The hierarchy of analytic semantics of weakly consistent parallelism

Jade Alglave (MSR-Cambridge, UCL, UK)
Patrick Cousot (NYU, Emer. ENS, PSL)

REPS AT SIXTY (co-located with SAS 2016)
Edinburgh, Scotland
September 11, 2016
Analytic semantics
Weak consistency models (WCM)

- **Sequential consistency:**
 reads \(r(p, x) \) are *implicitly coordinated* with writes \(w(q, x) \)

- **WCM:**
 No implicit coordination (depends on architecture, program dependencies, and explicit fences)
Analytic semantic specification

- **Analytic semantics** = **Anarchic semantics** ∩ **Communication semantics**

- **Anarchic semantics** \(S^a[P]\) :
 describes computations of program \(P\), no constraints on communications

- **Communication semantics**:
 imposes architecture-dependent communication constraints

 e.g.: **cat** language (Jade Alglave & Luc Maranget)

Hierarchy of anarchic semantics

• Many different styles to describe the same computations e.g.
 • stateless/stateful
 • eager/lazy communications
 • interleaved versus true parallelism
 • …

• They form a hierarchy of abstractions

• The communication semantics is the same for all semantics in the hierarchy
Example: load buffer (LB)

- **Program:**
 \[
 \{ \ x = 0; \ y = 0; \ \}

 \begin{align*}
 P_0 & \parallel P_1; \\
 r[] & \ r1 \ x \parallel r[] \ r2 \ y; \\
 w[] & \ y \ 1 \parallel w[] \ x \ 1;
 \end{align*}
 \]

 \[\exists_0: r1=1 \land 1: r2=1\]

- **Example of execution trace** \(t \in S^+ [P]\):

 \[
 t = w(\text{start}, x, 0) \ w(\text{start}, y, 0) \ r(P0, x, 1) \ \rf[w(P1, x, 1), r(P0, x, 1)] \ w(P0, y, 1) \ r(P1, y, 1) \\
 w(P1, x, 1) \ \rf[w(P0, y, 1), r(P1, y, 1)]
 \]

- **Abstraction to cat candidate execution** \(\alpha_\Xi(t)\):

 \[\begin{array}{c}
 P_0 \quad P_1 \\
 a: \ Rx=1 \\
 b: \ Wy=1 \\
 \parallel \quad \rf \rf \quad \rf \\
 c: \ Ry=1 \\
 d: \ Wx=1
 \end{array}\]
Example: load buffer (LB), cont’d

• **cat specification:**

\[
\text{acyclic (po | rf)}^+
\]

The **cat** semantics rejects this execution \(\alpha_{\Xi}(t) : \)

\[
\llbracket \text{cat} \rrbracket (\alpha_{\Xi}(t)) = \text{forbidden}
\]

- **P₀**
 - a: \(Rx=1 \)
 - b: \(Wy=1 \)
- **P₁**
 - c: \(Ry=1 \)
 - d: \(Wx=1 \)

• **The herd7 simulation tool:** virginia.cs.ucl.ac.uk/herd/
Execution environment

• In general, the semantics of a parallel program depends on hypotheses on the **execution environment**

• e.g.: **coherence order**:

```plaintext
w[[]]x 1; w[[]]x 2; w[[]]x 3; w[[]]x 4;...
```

• the hypotheses on the execution environment (e.g. \(\text{co} \subseteq \text{po} \)) are part of the communication semantics
The WCM semantics

- Abstraction to a candidate execution:

\[
\alpha_\Xi(t) \triangleq \langle \alpha_e(t), \alpha_{po}(t), \alpha_{rf}(t), \alpha_{iw}(t) \rangle \\
\alpha_\Xi(S) \triangleq \{ \langle t, \alpha_\Xi(t) \rangle \mid t \in S \}
\]

- \(\alpha_e(t)\) set of all events
- \(\alpha_{po}(t)\) execution order of events on the same process
- \(\alpha_{rf}(t)\) which read events read from which write events
- \(\alpha_{iw}(t)\) initial write events (initialization before starting the parallel execution)
The WCM semantics

• The cat communication semantics

\[\mathcal{W}\mathcal{O}\left[\text{cat} \right] \left(\Xi \right) \]

returns:

• Relations \(\Gamma \) on events representing hypotheses on the execution environment (e.g. co)

• allowed/forbidden depending on whether the candidate execution \(\langle \Xi, \Gamma \rangle \) is consistent or not

\[\alpha_{\mathcal{W}\mathcal{O}} \left[\text{cat} \right] (C) \triangleq \{ t, \Gamma \mid \langle t, \Xi \rangle \in C \land \langle \text{allowed}, \Gamma \rangle \in \mathcal{W}\mathcal{O}\left[\text{cat} \right] (\Xi) \} \]
The WCM semantics

- The WCM semantics:

\[S[P] \triangleq \alpha_{\text{\textsc{cat}}} \circ \alpha_{\Xi}(S^a[P]) \]

where:

- abstraction to a candidate execution:

\[\alpha_{\Xi}(S) \triangleq \{ \langle t, \alpha_{\Xi}(t) \rangle \mid t \in S \} \]

- the \textsc{cat} communication semantics:

\[\alpha_{\text{\textsc{cat}}}(C) \triangleq \{ t, \Gamma \mid \langle t, \Xi \rangle \in C \land \langle \text{allowed}, \Gamma \rangle \in \Xi[\text{\textsc{cat}}](\Xi) \} \]

- The composition of Galois connections.
Definition of the anarchic semantics
Axiomatic parameterized definition of the anarchic semantics

- The semantics $S^\perp[P]$ is a finite/infinite sequence of interleaved events of processes satisfying well-formedness conditions.

- Events:
 - local computations and tests on registers, fences, rmw
 - start writing a shared variable $w(q, x)$
 - start reading of shared variable $r(p, x)$
 - communication event $\text{rf}(w(q, x), r(p, x))$
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:
 - uniqueness of events
 \[
 \forall t \in S \cdot \forall t_1, t_2 \in E^*, t_3 \in E^{\infty} \cdot \forall e, e' \in E. (t = t_1 e t_2 e' t_3) \implies (e \neq e'). \quad (Wf_1(S))
 \]
 - traces start with an initialization of the shared variables
 \[
 t = \begin{align*}
 w(\text{start}, x, 0) & \cdot w(\text{start}, y, 0) \\
 r(\text{P0}, x, 1) & \cdot w[P1, x, 1), r[P0, x, 1]] \\
 w(\text{P1}, x, 1) & \cdot r[P1, y, 1] \\
 w(\text{P1}, x, 1) & \cdot r[P0, y, 1), r[P1, y, 1]]
 \end{align*}
 \]
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:
 - finite traces are maximal

\[
\forall t \in S \cap \mathcal{E}^+ . \nexists t' \in \mathcal{E}^\infty . t t' \in S .
\] (Wf$_3(S)$)
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:

 - **read events must be satisfied by a unique communication event**

\[
\forall t \in S . \forall t_1 \in C^*, t_2 \in C^{*\infty} . (t = t_1 r(p, x) t_2) \implies \\
(\exists t_3 \in C^*, t_4 \in C^{*\infty} . t = t_3 rf[w(q, x), r(p, x)] t_4).
\]

\[
\forall t \in S . \forall t_1, t_2 \in C^*, t_3 \in C^{*\infty} . \\
(t \neq t_1 rf[w(q, x), r(p, x)] t_2 rf[w'(q', x), r(p, x)] t_3).
\]

(Wf$_4(S)$)

(Wf$_5(S)$)
Axiomatic parameterized definition of the anarchic semantics

- Examples of language independent well-formedness conditions of a semantics S:

 - communications cannot be spontaneous (must be originated by a read and a write)

\[
\forall t \in S. \forall t_1 \in C^*, t_2 \in C^{*\infty}. (t = t_1 \forall [w(q, x), r(p, x)] t_2) \implies
(\exists t_3 \in C^*, t_4 \in C^{*\infty}. t = t_3 w(q, x) t_4 \land \exists t_5 \in C^*, t_6 \in C^{*\infty}. t = t_5 r(p, x) t_6).
\]

(Wf$_6$(S))
Axiomatic parameterized definition of the anarchic semantics

- The **language**:

- Programs: `initialisation [P₁ || ⋯ || Pₙ]`

- Actions (labelled `ℓ ∈ ℒ(p)`):

 - `a ::= m` imperative actions marker
 - `r := e` assignment
 - `r := x` read of shared variable `x`
 - `x := e` write of shared variable `x`
 - `b | ¬b` conditional actions test

- Next action: `next(p, ℓ) nextt(p, ℓ) nextf(p, ℓ)` for tests
Axiomatic parameterized definition of the anarchic semantics

- Example of language-dependent well-formedness condition: computation (markers: skip, fence, begin/end of rmw)

\[
\forall p \in \Pi . \forall k \in [1, 1 + |\tau|] . \forall \ell \in \mathbb{L}(p) . \\
(\exists \theta \in \mathcal{P}(p) . \bar{\tau}_k = m(\langle p, \ell, m, \theta \rangle)) \\
\implies (\ell \in N^p(\tau, k) \land \text{action}(p, \ell) = m) .
\]

(unique) event stamp \(\theta \)

control of process \(p \) is at label \(\ell \)

action of process \(p \) is at label \(\ell \) is the marker action \(m \)
Axiomatic parameterized definition of the anarchic semantics

- Example of language-dependent well-formedness condition: computational (local variable assignment)

\[(\forall p \in \mathcal{P} . \forall k \in]1, 1 + |\tau|[. \forall \ell \in \mathbb{L}(p) . \forall v \in \mathcal{D} . \]

\[(\exists \theta \in \mathcal{P}(p) . \overline{\tau}_k = a(\langle p, \ell, r := e, \theta \rangle, v)) \]

\[\implies (\ell \in N^p(\tau, k) \land \text{action}(p, \ell) = r := e \land v = E^p[e](\tau, k - 1)) . \]

- control of process \(p \) is at label \(\ell \)
- action of process \(p \) is at label \(\ell \) is a register assignment
- value \(v \) of \(e \) is evaluated by past-travel
Media variables

• With WCM there is no notion of “the current value of shared variable x”

• At a given time each process may read a different value of the shared variable x (maybe guessed or unknown since a read may read from a future write)

• We use *pythia variables* (to record the values communicated between a write and read, whether the two accesses are on the same process or not)
Axiomatic parameterized definition of the anarchic semantics

- Example: communication

- a read event is initiated by a read action:
 \[\forall p \in \mathbb{P} . \forall k \in]1, 1 + |\tau|[. \forall \ell \in \mathbb{L}(p) . \]
 \[(\exists \theta \in \mathcal{P}(p) . (\bar{\tau}_k = \tau(\langle p, \ell, r := x, \theta \rangle, x_\theta))) \]
 \[\implies (\ell \in N^p(\tau, k) \land \text{action}(p, \ell) = r := x) .\]

- a read must read-from (rf) a write (weak fairness):
 \[\forall p \in \mathbb{P} . \forall i \in]1, 1 + |\tau|[. \forall r \in \mathcal{W}(p) . \]
 \[\bar{\tau}_i = r \implies (\exists j \in]1, 1 + |\tau|[. \exists w \in \mathcal{W} . \bar{\tau}_j = \text{rf}[w, r]) .\]
Axiomatic parameterized definition of the anarchic semantics

- **Predictive evaluation** of pythia variables:

\[V^0_{(32)}[x_\theta](\tau, k) \triangleq v \text{ where } \exists! i \in [1, 1 + |\tau|]. (\tau_i = v(\langle p, \ell, r := x, \theta \rangle, x_\theta)) \land \exists! j \in [1, 1 + |\tau|]. (\tau_j = r[\nu(\langle p', \ell', x := e', \theta' \rangle, v), \tau_i]) \]

- **Local past-travel** evaluation of an expression:

\[E^0_{(30)}[r](\tau, k) \triangleq v \text{ if } k > 1 \land \left((\tau_k = a(\langle p, \ell, r := e, \theta \rangle, v)) \lor (\tau_k = v(\langle p, \ell, r := x, \theta \rangle, x_\theta) \land V^0[x_\theta](\tau, k') = v) \right) \]

\[E^0_{(30)}[r](\tau, 1) \triangleq l[0] \]

\[E^0_{(30)}[r](\tau, k) \triangleq E^0_{(30)}[r](\tau, k - 1) \text{ i.e. } \tau_1 = \epsilon_{\text{start}} \text{ by } Wf_{15}(\tau) \text{ otherwise.} \]
Abstractions of the anarchic semantics
Abstractions

- **Anarchic semantics:**
 \[S^<\downarrow[P] \triangleq \lambda \langle B, \text{sat}, D, I, G, V, E, N \rangle \cdot \{ \tau \in \mathcal{S}[P] | \subseteq | Wf_1(\tau) \land \ldots \land Wf_{29}(\tau) \} \]

- **Examples of abstractions:**
 - Choose data (e.g. ground values, uninterpreted symbolic expressions, interpreted symbolic expressions i.e. “symbolic guess”)
 - Bind parameters (e.g. how expressions are evaluated)
 - …
Binding a parameter of the semantics

- The abstraction

\[\alpha_a(f) \overset{\text{def}}{=} f(a) \]

\[\langle \wp(A, B, \ldots) \rightarrow \wp(R), \subseteq \rangle \overset{\alpha_a}{\leftrightarrow} \langle \wp(B, \ldots) \rightarrow \wp(R), \subseteq \rangle \]
The hierarchy of interleaved semantics

WCM

\[\alpha_\text{cat} \circ \alpha_{\Xi} (S^\perp [P]) \]

valued

symbolic interpreted

symbolic uninterpreted

data generic

locally sequential

unspecified locality

inscrutable

unspecified predictability

predictive

\[\alpha_\text{cat} \circ \alpha_{\Xi} \]

\[S^{vi} [P] = S^{vo} [P] \]

\[\alpha_u \]

\[\alpha_{vi} \]

\[\alpha_{oi} \]

\[\alpha_{ui} \]

\[\alpha_u \]

\[\alpha_\text{sat} \]

\[\alpha_{V(34)} \]

\[\alpha_{V(32)} \]

\[\alpha_{E(30), N(31)} \]

\[\alpha_\text{sat} \]

\[\alpha_{D, li} \]

\[\alpha_{B, sat, D, li} \]

Fig. 5. Hierarchy of time-travel, stateless, maximal, interleaved, stepless trace semantics

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.
True parallelism with local communications

- Extract from interleaved executions:
 - The subtrace of each process keeping communications in the process that read

\[\Rightarrow\] no more global time between processes

\[\Rightarrow\] local time between local actions and communications (a read can still tell when it is satisfied by which write)
True parallelism with local communications

- **Interleaved execution:**
 \[
 t = \begin{align*}
 w(\text{start}, x, 0) & \quad w(\text{start}, y, 0) \\
 r(P0, x, 1) & \quad rf[w(P1, x, 1), r(P0, x, 1)] \\
 w(P1, x, 1) & \quad rf[w(P0, y, 1), r(P1, y, 1)] \\
 \end{align*}
 \]

- **Parallel executions with interleaved communications:**
 \[
 t = \text{Initialization:} \quad w(\text{start}, x, 0) \quad w(\text{start}, y, 0)
 \]
 \[
 \begin{align*}
 P0: & \quad r(P0, x, 1) \quad rf[w(P1, x, 1), r(P0, x, 1)] \quad w(P0, y, 1) \\
 P1: & \quad r(P1, y, 1) \quad w(P1, x, 1) \quad rf[w(P0, y, 1), r(P1, y, 1)]
 \end{align*}
 \]
True parallelism of computations and communications

- Extract from interleaved executions:
 - The *subtrace of each process* (sequential execution of actions)
 - The *rf communication relation* (interactions between processes)

 \Rightarrow *no more global time* between processes

 \Rightarrow *no more global/local time* for communications
True parallelism with separate communications

- Parallel executions with interleaved communications:

 Initialization: \[\begin{align*} & w(\text{start}, x, 0) \quad w(\text{start}, y, 0) \\ & r(P_0, x, 1) \quad w(P_0, y, 1) \\ & r(P_1, y, 1) \quad w(P_1, x, 1) \end{align*} \]

 Communications: \[\{ rf[w(P_1, x, 1), r(P_0, x, 1)], \quad rf[w(P_0, y, 1), r(P_1, y, 1)] \} \]
True parallelism with separate communications

- This is the semantics used by the herd7 tool:

\[P_0 \rightarrow \text{event} \rightarrow a: Rx=1 \rightarrow \text{po} \rightarrow b: Wy=1 \rightarrow \text{event} \rightarrow c: Ry=1 \rightarrow \text{po} \rightarrow d: Wx=1 \rightarrow \text{event} \rightarrow P_1 \]

+ interpreted symbolic expressions i.e. “symbolic guess”
The true parallelism hierarchy

![Diagram of the true parallelism hierarchy]

- Separated communication
- True parallelism
- Per process

WCM

- $\alpha^{\text{cat}} \circ \alpha_{\equiv}(S[P])$

Interleaved communication

- Locally sequential

Free, Eager, Lazy
States

• At each point in a trace, the state abstracts the past computation history up to that point

• Example: classical environment (assigning values to register at each point k of the trace):

\[
\rho^p(\tau, k) \triangleq \lambda r \in R(p) \cdot E^p[r](\tau, k)
\]

\[
\nu^p(\tau, k) \triangleq \lambda x_\theta \cdot V^p_{(32)}[x_\theta](\tau, k)
\]
Prefixes, transitions, ...

• Abstract traces by their prefixes:

\[\overleftarrow{\alpha}(S) \triangleq \bigcup \{ \overleftarrow{\alpha}(\tau) \mid \tau \in S \} \]
\[\overleftarrow{\alpha}(\tau) \triangleq \{ \tau[\{j\} \mid j \in [1, 1 + |\tau|]\} \]
\[\tau[\{j\}] \triangleq \langle \overleftarrow{\tau}_i \rightarrow \tau_i \mid i \in [1, 1 + j] \rangle \]

• and transitions: extract transitions from traces

\[\Rightarrow \text{communication fairness is lost, inexact abstraction,} \]
\[\Rightarrow \text{add fairness condition} \]
\[\Rightarrow \text{impossible to implement with a scheduler (≠ process fairness)} \]
Effect of the cat specification on the hierarchy
Exactness and cat preservation

\[\alpha_{\text{[cat]}} \circ \alpha_{\Xi}(\alpha(S^\perp[P])) = \alpha(\alpha_{\text{[cat]}} \circ \alpha_{\Xi}(S^\perp[P])) \]

WCM semantics

Concurrent execution semantics

Exact and cat-preserving semantics

Anarchic semantics

Semantics

\(\emptyset \)

\(\mathcal{E}^\infty \)
The cat abstraction

- The same cat specification applies equally to any concurrent execution abstraction parallel semantics in the hierarchy.

- The appropriate level of abstraction to specify WCM:
 - No states, only marker (e.g. fence), r, w, rf(w,r) events
 - No values in events
 - No global time (only po order of events per process)
 - Time of communications forgotten (only rf of who communicates with whom)
 - Hypotheses on the execution environment independent of computed and communicated values
Conclusion
Conclusion

- **Analytic semantics**: a new style of semantics

- The hierarchy of *anarchic semantics* describes the same computations and potential communications in very different styles

- The *cat semantics* restricts communications to a machine/network architecture in the same way for all semantics in the hierarchy

- This idea of *parameterized semantics at various levels of abstraction* is useful for
 - Verification
 - Static analysis
The End