction under this commutation condition, if follows
that post(lfp⊆ T ) = lfp⊆ FP , as shown by the following

Proposition 3. if ⟨C, ≼⟩ and ⟨A, "⟩ are CPO’s (every increasing chain has
a lub, including the empty chain, so has an infimum), f ∈ C

c−→ C and f̄ ∈
A

c−→ A are continuous, ⟨C, ≼⟩ −−−→←−−−α
γ
⟨A, "⟩ is a Galois connection, then the

commutation condition α ◦ f = f̄ ◦ α (respectively semi-commutation α ◦ f
.
"

f̄ ◦ α, pointwise) implies that α(lfp≼ f) = lfp≼ f̄ (resp. α(lfp≼ f) " lfp! f̄).

The problem is thus to find an invariant I such that lfp⊆ FP ⊆ I. It is essen-
tial to remark that the computation ordering used for the fixpoint lfp⊆ FP and
the logical ordering in lfp⊆ FP ⊆ I to over approximate the reachable states are
the same so that the above fixpoint approximate abstraction under the semi-
commutation condition is directly applicable

Therefore, by proposition 3, using a Galois connection ⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A,

#⟩, the problem can be reduced to the computation of an abstract invariant
lfp" α ◦ FP ◦ γ such that lfp⊆ FP ⊆ γ(lfp" α ◦ FP ◦ γ), as desired.

Using a semi-commuting over approximation F̄P such that α ◦ F̄P

.
# FP ◦ α

is also feasible since then lfp⊆ FP ⊆ γ(lfp" F̄P ), by proposition 3.

1 Alan and his followers refer to “flowchart abstract interpretation” whereas in my
thesis and POPL79, I had moved from flowcharts to transition systems for concise-
ness.

2 ⟨C, ≼⟩ −−−→←−−−α
γ
⟨A, "⟩ denotes the fact that ⟨C, ≼⟩ and ⟨A, "⟩ are posets, α ∈ C −→ A,

γ ∈ A −→ C, and ∀x ∈ C, y ∈ A . α(x) " y ⇔ x ≼ γ(y).
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• Denotational semantics of a recursive function (  is Scott ordering,    is pointwise,    
continuous on a CPO  )

                                                 

• Collecting semantics of    is  

• In fixpoint form ( is Egli-Milner ordering) 
 

 
with                                            and

• Strictness analysis is “ find   such that                            ”

⊑ ⊑ F
⟨𝒟⊥, ⊑ ⟩

lfp⊑F ∈ 𝒟⊥ ⟶ 𝒟⊥

f ∈ 𝒟⊥ ⟶ 𝒟⊥ post( f )P = {f(x) ∣ x ∈ P}⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A, ≼⟩

post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

Q
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Mycroft’s strictness analysis problem

⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A, ≼⟩

post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A, ≼⟩

post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

F̂ (φ)P ! post(F (γ̂(φ)))P

γ̂(φ) ! λx . let {y} = φ({x}) in y

⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A, ≼⟩

post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

F̂ (φ)P ! post(F (γ̂(φ)))P

γ̂(φ) ! λx . let {y} = φ({x}) in y

⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ
⟨A, ≼⟩

post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

F̂ (φ)P ! post(F (γ̂(φ)))P

γ̂(φ) ! λx . let {y} = φ({x}) in y

α♯(lfp
.
⊑̂ F̂ )) ⊆ Q

.

.
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Mycroft’s strictness analysis solution

Observe that ⟨℘(D⊥) \ {⊑̂}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ does not hold since e.g. for
Scott ordering, we have α♯(S) ≤ 1 but not S ⊑̂ γ♯(1) = D⊥ since for S ⊂ D
and y ∈ D \ S ⊆ D⊥ we don’t have ∃x ∈ S . x ⊑ y since for Scott ordering
the only possibility is x = y ̸∈ S. So proposition 3 is not applicable to express
α♯(post(lfp

.
⊑ F ) = α♯(lfp

.
⊑̂ F̂ )) as a fixpoint. This is the main difficulty Alan

Mycroft had to solve with the theory of abstract interpretation, as available as
the time. The required generalization of proposition 3 is the following

Proposition 7. Let ⟨C, ⊥, ⊑, ⊔⟩ be a concrete CPO for the computational
ordering ⊑ and f ∈ C

c−→ C be continuous. Let ⟨C, ≤⟩ be a poset for the
approximation ordering ≤.

Let ⟨A, ⊥♯, ⊑♯, ⊔♯⟩ be an abstract CPO and f ♯ ∈ A
c−→ A be continuous.

Let ⟨C, ≤⟩ −−−→←−−−α
γ
⟨A, ⊑♯⟩ be an abstraction such that

⊥ ≤ γ(⊥♯) (2)
∀x ∈ C, y ∈ A . (x ≤ γ(y))⇒ (f(x) ≤ γ(f ♯(y)) (3)

for all increasing chains ⟨xi, i ∈ N⟩ for ⊑ and ⟨yi, i ∈ N⟩ for ⊑♯ .

(∀i ∈ N . xi ≤ γ(yi))⇒
⊔

i∈N
xi ≤ γ(

⊔♯

j∈N
yj) (4)

Then lfp⊑ f ≤ γ(lfp⊑♯
f ♯).

Notice that in proposition 7, the computational ordering ⊑ and the approxi-
mation ordering ≤ may differ, whereas in proposition 3 they must be the same.
This solves Alan problem for strictness analysis. Define #–α ♯(f) ! α♯ ◦ f ◦ γ♯ and
#–γ ♯(f) ! γ♯ ◦ f ◦ α♯ so that

⟨℘(D⊥)
1∪−→ ℘(D⊥),

.
⊆⟩ −−−−→←−−−−

#–α ♯

#–γ ♯

⟨B i−→ B,
.
≤⟩ (5)

where B i−→ B is the set of ≤-increasing Boolean functions. Define F̂ ♯ ! #–α ♯ ◦

F̂ ◦ #–γ ♯ so that the hypotheses (2), (3), and (4) of proposition 7 are satisfied with
C = ℘(D⊥)

1∪−→ ℘(D⊥), ⊑ =
.

⊑̂, A = B i−→ B, ⊑♯ =
.
≤, ≤ =

.
⊆, α = #–α ♯, and

γ = #–γ ♯. Proposition 7 applies to F̂ ♯.

Proposition 8. lfp
.
⊑̂ F̂

.
⊆ #–γ ♯(lfp

.
≤ F̂ ♯).

Therefore by (1) and proposition 8, we have post(lfp
.
⊑ F ) = lfp

.
⊑̂ F̂

.
⊆ #–γ ♯(lfp

.
≤ F̂ ♯).

Since F̂ ♯ operates on a finite domain, f ♯ = lfp
.
≤ F̂ ♯ is computable for any func-

tional program. Assume that f ♯(0) = 0. Then post(lfp
.
⊑ F ){⊥} ⊆ γ♯(0) = {⊥},

proving strictness F (⊥) = ⊥. Mycroft’s strictness analysis method is sound (and
also incomplete by Rice’s theorem).

Alan applies the same approach to the lower abstraction α♭ but this is of lim-
ited applicability since function nontermination be can proved with this abstrac-
tion only when it does not depend upon the values of the parameters. However,
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• Alan’s strictness analysis originated an enormous amount of work on the subject in the 
80’s and early 90’s

• Strictness analysis is found in modern compilers for lazy purely functional languages such 
as Haskell
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Strictness analysis after Mycroft
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Sharing analysis
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Sharing analysis

2 

Abstract 
This thesis describes methods for transforming applicative 

programs with the aim of improving their efficiency. The general 
justification for these techniques is presented via the concept of 
abstract interpretation. The work can be seen as providing 
mechanisms to optimise applicative programs for sequential von 
Neumann machines. The chapters address the following subjects. 

Chapter 1 gives an overview and gentle introduction to the 
following technical chapters. 

Chapter 2 gives an introduction to and motivation for the 
concept of abstract interpretation necessary for the detailed 
understanding of the rest of the work. It includes certain 
theoretical developments, of which I believe the most important is 
the incorporation of the concept of partial functions into our 
notion of abstract interpretation. This is done by associating 
non-standard denotations with functions just as denotational 
semantics gives the standard denotations. 

Chapter 3 gives an example of the ease with which we can talk 
about function objects within abstract interpretive schemes. It 
uses this to show how a simple language using call-by-need 
semantics can be augmented with a system that annotates places in a 
program at which call-by-value can be used without violating the 
call-by-need semantics. 

Chapter 4 extends the work of chapter 3 by showing that under 
some sequentiality restriction, the incorporation of call-by-value 
for call-by-need can be made complete in the sense that the 
resulting program will only possess strict functions except for the 
conditional. 

Chapter 5 is an attempt to apply the concepts of abstract 
interpretation to a completely different problem, that of 
incorporating destructive operators into an applicative program. 
We do this in order to increase the efficiency of implementation 
without violating the applicative semantics by introducing 
destructive operators into our language. 

Finally, chapter 6 contains a discussion of the implications of 
such techniques for real languages, and in particular presents 
arguments whereby applicative languages should be seen as whole 
systems and not merely the applicative subset of some larger 
language. 
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• Fisrt-order functional language with atoms and operations cons, car, cdr, free, atom 

• The heap runtime data structure is a DAG

• Denotational semantics of a function is parameter x heap ⟶ result x heap

• The static analysis infers the set of heap locations descending from heap roots going 
exclusively through heads only (resp. through tails only, through heads or tails). 
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Collecting information on LISP data structures
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• arb: atom, nontermination, or any heap element

• one : atom, nontermination, or heap element accessible 
from the heap roots by one path only

• onehlst : idem,  going through car only

• onelist : idem, through cdr only

• ti : atom, nontermination, or heap element accessible from 
the heap roots by one path only, as well as all of its 
descendants

 13

Mycroft’s abstract domain
The abstract domain is the (complete) lattice

A =

ti

onehlst onelist
one

arb

The meaning of the abstract values (called “isolation classes”) is as follows.

– The supremum arb can denote any atom (including error), element on the
heap, or non termination. γ(arb) ! {⟨v, H⟩ | H ∈ H ∧ v ∈ A ∪ L(H) ∪ {⊥}}.

– The abstract value one can denote any atom, non termination, or element
on the heap accessible from the roots of the heap by one path only, so, “the
object described [by one] cannot be a shared CONS node” [16, page 138].
γ(one) ! {⟨v, H⟩ | H ∈ H ∧ v ∈ O(H)} .

– The abstract value onehlst can denote any atom, non termination, or element
on the heap accessible from the roots of the heap by one path only, and such
that all its descendants by the head h are not accessible from the roots in any
other way. γ(onehlst) ! {⟨v, H⟩ | ∀v′ ∈ ∆h(H)v . v′ ∈ O(H)} (this includes
v′ = v).

– The abstract value onelist is similar, but for tails only. So these nodes are
uniquely accessible from the roots of H and so are all their descendants
through tails only. γ(onelist) ! {⟨v, H⟩ | ∀v′ ∈ ∆t(H)v . v′ ∈ O(H)}

– The infimum ti denotes any atom, nontermination, or location on the heap
such that all its descendants are accessible form the roots by one path only
(“objects totaly unshared from other objects” [16, page 135]). γ(ti) ! {⟨v,
H⟩ | ∀v′ ∈ ∆(H)v . v′ ∈ O(H)}

Observe that γ(onehlst) ⊓ γ(onelist) = γ(ti) so we have a Galois connection
withthe abstraction of P ∈ ℘(V × H) such that α(P ) ! !

{a) ∈ A | P ⊆ γ(a)}.
The abstraction is extended to functions of the collecting semantics f ∈ ℘(V ×
H)

i−→ ℘(V × H) by α(f) ! α ◦ f ◦ γ. This provides a fixpoint definition of the
isolation class of a function in terms of the isolation classes of its parameters and
its textual definition” [16, page 140], provided variables are handled correctly,
as in [16, section 5.7.5], as roots of the DAG. Since the abstract domain is finite,
the abstraction is computable for each subexpression appearing in a program.

3.1 Static analysis of shared data structures

Alan is one of the early users of abstract interpretation5 for analyzing programs
manipulating shared recursive data structures, a complex problem which, with
parallelism, is still a hot research subject nowadays.
5 following Cousot and Cousot, IFIP FDPC, 1978.
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Alan contributions on 
abstract interpretation
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• Alan originated fundamental ideas in abstract interpretation

• The use of denotational semantics in static analysis

• Strictness analysis

• Shape analysis (still a very difficult and active research area)

• Completeness in abstract interpretation (progressing, but not yet solved)

• Types and effects (inexhaustible subject)

 15

Mycroft thesis is the origin of static analysis of functional programs
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The End, Thank You
Happy Retirement to Alan!
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The End, Thank You
Happy Retirement to Alan!


