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Abstract Interpretation: 
From Theory to Tools
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Bugs everywhere!

2

Russian Proton-M/DM-03 rocket 
carrying 3 Glonass-M satellites 
(unknown programming error :)

Mars orbiter loss
(unit error)

Patriot failure
(float rounding error)

Ariane 5.01 failure
(overflow error)

unsigned int payload = 18; /* Sequence number + random bytes */
unsigned int padding = 16; /* Use minimum padding */

/* Check if padding is too long, payload and padding
* must not exceed 2^14 - 3 = 16381 bytes in total.
*/

OPENSSL_assert(payload + padding <= 16381);

/* Create HeartBeat message, we just use a sequence number
 * as payload to distuingish different messages and add
 * some random stuff.
 *  - Message Type, 1 byte
 *  - Payload Length, 2 bytes (unsigned int)
 *  - Payload, the sequence number (2 bytes uint)
 *  - Payload, random bytes (16 bytes uint)
 *  - Padding
 */

buf = OPENSSL_malloc(1 + 2 + payload + padding);
p = buf;
/* Message Type */
*p++ = TLS1_HB_REQUEST;
/* Payload length (18 bytes here) */
s2n(payload, p);
/* Sequence number */
s2n(s->tlsext_hb_seq, p);
/* 16 random bytes */
RAND_pseudo_bytes(p, 16);
p += 16;
/* Random padding */
RAND_pseudo_bytes(p, padding);

ret = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);

Heartbleed
(buffer overrun)
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• These are great proofs of the 
presence of bugs!
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On the limits of bug finding
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• Giant software manufacturers can rely on gentle end-
users to find myriads of bugs;

• But what about:

can passengers really help?

• Is dynamic/static bug finding always enough?

• Proving the absence of bugs is much better!
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Formal Methods
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Formal Methods
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• Mathematical and engineering principles applied to the 
specification, design, construction, verification, 
maintenance, and evolution of very high quality 
software

• Strongly promoted by Harlan D. Mills since the 70’s 
e.g.

• Harlan D. Mills: The New Math of Computer Programming. Commun. ACM 18(1): 43-48 
(1975)

• Harlan D. Mills: Software Development. IEEE Trans. Software Eng. 2(4): 265-273 (1976)

• Harlan D. Mills: Function Semantics for Sequential Programs. IFIP Congress 1980: 241-250

• ...
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Main formal methods for verification
• Objective: prove automatically that a program does 

satisfy a specification given either explicitly or 
implicitly (e.g. absence of runtime errors)

• Deductive methods: use a theorem prover/proof 
assistant to check a user-provided proof argument

• Enumerative, symbolic, bounded, solver(e.g. Z3)-
based, interpolation, statistical, etc model-checking: 
check the specification by enumerating finitely many 
possibilities

• Abstract interpretation: use approximation ideas to 
consider infinitely many possiblilities
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Fundamental limitations
• By Gödel’s undecidability, no perfect solution is and 

will ever be possible:

• Deductive methods: the burden is on the end-user 
and the proofs are exponential in the size of 
programs

• Model-checking: severe unsolved scalability problem

• Abstract interpretation: may produce false alarms 
(but no false negative)

• Unsound methods (Coverity, Klocwork, Purify, etc): 
no correctness guarantee at all.

8
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The Evolution of
Formal Methods
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Change of Scale
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• 1993:

• 2013:    

testing are returned to the development team for cor- 
rection. If quality is not acceptable, the software is 
removed from testing and returned to the develop- 
ment team for rework and reverification. 

The process of Cleanroom development and cer- 
tification is carried out incrementally. Integration is 
continuous, and system functionality grows with the 
addition of successive increments. When the final 
increment is complete, the system is complete. 
Because at each stage the harmonious operation of 
future increments at the next level of refinement is 
predefmed by increments already in execution, inter- 
face and design errors are rare. 

The Cleanroom process is being successfully 
applied in IBM and other organizations. The tech- 
nology requires some training and practice, but 
builds on existing skills and software engineering 
practices. It is readily applied to both new system 
development and re-engineering and extension of 
existing systems. The IBM Cleanroom Software 
Technology Center (CSTC) [4] provides technology 
transfer support to Cleanroom teams through educa- 
tion and consultation. 

Cleanroom quality results 
Table 1 summarizes quality results from 

Cleanroom projects. Earlier results are reported in 
[SI. The projects report a ”certification testing 
failure rate;” for example, the rate for the IBM Flight 
Control project was 2.3 errors per KLOC, and for 
the IBM COBOL Structuring Facility project, 3.4 
errors per KLOC. These numbers represent all 
errors found in all testing, measured from first-ever 
execution through test completion. That is, the rates 
represent residual errors present in the software fol- 
lowing correctness verification by development 
teams. 

The projects in Table 1 produced over a half a 
million lines of Cleanroom code with a range of 0 to 
5.1 errors per KLOC for an average of 3.3 errors per 
KLOC found in all testing, a remarkable quality 
achievement indeed. 

Traditionally developed software does not 
undergo correctness verification. It goes from devel- 
opment to unit testing and debugging, then more 
debugging in function and system testing. At entry 
to unit testing, traditional software typically exhibits 
30-50 errors/KLOC. Traditional projects often 
report errors beginning with function testing (or 
later), omitting errors found in private unit testing. 

A traditional project experiencing, say, five 
errors/KLOC in function testing may have encount- 
ered 25 or more errors per KLOC when measured 
from first execution in unit testing. Quality compar- 
isons between traditional and Cleanroom software 
are meaningful when measured from first execution. 

Experience has shown that there is a qualitative 
difference in the complexity of errors found in 
Cleanroom and traditional code. Errors left behind 
by Cleanroom correctness verification, if any, tend to 
be simple mistakes easily found and fixed by statis- 
tical testing, not decp design or interface errars. 
Cleanroom errors are not only infrequent, but 
usually simple as well. 

Highhghts of Cleanroom projects reported in 
Table 1 are described below: 

IBM Flight Control. A III-I60 helicopter avionics 
component was developed on schedule in three 
increments comprising 33 KLOC of JOVIAL [SI. 
A total of 79 corrections were required during statis- 
tical certification for an error rate of 2.3 errors per 
KLOC for verified software with no prior execution 
or debugging. 

IBM COBOL Structuring Facility (COBOL/SI;). 
COBOL/SF, IBM’s first commercial Cleanroom 
product, was developed by a six-person team. The 
product automatically transforms unstructured 
COBOL programs into functionally equivalent struc- 
tured form for improved understandability and main- 
tenance. It makes use of proprietary graph-theoretic 
algorithms, and exhibits a level of complexity on the 
order of a COBOL compiler. 

The current version of the 85 KLOC PL/I 
product required 52 KLOC of new code and 179 
corrections during statistical certification of five 
increments, for a rate of 3.4 errors per KLOC [7]. 
Several major components completed certification 
with no errors found. In an early support program 
at a major aerospace corporation, six months of 
intensive use resulted in no functional equivalence 
errors ever found [SI. Productivity, including all 
specification, design, verification, certification, user 
publications, and management, averaged 740 LOC 
per person-month. Challenging schedules defined for 
competitive reasons were all met. A major benefit of 
Cleanroom products is dramatically reduced mainte- 
nance costs. COBOL/SF has required less than one 
person-year per year for all maintenance and cus- 
tomer support. 

3 

Astrée checks automatically the absence of 
any runtime error in the control/command 
software of the A380 and A400M by abstract 
interpretation i.e. > 1000 KLOC of C

Harlan D. Mills: Zero Defect Software: Cleanroom Engineering. Advances in Computers 36: 1-41 (1993)

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? 
Formal Methods in System Design 35(3): 229-264 (2009)
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Proliferation
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The Theory of Abstract 
Interpretation: 

Unifies Formal Methods
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The need for a unified account of formal methods
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Underlying unity of formal methods
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Principle of Abstract 
Interpretation
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                What is abstraction in AI?

16

Concrete 
universe of
discourse
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                What is abstraction in AI?
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                What is abstraction in AI?
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23

Concrete 
universe of
discourse

Properties

Elements
Abstract 

universe of
properties

γ
α

α
γ

Abstract 
properties

Abstract 
implication

⊆

⊑

Inclusion

ICSME 2014, Victoria, BC, Canada, 2014-10-02                                                                                                                                                                                                           © P. Cousot

                What is abstraction in AI?

24

Concrete 
universe of
discourse

Properties

Elements
Abstract 

universe of
properties

γ
α

α
γ

Abstract 
properties

Abstract 
implication

⊆

⊑

Inclusion

Provable abstract properties 
are true in the concrete



ICSME 2014, Victoria, BC, Canada, 2014-10-02                                                                                                                                                                                                           © P. Cousot

Abstract interpretation: example
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Patrick Cousot, Radhia Cousot, Francesco Logozzo, Michael Barnett: An abstract interpretation 
framework for refactoring with application to extract methods with contracts. OOPSLA 2012: 213-232

/* P

S

: pre-state, S:refactored code, ~p: variables potentially

used in S, ~g: variables definitely unmodified by S, Q

S

:post-

state such that

�̄
P

S

 ̄
S|~p\~g

�̄
Q

S

 ̄
holds. */

RefactorContract(P

S

, S, ~p, ~g, Q

S

) {

use hAJ~pK, 1u, �1i // precondition abstract domain

hBJ~p,~pK, 2u, �2i // postcondition abstract domain

post // forward analyser with widening/narrowing

fpre // backward analyser with widening/narrowing

// abstract projection on potentially used variables ~p

hP.
S

, Q

.
S

i = h#~p\~g(P S

), #~p\~g(QS

)i;
// infer a correct safety abstract contract

Let P

m

be the abstract safety pre-condition for S
computed by the static analysis [18];

Q

m

= postJS�~pKP m

; // forward abstract static analysis

//
�̄

P

m

 ̄
S|~p\~g

�̄
Q

m

 ̄
holds

hPR, QRi = hP.
S

, Q

.
S

i;
do
// compute hX, Y i = FRJSK(hPR, QRi)
X = P

m

1u PR 1u fpreJS�~pKQR; // backward analysis

Y = Q

m

2u QR 2u postJS�~pKPR; // forward analysis

hPR, QRi = hPR �1 X, QR �2 Y i; // narrowing

while hPR, QRi 6= hX, Y i;

// gfp

cc
v
hP.

S

, Q
.
S

i
FRJSK

cc

v hPR, QRi
cc

v hP.
S

, Q

.
S

i holds

return hPR, QRi; // (a) validity & (b) safety hold

}

Algorithm 5. Algorithm EMC (Extract Methods with Ab-
stract Contracts) computing an approximation of a greatest
fixpoint with convergence acceleration.

Th. 22 states that all the abstract contracts included between
the best solution (29) and the abstract projections of the
abstract states are a solution of our problem. A natural way to
compute hPR, QRi is to perform the downwards iterates of
FRJSK from hP.

S

, Q

.
S

i with narrowing. The algorithm EMC
is given in Alg. 5. An optimization using chaotic iterations
with memory [8] would have

Y = Q

m

2u QR 2u postJS�~pKX; // forward analysis

This is the solution we implemented, with more details given
in the next section.

14. Experience
The underlying tools We implemented the algorithms of
the previous section on top of two industrial-strength tools,
Roslyn and CCCheck.

Roslyn exposes the (C# and VB) compiler internals
(syntax trees, object model, data-flow analyses, refactoring,
etc.) to external developers, so that they can develp new
plugins (code analyses, refactorings) on top of it.

CCCheck is a static contract verifier for CodeContracts. It
analyzes each method in isolation, assuming the precondi-
tion and asserting the postcondition. CCCheck can also do
backward analyses to infer a precondition from the postcon-
dition. CCCheck is based on abstract interpretation and hence
has more advanced inference capabilities than similar tools.
For instance, it infers loop invariants and it suggests method
preconditions and postconditions (the hP

m

, Q

m

i in this pa-
per). CCCheck contains several abstract domains for the heap,
non-nullness, numerical properties, array contents, enums,
but also to track (simple) existential and quantified proper-
ties [20]. Most of these abstract domains use widenings so
completeness cannot be guaranteed in the theoretical sense
for tortuous counter-examples and the contracts cannot tech-
nically be the most general. The benchmarks ran with the
default settings show that the inferred contracts can hardly
be improved manually for the abstraction used by the static
analyzer.

The implementation We preferred not to implement our-
selves the syntactic extract method from scratch. We used
Roslyn, which takes care of both the user interface (e.g.,
code selection, right click, previews, etc.) and the basic refac-
torings. Furthermore, we did not want to try our examples
on toy implementations or abstract domains, hence we (mod-
ified and) used CCCheck to implement the EMC algorithm.
CCCheck runs as a background service in Roslyn. While
Roslyn provides syntactic, source-level, ASTs, CCCheck an-
alyzes bytecode. Therefore there is some (non-trivial) glue
code connecting the two.

The extract method with contracts is implemented as a
Visual Studio extension for C#. When the user selects a piece
of code S, Roslyn in the background (and concurrently),
invokes the extension asking it to provide a refactoring, if any.
Our extension first forwards the call to the refactoring engine
of Roslyn. If no method is extracted from the selection
(e.g., not all the branches of S are terminated by a return
statement), the extraction fails, and we stop there. If the
extraction succeeds, then we generate a contract for the new
method.

The first step of the algorithm EMC is to deduce hP.
S

, Q

.
S

i,
the starting point for the greatest fixpoint computation. In the-
ory, this information can be obtained by fetching the program
points corresponding to the user selection, and then asking
CCCheck for the corresponding invariants and Roslyn for
S|~p\~g. Unfortunately there are some practical issues that com-
plicate the theoretical schema. First, CCCheck does not keep
an explicit map from source locations to bytecode offsets, but
only the inverse map, used to report warnings and sugges-
tions. Second, for memory consumption reasons, CCCheck
throws away the inferred invariants once it is done with the

the concrete (Ex. 12). We restate the EMC problem in terms
of the primitives of the underlying abstract domain (EMC,
Sec. 12). We prove soundness, i.e., a solution to EMC is
a solution for EMC (Th. 15). We present some examples
proving that, in general, a complete EMC is impossible.

We abstract the iterated formulation of the EMC solu-
tion to provide an effective static analysis to compute EMC

(Sec. 13). Let us assume to have an abstract transformer
(roughly, the two-directional static analysis for the method
body) safely approximating the concrete semantics of the
method and a projection of the abstract states in the origi-
nal method (before the extraction of the method) hP.

S

, Q

.
S

i.
Then the iterations of the abstract transformer starting from
hP.

S

, Q

.
S

i provide a correct solution (Th. 20). When the
abstract transformer is the best approximation of the con-
crete transformer, the abstract forwards/backwards iterations
provide the most precise solution for EMC (Th. 21). When
the underlying abstract domain does not satisfy the Ascend-
ing/Descending chain conditions, a fixpoint acceleration op-
erator (narrowing [11]) should be used to enforce the con-
vergence of the iterations (Algorithm EMC in Alg. 5). The
resulting contract is still a correct solution (Th. 22), but we
may not get the most general solution — just one more gen-
eral than the simple projection.

We implemented the new algorithms by integrating the
Code Contracts for .NET static analyzer (CCCheck) [20]
with the Microsoft Roslyn CTP (Roslyn) [37]. We use
Roslyn, a new implementation of .NET languages to support
the compiler-as-service paradigm, as our refactoring engine.
We use CCCheck as the underlying static analyzer. Unlike
similar tools (e.g., [22, 23]), CCCheck is based on abstract
interpretation, and it automatically infers and propagates loop
invariants intra-procedurarly, so that annotations are needed
only for the method boundaries. The inferred invariants are
used to validate both the user-provided contracts as well
as the absence of runtime errors (e.g., null dereference,
underflow/overflow, buffer overruns, etc.). Our experience
shows that the proposed method extraction with contracts is
quite effective (Sec. 14).

5. Algebraic Hoare Logic
We use Hoare logic [29] to formalize Contracts [4, 35].
The concrete Hoare rules are used to specify the program
axiomatic semantics, i.e., all possible program executions.

We use an abstract version of Hoare logic to formalize
contract-based separate static analyses. The abstract Hoare
rules are used to specify how the static analyzer should work
for a given abstraction. In this abstract Hoare logic, predi-
cates are replaced by abstract properties chosen in computer-
representable abstract domains with computable transformers
and fixpoint approximation [12] such as intervals [10], oc-
tagons [36], subpolyhedra [30], or polyhedra [16].

The general correctness argument is that static analyzers
are correct because they implement an abstract Hoare logic

which is itself sound because it correctly abstracts a concrete
Hoare logic describing precisely the language semantics.

Both concrete and abstract Hoare logics can be formalized
in a single unified framework using algebraic Hoare triples
and abstract interpretation to relate algebraic Hoare logics
operating at different levels of abstraction.

In this context the conjunction rule is potentially problem-
atic in the abstract (as illustrated in the forthcoming Ex. 5).
We cannot get rid of this conjunction rule because it for-
malizes the use of reduced products [13] in static analyzers.
Therefore we study sufficient conditions on the abstraction
for this conjunction rule to be sound (Th. 6) which is useful
beyond the specific problem of method refactoring (Ex. 7).

We first introduce some definitions and notations used in
the rest of the paper.

Galois Connections We recall from [11] that a Galois
connection hC, �i ��! ��↵

�
hA, vi is such that hC, �i and

hA, vi are partial orders, ↵ 2 C ! A and � 2 C ! A

satisfy 8x 2 C : 8y 2 A : ↵(x) v y () x � �(y). We
write hC, �i ��!�! ���

↵

�
hA, vi to denote that the abstraction

function ↵ is surjective, and hence that there are no multiple
representations for the same concrete property in the abstract.
If the C and A are complete lattices, and ↵ is join-preserving,
then it exists a unique � such that hC, �i ��! ��↵

�
hA, vi.

Abstract domains We let S 2 SJ~vK be a statement with
visible variables ~v and PJ~vK be the set of unary predicates on
variables ~v. Predicates can be isomorphically represented as
Boolean functions P 2 PJ~vK , ~VJ~vK! B mapping values
~v 2 ~VJ~vK of vector values of variables ~v to Booleans: P (~v) 2
B , {true, false}. Predicates are ordered according to

˙=), i.e., the pointwise lifting of logical implication to
functions:

P ˙=) P

0 , 8~v 2 ~VJ~vK : P (~v) =) P

0
(~v).

For example �x

.
x = 0 ˙=) �x

.
x > 0. Predicates with

partial order ˙=) form a complete Boolean lattice:
hPJ~vK, ˙=), fȧlse, ˙true, ˙_,

˙^, ¬̇i
where fȧlse is the infimum, ˙true is the supremum, ˙_ is the
least upper bound (lub), ˙^ is the greatest lower bound (glb),
and ¬̇ is the unique complement for the partial order ˙=) on
the set PJ~vK.

The precondition abstract domain hAJ~vK, 1vi is an abstract
domain expressing properties of the variables ~v where the
partial order 1v abstracts logical implication. The meaning
of an abstract property P 2 AJ~vK is a concrete property
�1(P ) 2 PJ~vK where the concretization

�1 2 hAJ~vK, 1vi ! hPJ~vK, ˙=)i
is increasing (i.e., P

1v P

0
implies �1(P ) ˙=) �1(P

0
)).

Example 3. Assume that ~v , x is reduced to a single
variable x. Let AJ~vK be the lattice with the ordering 1v defined
by the following Hasse diagram:

Figure 1. A screenshot of the extract method with contracts.
The suggested contract for the extracted method is valid, safe,
complete and the most general one.

imprecise. In particular, some information present in the
original code (programmer assertions, runtime errors, etc) is
lost when the refactored code is statically analyzed separately.
This can be avoided by using the method safety contract
suggested by CCCheck. When the safety precondition is
violated, the execution of the extracted method will either
not terminate or definitely yield a run-time error [18]. So
the safety precondition is necessary for avoiding runtime
errors. As shown by our example, the safety precondition is
in general not sufficient to guarantee the absence of runtime
errors: when the safety precondition is satisfied, the execution
of the extracted method may or may not fail/terminate 2. Once
the necessary safety precondition is inferred [18], it can be
used to get a safety post-condition by isolated reachability
analysis of the method body [11, 13].

In general, an independent separate safety static analysis
of the extracted method which does not take into account
the pre-invariant and post-invariant of the selected code is
too weak. It might not be strong enough to guarantee that the
refactored code invariant is still provable separately. Our main
motivation for this work was that the isolated analysis raised
numerous (and self-evident) complaints from end-users of
CCCheck.

Third solution: User assistance Another way of solving
the problem is to require the user to provide the precondition
and the postcondition for the extracted method. This is
the actual state of the art: programmers using any form
of DbC (CodeContracts, Spec#, JML, Eiffel, Separation
Logic, etc.) need to manually insert the contracts for the
extracted methods. We think that this is overkill and that
this represents another barrier for a wider adoption of DbC
methods. We think that method extraction should come with

2 The safety precondition is not a weakest liberal precondition that would
be sufficient but maybe not necessary to guarantee the absence of runtime
errors. The difference is that this sufficient precondition might exclude valid
executions while the necessary safety precondition only excludes executions
which are guaranteed to be definitely invalid or will not terminate.

automatic contract refactoring, which automatically infers
good contracts for the extracted method.

Forth solution: Abstract states projection An immediate
idea to solve the problem consists in projecting the relevant
variables from the original abstract proof so as to get the
required modular proof. Such a solution is unsatisfactory for
three main reasons. First, it does not work when refactoring
unreachable code: the abstract state is empty, so the generated
precondition is false. Second, too much information may
be lost (e.g., for relational analyzes) or too much information
may be preserved (e.g., not related to the method correctness).
For instance, in Ex. 1, the projection of the abstract state
produces the too strong precondition 5  x for the extracted
method. Ideally we’d love to infer the precondition 0  x.
Third, programs evolve over time so a refactoring might
work when performed but no longer work with later program
modifications.

Example 2. Suppose that we want to extract a method
MakeRoom from (*)...(**) in the code below.
Insert(string[] list,

ref int count, string newElement) {
Requires(list != null &&

// in bounds
0 <= count && count <= list.Length &&

// no overflows on resize
list.Length < 33554432);

if (list.Length == count)
{

(*) var tmp = new string[count*2 + 1];
CopyArray(list, tmp);
list = tmp; (**)

}
list[count++] = newElement;
return list;
}

If we simply project the abstract states, the contract for the
new method is
Requires(list!=null && list.Length==count

&& count <= 33554432);
Ensures(Result<string[]>() != null);

(1)

The precondition is too strong for the callers. The refactored
method MakeRoom can only be invoked when count is ex-
actly the length of the array and the array is not too large
(less than 2

25 elements). Furthermore, in the postcondition,
because of the imprecision of the projection, we lost the rela-
tion between the length of the result array and count. With
our technique, we instead infer the more general contract:

Requires(list != null && 0 <= count * 2 + 1);

Ensures(Result<string[]>() != null

&& 2 * count - Result<string[]>().Length == -1);

The precondition ensures that the internal allocation is safe
(even with possible arithmetic overflows) and that we copy a
valid list. The postcondition guarantees that the array returned

Theory:               Applications:       Practice:
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A very informal 
introduction to abstract 

interpretation
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Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis 
of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 
269-282
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1) Define the programming language semantics

27

Formalize the concrete executions of programs (e.g. transition system)

x

y

Trajectory 
in state space

Space/time trajectory

(x,y)

t

x

y

t=0

t=1

t=2

t=…

ICSME 2014, Victoria, BC, Canada, 2014-10-02                                                                                                                                                                                                           © P. Cousot

II) Define the program properties of interest

28

Formalize what you are interested to know about program behaviors

We are interested in the set of 
possible trajectories
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III) Define which specification must be checked 

29

Formalize what you are interested to prove about program behaviors

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

No trajectory should hit the forbidden zone
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IV) Choose the appropriate abstraction

30

Abstract away all information on program behaviors irrelevant to the proof

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

Abstraction by geometric forms (rectangles, 
polyhedra, ellipsoids, abstraction by parts, etc)
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V) Mechanically verify in the abstract

31

The proof is fully automatic

!"##$%&'(
)*+,'-)"*$'#
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                What is abstraction in AI?
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                What is abstraction in AI?
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                What is abstraction in AI?
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                What is abstraction in AI?
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Concrete 
universe of
discourse

Properties

Elements
Abstract 

universe of
properties

γ
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Abstract 
properties

Abstract 
implication

⊆

⊑

Inclusion

Provable abstract properties 
are true in the concrete
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Soundness of the abstract verification

32

Never forget any possible case so the abstract proof is correct in the concrete

!"#$%&&'()*"('

+",,%$-')
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2$,.#/1.%"()"3).4').#/0'1."#%',



ICSME 2014, Victoria, BC, Canada, 2014-10-02                                                                                                                                                                                                           © P. Cousot

Unsound validation: testing

33

Try a few cases
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Unsound validation: bounded model-checking

34

Simulate the beginning of all executions

Bounded model-checking

Forbidden zone

Possible
trajectories
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Unsound validation: static analysis
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Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive
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Incompleteness

36

When abstract proofs may fail while concrete proofs would succeed

!"#$%&&'()*"('
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6-/#4)777

By soundness an alarm must be
raised for this overapproximation!
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True error
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The abstract alarm may correspond to a concrete error
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False alarm

38

The abstract alarm may correspond to no concrete error (false negative)

!"#$%&&'())*"('
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The only solution is to refine the analysis to take more 
properties into account (e.g. specifically for a domain 
of application)!

ICSME 2014, Victoria, BC, Canada, 2014-10-02                                                                                                                                                                                                           © P. Cousot

Combination of abstractions in Astrée

39

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F ( x1, . . . , xn⌦) � ⇥( F1(x1), . . . ,
Fn(xn⌦) and  r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥( [0, 100], odd⌦) =  [1, 99], odd⌦.
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Examples of abstract 
interpretation-based 
program verification 

tools
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Example 1:  Astrée
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Astrée

42

• Commercially available: www.absint.com/astree/

• Effectively used in production to qualify truly large and complex 
software in transportation, communications, medicine, etc

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static 
analyzer for large safety-critical software. PLDI 2003: 196-207
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Example of domain-specific abstraction: ellipses

43

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌅ [a, b] x ⇥ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27
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Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):
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Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.
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Abstract interpretation

• Abstract interpretation is the only formal method able 
to automatically infer program properties

• All others can only check your assertions

44

Types are abstract interpretations, see Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331
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Example of domain-specific abstraction: ellipses
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Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2
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Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):
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too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.
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Example of domain-specific abstraction: ellipses
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Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2
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Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):
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too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.
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Example II: cccheck
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Code Contract Static Checker (cccheck)

48

• Available within MS Visual Studio

Manuel Fähndrich, Francesco Logozzo: Static Contract Checking with Abstract Interpretation. FoVeOOS 2010: 10-30
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Comments on screenshot (courtesy Francesco Logozzo)
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• A screenshot from Clousot/cccheck on the classic binary search. 
• The screenshot shows from left to right and top to bottom

1. C# code + CodeContracts with a buggy BinarySearch
2. cccheck integration in VS (right pane with all the options integrated in the VS project system)
3. cccheck messages in the VS error list

• The features of cccheck that it shows are:
1. basic abstract interpretation:

a. the loop invariant to prove the array access correct and that the arithmetic operation may 
overflow is inferred fully automatically

b. different from deductive methods as e.g. ESC/Java or Boogie or Dafny where the loop 
invariant must be provided by the end-user

2. inference of necessary preconditions:
a. Clousot finds that array may be null (message 3)
b. Clousot suggests and propagates a necessary precondition invariant (message 1)

3. array analysis (+ disjunctive reasoning):
a. to prove the postcondition one must infer properties of the content of the array
b. please note that the postcondition is true even if there is no precondition requiring the 

array to be sorted.
4. verified code repairs:

a. from the inferred loop invariant does not follow that index computation does not 
overflow

b. suggest a code fix for it (message 2)
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Abstract
Abstract interpretation is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal
description of complex or infinite systems and the inference or ver-
ification of their combinatorial or undecidable properties. Devel-
oped in the late seventies, it has been since then used, implicitly
or explicitly, to many aspects of computer science (such as static
analysis and verification, contract inference, type inference, ter-
mination inference, model-checking, abstraction/refinement, pro-
gram transformation (including watermarking, obfuscation, etc),
combination of decision procedures, security, malware detection,
database queries, etc) and more recently, to system biology and
SAT/SMT solvers. Production-quality verification tools based on
abstract interpretation are available and used in the advanced soft-
ware, hardware, transportation, communication, and medical in-
dustries.

The talk will consist in an introduction to the basic notions of
abstract interpretation and the induced methodology for the sys-
tematic development of sound abstract interpretation-based tools.
Examples of abstractions will be provided, from semantics to typ-
ing, grammars to safety, reachability to potential/definite termina-
tion, numerical to protein-protein abstractions, as well as applica-
tions (including those in industrial use) to software, hardware and
system biology.

This paper is a general discussion of abstract interpretation, with
selected publications, which unfortunately are far from exhaustive
both in the considered themes and the corresponding references.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.1 [Formal Definitions and Theory]; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs].

General Terms Algorithms, Languages, Reliability, Security,
Theory, Verification.

Keywords Abstract interpretation, Semantics, Proof, Verification,
Static Analysis.

1. Abstraction
No reasoning on complex systems, including computer systems,
can be done without abstracting the behavior, i.e. the semantics, of

⇤ Work supported in part by the CMACS NSF award 0926166.
⇤⇤ Work supported in part by the European ARTEMIS project MBAT (grant
agreement No. 269335).
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c� 2014 ACM ACM 978-1-4503-2886-9/14/07. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603165

the system. Because reasoning on a system involves determining
or proving its properties, the central concept is the abstraction of
properties of the system, starting from the strongest one, as speci-
fied by the system semantics (and called the collecting semantics1).
This is the purpose of abstract interpretation (where “interpreta-
tion” stands both for “meaning” and “execution”). A few gentle
introductions to abstract interpretation [44, 79] can be consulted
for a first approach, including some publicly available on the web
(e.g. web.mit.edu/16.399/www/).

2. Scope
Abstract interpretation comprehends undecidable problems (hence
is also applicable to decidable but complex ones). This implies that
any tool (prover, checker, analyzer) designed by abstract interpre-
tation will fail on infinitely many counter-examples. For example
a finiteness or decidability hypothesis will only be applicable to a
very restricted class of programs with finite behavior, hence will
fail on infinitely many other ones. This is inherent to undecidable
problems hence inescapable. By failure we understand being un-
sound/incorrect, non-terminating, using a human oracle to assist
the computer, etc. Although abstract interpretation also applies to
these cases2, it is usually used for sound, terminating, and fully
automatic program analysis/verification, including the inference of
sound inductive arguments (like invariants) to deal with infinite re-
currences for unbounded/non-terminating executions, which makes
the problem particularly difficult, with a very high complexity.

3. Static analysis
The origin of abstract interpretation is in static program analysis
[50, 51] where reachable states are abstracted by local interval nu-
merical invariants understood as a generalization of type inference
[49, 54]. The abstraction from the collecting semantics was for-
malized by a Galois insertion and convergence acceleration of the
iterates by widening, later improved by narrowing. The main in-
novations at the time were to consider infinite non-Noetherian ab-
stractions of infinite systems and to prove rigorously the correct-
ness of the static analysis with respect to a formal semantics (see
more details in footnote 6).

1 The collecting (or static in [52]) semantics is the strongest property of the
standard semantics.
2 For example, some commercial products do consider only two iterations
in loops without widening, which is an under-approximation of an over-
approximating abstraction of program executions which can be formalized
by abstract interpretation theory. The theory also proves beyond doubt
that the result cannot be claimed to be a sound over-approximation of the
program behavior, a conclusion which is not always stated clearly enough
for practitioners to have a precise understanding of the scope of commercial
static analyzers.

To explore abstract interpretation...

• A good starting point:
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• 40 years after Harlan D. Mills pioneer ideas, abstract 
interpretation-based formal methods have made 
considerable progress both in theory and practice

• May become indispensable as 

• safety and security become central to computer 
science

• programmers are held responsible for their errors

• machines hence programming becomes more and 
more complicated (if not intractable, e.g. 
parallelism, cloud, etc)
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The End, Thank You

53


