Abstract Interpretation:
From Theory to Tools

Patrick Cousot

cims.nyu.edu/~pcousot/
pcousot@cims.nyu.edu

Bugs everywhere!

Patriot failure Mars orbiter loss Russian Proton-M/DM-03 rocket
(float rounding error) (unit error) carrying 3 Glonass-M satellites
(unknown programming error :)

Ariane 5.01 failure
(overflow error)

Heartbleed
(buffer overrun)

Bugs everywhere!

Patriot failure Mars orbiter loss Russian Proton-M/DM-03 rocket
(float rounding error) (unit error) carrying 3 Glonass-M satellites
(unknown programming error :)

Ariane 5.01 failure
(overflow error)

® These are great proofs of the
presence of bugs!

Heartbleed
(buffer overrun)

On the limits of bug finding

® Giant software manufacturers can rely on gentle end-
users to find myriads of bugs;

® But what about:

can passengers really help?
® |s dynamic/static bug finding always enough?

® Proving the absence of bugs is much better!

4

Formal Methods

® Mathematical and engineering principles applied to the
specification, design, construction, verification,

maintenance, and evolution of quality
software
® Strongly promoted by Harlan D. Mills since the 70’s
Formal Methods Srongly P Y

® Harlan D. Mills:The New Math of Computer Programming. Commun.ACM 18(1): 43-48
(1975)

® Harlan D. Mills: Software Development. IEEE Trans. Software Eng.2(4): 265-273 (1976)

® Harlan D. Mills: Function Semantics for Sequential Programs. IFIP Congress 1980:241-250

Main formal methods for verification Fundamental limitations
® Objective: prove automatically that a program does ® By Godel’s undecidability, no perfect solution is and
satisfy a specification given either explicitly or will ever be possible:

implicitly (e.g. absence of runtime errors))
P y (eg) ® Deductive methods: the burden is on the end-user

® Deductive methods: use a theorem prover/proof and the proofs are exponential in the size of
assistant to check a user-provided proof argument programs
® Enumerative, symbolic, bounded, solver(e.g. Z3)- ® Model-checking: severe unsolved scalability problem

based, interpolation, statistical, etc model-checking:
check the specification by enumerating finitely many
possibilities

® Abstract interpretation: may produce false alarms
(but no false negative)

® Unsound methods (Coverity, Klocwork, Purify, etc):

® Abstract interpretation: use approximation ideas to
no correctness guarantee at all.

consider infinitely many possiblilities

7 8

The Evolution of
Formal Methods

Change of Scale

® |993: IBM Flight Control. A HH60 helicopter avionics
component was developed on schedule in three
increments comprising 33 KLOC of JOVIAL [6].
A total of 79 corrections were required during statis-
tical certification for an error rate of 2.3 errors per
KLOC for verified software with no prior execution

or debugging.

® 2013: Astrée checks automatically the absence of
any runtime error in the control/command
software of the A380 and A400M by abstract
interpretation i.e. > 1000 KLOC of C

Harlan D. Mills: Zero Defect Software: Cleanroom Engineering. Advances in Computers 36: 1-41 (1993)

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival:Why does Astrée scale up?
Formal Methods in System Design 35(3): 229-264 (2009)

Proliferation

WCET . i
Security protocole gystems biolo Operathnal
Axiomatic verification Y 0108 semantics
i analysis Abstraction
semantics s io
Confidentiality Dataflow Model Database " ofinement
analysis ~ analysis checking query Type
Program evI:?:;ltEian Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical racé combination transformation Proof

model-checking Semantics Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity model analysis
proof execution analysis checking Malware

Probabilistic ~ Quantum entanglement Bisimulation ~ detection
verification detection SMT solvers Code
Parsing Type theory Steganography T,,tol ogy testers refactoring

The Theory of Abstract

Interpretation:
Unifies Formal Methods

The need for a unified account of formal methods

WCET . i
Security protocole gystems biolo Operatlc?nal
Axiomatic verification Y 0108 semantics
; analysis Abstraction
semantics s io
Confidentiality Dataflow Model Database " efinement
analysis ~ analysis checking query Type
Program evI:?::taian Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical racé combination transformation Proof

semantics

model-checking Code nterpolants Abstract —Shape

Invariance Symbolic contracts Integrity ~ model analysis

proof execution analysis checking Malware
Probabilistic ~ Quantum entanglement Bisimulation detection
verification detection SMT solvers Code

Parsing Type theory Steganography Tautology testers refactoring

Underlying unity of formal methods

Abstract interpretation

. Operational
Security protocole Systems biology slgmantics

verification :
analysis .
% Abstraction

Dataflow Modgl Database | ofinement

analysis checking query T

Partial i .
Obfuscation Dependence inference

WCET
Axiomatic
semantics

Confidentiality
analysis

Program P
evaluation ; .
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis Theories Program Termination

Statistical Trace .ombination transformation Proof

model-checking Semantics Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity model analysis
proof execution analysis checking Malware
Probabilistic ~ Quantum entanglement Bisimulation ~ detection
verification detection SMT solvers . ode
i refactorin
Parsing Type theory Steganography Tautology testers g

Principle of Abstract
Interpretation

Concrete
universe of
discourse

What is abstraction in Al?

Concrete
universe of

discourse

Elements

What is abstraction in Al?

Concrete
universe of
discourse

What is abstraction in Al?

Elements

Properties

Concrete
universe of

discourse

Elements

What is abstraction in Al?

Abstract
universe of
_.-properties

Concrete . . .)
universe of What is abstraction in Al?
discourse Abstract
Elemgpts universe of
O .-properties
Abstract

properties

20

Concrete . . . ?
universe of What is abstraction in Al?
discourse Abstract
Elemgpts universe of
R, .-properties

Abstract
properties

Properties

21

Concrete
universe of

discourse

Elements

Properties

What is abstraction in Al?

Abstract
universe of
.-properties

Abstract
properties

22

Concrete . . .)
universe of What is abstraction in Al?
discourse Abstract

universe of
.-properties

Abstract
properties

Elements

Abstract
implication

23

Concrete
universe of

discourse

Elements

What is abstraction in Al?

Abstract
universe of
.-properties

Abstract
properties

Abstract
implication

Provable abstract properties
are true in the concrete

24

Abstract interpretation: example

Theory:

Galois Connections We recall from [11] that a Galois
connection (C, <) = such that (C,

(4 s,a€C — Aandy €
VyeA:a(x) Ty

(A,

function a is surjective, and hence that there are no multiple
representations for the same concrete property in the abstract
If the C' and A are complete lattices,
then it exists a unique such th (A

join-preserving,

Abstract domains We let S € S[] be a statement with
visible variables 7 and P[] be the set of unary predicates on
variables 7. Predicates can be isomorphically represented as
Boolean functions P € P[] £ V[¢] — B mapping values
i € V][] of vector values of variables ¥ to Booleans: P(#) €
B £ {true false}. Predicates are ordered according to
==, iie., the pointwise lifting of logical implication to
functions:

P=p

Vi € V[¥] : P(¥) = P'(¥).
For example Az +z = 0 == Az +x > 0. Predicates with
partial order == form a complete Boolean lattice:

(P[¥]. =, false, true, V, A, =)
where false is the infimum, true is the supremum, V is the
least upper bound (lub), A is the greatest lower bound (glb),
and is the unique complement for the partial order == on
the set P[]

The precondition abstract domain (A[7],) is an abstract
domain expressing properties of the variables ¥ where the
partial order I abstracts logical implication. The meaning
of an abstract property P € A[7] is a concrete property
(P) € P[] where the concretization

NEAFL 5 - (Pl =)

is increasing (ie., P = P implies v, (P) == 7, (7).

Applications:

RefactorContract(Ps, S, B, & Qs) {

use (A[B]. M, A;) // precondition abstract domain
(BIp.], M. Ay) // postcondition abstract domain
Post // forward analyser with widening/narrowing

“pie // backward analyser with widening/narrowing

// abstract projection on potentially used variables §
(5. Q3) = (15e(Po). 15e(@3));

// infer a correct safety abstract contract

Let P, be the abstract safety pre-condition for S
computed by the static analysis [18];

Q. = POS[S1,| P // forward abstract static analysis

1/ compute (X, Y) = Fals)(Pr. Qp))

X =P Pr i pre[S[,]Qp: // backward analysis
Y = Qu Qg M post[S[,]Pr: // forward analysis

(Pr. Qp) = (Pr Ay X, Qr Ay Y); // narrowing

while (P, Qg) # (X, Y);

11805 o Tls] € (P, B € (P, @) hos

return (P, Qp); // (&) validity & (b) Safety hold

Algorithm 5. Algorithm EMC (Extract Methods with Ab-

stract Contracts) computing an approximation of a greatest
fixpoint with convergence acceleration,

Practice:

public tnt
€

Resultcint>() = 0);

shile (x 1= 0)
(@]
N Btract Method Jpusiic int Decrement(int x)
<

Bitract method vith Contracts

it Newhetnoa(int)
"

while (x 12 0) o

Patrick Cousot, Radhia Cousot, Francesco Logozzo, Michael Barnett: An abstract interpretation
framework for refactoring with application to extract methods with contracts. OOPSLA 2012:213-232

25

Reauires(@ <=)i
Ensures (Contract ResulecSysten.Int32>() == 0

A very informal
introduction to abstract
Interpretation

Patrick Cousot, Radhia Cousot:Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. POPL 1977:238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979:
269-282

26

|) Define the programming language semantics

Formalize the concrete executions of programs (e.g. transition system)

Trajectory
in state space

(%)

Space/time trajectory

27

Concrete
universe of
discourse

Elements

II) Define the program properties of interest

Formalize what you are interested to know about program behaviors

> Concrete
> universe of
discourse

Elements

We are interested in the set of
possible trajectories

28

lIl) Define which specification must be checked

Formalize what you are interested to prove about program behaviors

Forbiden zone

v

No trajectory should hit the forbidden zone

29

V) Choose the appropriate abstraction

Abstract away all information on program behaviors irrelevant to the proof

Abstraction of the trajectories

Abstraction by geometric forms (rectangles,
polyhedra, ellipsoids, abstraction by parts, etc)

30

3
u of
P ies

m[

V) Mechanically verify in the abstract

The proof is fully automatic

Forbidden zone

Abstraction of the trajectories

Provable abstract properties
true in the concrete

31

Soundness of the abstract verification

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

Abstraction of the trajectories

Unsound validation: testing

Try a few cases

Forbidden zone Error !l

’ .
’ 5

Test of a few trajectories

33

Unsound validation: bounded model-checking

Simulate the beginning of all executions

Forbidden zone

Possible
trajectories

Bounded model-checking

34

Unsound validation: static analysis

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone Error !!

Erroneous trajectory abstraction

Incompleteness

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone Alarm

Error or false alarm ?

By soundness an alarm must be
raised for this overapproximation!

36

True error

The abstract alarm may correspond to a concrete error

Alarm Il

Forbidden zone

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Alarm !l

Forbidden zone

False alarm

The only solution is to refine the analysis to take more
properties into account (e.g. specifically for a domain
of application)!

38

Combination of abstractions in Astrée

7 X
®a xX

>

Collecting semantics:’ Intervals: Simple congruences:
partial traces x € [a,b] x = alb]
‘ ' YA
Octagons: Ellipses: Exponentials:

:txj:yga _abtgy(t) gabt

x? 4+ by? —axy < d
39

Examples of abstract

interpretation-based

program verification
tools

40

Example |: Astree

41

Astrée

® Commercially available: www.absint.com/astree/

Gaon | Waith | Une ammary | Sewcn | Ansves e | Do fow | Ao denaty | S

o Effectively used in production to qualify truly large and complex
software in transportation, communications, medicine, etc

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static
analyzer for large safety-critical software. PLDI 2003: 196-207

42

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] =X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] = 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = s[o]; S[0] = P;

/* S[0], S[1] in [?72727?7?, ??7?77] */
} To be inferred, not tested,
checked, or verified

void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {
X =0.9 x X + 35;
filter (); INIT = FALSE; }

} f

43

Abstract interpretation

® Abstract interpretation is the only formal method able
to automatically infer program properties

® All others can only check your assertions

Types are abstract interpretations, see Patrick Cousot: Types as Abstract Interpretations. POPL 1997:316-331

44

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] =X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] = 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = s[0]; S[0] = P;
/x S[0], S[1] in [?72727?7?, ?2?7?77] */

} To be inferred, not tested,
checked, or verified

void main () { X = 0.2 *x X + 5; INIT = TRUE;
while (1) {
X =0.9 x X+ 35;

filter (); INIT = FALSE; } v
} 4

45

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] =X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] = 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = s[0]; S[0] = P;

/* S[0], S[1] in [-1418.3753, 1418.3753] */
t
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X=0.9 x X+ 35;

filter (); INIT = FALSE; } v
} 4

46

Example |ll: cccheck

47

Code Contract Static Checker (cccheck)
® Available within MS Visual Studio

)

og Exampl icrosoft Visual Studio (Administ
FLE e T

< b sat- O - Debug -] n

- © BinarySearch(int] arry, int value)

= public static int BinarySearch(int[] array, int value)

rumeme Lnecxng
[] Pedfom Rurtime Contract Checking Full
Custom Rewrter Methods.

Satc Checking
[¥] Pefom Static Contract Checking

Manuel Fahndrich, Francesco Logozzo: Static Contract Checking with Abstract Interpretation. FoVeOOS 2010: 10-30
48

Comments on screenshot (courtesy Francesco Logozzo)

® A screenshot from Clousot/cccheck on the classic binary search.
® The screenshot shows from left to right and top to bottom
|. C# code + CodeContracts with a buggy BinarySearch
2. cccheck integration in VS (right pane with all the options integrated in the VS project system)
3. cccheck messages in the VS error list
® The features of cccheck that it shows are:
|. basic abstract interpretation:
a. the loop invariant to prove the array access correct and that the arithmetic operation may
overflow is inferred fully automatically
b. different from deductive methods as e.g. ESC/Java or Boogie or Dafny where the loop
invariant must be provided by the end-user
2. inference of necessary preconditions:
a. Clousot finds that array may be null (message 3)
b. Clousot suggests and propagates a necessary precondition invariant (message 1)
3. array analysis (+ disjunctive reasoning):
a. to prove the postcondition one must infer properties of the content of the array
b. please note that the postcondition is true even if there is no precondition requiring the
array to be sorted.
4. verified code repairs:
a. from the inferred loop invariant does not follow that index computation does not
overflow
b. suggest a code fix for it (message 2)

49

Conclusion

50

To explore abstract interpretation...

® A good starting point:

Patrick Cousot and Radhia Cousot: :
Abstract interpretation: past, present and future.

In:

Thomas A. Henzmger Dale Miller (Eds.): Jomt Meeting
of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS 'I4,Vienna,Austria, July 14 -
18,2014.ACM 2014, ISBN 978-1-4503-2886-9

51

Conclusion

® 40 years after Harlan D. Mills pioneer ideas, abstract
interpretation-based formal methods have made
considerable progress both in theory and practice

® May become indispensable as

® safety and security become central to computer
science

® programmers are held responsible for their errors

® machines hence programming becomes more and
more complicated (if not intractable, e.g.
parallelism, cloud, etc)

52

The End, Thank You

