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We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
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1 INTRODUCTION
In verification, the focus is on which program properties can be expressed and proved. We discuss
transformational (or Hoare’s style) logics characterized by formulas expressing program properties
that relate initial/input values of variables to their final/output values, nontermination, or runtime
errors (or inversely final to initial) and a Hilbert-style proof system [Hilbert and Ackermann 1959,
§10] to prove that a program has a property expressed by a formula of the logic (but not that a
given program does not have a property expressed by a formula of the logic or that no program
can have this property [Kim et al. 2023]). Examples are Hoare’s logic [Hoare 1969] and the reverse
Hoare logic [de Vries and Koutavas 2011] aka incorrectness logic [O’Hearn 2020].

1.1 The Classic Proof-Theoretic Approach
The “classic approach” to the design of a Hoare style logic follows the proof-theoretic semantics
in logic originated by Hilbert, Gentzen, Prawitz, and others [Piecha and Schroeder-Heister 2019].
The true program properties are the provable ones, which is also the idea of “axiomatic seman-
tics” [Winskel 1993], that is, Floyd’s idea that a program proof method is “Assigning Meaning to
Programs” [Floyd 1967]. First the syntax of program properties is defined (e.g. %{�}& , {%}�{&},
[%]�[&]). Then proof rules are postulated (e.g. “If ⊢ %{&}' and ⊢ ' ⊃ ( then ⊢ %{&}(” [Hoare
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1969, page 578]). Finally, soundness and completeness theorems are proved to relate the logic prop-
erties to a more concrete/refined semantics (e.g. years after its design, Hoare logic [Hoare 1969]
was proved sound by Donahue [Donahue 1976] (with respect to a denotational semantics) and
sound and relatively complete by Pratt [Pratt 1976] (with respect to a relational semantics exclud-
ing nontermination) and Cook [Cook 1978, 1981] (with respect to an operational trace semantics)).
This designmethod has perdured over time, even if, nowadays, soundness and completeness proofs
are often published together with the logic (e.g. [Bruni et al. 2023; Dardinier 2023; de Vries and
Koutavas 2011; Gotsman et al. 2011; Möller et al. 2021; O’Hearn 2020; Vanegue 2022; Zhang et al.
2022; Zhang and Kaminski 2022; Zilberstein et al. 2023] a.o.). Therefore, in this “classic approach”
the program properties of interest (partial correctness, total correctness, incorrectness, etc) are the
one provable by the proof system, while soundness and completeness theorems aims at connecting
the provable properties to the program semantics.

1.2 The Model-Theoretic Semantic Abstraction Approach
In this paper, we consider an alternative “semantic abstraction approach”which is based on Tarski’s
truth paradigm [Tarski 1933] in model theory and the abstract interpretation of the semantics of
languages [Cousot 2021; Cousot and Cousot 1977]. First, a formal semantics is specified for the lan-
guage (preferable using structural fixpoints or deductive proof systems). This induces a collecting
semantics defining the strongest (hyper) property of programs. Then the program properties of
interest for the logic are specified by a Galois connection abstracting the collecting (hyper) prop-
erties. The abstraction is usually the composition of several primitive ones, in the spirit of [Cousot
and Cousot 2014]. Varying the primitives and their composition yields different logics. At this
point, the logic is precisely and fully determined since all expressible properties of all programs
have been formally specified. For example, the logic can be compared and combined with other
logics (see e.g. Figs. 1, 2, 3 and the taxonomy in Sect. I.3.14). Finally the rules of the proof system
are designed by calculus using fixpoint abstraction (Sect. II.2), fixpoint induction principles (Sect.
II.3), and Peter Aczel [Aczel 1977] construction of deductive rule-based systems from fixpoints, or
conversely (Sect. II.5).

The advantage is that reasoning on abstractions of program properties is much more concise
and easy than reasoning on proof systems. This clearly appears e.g. in Fig. 2 comparing 40 logics
by combining only 8 abstractions (plus one, common to all logics defining “transformational”).
Fig. 2 is itself part of the lattice of abstract interpretations of [Cousot and Cousot 1977, section
8] including many logics whose abstraction is given in this paper. Another advantage is that the
proof system is derived by calculus so sound and complete by construction.

1.3 The Structure of the Paper
The paper has two main parts. In the first part, we characterize the semantics of a transformational
logics, i.e. the true formulas (a theory in logic), as an abstract interpretation of the program (collect-
ing) semantics. This allows us to provide a taxonomy of transformational semantics by comparing
their abstractions, without referring to their proof systems.

After showing that theories of logics are set abstractions of the program (collecting) semantics
in the first part, we have to design the corresponding proof systems in the second part.

Aczel has shown that deductive rule-based systems and set-theoretic fixpoint definitions are
equivalent [Aczel 1977]. Therefore we first define the program semantics in fixpoint form, then
abstract this semantics to get a fixpoint definition of the theory of the logic, and finally apply
Aczel’s method to derive the equivalent proof system.The proof system is then sound and complete
by construction.

Hyper references A◯ refer to the full paper on Zenodo [Cousot 2024]. 10.5281/zenodo.10439108
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Part I: Design of the Theory of Logics by Abstraction of the
Program Semantics

In part I, we show that the theory (or semantics) of transformational logics are abstractions of
the relational semantics of programs, which leads to a taxonomy of transformational logics, as
well as, to their combinations. The meaning or semantics of a logic is the set of true formulas of
that logic which is also called the theory of the logic. So we use “theory” for the meaning of a logic
and “semantics” for the meaning of a program or a programming language.

I.1 RELATIONAL SEMANTICS
“Relational” means that the semantics defines a relation between initial states of executions and
final states or � to denote nontermination (as conventional in denotational semantics [Scott and
Strachey 1971]). Our notations on relations are classic and defined in the appendix A◯.
I.1.1 Structural Deductive Definition of the Natural Relational Semantics
We consider an imperative language S with assignments, sequential composition, conditionals,
and conditional iteration with breaks. The syntax is S ∈ S ∶∶= x = A ∣ x = [0,1] ∣ skip ∣ S;S ∣
if (B) S else S ∣ while (B) S ∣ break. The nondeterministic assignment x = [0, 1] with 0 ∈

Z ∪ {−∞} and 1 ∈ Z ∪ {∞}, −∞− 1 = −∞,∞+ 1 =∞ may be unbounded. break is a simple form
of exception (to answer a question on exceptions by Matthias Felleisen at POPL 2014 [Cousot and
Cousot 2014]).

States f ∈ Σ ≜ X → V (also called environments) map variables x ∈ X to their values f(x) in V
including integers, Z ⊆ V. We let � /∈ Σ denote nontermination with Σ� ≜ Σ ∪ {�}.

We deliberately leave unspecified the syntax and semantics of arithmetic expressions AJAK ∈
Σ → V and Boolean expressions BJBK ∈ ℘(Σ) ≃ Σ → {true, false}. The only assumption on expres-
sions is the absence of side effects.

The relational semantics JSK� of a command S ∈ S is an element of ℘(Σ × Σ�). Formally, ⟨f,
f ′⟩ ∈ JSK� means that an execution of the nondeterministic command S from initial state f ∈ Σmay
terminate in final state f ′ ∈ Σ or may not terminate when f ′ = �. (The relational semantics could
have been proven to be the abstraction of a finite and infinite trace semantics [Cousot 2021].) The
right-image ,f .{f ′ ∈ Σ� ∣ ⟨f, f ′⟩ ∈ JSK�} of the natural relational semantics JSK� is isomorphic
to Plotkin’s natural denotational semantics [Plotkin 1976]. Such natural relational semantics have
been originated by Park [Park 1979].

We partition the relational natural semantics into the semantics JSK4 ∈ ℘(Σ × Σ) of statement
S terminating/ending normally, the semantics JSK1 ∈ ℘(Σ × Σ) of statement S terminating by a
break statement, and the semantics JSK� ∈ ℘(Σ × {�}) of nontermination �. Therefore JSK� ≜
JSK4 ∪ JSK1 ∪ JSK�. The angelic semantics

JSK ≜ JSK4 ∪ JSK1 = JSK� ∩ (Σ × Σ) (1)
ignores non termination.

We follow the tradition established by Plotkin [Plotkin 2004a,b] to define the program semantics
by structural induction (i.e. by induction on the program syntax) using a deductive system of
rules. We extend the semantics of the deductive system using bi-induction combining induction
for terminating executions and co-induction for nonterminating ones [Cousot and Cousot 1992,
1995, 2009].

Let us write judgements f ⊢ S
4
⇒ f ′ for ⟨f, f ′⟩ ∈ JSK4 , f ⊢ S

1
⇒ f ′ for ⟨f, f ′⟩ ∈ JSK1 , and

f ⊢ S
∞

⇒ for ⟨f, �⟩ ∈ JSK�. Moreover, for the conditional iteration statement W ≜ while (B) S, we
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write f ⊢ W
8
⇒ f ′ to mean that if f is a state before executing W, then f ′ is reachable after 0 or more

iterations of the loop body (so f = f ′ for 0 iterations, before entering the loop in case (2.a)). We
have the axiom and inductive rule for iterations W

(a) f ⊢ W
8
⇒ f (b) BJBKf, f ⊢ S

4
⇒ f ′, f ′ ⊢ W

8
⇒ f ′′

f ⊢ W
8
⇒ f ′′

(2)

The following axioms define termination (these are axioms since the precondition has been previ-
ously established either by 8

⇒ or by structural induction). (3.b) is for termination by a break.

(a) f ⊢ W
8
⇒ f ′, BJ¬BKf ′

f ⊢ W
4
⇒ f ′

(b) f ⊢ W
8
⇒ f ′, BJBKf ′, f ′ ⊢ S

1
⇒ f ′′

f ⊢ W
4
⇒ f ′′

(3)

The following axiom and co-inductive rule define nontermination (the left rule is an axiom since
the precondition has already been defined either by 8

⇒ or by structural induction). Rule (4.b) right-
marked∞ is co-inductive.

(a) f ⊢ W
8
⇒ f ′, BJBKf ′, f ′ ⊢ S

∞

⇒

f ⊢ W
∞

⇒

(b) BJBKf, f ⊢ S
4
⇒ f ′, f ′ ⊢ W

∞

⇒

f ⊢ W
∞

⇒

∞ (4)

I.1.2 State Properties, Semantics Properties, and Collecting Semantics
We define properties in extension as the set of elements of a universe U that have this property. So
false is∅, true isU, logical implication is ⊆, disjunction is ∪, conjunction is ∩, negation is ¬% ≜ U∖%
and ⟨℘(U), ∅, U, ∪, ∩, ¬⟩ is a complete Boolean lattice [Grätzer 1998].

For example, properties of states f ∈ Σ� (considered to be the universe) belong to ℘(Σ�). The
singleton {�} is the property “not to terminate”, ∅ is “false”, {f1, . . . , f=} ⊆ Σ is “to terminate with
any one of the states f1, . . . , f= ∈ Σ”, {f1, . . . , f=,�} is “ “to terminate with any one of the states
f1, . . . , f= ∈ Σ or not to terminate”, Σ is to terminate, Σ� is “true” i.e. “to terminate with any state
in Σ or not to terminate” (the common alternative to terminate with an error is assumed to be
encoded with some specific values in the set Σ of states).

Let JSK� ∈ ℘(Σ×Σ�) be the natural relational semantics of programs S ∈ S in Sect. I.1.1. When de-
fined in extension, semantic properties belong to ℘(℘(Σ×Σ�)). The program collecting semantics
{∣S�∣} ≜ {JS�K} ∈ ℘(℘(Σ × Σ�)) is the strongest (hyper) property of program S.

I.2 GALOIS CONNECTIONS
Galois connections [Cousot 2021, Ch. 11] are used throughout the paper.They formalize correspon-
dences between program properties which preserve implication and one is less precise/expressive
than the other. The interest is that proofs in the abstract are valid in the concrete (or equivalent
in case of Galois isomorphisms). Moreover, there is a most precise way to abstract any concrete
property or logic, which provides a guideline for calculational design of logics from a program
semantics. The definition and properties of Galois connections are recalled in the appendix A◯.

I.3 THE DESIGN OF A NATURAL TRANSFORMATIONAL LOGIC THEORY BY
COMPOSING ABSTRACTIONS OF THE NATURAL RELATIONAL SEMANTICS

A program logic consists of formal statements some of which are true and constitute the theory
of the logic. Our objective in this section is to characterize the theory of transformational log-
ics by abstraction of the natural relational collecting semantics. This abstraction is obtained by
composition of basic Galois connections and functors introduced in this section.

Example I.3.1. The body fact ≡ while (n!=0) { f = f * n; n = n - 1;} of the factorial f = 1;

fact can be specified as {= = =∧ 5 = 1} fact{(= ⩾ 0∧ 5 =!=)∨(= < 0∧= = 5 = �)}where, following
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Manna [Manna 1971], x or x0 denotes the initial value of variable x in the postcondition. When
later incorporating break statements, the specification will be {= = =∧ 5 = 1} fact{>: ∶ (= ⩾ 0∧ 5 =
!=) ∨ (= < 0 ∧= = 5 = �), 1A ∶ false}.

Assuming % ≠ ∅ (false) and � /∈ & , {%}S{&} specifies total correctness, as doesManna and Pnueli
logic [Manna and Pnueli 1974]. {%}S{�} specifies definite non termination. Otherwise, when � ∈ & ,
{%}S{&} expresses partial correctness, as does Hoare logic [Hoare 1969].

By adding auxiliary variables (see Sect. E.1 in the appendix), this specification can also be par-
tially formulated by two Hoare triples {= = = ⩾ 0 ∧ 5 = 1} fact{5 =!=} (although not ensuring
termination) and {= < 0 ∧ 5 = 1} fact{false} (ensuring nontermination) but the conjunction of
Hoare triples is not a Hoare triple and anyway the partial specification cannot preclude nontermi-
nation when = ⩾ 0.

This specification cannot be expressed by Manna and Pnueli [Manna and Pnueli 1974] logic
since the program is not totally correct.

The theory of the adequate logic (that we call the natural transformational over approximation
logic) will be formally specified in (13) as {%}S{&}, % ∈ ℘(Σ×Σ),& ∈ ℘(Σ×Σ�) if and only if ∀⟨f,
f⟩ ∈ % . ∀f ′ . ⟨f, f ′⟩ ∈ JSK� ⇒ ⟨f, f ′⟩ ∈ & . The proof system of this logic is designed in Sect. II.8.1.
∎

I.3.1 Collecting Semantics to Semantics Abstraction
The collecting semantics of a program component is its strongest property, so transformational
logic statements are weaker abstract properties that we specify by composition of Galois connec-
tions. The first abstraction U� abstracts hyper properties into properties.

LetD be a set (e.g.D = Σ×Σ� for the natural relational semantics of Sect. I.1.1). There is a Galois
connection

⟨℘(℘(D)), ⊆⟩ −−−−→Ð→←−−−−−−
U�

W�
⟨℘(D), ⊆⟩ (5)

where U�(%) ≜ ⋃% is surjective and W�(() ≜ ℘(() is injective (since U�(%) ⊆ ( ⇔ ⋃% ⊆ ( ⇔

% ⊆ ℘(()⇔ % ⊆ W�(()).
Example I.3.2. IfD is a set of finite or infinite traces, JSK� defines the finite or infinite execution

traces of S, {∣S∣}
�
is the strongest hyper property of program S [Clarkson and Schneider 2010], and

U�({∣S∣}�) = JSK� is the strongest semantic property of S (called a trace property in [Clarkson and
Schneider 2010]). ∎

Our first abstraction is therefore U�({∣S∣}�) = U�({JSK�}) = JSK� where this natural relational
semantics defines in Sect. I.1.1 specifies the program properties of interest.

I.3.2 Semantics to Relational Postcondition Transformer Post Abstraction
While the natural relational semantics establishes a relation between initial and final states or
nontermination, the postcondition transformers establish a relation between properties of initial
states and properties of final states or nontermination. The postcondition may be an assertion
on final states only (as in Hoare partial correctness logic [Hoare 1969]) or a relation between
initial and final states (as in Manna partial correctness [Manna 1971]). The postcondition may also
include nontermination. Although Hoare logic is assertional, the initial values of variables can be
recorded into auxiliary variables (see Sect. E.1 in the appendix). We start with the relational case
since assertional property transformers are abstractions of relational ones (as shown in Sect. I.3.6).

The relational postcondition transformer Post is also called the relational forward/right-image/
post-image/strongest consequent/strongest post condition.

Post ∈ ℘(X ×Y)→ ℘(Z ×X )→ ℘(Z ×X )
Post(A)% ≜ {⟨f0, f ′⟩ ∣ ∃f . ⟨f0, f⟩ ∈ % ∧ ⟨f, f ′⟩ ∈ A} (6)
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Post(U�({∣S∣}�))% = PostJSK�% is a relation between initial states f related to f0 satisfying the
precondition % and final states f ′ related to f0 upon termination of S or f ′ = � in case of nonter-
mination. This is the basis for the natural relational transformational logic (as in example I.3.1 and
Sect. II.8.1), except for the use of a transformer instead of logic triples. We will later prove in (35)
that Post is the lower adjoint of a Galois connection.

Example I.3.3. Incrementation is characterized by Post(x = x+1)(x = x0) = (x = x0 + 1) which,
representing the semantics and relational properties as sets, is Post({⟨G, G + 1⟩ ∣ G ∈ Z}){⟨G0,
G⟩ ∣ G = G0 ∈ Z} = {⟨G0, G ′⟩ ∣ ∃G . ⟨G0, G⟩ ∈ {⟨G0, G⟩ ∣ G = G0 ∈ Z}∧⟨G, G ′⟩ ∈ {⟨G, G+1⟩ ∣ G ∈ Z}} = {⟨G0,
G0 + 1⟩ ∣ G0 ∈ Z}. Here, f0 is the initial value of the variables before the assignment but, in general,
this initial relation can be arbitrary.More generally, Floyd’s strongest postcondition for assignment
x := A [Floyd 1967] is PostJx := AK% = {⟨f0, f ′⟩ ∣ ∃f . ⟨f0, f⟩ ∈ % ∧ f ′ = f[x← AJAKf]}. ∎

I.3.3 Relational Postcondition Transformer to Antecedent/Consequent Pairs
Transformational logic triples {%}S{&} associate pairs ⟨%, &⟩ of predicates to each program com-
mand S ∈ S. So the theory of the logic is the set {⟨%, &⟩ ∣ {%}S{&}} for each statement S. For
the natural transformational logic, this theory contains the graph of the Post(JSK�) function. Con-
versely, from this graph, we can recover the strongest valid triples {%}S{&}. (Notice that we say
“contains” not “is” and “strongest” since, in absence of a consequence rule, the graph does not
contain all valid triples, only the {%}S{Post(JSK�)%} ones. Consequence rules will be introduced
thanks to another abstraction discussed in next Sect. I.3.4.)

More generally, a function 5 ∈ X → Y is isomorphic to its graph UG(5 ) = {⟨G, 5 (G)⟩ ∣ G ∈ X}.
This graph UG(5 ) is a functional relation. We have the Galois isomorphism A◯

⟨X → Y, =⟩ −−−−→Ð→←←Ð−−−−
UG

WG
⟨℘fun(X ×Y), =⟩ (7)

where WG(A) ≜ ,G . (~ such that ⟨G, ~⟩ ∈ A) is uniquely well-defined since A is a functional relation.
We have A◯

UG(Post(U�({∣S∣}�))) = {⟨%, {⟨f0, f
′⟩ ∣ ∃f . ⟨f0, f⟩ ∈ % ∧ ⟨f, f ′⟩ ∈ JSK�}⟩ ∣ % ∈ ℘(Σ × Σ)} (8)

So UG(Post(U�({∣S∣}�))) is the set of pairs ⟨%, &⟩ such that& is the strongest relational postcondi-
tion of % for the natural relational semantics JSK�. It is not a program logic since, as was the case
for transformers, it is missing a consequence rule.

Example I.3.4. Floyd/Hoare logic rules [Hoare 1978] provide the strongest assertional post-condi-
tion except for the iteration and consequence rule, e.g., {%}skip{%} is {%}skip{post(JskipK)%}
(see (10) below for the classic definition of post). But excluding the consequence rule and using
the following iteration rule (for bounded nondeterminism)

� 0 = %, ∀= ∈ N . {�= ∧ B} S{�=+1}
{%} while (B) S{∃= ∈ N . �= ∧ ¬�}

(9)

would yield the strongest post condition in all cases. ∎

I.3.4 Weakening and Strengthening Abstractions
Following [Burstall 1969] to make program proofs using the natural relational semantics proof
rules 2–4, or, by (8), the transformer Post(JSK�) or, isomorphically by (7), its graph {⟨%, {⟨f0,
f ′⟩ ∣ ∃f . ⟨f0, f⟩ ∈ % ∧ ⟨f, f ′⟩ ∈ JSK�}⟩ ∣ % ∈ ℘(Σ × Σ)} ∈ ℘(℘(Σ × Σ) × ℘(Σ × Σ�)) is inadequate
since the semantics describes executions exactly, without any possibility of approximation.

In contrast, as first shown by Turing [Morris and Jones 1984; Turing 1950], using executions
properties is the basis for elegant and concise program correctness proofs since it allows for ap-
proximations.
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This is even implicitly acknowledged by the most enthusiastic supporter of transformers. Edsger
W. D. Dijkstra in [Dijkstra 1976] has chapters 0 to 4 defining predicate transformers until chapter
5 introducing properties weakening by implication (i.e. one form of approximation) as well as
the “Fundamental Invariance Theorem for Loops” (i.e. fixpoint induction Th. II.3.1 replacing the
strongest loop invariant by weaker ones). Moreover, in chapter 6, it is explained how “to choose
an appropriate proof for termination” (for bounded nondeterminism). Iterative program design
and proofs are only considered after over approximation (invariance) and under approximation
(for termination) have been introduced, from chapter 7 on. We have to do the same, but for any
transformer (including PostJSK�).

For that purpose, we introduce weakening and strengthening abstractions. Consequence rules,
understood as an abstraction losing precision on program properties, will be a specific instance
for a specific transformer. We also need compatible general induction principles to handle loops
(of which invariance and (non)termination will be specific instances). Such induction principles
are not relative to expressivity but to proofs, and so will be considered in part 2 of the paper.

I.3.4.1 The Over Approximation Abstraction. Pairs of properties ⟨%, &⟩ ∈ ' ∈ ℘(℘(X )×℘(Y)) can
be approximated by weakening or strengthening % and/or & . For Hoare logic [Hoare 1969], we
can strengthen % by % ′ ⊆ % and weaken & by & ′ such that & ⊆ & ′. This is the over approximation
abstraction post(⊇,⊆)' = {⟨% ′, & ′⟩ ∣ ∃⟨%, &⟩ ∈ ' . ⟨%, &⟩ ⊇,⊆ ⟨% ′, & ′⟩} = {⟨% ′, & ′⟩ ∣ ∃⟨%, &⟩ ∈ ' .

% ⊇ % ′ ∧& ⊆ & ′} = {⟨% ′, & ′⟩ ∣ ∃⟨%, &⟩ ∈ ' . % ′ ⊆ % ∧& ⊆ & ′} by defining the classic assertional
right image transformer (denoted -A in [Pratt 1976])

post(A)- ≜ {~ ∣ ∃G ∈ - . ⟨G, ~⟩ ∈ A} (10)
and the component wise ordering ⊑,⪯ on pairs

⟨G, ~⟩ ⊑,⪯ ⟨G ′, ~′⟩ ≜ G ⊑ G ′ ∧~ ⪯ ~′ (11)
If A ∈ ℘(X ×Y), we have the classic Galois connection

⟨℘(X ), ⊆⟩ −−−−−−−−→←−−−−−−−−
post(A)

p̃re(A)
⟨℘(Y), ⊆⟩ (12)

where p̃re(A)& = {G ∣ ∀~ . ⟨G, ~⟩ ∈ A ⇒ ~ ∈ &} (see example C.1 in the appendix). The theory of
the natural transformational over approximation logic is therefore A◯

post(⊇,⊆)(UG(PostJSK�)) = {⟨%, &⟩ ∣ PostJSK�% ⊆ &} (13)
= {⟨%, &⟩ ∣ ∀⟨f0, f⟩ ∈ % . ∀f ′ . ⟨f, f ′⟩ ∈ JSK� ⇒ ⟨f0, f ′⟩ ∈ &}

that is, for any initial state f related to f0 by the precondition % and any final state f ′ of S, possibly
�, the pair ⟨f0, f ′⟩ satisfies the postcondition& , as considered in example I.3.1. The difference with
the interpretation of Manna and Pnueli total correctness logic [Manna and Pnueli 1974] is that we
may have ⟨f0, �⟩ ∈ & thus allowing possible nontermination for some initial pair of states ⟨f0, f⟩
of % . Therefore we can both express both total and partial correctness plus nontermination when
& = Σ × {�}. With this convention, only one of Dijkstra’s weakest preconditions transformers
[Dijkstra 1975, 1976; Dijkstra and Scholten 1990] is needed since wlp(S,&) = wp(S,& ∪ {�}).
This is similar to the classic characterization of Hoare logic by a forward transformer, {%}S{&}
if and only if postJSK% ⇒ & given by [Pratt 1976, equation (S), p. 110] or, equivalently by (12),
% ⇒ p̃reJSK& [Pratt 1976, equation (w), p. 110] (except that in (13), % and& are relational and take
nontermination into account). By (12), the abstraction post(⊇,⊆) is the lower adjoint of a Galois
connection.

I.3.4.2 The Under Approximation Abstraction. For the natural transformational under approxima-
tion logic, as well as reverse Hoare logic [de Vries and Koutavas 2011] aka incorrectness logic
[O’Hearn 2020], we can weaken % by % ′ ⊇ % and strengthen & by & ′ such that & ⊇ & ′. This is the
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under approximation abstraction post(⊆,⊇)' = {⟨% ′, & ′⟩ ∣ ∃⟨%, &⟩ ∈ ' . ⟨%, &⟩ ⊆,⊇ ⟨% ′, & ′⟩} =
{⟨% ′, & ′⟩ ∣ ∃⟨%, &⟩ ∈ ' . % ⊆ % ′ ∧& ⊇ & ′} = {⟨% ′, & ′⟩ ∣ ∃⟨%, &⟩ ∈ ' . % ⊆ % ′ ∧& ′ ⊆ &} which is the
consequence rule called Symmetry in [O’Hearn 2020, Fig. 1] and Consequence in [O’Hearn 2020,
Fig. 2].

The theory of the natural transformational under approximation logic is therefore A◯

post(⊆,⊇)(UG(PostJSK�)) = {⟨%, &⟩ ∣ & ⊆ PostJSK�%} (14)
= {⟨%, &⟩ ∣ ∀⟨f0, f⟩ ∈ % . ∀f ′ . ⟨f0, f ′⟩ ∈ & ⇒ ⟨f, f ′⟩ ∈ JSK�}

that is, for any initial statef related to f0 satisfying the precondition % and any final statef ′ related
to f0, possibly �, if the pair ⟨f0, f ′⟩ satisfies the postcondition & then there exists an execution
of S from f to f ′ (possibly non termination). The difference with reverse Hoare logic [de Vries
and Koutavas 2011] aka incorrectness logic [O’Hearn 2020] is that we may have ⟨f, �⟩ ∈ & thus
allowing possible nontermination for some initial states ⟨f0, f⟩ of % so we can both express total
and partial correctness plus nontermination when & = Σ × {�}.

Up to the use of relations instead of assertions and the consideration of nontermination �, this is
similar to the classic characterization of reverse Hoare logic aka incorrectness logic by a forward
transformer, {%}S{&} if and only if& ⇒ post(JSK)% given by [de Vries and Koutavas 2011, section
5] and [O’Hearn 2020, Lemma 3.(2)], showing that both logics have the same semantics/theory
(again up to nontermination and relational postconditions). By (12), the abstraction post(⊆,⊇) is
the lower adjoint of a Galois connection.

I.3.4.3 The Incorrectness Logic is Insufficient to Prove That All Alarms in Static Analysis Are True
or False Alarms. Incorrectness logic [O’Hearn 2020] “was motivated in large part by the aim of
providing a logical foundation for bug-catching program analyses” [Le et al. 2022]. In particular
incorrectness logic is useful to prove that alarms in static analyzers are true alarms. This consists
in showing that the alarm is definitely reachable from some input. However, not all alarms are
reachable from initial states since static analyses are over approximating reachable states so that
unreachable code under the precondition may produce false alarms.

Example I.3.5. Consider the factorial of example I.3.1 specified by {5 = 1} fact{5 > 0}. This con-
tract is obviously satisfied since on exit 5 =!= > 0. However, an interval analysis of this program
with initially n ∈ Z is totally imprecise and will produce an alarm on program exit with postcon-
dition & = f ⩽ 0. This is a false alarm since the loop exit is unreachable. This unreachability is not
provable by incorrectness logic. This is provable by Hoare logic as {= < 0 ∧ 5 = 1} fact{false}
but then we don’t want to use two different logics to prove incorrectness, the main motivation
for recent work on combining logics (e.g. [Bruni et al. 2023; Maksimovic et al. 2023; Milanese and
Ranzato 2022; Zilberstein et al. 2023], etc). This is also provable by the natural transformational
under approximation logic which extends incorrectness logic to nontermination, that is, in the
assertional form of Sect. I.3.6, {�} ⊆ PostJfactK�{= < 0 ∧ 5 = 1}, see example II.8.2. ∎

I.3.5 To Terminate or Not to Terminate Abstraction for Properties
Total correctness excludes nontermination while partial correctness allows it. This corresponds to
different abstractions of the natural relational semantics.

I.3.5.1 The Termination Exclusion Abstraction. We can exclude the possibility of nontermination
by the abstraction

U2

/�(') ≜ {⟨%, &⟩ ∣ ⟨%, &⟩ ∈ ' ∧& ∩ (Σ × {�}) = ∅} (15)
excluding � from the postcondition. This is an abstraction by the Galois connection
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⟨℘(℘(Σ × Σ) × ℘(Σ × Σ�)), ⊆⟩ −−−−→Ð→←−−−−−−
U2

/�

W2

/�
⟨℘(℘(Σ × Σ) × ℘(Σ × Σ)), ⊆⟩ (16)

with W2/�('
′) ≜ '′ ∪ {⟨%, &⟩ ∣ & ∩ (Σ × {�}) ≠ ∅} A◯.

Example I.3.6 (Manna and Pnueli total correctness logic). By eliminating the nontermination pos-
sibility from the postcondition of the natural transformational over approximation logic (13), we
get Manna and Pnueli logic [Manna and Pnueli 1974] with theory A◯

U2

/�(post(⊇,⊆)(UG(PostJSK�))) = {⟨%, & ∖ (Σ × {�})⟩ ∣ PostJSK�% ⊆ & ∖ (Σ × {�})} (17)
that is, for any initial state ⟨f0, f⟩ satisfying the precondition % , execution terminates in a final
state f ′ such that the pair ⟨f0, f ′⟩ satisfies the postcondition & ∩ Σ × Σ). This is relational total
correctness since nontermination is excluded. ∎

Another abstraction to specify total correctness is to consider a transformer for a modified se-
mantics JSK∪{⟨f0, f ′⟩ ∣ ⟨f, �⟩ ∈ JSK�∧f ′ ∈ Σ} returning any possible result in case of nontermina-
tion [Plotkin 1979] using Smyth powerdomain [Smyth 1978] so that it is impossible to make any
conclusion on final values in case of possible nontermination for an initial state. However, this is
an impractical basis for static analysis since the abstraction introduces great imprecision.

I.3.5.2 The Termination Inclusion Abstraction. We can include the possibility of nontermination
by the abstraction

U2
�(') ≜ {⟨%, & ∪ (Σ × {�})⟩ ∣ ⟨%, &⟩ ∈ '} (18)

allowing the possibility of nontermination for all input states by adding � to the postcondition.
This is an abstraction by a Galois connection A◯

⟨℘(℘(Σ × Σ) × ℘(Σ × Σ�)), ⊆⟩ −−−−→Ð→←−−−−−−
U2
�

W2
�

⟨℘(℘(Σ × Σ) × ℘(Σ × Σ�)), ⊆⟩ (19)

with W2�('′) ≜ {⟨%, &⟩ ∣ ⟨%, & ∪ (Σ × {�})⟩ ∈ '′}.

Example I.3.7 (Manna relational partial correctness logic). Manna’s relational partial correctness
logic [Manna 1971] includes the nontermination possibility for all input states. Its theory is A◯

U2
�(post(⊇,⊆)(UG(PostJSK�))) = {⟨%, & ∪ (Σ × {�})⟩ ∣ PostJSK�% ⊆ &} (20)

which is {⟨%, &⟩ ∈ ℘(Σ × Σ) × ℘(Σ × Σ) ∣ ∀⟨f0, f⟩ ∈ % . ∀f ′ . ⟨f, f ′⟩ ∈ JSK⇒ ⟨f0, f ′⟩ ∈ &} when
using the angelic semantics JSK i.e. any terminating execution started within % satisfies & . ∎

So to prove partial correctness, we essentially add the possibility of nontermination to postcon-
ditions in ℘(Σ × Σ�). However, for partial correctness, postconditions are traditionally chosen in
℘(Σ × Σ) not ℘(Σ × Σ�). This equivalent alternative uses the Galois connection A◯

⟨℘(℘(Σ × Σ) × ℘(Σ × Σ�)), ⊆⟩ −−−−−→Ð→←−−−−−−
U2
�

′

W2
�

′

⟨℘(℘(Σ × Σ) × ℘(Σ × Σ)), ⊆⟩ (21)
with

U2
�

′

(') ≜ {⟨%, & ∩ (Σ × Σ)⟩ ∣ ⟨%, &⟩ ∈ '} W2�
′

('′) ≜ {⟨%, &⟩ ∣ ⟨%, & ∩ (Σ × Σ)⟩ ∈ '′}

Example I.3.8 (Manna relational partial correctness logic, continuing example I.3.7). In that case,
the theory of Manna’s logic is A◯

U2
�

′

(post(⊇,⊆)(UG(PostJSK�))) = {⟨%, & ∩ (Σ × Σ)⟩ ∣ PostJSK�% ⊆ &} (22) ∎

I.3.6 Relational to Assertional Abstraction
Since they relate initial pairs ⟨f0, f⟩ to final pairs ⟨f0, f ′⟩, f0 ∈ X , f ∈ Y , and f ′ ∈ Z , relational
logics have their theory in a set ℘(℘(X × Y) × ℘(X ×Z)) while assertional logic theories are in
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℘(℘(Y) × ℘(Z)) where e.g. the postcondition is on final states and unrelated to the initial ones.
This is an abstraction by projection on the second component A◯

⟨℘(X ×Y), ⊆⟩ −−−−−→←−−−−−
U
↓2

W
↓2

⟨℘(Y), ⊆⟩, ⟨℘(℘(X ×Y) × ℘(X ×Z)), ⊆⟩ −−−−−→←−−−−−
.

U
↓2

.

W
↓2

⟨℘(℘(Y) × ℘(Z)), ⊆⟩ (23)
with
U↓2(%) ≜ {f ∣ ∃f0 . ⟨f0, f⟩ ∈ %} W↓2(&) ≜ X ×& (24)
.
U↓2(') ≜ {⟨U↓2(%), U↓2(&)⟩ ∣ ⟨%, &⟩ ∈ '}

.
W
↓2('

′) ≜ {⟨W↓2(%
′), W↓2(&

′)⟩ ∣ ⟨% ′, & ′⟩ ∈ %}

Example I.3.9. At this point we have got the theory of Hoare logic as the abstraction

UH({∣S∣}�) ≜

assertional
↓

U↓2 ○

nontermination
∣
∣
↓

U2
�
○

consequence
↓

post(⊇,⊆) ○

graph
∣
∣
↓

UG ○

trans-
former
↓

Post ○

relational
semantics

∣
∣
↓

UC(

collecting
semantics
↓

{∣S∣}
�
) (25)

= {⟨%, &⟩ ∣ ∀f ∈ % . ∀f ′ . ⟨f, f ′⟩ ∈ JSK� ⇒ f ′ ∈ & ∪ {�}}
The set of valid Hoare triples {%}S{&} is the set of pairs ⟨%, &⟩ in UH(JSK�) such that any execution
started in a state f of % , that terminates, if ever, does terminate in a state f ′ of & . ∎

Example I.3.10. Similarly the assertional abstraction U↓2 of Manna and Pnueli logic (17) yields
Apt and Plotkin generalization of Hoare logic to total correctness [Apt and Plotkin 1986, equation
(6), page 749] (generalizing [Harel 1979] using naturals to unbounded nondeterminism using or-
dinals, equivalently a variant function in well-founded sets, as first considered by Turing [Turing
1950] and Floyd [Floyd 1967]). ∎

Similarly, we can define an abstraction by projection on the first component
U−1(A) ≜ A−1 U↓1 ≜ U↓2 ○ U

−1 W↓1 ≜ U−1 ○ W↓2 (26)
so that by composition of Galois connections and isomorphisms (proposition B.1) and by the forth-
coming (27), we have Galois connection similar to (23) for ⟨U↓1 , W↓1⟩.

One may wonder why, for such a well-known result, we have considered so many successive
abstractions (six when including the abstraction (5) of the collecting semantics into the relational
semantics). There are three main reasons.
(1) The composition of Galois connections and isomorphisms is a Galois connection (Prop. B.1 in

the appendix). Since abstractions preserves existing joins and concretizations preserve existing
meets, we get “healthiness conditions” (such as [Hoare 1978, (H2), page 469]) as theorems,
not hypotheses. In absence of a Galois connection, there would be no unique, most precise
approximation, of the collecting semantics by a formula of the logic (e.g. [Gotsman et al. 2011]);

(2) By varying slightly the abstractions, we get a hierarchy of transformational logics (which ex-
tends the hierarchy of semantics in [Cousot 2002]), that we can compare without even knowing
their proof systems. This is the objective for the rest of this part I on the theories of logics;

(3) Knowing the program semantics and its abstraction to the theory of a logic, we can construc-
tively design, by calculus, a sound and complete proof system for this logic. This will be devel-
oped in part II.

I.3.7 The Forward Transformational Logics Hierarchy
We have built the theories of logics in Fig. 1 by composition of abstractions. The relational and as-
sertional logics are considered equivalent in practice by using an auxiliary program with phantom
variables recording the values of the initial or final variables (see Sect. E.1 in the appendix). By
allowing the explicit use of nontermination � in the postcondition, the over/under approximating
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antecedent/consequent logics subsume their approximations by U2
� or U2

/� and U↓2 (including the
logics marked by circled numbers that do not look to have been considered in the literature).

●
collecting
semantics
{∣S�∣}

●
relational
semantics

JS�K

U�
●

postcondition
transformer

Post
●

antecedent/
consequent pairs

UG

relational over approximating
antecedent/consequent logic

1◯
●post(⊇,⊆)

●
2◯

relational under approximation
antecedent/consequent logic

post(⊆,⊇)

Relational
↓

Manna & Pnueli
total correctness

3◯
●U2

/�
Manna partial correct-
4◯ ness
●

U2
�

5◯
●

U2

/�

6◯
●

U2

/�

U2
�

Assertional
↓

Apt & Plotkin
total correctness

7◯
●

U
↓2

Hoare partial8◯ correctness●
U
↓2

9◯
●

U
↓2

reverse Hoare aka
10◯ incorrectness logic
●

U
↓2

Fig. 1. Forward semantics and logics

I.3.8 Singularities of Logics
I.3.8.1 Emptiness Versus Universality. The same way that false is satisfied by no element of the
universe in logic, some transformational logics have this emptiness property, meaning that some
programs satisfy no formula of the logic. This is the case of a nonterminating program for Manna
and Pnueli total correctness logic [Manna and Pnueli 1974]. Emptiness may look awkward since
using the deductive system to prove any specification will always fail.

The same way that true is satisfied by all elements of the universe in logic, transformational
logics may have the universality property, meaning that there exist programs for which any pair
⟨%, &⟩ for that program is in the logic (i.e. is satisfied in logical terms). For example, in Hoare logic,
{%} while (true) skip{&} is satisfied for all % and& . [%] S [false] is always true in incorrectness
logic [O’Hearn 2020]. Universality may look awkward since using the deductive system to prove
this obvious fact may be very complicated.

These phenomena have been criticized (e.g. emptiness for necessary preconditions [Cousot et al.
2013, 2011] in [O’Hearn 2020, section, page 10:28]) but are inherent to semantic approximation.

I.3.8.2 Correctness Versus Incorrectness. The use of a logic to prove correctness or incorrectness
is not intrinsic but depending upon the application domain. For example, termination is required
for most programs so that Manna and Pnueli logic is a correctness logic [Manna and Pnueli 1974].
However, operating systems should not terminate, and proving the contrary by Manna and Pnueli
logic [Manna and Pnueli 1974] would make it an incorrectness logic. Another example is the in-
correctness logic [O’Hearn 2020] which has the same theory as the reverse Hoare logic used by
[de Vries and Koutavas 2011] to prove correctness. The qualification of under or over approxima-
tion instead of correctness or incorrectness logics looks more independent of specific applications,
as suggested by [Maksimovic et al. 2023].

I.3.9 Backward Logics
Backward logics originates from the inversion abstraction (using the inverse program semantics
(JSK�)−1) or the dual complement abstraction (stating the impossibility of the negation of a prop-
erty, which is called the duality principle for programs by Pratt [Pratt 1976, p. 110]) and the conju-
gate in [Dijkstra and Scholten 1990, equation (2) page 82]. They correspond to the commutative
diagram of [Cousot and Cousot 1977, page 241], also found on [Cousot and Cousot 1982, page 98]
(where inversion is −1 and complement is ~ ), diagrams which are extended to Fig. 2.
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I.3.9.1 The Inversion Abstraction. As noticed by [Pratt 1976, section 1.2], the inversion isomor-
phism transforms forward antecedent-consequent logics into backward consequent-antecedent
logics. For that purpose, let us define the relation isomorphic abstraction U−1, its pointwise exten-
sion .

U
−1, and the inverse transformer abstraction U⃗−1.

U−1(A) ≜ A−1
.
U
−1(5 ) ≜ U−1 ○ 5 ○ U−1 U⃗−1() ) ≜

.
U
−1

○ ) ○ U−1 (27)
so that we have the following Galois isomorphisms A◯

⟨℘(X ×Y), ⊆⟩ −−−−−→Ð→←←Ð−−−−−
U−1

U−1

⟨℘(Y ×X ), ⊆⟩

⟨℘(Z ×X )→ ℘(Z ×Y),
.
⊆⟩ −−−−−→Ð→←←Ð−−−−−

.

U
−1

.

U
−1

⟨℘(X ×Z)→ ℘(Y ×Z),
.
⊆⟩ (28)

⟨℘(X ×Y)→ ℘(Z ×X )→ ℘(Z ×Y),
..
⊆⟩ −−−−−→Ð→←←Ð−−−−−

U⃗−1

U⃗−1

⟨℘(Y ×X )→ ℘(X ×Z)→ ℘(Y ×Z),
..
⊆⟩

Using these Galois isomorphisms (28), we define the precondition transformer A◯

Pre ≜ U⃗−1(Post) = ,A .,& .{⟨f, f5 ⟩ ∣ ∃f ′ . ⟨f, f ′⟩ ∈ A ∧ ⟨f ′, f5 ⟩ ∈ &)} (29)
so that Pre(A)& is the set of initial states f related to f5 from which it is possible to reach a final
state f ′ related to f5 satisfying the consequent & through a transition by A .

I.3.9.2 The Complement Abstraction. The complement abstraction is useful to express that a pro-
gram property does not hold (e.g. to contradict a Hoare triple).

Let X be a set and - ∈ ℘(X ). The complement abstraction is U¬(-) ≜ ¬- (where ¬- ≜ X ∖-

when - ∈ ℘(X )). We have the Galois isomorphisms

⟨℘(X ), ⊆⟩ −−−−→Ð→←←Ð−−−−
U¬

U¬

⟨℘(X ), ⊇⟩ and ⟨℘(X ), ⊇⟩ −−−−→Ð→←←Ð−−−−
U¬

U¬

⟨℘(X ), ⊆⟩ (30)

(which follow from - ⊆ . ⇔ ¬- ⊇ ¬. and ¬¬- = - and implies De Morgan laws U¬(⋃-) =
⋂U¬(-) and U¬(⋂-) = ⋃U¬(-) since, in a Galois connection, U preserves existing joins and W
preserves existing meets).

I.3.9.3 The Emptiness and Non-Emptiness Abstraction. Negation is sometimes equivalent to an
emptiness or non-emptiness check. For example, ¬(� ⊆ �)⇔ �∩¬� ≠ ∅. These are abstractions.

Emptiness Non-emptiness (31)

U
→
∅(g) ≜ {⟨%, &⟩ ∣ & ∩ g(%) = ∅} U

→
⊗(g) ≜ U¬ ○ U

→
∅(g) = {⟨%, &⟩ ∣ & ∩ g(%) ≠ ∅}

U
←
∅(g) ≜ U−1(U

→
∅(g)) = {⟨%, &⟩ ∣ % ∩ g(&) = ∅} U

←
⊗(g) ≜ U−1(U

→
⊗(g)) = {⟨%, &⟩ ∣ % ∩ g(&) ≠ ∅}

We have A◯
⟨℘(X )→ ℘(Y),

.
⊆⟩ −−−−→←−−−−

U
→
∅

W
→
∅

⟨℘(X ×Y), ⊇⟩ (32)

and similarly Galois connections for the other cases U
←
∅, U

→
⊗, and U

←
⊗.

I.3.9.4 The Complement Dual Abstractions. Pratt’s “Duality Principle for Programs” [Pratt 1976,
section 1.2], is similar the complement duality in classical logic i.e. something not false is true.

This can be stated for functions 5 by defining the complement dual abstraction U∼ of functions
and its pointwise extension .

U
∼ below, which yields the Galois connections as follows A◯

U∼(5 ) ≜ ¬ ○ 5 ○ ¬
.
U
∼(�) ≜ ,G .U∼(�(G)) (33)

with connections A◯ ⟨℘(X )→ ℘(Y),
.
⊆⟩ −−−−→Ð→←←Ð−−−−

U∼

U∼

⟨℘(X )→ ℘(Y),
.
⊇⟩

⟨℘(Z)→ ℘(X )→ ℘(Y),
..
⊆⟩ −−−−→Ð→←←Ð−−−−

.

U
∼

.

U
∼

⟨℘(Z)→ ℘(X )→ ℘(Y),
..
⊇⟩
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where
.
⊆ is the pointwise extension of ⊆, that is, 5

.
⊆ 6⇔ ∀- ∈ X . 5 (-) ⊆ 6(-),

..
⊆ is the pointwise

extension of
.
⊆, etc.

Using this Galois connection (33), we define the dual complement transformers A◯

P̃ost ≜
.
U
∼(Post) = ,A .,% .{⟨f0, f ′⟩ ∣ ∀f . ⟨f, f ′⟩ ∈ A ⇒ ⟨f0, f⟩ ∈ %} (34)

P̃re ≜
.
U
∼(Pre) = ,A .,& .{⟨f, f5 ⟩ ∣ ∀f ′ . ⟨f, f ′⟩ ∈ A ⇒ ⟨f ′, f5 ⟩ ∈ &}

If A ∈ ℘(X ×Y) then A◯

⟨℘(Z ×X ), ⊆⟩ −−−−−−−−−−−−→←−−−−−−−−−−−−
Post(A)

.

U
−1
(P̃re(A))

⟨℘(Z ×Y), ⊆⟩ ⟨℘(X ×Z), ⊆⟩ −−−−−−−−−−−−−→←−−−−−−−−−−−−−
Pre(A)

.

U
−1
(P̃ost(A))

⟨℘(Y ×Z), ⊆⟩ (35)

I.3.10 The Hierarchical Taxonomy of Forward and Backward Transformational Logics
The composition of abstractions applied to PostJSK� of Fig. 1 can also be applied to P̃ostJSK�,
PreJSK�, and P̃reJSK� to get Fig. 2. Fig. 1 can be recognized at the bottom right of Fig. 2. We get

Fig. 2. Hierarchical taxonomy of transformational logics

40 transformational logics with 40 different proof systems which understanding is reduced to the
composition of 9 abstractions (plus 2 to get PostJSK� by abstraction of the collecting semantics).
Adding the negation abstraction (30), we obtain 40 more logics to disprove program properties (see
sections I.3.14.6 to I.3.14.6 and D.1 to D.6 for assertional logics), 160 logics with symbolic inversion
in Sect. I.3.16, etc.

I.3.11 Abstraction for Assertional Logics
Theories of forward assertional logics in Fig. 1 are abstractions of theories of relational logics byU↓2
(and backward ones by U↓1 ). The more classic view [Pratt 1976] and recent followers a.o. [de Vries
and Koutavas 2011; O’Hearn 2020; Zhang and Kaminski 2022] directly abstract the program seman-
tics by the assertional transformer post (10) which is the abstraction of the relational transformer
post (6), as follows
U�
2 (\) ≜ U↓2 ○ \ ○ W↓2 W�2 ≜ ,\ .W↓2 ○ \ ○ U↓2(&)

.
U
�
2 (Θ) ≜ ,A .U�

2 (Θ(A))
.
W
�

2 ≜ ,A .W�2 (A) (36)

U�
1 (\) ≜ U↓1 ○ \ ○ W↓1 W�1 ≜ ,\ .W↓1 ○ \ ○ U↓1(&)

.
U
�
1 (Θ) ≜ ,A .U�

1 (Θ(A))
.
W
�

1 ≜ ,A .W�1 (A)
we have Galois connections1 A◯

1We write 8
Ð→, 2

Ð→, ⊔Ð→, DÐ→, ⊓Ð→, and E

Ð→ respectively for increasing, continuous, non-empty join, arbitrary join (in-
cluding empty), non-empty meet, and arbitrary meet preserving functions.
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⟨℘(Z ×X )
8
Ð→ ℘(Z ×Y),

.
⊆⟩ −−−−→←−−−−

U�

2

W�2
⟨℘(X )

8
Ð→ ℘(Y),

.
⊆⟩ (37)

⟨℘(X ×Y)→ ℘(Z ×X )
8
Ð→ ℘(Z ×Y),

..
⊆⟩ −−−−→←−−−−

.

U
�

2

.

W
�

2

⟨℘(X ×Y)→ ℘(X )
8
Ð→ ℘(Y),

..
⊆⟩

These abstractions of the relational transformers yield the following generalization of the classic
predicate transformers ℘(Σ)→ ℘(Σ) [Pratt 1976], by extension to nontermination �. A◯

post =
.
U
�
2 (post) = ,A .,& .{f ′ ∣ ∃f . f ∈ % ∧ ⟨f, f ′⟩ ∈ A}, as in (10)

p̃ost ≜
.
U
�
2 (P̃ost) =

.
U
∼
○ post = ,A .,% .{f ′ ∣ ∀f . ⟨f, f ′⟩ ∈ A ⇒ f ∈ %} (38)

pre ≜
.
U
�
1 (Pre) =

.
U
−1

○ post = ,A .,& .{f ∣ ∃f ′ . ⟨f, f ′⟩ ∈ A ∧ f ′ ∈ &}
p̃re ≜

.
U
�
1 (P̃re) =

.
U
∼
○ pre = ,A .,& .{f ∣ ∀f ′ . ⟨f, f ′⟩ ∈ A ⇒ f ′ ∈ &}

The classic transformers (38) are illustrated by Fig. 4 in the appendix A◯.
Given a relation A ∈ ℘(X ×Y), in addition to (12), these classic transformers are also connected

as follows [Cousot 2021, Chapter 12], (d) is proved in sect. C of the appendix A◯

(a) ⟨℘(X ×Y), ⊆⟩ −−−−−−−→←−−−−−−−
post

post−1

⟨℘(X )
⊍

Ð→ ℘(Y),
.
⊆⟩ (b) ⟨℘(X ), ⊆⟩ −−−−−−−−→←−−−−−−−−

pre(A)

p̃ost(A)
⟨℘(Y), ⊆⟩ (39)

(c) ⟨℘(X ×Y), ⊆⟩ −−−−−−→←−−−−−−
pre

pre−1

⟨℘(X )
⊍

Ð→ ℘(Y),
.
⊆⟩ (d) post(')% ∩& ≠ ∅⇔ % ∩ pre(')& ≠ ∅

Example I.3.11. Hoare incorrectness logic is ¬({%} S{&})⇔ ¬(postJSK% ⊆ &)⇔ postJSK% ∩
¬& ≠ ∅ ⇔ ∃f ∈ % . ∃f ′ /∈ & . ⟨f, f ′⟩ ∈ JSK ⇔ % ∩ preJSK¬& ≠ ∅ by. This is different from
incorrectness logic [O’Hearn 2020], that is [%] S [&]⇔ ¬& ⊆ postJSK% ⇔ ∀f ′ /∈ & . ∃f ∈ % . ⟨f,
f ′⟩ ∈ JSK. The incorrectness Hoare logic is designed in Sect. J.1 in the appendix. ∎

All transformers in (35), (12), and (39) inherit the properties of Galois connections. For example,
the lower adjoint preserves arbitrary joins and dually the upper adjoint preserves arbitrary meets.
This implies, for example, the healthiness conditions postulated for transformers [Dijkstra and
Scholten 1990; Hoare 1978].

RemaRK I.3.12. By (12), pre preserves joins (∪) but maybe not meets (∩). Same for post. A◯ ∎

I.3.12 To Terminate or Not to Terminate Abstraction for Transformers
We have shown in Sect. I.3.5 that we can abstract antecedant-consequence pairs by (15) or (18) to
take nontermination into account (e.g. total correctness) or not (partial correctness). An equivalent
alternative uses the natural semantics JSK� or the angelic one JSK in (1). We can also abstract
transformers, which we do in the assertional case, by

U/�(%) ≜ % ∖ {�} Ð→U/�(\) ≜ U/� ○ \ ←ÐU/�(\) ≜ \ ○ W/� (40)
W/�(&) ≜ & ∪ {�} Ð→W /�(\̄) ≜ W/� ○ \̄ ←ÐW /�(\̄) ≜ \̄ ○ U/� (41)

which yield Galois connections A◯

⟨℘(Σ�), ⊆⟩ −−−−→←−−−−U/�

W/�
⟨℘(Σ), ⊆⟩ ⟨X → ℘(Σ�),

.
⊆⟩ −−−−→←−−−−Ð→U/�

Ð→W/�
⟨X → ℘(Σ),

.
⊆⟩ (42)

⟨℘(Σ�)
8
Ð→ ℘(Σ),

.
⊆⟩ −−−−→←−−−−←ÐU/�

←ÐW/�
⟨℘(Σ)

8
Ð→ ℘(Σ),

.
⊆⟩

I.3.13 Abstract Logics
Finally logics may refer to any abstraction of the antecedents and consequents of a transforma-
tional logics. For example, [Cousot et al. 2012] is an abstraction of Hoare logic such that {%̄} S{&̄}
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means Hoare triple {W1(%̄)} S{W2(&̄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties U(%) that exactly represent concrete prop-
erties % by requiring that W ○ U(%) = % . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ�),
⊆⟩ −−−→←−−−U

W
⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number

of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].
I.3.14 The Subhierarchy of Assertional Logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems. Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 7:45

pre!S"! ●

p̃re!S"! ●

pre!S"●

p̃re!S"
●

● post!S"!

●
p̃ost!S"!

● post!S"

●
p̃ost!S"

.

!
−1

.

!
∼

.

!
−1

.

!
∼

.

!
−1

.

!
∼

.

!
−1

.

!
∼

←"!/"
"→!/"

"→!/"←"!/!

17◯
●

●
19◯

Possible accessibility or
nontermination logic
(application 2)

post(⊇,⊆) ○ !!

post(⊆,⊇) ○ !!

●
20◯

18◯
●

post(⊇,⊆) ○ !!

post(⊆,⊇) ○ !!

[Ascari et al. 2023, (NC)]
↓
11◯
●

[Zilberstein et al. 2023] ●
[Dijkstra 1982] 13◯

[Cousot and Cousot 1982, (i−1 )]
[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ !!

post(⊆,⊇) ○ !!

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Cousot et al. 2013]

12◯
●

post(⊆,⊇) ○ !!

post(⊇,⊆) ○ !!

[Apt and Plotkin 1986]
7◯
●

●
9◯

post(⊇,⊆) ○ !!

post(⊆,⊇) ○ !!

●
22◯

21◯
●

post(⊆,⊇) ○ !!

Hoare incorrectness logic
23◯
●

!¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯
●

●
[de Vries and Koutavas 2011] 10◯

[O’Hearn 2020] x

post(⊇,⊆) ○ !!

post(⊆,⊇) ○ !!

15◯
●

●
16◯

post(⊇,⊆) ○ !!

post(⊆,⊇) ○ !!

post(⊇,⊆) ○ !!
●

●

●

●

●

Galois connection (different logics to prove the same property)

Fig. 3. Hierarchical taxonomy of transformational assertional logics

D.5 Partial Possible Accessibility of All Non-Final States From Some Non-Initial State
post S post S post S post S post S

Thesignification is that for any state not in there exists at least one initial state not in and an execution
from that will terminate in state . Letting and , this is partial possible accessibility of all
final states from some initial state post S from Sect. I.3.14.3.This shows that the under approximation

post S is equivalent to an over approximation post S of the complement, that is, a proof by
contradiction.
D.6 Total Definite Accessibility of Some Final State From Some Initial State pre S

pre S ,
This states that there is at least one initial state in from which all executions do terminate in .

PRoof of (43).

pointwise def.
def.
def.

componentwise def. for pairs
def.
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Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical
taxonomy of assertional transformational
logics of Fig. 3, which is a subset of Fig. 2.
Fig. 3, with a larger instance in the appen-
dix A◯, is commented thereafter.

We use universal to mean for all initial
or final states and existential to mean there
exists at least one initial or final state. We
use reachability (often forward) for initial
to final states and accessibility (often back-
ward) for final to initial states. We use defi-
nite to mean “for all executions” and possible
to mean “for some execution” (maybe none).
In both cases, the qualification does not ex-
clude possible nontermination or blocking
states, which is emphasized by partial. We
use total to mean that all executions must
be finite. We use blocking to mean a state, which is not final, but from which execution cannot go
on. No such blocking states exist in the semantics JSK� of statements S in Sect. I.1.1 and II.1 but
would correspond e.g. to an aborted execution after a runtime error (like a division by zero).
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The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 3.

I.3.14.1 Partial Definite Accessibility of Some Final State From All Initial States postJSK% ⊆ & ⇔
% ⊆ p̃reJSK& , %,& ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in % , which, if terminating normally, do terminate in a state of &
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ U�(postJSK) ≜ {⟨%, &⟩ ∈ ℘(Σ) × ℘(Σ) ∣ postJSK% ⊆ &} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics JSK = U�(JSK�) by post(⊇,⊆) ○ U� ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (12), post(⊆,⊇) ○ U�(p̃reJSK) ≜ {⟨%, &⟩ ∈ ℘(Σ) × ℘(Σ) ∣ % ⊆ p̃reJSK&} is
equivalent and yields the theory of a logic axiomatizing subgoal induction [Morris Jr. andWegbreit
1977] or necessary preconditions [Cousot et al. 2013, 2011].

Hoare and subgoal induction logics can be used to prove universal partial correctness (& is good,
as in static accessibility analysis [Cousot and Cousot 1977]) and universal partial incorrectness (&
is bad, as in necessary preconditions analyses [Cousot et al. 2013, 2011]). Both logics can be also
used to prove bounded termination, by introducing a counter incremented in loops and proved
to be bounded [Luckham and Suzuki 1977]. However, this is incomplete for unbounded nondeter-
minism. postJSK% ⊆ ∅⇔ % ⊆ p̃reJSK∅⇔ % ⊆ ¬preJSKΣ⇔ preJSKΣ ⊆ ¬% is definite nontermination
from all initial states (executions from any initial state of % do not terminate).

Subgoal induction is exploited in necessary preconditions analyses [Cousot et al. 2013, 2011].
Finding % such that postJSK% ⊆ & is equivalent to finding % such that % ⊆ p̃reJSK& for the given
error postcondition & , which the necessary precondition analysis does by under approximating
p̃reJSK defined structurally on the programming language and using fixpoint under approximation
to handle iteration and recursion.

I.3.14.2 Total Definite Accessibility of Some Final States From All Initial States postJSK�% ⊆ & ⇔
% ⊆ p̃reJSK�& , %,& ∈ ℘(Σ). Total correctness, allowing blocking states, characterizes executions
from any initial state in % that do terminate normally in a final state satisfying& or block. Taking
& = Σ is universal definite termination.
7◯The Turing [Turing 1950] & Floyd [Floyd 1967] proof method uses an invariant and a variant
function into a well-founded set. The abstraction post(⊇,⊆) ○ U�(postJSK�) ≜ {⟨%, &⟩ ∈ ℘(Σ) ×
℘(Σ) ∣ postJSK�% ⊆ &} yields the theory of Apt and Plotkin [Apt and Plotkin 1986] logic in the
assertional case (and that of Manna & Pnueli logic [Manna and Pnueli 1974] in the relational case).
This claims follows from [Apt and Plotkin 1986] for an imperative language and [Cousot 2002] for
arbitrary transition systems. The logic can be used to prove definite correctness or incorrectness.

I.3.14.3 Partial Possible Accessibility of All Final States From Some Initial State & ⊆ postJSK�% ⇔
& ⊆ postJSK% , %,& ∈ ℘(Σ). This means that for any final state f ′ in & there exists at least one
initial state f in % and an execution from f that will terminate in state f ′. Blocking states f may
be included in % . Moreover, this does not preclude executions from f to make nondeterministic
choices terminating normally with ¬& or do not terminate at all.
10◯By [de Vries and Koutavas 2011, Definition 1], post(⊆,⊇) ○ U�(postJSK) is the theory of De Vries
and Koutavas reversed Hoare logic. This is also confirmed by the soundness and completeness
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proofs in [de Vries and Koutavas 2011, section 6] based on a “weakest postcondition calculus”
defined in [de Vries and Koutavas 2011, section 5] as “wpo(% , c), [is] the weakest postcondition
given a precondition % and program c”. So “wpo” is nothing other than post and “⟨%⟩ 2 ⟨&⟩ is a
valid triple if and only if & ⇒ wpo(% ,c)”.

By [O’Hearn 2020, Fact 13], this is also incorrectness logic requiring any bug in& to be possibly
reachable in finitely many steps from % thus discarding infinite executions as possible errors.

The difference is in the examples handled where & is “good” for De Vries and Koutavas and
“bad” for O’Hearn.

I.3.14.4 Partial Possible Accessibility of Some Final State From All Initial States % ⊆ preJSK& , %,& ∈
℘(Σ). This prescribes that all initial states in % have at least one execution that does reach & .
14◯ Dijkstra [Dijkstra 1982] shown the equivalence of postJSK% ⊆ & (that is, Turing-Floyd-Naur-
Hoare partial correctness and % ⊆ preJSK& (that is, Morris and Wegbreit subgoal induction, claim-
ing “subgoal induction is indeed the next variation on an old theme”). By (12) this should have
been % ⊆ p̃reJSK& in general, but Dijkstra considers total deterministic programs for which pre =
p̃re. This is also the incorrectness part of the outcome logic [Zilberstein et al. 2023], the induction
principle (i−1 ) of [Cousot and Cousot 1982, p. 100], and (SIL) in [Ascari et al. 2023].

I.3.14.5 Possible Accessibility of Some Final State or Nontermination From All Initial States % ⊆
preJSK�& , % ∈ ℘(Σ),& ∈ ℘(Σ�). For& = Σ, this is possible termination from all initial states 17◯. For
& = {�}, this is possible nontermination from all initial states. Similarly, 11◯ is % ⊆ preJSK& , named
(NC) in [Ascari et al. 2023].
19◯This logic will be formally developed by calculus in Sect. II.8.2.
We can also consider disproofs of programproperties by the abstraction U¬ (30) of the theory

of a program logic.

I.3.14.6 Partial Possible Accessibility of Some Final States (or Nontermination) From Some Initial
States postJSK% ∩& ≠ ∅ for %,& ∈ ℘(Σ) (or postJSK�% ∩& ≠ ∅ for & ∈ ℘(Σ�)). This means that at
least one execution from at least one initial state in % does terminate in a final state satisfying Q.
Taking & = Σ is possible termination from some initial states.
23◯ Disproving a Hoare triple using the proof system would require to show that no proof does
exist for this triple, a method no one ever consider. One can use incorrectness logic [O’Hearn
2020] or provide a counter-example (not supported by a logic). The Hoare incorrectness logic 23◯
can be used to prove that a Hoare specification is violated with a possible counter-example, since
¬({%}S{&}) = ¬(postJ(K% ⊆ &) = postJ(K% ∩ ¬& ≠ ∅. It’s nothing but debugging in logic form.

This is weaker that the requirements of incorrectness logic, for which the principle of denial
[O’Hearn 2020, Fig. 1] states that if & ⊆ postJSK% ∧ ¬(& ⊆ & ′) then & ∩ ¬& ′ ≠ ∅ and therefore
postJSK% ∩ ¬& ′ ≠ ∅ that is, ¬({%}S{& ′}). However the converse is not true since the violation of
{%}S{&} only require one state of % definitely reaches one state not satisfying & .

Other contrapositive logics or logics for disproving program properties are considered in the
appendix A◯.
I.3.15 The Combination of Logics
Program logics are generally composite that is, the result of combining elementary logics which
are different abstractions of program executions e.g. [Bruni et al. 2023; Zilberstein et al. 2023].

I.3.15.1 The Conjunction/Disjunction of Logics. We have wlp(S,&) = preJSK& ∩ p̃reJSK& while
wp(S,&) = preJSK�&∩p̃reJSK�& since blocking states must be prevented as well as nontermination
for wp, see Fig. 4 in the appendix. The relevant abstractions of transformers g1, g2 are A◯
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U∩⟨g1, g2⟩A ≜ g1(A)
.
∩ g2(A) meet (or conjunction) where X(G) = ⟨G, G⟩ is duplication (43)

⟨(℘(X ×Y)→ (℘(X )→ ℘(Y)))2,
..
⊇⟩ −−−−→Ð→←−−−−−−

U∩

X
⟨℘(X ×Y)→ (℘(X )→ ℘(Y)),

..
⊇⟩

U∪⟨g1, g2⟩A ≜ g1(A)
.
∪ g2(A) join (or disjunction)

⟨(℘(X ×Y)→ (℘(X )→ ℘(Y)))2,
..
⊆⟩ −−−−→Ð→←−−−−−−

U∪

X
⟨℘(X ×Y)→ (℘(X )→ ℘(Y)),

..
⊆⟩

I.3.15.2 The Product of Logics. One can imagine a Cartesian product {�), %) , #)}S{&,'} mean-
ing that every execution of S starting with an initial state of �) will definitely terminate in a final
state in & , every execution of S starting with an initial state of %) will either terminate in a final
state in R or not terminate, and every execution of S starting with an initial state of #) will never
terminate. & and ' could further be decomposed into a product of good and bad states.

Similarly, [O’Hearn 2020, section 4] uses the notation [?]�[>: ∶ @][4A ∶ A] as a shorthand for
[?]�[>: ∶ @] and [?]�[4A ∶ A] resulting in a single deductive system instead of two independent
ones. The definition of the relational semantics in (54) will use such a grouping to set apart breaks.

The relevant Cartesian abstraction U× merges two transformers into a single one. We assume
that ⟨X → Y1, ⊑1⟩ and ⟨X → Y2, ⊑2⟩ are posets, g1 ∈ X → Y1 and g2 ∈ X → Y2. A◯

U×⟨g1, g2⟩(%) ≜ ⟨g1(%), g2(%)⟩ Cartesian product (44)
W×(ḡ) ≜ ⟨,% . let ⟨%1, %2⟩ = ḡ(%) in %1, ,% . let ⟨%1, %2⟩ = ḡ(%) in %2⟩

with Galois connection ⟨X → Y1 ×X → Y2,
.
⊑1.

.
⊑2⟩ −−−−→←−−−−

U×

W×

⟨X → (Y1 ×Y2),
.

(⊑1,⊑2)⟩

Example I.3.13. We mentioned the origin [Park 1979] of relational semantics that Park encodes
by U×⟨U /�, ,( .U¬(( .U−1(post))((){�})⟩JSK� i.e. the input-output relation JSK computed by S and
the definite termination domain of S which is the complement of possible nontermination. ∎

Example I.3.14. Dijkstra’s weakest precondition wp(S,&) [Dijkstra 1976] is ,& .U∩(preJSK�,
p̃reJSK�), with & ∈ ℘(Σ), pre = .

U
−1(post), and p̃re =

.
U∼ (pre). The weakest liberal condition

wlp(S,&) is ,& .U∩((p̃reJSK�) ○ U�, (p̃reJSK�) ○ U�) = U∩(preJSK, p̃reJSK). ∎

I.3.15.3 The Reduced Product of Logics. The components are usually not independent. For example
one uses invariants of Hoare logic to prove termination, or definite termination implies possible
termination. Another example is adversarial logic [Vanegue 2022] to describe the possible interac-
tion between a program and an attacker. These are reductions (45) that have been studied in the
context of program analysis [Cousot 2021, chapter 29] but also apply to any abstraction, including
logics, e.g. [Bruni et al. 2023].

The functor U⍟, inspired by the reduced product in abstract interpretation [Cousot and Cousot
1979b, section 10.1], is the Cartesian product where the information of one component is prop-
agated, in abstract form, to the other. This is useful for combining program logics dealing with
properties that are not independent.

Assume two abstractions of a (collecting) semantics in ⟨S, ⊑⟩ into different transformers ⟨S,
⊑⟩ −−−−→←−−−−U1

W1
⟨X → Y1,

.
⊑1⟩ and ⟨S, ⊑⟩ −−−−→←−−−−U2

W2
⟨X → Y1,

.
⊑2⟩. Assume that ⟨X → (Y1 × Y2),

.
(⊑1,⊑2), ⊓⟩

is a complete lattice.
The reduced product combines two abstractions of the semantics ( into transformers g1 and g2

into an abstraction of the semantics ( into a single transformer with U⍟,⊓ ≜ d ○ U× where the
reduction operator is d(ḡ) ≜

d
{ḡ ′ ∣ let ⟨g1, g2⟩ = W×(ḡ) and ⟨g ′1, g

′

2⟩ = W
×(ḡ ′) in W1(g1) ⊓ W2(g2) ⊑

W1(g ′1)∧W1(g1)⊓W2(g2) ⊑ W2(g
′

2)}. By [Cousot 2021,Theorem 36.24], we have the Galois connection

⟨X → Y1 ×X → Y2,
.
⊑1 .

.
⊑2⟩ −−−−−−−→←−−−−−−−

d ○U×

W×

⟨X → (Y1 ×Y2),
.

(⊑1,⊑2)⟩ (45)
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Example I.3.15. Continuing example I.3.1, the reduced product of Hoare logic [Hoare 1978] (ab-
stracting post) and subgoal induction logic [Morris Jr. and Wegbreit 1977] (in Dijkstra’s version
[Dijkstra 1982] abstracting pre) for the factorial with consequent specification 5 =!= is {= = = ⩾
0 ∧ 5 = 1} fact{= ⩾ 0 ∧ 5 =!=}. ∎

I.3.16 Symbolic Inversion
Let us consider one more useful abstraction of transformers allowing for their inversion using
symbolic execution. This reversal abstraction U↔ from [Cousot 1981, Theorem 10-13] allows to
prove backward properties using a forward proof system by using auxiliary variables for initial
values of variables (as in symbolic execution) and conversely (as an inverse symbolic execution
starting with symbolic final values of variables). Given D ≜ ℘(X × Y) → (℘(X ) → ℘(Y)), D′ ≜
℘(X ×Y)→ (℘(Y)→ ℘(X )), and g = post, we have A◯ (and similarly for g ∈ {pre, post,Pre})

U↔(g)(A)% ≜ {f ′ ∣ ∃f ∈ % . f ∈ g(A−1){e ∣ e = f ′}} ⟨D,
...
⊆⟩ −−−−−→Ð→←←Ð−−−−−

U↔

U↔

⟨D′,
...
⊆⟩ (46)

Example I.3.16. Consider the straight-line program x = x+y; y = 2*x+y. A forward symbolic
execution postJSK{f ∣ fx = fx ∧ fy = fy} with Hoare logic for initial auxiliary variables G , ~ is

{G = G ∧~ = ~} x = x + y; {G = G +~ ∧~ = ~} y = 2*x+y; {G = G +~ ∧~ = 2G + 3~}

This information can be inferred automatically by forward static analyses using affine equalities
[Karr 1976] or inequalities [Cousot and Halbwachs 1978]. This can be used to get a precondition
preJSK& ensuring that a postcondition& holds be defining preJSK& = {f ∣ ∃f ∈ & . f ∈ postJSK{f ∣
fx = fx ∧fy = fy}}which, in our example, is {⟨G, ~⟩ ∣ ∃⟨G, ~⟩ ∈ & ∧G = G +~ ∧~ = 2G +3~} so that,
e.g., for & = {⟨G, ~⟩ ∣ G = ~} stating that G = ~ on exit, we get the precondition {⟨I, −I/3⟩ ∣ I ∈ Z}.

Inversely, using subgoal induction, a backward execution preJSK{f ∣ fx = fx ∧ fy = fy} is
{G = 3G −~ ∧~ = ~ − 2G} G = G +~; {G = G ∧~ = ~ − 2G} ~ = 2 ∗ G +~; {G = G ∧~ = ~}

This information can be used to get a postcondition postJSK% hence holding for states reachable
from the precondition % as {f ∣ ∃f ∈ % . f ∈ preJSK{f ∣ fx = fx ∧ fy = fy}}. For our example, we
get {⟨G, ~⟩ ∣ ∃⟨G, ~⟩ ∈ % . G = 3G −~ ∧~ = ~ − 2G} which, e.g., for % = {⟨G, ~⟩ ∣ G = ~}, yields {⟨G,
~⟩ ∣ 5G = 2~}. This calculation is mechanizable using the operations of the abstract domains for
affine equalities [Karr 1976] or inequalities [Cousot and Halbwachs 1978]. ∎

Part II: Design of the Proof Rules of Logics by Abstraction of
Their Theory

Given the theory U(JSK�) of a logic defined by an abstraction U of the natural relational seman-
tics JSK�, we now consider the problem of designing the proof/deductive system for that logic. The
abstraction U can be decomposed into U0 ○ UC where UC abstracts the natural relational semantics
JSK�) into an exact transformer (isomorphically its antecedant-consequent graph) which is then
over or under approximated by U0 .

We first express the natural relational semantics in structural fixpoint form in Sect. II.1. Then
we use fixpoint abstraction of Sect. II.2 and structural induction to express the exact transformer
UC(JSK�) in structural fixpoint form. The approximation abstraction U0 is then handled using the
fixpoint induction principles of Sect. II.3 to under or over approximate the transformer by U0 ○

UC(JSK�). [Aczel 1977] has shown that set theoretic fixpoints can be expressed as proof/deductive
systems and conversely. We recall his method in Sect. II.5. This yields a method of designing proof
system by calculus in Sect. II.5.3. This is applied to two new example logics. The first example in
section II.8.1 is a forward transformational logic to express correct reachability of a postcondition
(as in Hoare and Manna partial correctness logics), termination (as in Apt & Plokin and Manna &
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Pnueli logics) as well as nontermination, all cases being expressible by a single formula of the logic
(depending on initial values). The second example in section II.8.2 is a backward transformational
logic to express correct accessibility of a postcondition or nontermination.

II.1 STRUCTURAL FIXPOINT NATURAL RELATIONAL SEMANTICS
We define the relational natural semantic JSK� ∈ ℘(Σ × Σ�) of statements S by structural in-
duction on the program syntax and iteration defined as extremal fixpoints of increasing (mono-
tone/isotone) functions on complete lattices [Tarski 1955].

The definition is in Milner/Tofte style [Milner and Tofte 1991], except that finite behaviors in
℘(Σ×Σ) are in inductive style with least fixpoints (lfp) and infinite behaviors in ℘(Σ×{�}) are in
co-inductive style with greatest fixpoints (gfp), as in [Cousot and Cousot 1992, 2009]. Milner/Tofte
define both finite and infinite behaviors in co-inductive style [Leroy 2006; Milner and Tofte 1991],
which looks more uniform. However, some fixpoint approximation techniques are more precise
for least fixpoints than for greatest fixpoints [Cousot 2021, Chapter 18], which will be essential to
prove completeness of proof methods2.

Given the assignment f[x ← E] of value E ∈ V to variable x ∈ X in state f ∈ Σ ≜ X → V and the
identity relation id ≜ {⟨f, f⟩ ∣ f ∈ Σ�}, the basic statements have the following semantics. They
all terminate and do not exit loops, but for break, that exits the closest outer loop (which existence
must be checked syntactically) without changing the values of variables.

Jx = AK4 ≜ {⟨f, f[x← AJAKf]⟩ ∣ f ∈ Σ} Jx = AK1 ≜ ∅ Jx = AK� ≜ ∅
Jx = [a, b]K4 ≜ {⟨f, f[x← 8]⟩ ∣ f ∈ Σ ∧

0 − 1 < 8 < 1 + 1}
Jx = [a,b]K1 ≜ ∅ Jx = [a,b]K� ≜ ∅ (47)

JbreakK4 ≜ ∅ JbreakK1 ≜ id JbreakK� ≜ ∅
JskipK4 ≜ id JskipK1 ≜ ∅ JskipK� ≜ ∅

For the conditional, we let JBK ≜ {⟨f, f⟩ ∣ f ∈ BJBK} be the relational semantics of Boolean
expressions. We define (# is the composition of relations, see Sect. A.1 in the appendix)
JS1;S2K4 ≜ JS1K4 # JS2K4 Jif (B) S1 else S2K4 ≜ JBK # JS1K4 ∪ J¬BK # JS2K4

JS1;S2K1 ≜ JS1K1 ∪ (JS1K4 # JS2K1) Jif (B) S1 else S2K1 ≜ JBK # JS1K1 ∪ J¬BK # JS2K1 (48)
JS1;S2K� ≜ JS1K� ∪ (JS1K4 # JS2K�) Jif (B) S1 else S2K� ≜ JBK # JS1K� ∪ J¬BK # JS2K�

For iteration, we define
�4(-) ≜ id ∪ (JBK # JSK4 # (- ∖ Σ × {�})), - ∈ ℘(Σ × (Σ ∪ {�})) (49)
��(-) ≜ JBK # JSK4 #-, - ∈ ℘(Σ × {�}) (50)

Jwhile (B) SK4 ≜ lfp⊆ �4 # (J¬BK ∪ JBK # JSK1) (51)
Jwhile (B) SK1 ≜ ∅ (52)
Jwhile (B) SK� ≜ (lfp⊆ �4 # JBK # JSK�) ∪ gfp⊆ �� (53)

The transformers are defined on complete lattices, �4 on ⟨℘(Σ × Σ), ⊆, ∅, Σ × Σ, ∪, ∩⟩ and �� on
⟨℘(Σ� × {�}), ⊆, ∅, ∞⃗, ∪, ∩⟩ with ∞⃗ ≜ Σ × {�} and are ⊆-increasing, so do exist [Tarski 1955].

Moreover, the natural transformer �4 in (49) preserves arbitrary joins, so is continuous. By Scott-
Kleene fixpoint theorem [Scott and Strachey 1971], its least fixpoint is the reflexive transitive clo-
sure lfp⊆ �4 = ⋃=⩾0(JBK # JSK4)= = (JBK # JSK4)∗. So lfp⊆ �4 is a relation between initial states before
entering the loop and successive states at loop reentry after any number = ⩾ 0 of iterations. If,

2For example, Park induction Th. II.3.1 can be used to over approximate least fixpoints with an invariant only while ap-
proximating greatest fixpoints in the dual of Th. II.3.8 involves a variant function.
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after = iterations, the test B ever becomes false then JBK = ∅ and so all later terms in the infinite
disjunction are empty.

Then composing lfp⊆ �4 = (JBK # JSK4)∗ with J¬BK∪ JBK # JSK1 in (51) yields the relation between
initial and final states in case of termination or in case of a break when excuting the loop body S.
(52) states that a break exits the immediately enclosing loop, not any of the outer ones.

Composing lfp⊆ �4 = (JBK # JSK4)∗ with JBK # JSK� in (53) yields the possible cases of nontermi-
nation when the loop body S does not terminate after finitely many finite iterations in the loop.

Finally, the term gfp⊆ �� in (53) represents infinitely many iterations of terminating body exe-
cutions. Again if B becomes false after finitely many iterations then JBK = ∅ so that this infinite
iteration term is ∅ (since ∅ is absorbant for #). As shown by [Cousot 2002, Example 22], �� may
not be co-continuous when considering unbounded nondeterminism so that transfinite decreas-
ing fixpoint iterations from the supremum might be necessary [Cousot and Cousot 1979a]. The
following lemma makes clear that gfp⊆ �� characterizes (non)termination A◯

Lemma II.1.1 (TeRmination). gfp⊆ �� = ∅⇔ {f ∈ N→ Σ ∣ ∀8 ∈ N . ⟨f8 , f8+1⟩ ∈ JBK # JS4K} = ∅.

Since � ∉ Σ, (JSK4 ∪ JSK�)∩Σ = JSK4 and (JSK4 ∪ JSK�)∩{�} = JSK�, the semantics can be defined
as

JSK� ≜ ⟨JSK4 ∪ JSK�, JSK1⟩ ∈ ℘(Σ × Σ�) × ℘(Σ × Σ) natural semantics (54)
JSK ≜ ⟨JSK4 , JSK1⟩ ∈ ℘(Σ × Σ) × ℘(Σ × Σ) angelic semantics

where ⟨℘(Σ × Σ�), ⊑, Σ × {�}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
- ⊑ . ≜ (- ∩ (Σ × Σ)) ⊆ (. ∩ (Σ × Σ)) ∧ (- ∩ (Σ × {�})) ⊇ (. ∩ (Σ × {�})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[Cousot 2002, Theorem 9] (but termination JSK4 and break JSK1 cannot be mixed without losing
information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨U↓2 , W↓2⟩ for asser-
tions and ⟨ .U↓2 ,

.
W
↓2⟩ for relations in (24). This can be implemented using auxiliary variables without

modification of the semantics A◯.
Nondeterminism can be unbounded, as discussed in the appendix A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [Cousot 2002], [Cousot 2021, Ch. 18] to abstract the
fixpoint definition of the program relational semantics into a fixpoint definition of transformers
(or their graph). Abstraction can also be applied to deductive systems A◯.

TheoRem II.2.1 (Fixpoint abstRaction [Cousot and Cousot 1979b]). If ⟨�, ⊑⟩ −−−→←−−−U
W
⟨�, ⪯⟩ is

a Galois connection between complete lattices ⟨�, ⊑⟩ and ⟨�, ⪯⟩, 5 ∈ �
8
Ð→ � and 5̄ ∈ �

8
Ð→ � are

increasing and commuting, that is, U ○ 5 = 5̄ ○ U , then U(lfp⊑ 5 ) = lfp⪯ 5̄ (while semi-commutation
U ○ 5 ⪯ 5̄ ○ U implies U(lfp⊑ 5 ) ⪯ lfp⪯ 5̄ ).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨!, ⊑, ⊺, ⊔⟩ and ⟨!′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that � ∈ (! → !′)

8
Ð→ (! → !′) is increasing and that for all& ∈ !, �̄& ∈ !′

8
Ð→ !′ is

increasing. Assume ∀& ∈ ! . ∀5 ∈ ! → !′ . �(5 )& = �̄&(5 (&)). Then ∀& ∈ ! . (lfp
.
⊑
′

�)& = lfp⊑
′

�̄& .

When the abstraction involves the negation abstractionU¬, Park’s classic fixpoint theorem [Park
1979, equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).
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TheoRem II.2.3 (Complementdualization). If - is a set and 5 ∈ ℘(-)
8
Ð→ ℘(-) is ⊆-increasing

then lfp⊆ U∼(5 ) = U¬(gfp⊆ 5 ).

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequent (or weakest consequent-antecedent) pairs. Then we need to take into account conse-
quence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[Cousot 2019b] and [Cousot 2021, Ch. 24], we introduce fixpoint induction methods to handle
such approximations post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, � is the infimum of a poset and
possibly unrelated to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation of
greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [Park 1969] and follows directly
from Tarski’s fixpoint theorem [Tarski 1955], lfp⊑ 5 =

d
{G ∈ ! ∣ 5 (G) ⊑ G}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨!, ⊑, �, ⊺, ⊔, ⊓⟩ be a complete
lattice, 5 ∈ !

8
Ð→ ! be increasing, and ? ∈ !. Then lfp⊑ 5 ⊑ ? if and only if ∃8 ∈ ! . 5 (8) ⊑ 8 ∧ 8 ⊑ ? .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition % must sat-
isfy lfp⊆ ,- .% ∪ postJ(K(� ∩-) ⊆ � . The proof method provided by Park’s Th. II.3.1 is ∃� . % ⊆

� ∧ postJ(K(� ∩ �) ⊆ � ∧ � ⊆ � which is Turing [Turing 1950]/Floyd [Floyd 1967] invariant proof
method. ∎

By order-duality, this is sound and complete greatest fixpoint under approximation ? ⊑ gfp⊑ 5
proof method. 8 is called an invariant (a co-invariant for greatest fixpoints).

Example II.3.3. Continuing example II.3.2, by contraposition, the invariant must satisfy ¬� ⊆
¬lfp⊆ ,- .% ∪ postJ(K(� ∩-) that is ¬� ⊆ gfp⊆ ,- .¬% ∩ p̃ostJ(K(¬� ∪-) by Park’sTh. II.2.3.The
dual of Th. II.3.1 suggest the proof method ∃� . � ⊆ ¬% ∧ � ⊆ p̃ostJ(K(¬� ∪ �) ∧ � ⊆ ¬� which is
methods (i−̃1) and (I−̃1) of [Cousot and Cousot 1982]. ∎

II.3.2 Ordinals
We let ⟨O, ∈, ∅, O, ∪, ∩⟩ be the von Neumann’s ordinals [von Neumann 1923], writing the more
intuitive < for ∈, 0 for ∅, +1 for the successor function, sometimesmax for ∪,min for ∩, and l for
the first infinite limit ordinal. If necessary, a short refresher on ordinals is given in Sect. H of the
appendix A◯.
II.3.3 Over Approximation of the Abstraction of a Least Fixpoint
To solve the problem U(lfp⊑ �) ⊑ % where U is a function on the domain of � , we can try to
use fixpoint abstraction Th. II.2.1 to get U(lfp⊑ �) = lfp⊑ �̄ and then check lfp⊑ �̄ ⊑ % by fixpoint
induction Th. II.3.1. But Th. II.2.1 requires U to preserves joins, which is not always the case (for
the dual problem U = pre in remark I.3.12 is a counter-example). If U does not preserves joins, we
can nevertheless use the following theorem A◯.

TheoRem II.3.4 (OveRappRoximation of a least fixpoint image). Let ⟨!, ⊑, �, ⊔⟩ and ⟨!̄, ⊑̄,
⊺̄, ⊔̄⟩ be complete lattices 3, � ∈ !

8
Ð→ ! and U ∈ !

8
Ð→ !̄ be increasing functions, and % ∈ !̄.

Then U(lfp⊑ �) ⊑̄ % if and only if there exists � ∈ !̄ such that (1) U(�) ⊑̄ � (2) ∀- ∈ ! . U(-) ⊑̄ � ⇒
U(�(-)) ⊑̄ � , (3) for any ⊑-increasing chain ⟨-X , X ∈ O⟩ of elements -X ⊑ lfp⊑ � , ∀V < _ . U(- V) ⊑̄ �
implies U(⊔V<_ -

V) ⊑̄ � , and (4) � ⊑̄ % .

3or CPOs.
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Let ⟨�X , X ∈ O⟩ be the increasing iterates of � from � ultimately stationary at rank n [Cousot and
Cousot 1979a]. Then condition II.3.4.(2) in is only necessary for all - = �X , X ⩽ n while condition
(3) is only necessary for ⟨-X , X ⩽ n⟩ = ⟨�X , X ⩽ n⟩. These weaker conditions are assumed to prove
completeness (“only if” in Th. II.3.4).
II.3.4 Fixpoint Under Approximation by Transfinite Iterates
For under approximation of least fixpoints (or order dually under approximation of greatest fix-
points), we can use the generalization [Cousot 2019b] of Scott-Kleene induction based on transfi-
nite induction when continuity does not apply and follows directly from the constructive version
of Tarski’s fixpoint theorem [Cousot and Cousot 1979a].
Definition II.3.5 (Ultimately Over Approximating Transfinite Sequence). We say that “the transfi-

nite sequence ⟨-X , X ∈ O⟩ of elements of poset ⟨!, ⊑⟩ for 5 ∈ ! → ! ultimately over approximates
% ∈ !” if and only if - 0 = �, -X+1 ⊑ 5 (-X) for successor ordinals, ⊔X<_ -

X exists for limit ordinals
_ such that -_ ⊑ ⊔X<_ -

X , and ∃X ∈ O . % ⊑ -X .
The condition can equivalently be expressed as ∀X ∈ O . -X ⊑ 5 (⊔V<X -

V + 1) which avoids to
have to make the distinction between successor and limit ordinals A◯.

TheoRem II.3.6 (Fixpoint UndeR AppRoximation by TRansfinite IteRates). Let 5 ∈ ! 8
Ð→ !

be an increasing function on a cpo ⟨!, ⊑, �, ⊔⟩ (i.e. every increasing chain in ! has a least upper
bound in !, including � = ⊔∅). % ∈ ! is a fixpoint underapproximation, i.e. % ⊑ lfp⊑ 5 , if and only
if there exists an increasing transfinite sequence ⟨-X , X ∈ O⟩ for 5 ultimately over approximating %
(Def. II.3.5).

Notice that ordinals are an abstraction ⟨Wf, ⊆⟩ −−−→Ð→←−−−−−
d

id
⟨O, ⩽⟩ of well-founded sets by their rank

d , so that Th. II.3.6 could have assumed the existence of a well-founded set to replace the ordinals.
The hypothesis that ⟨-X , X ∈ O⟩ is increasing is necessary in a cpo but not in a complete lattice, in
which case this non-increasing sequence can be used to build an increasing one A◯.

Lemma II.3.7. Let ⟨-X , X ∈ O⟩ be a sequence in a complete lattice satisfying the hypotheses of Def.
II.3.5, then there is an increasing one satisfying these same hypotheses.

II.3.5 Fixpoint Under Approximation by Bounded Iterates
For iterations, under approximations such as % ⊆ postJSK�& (incorrectness logic), % ⊆ preJSK�Σ
(possible termination), % ⊆ ¬preJSK�{�} = p̃reJSK�Σ (definite termination), and % ⊆ preJSK�& ∩

p̃reJSK�& (weakest precondition, starting from any initial state of % , S� “is certain to establish
eventually the truth of” & [Dijkstra 1976, page 17]) are fixpoint under approximations. Program-
mers almost never use Th. II.3.6 for proving termination using ordinals (or a well-founded set).
They cannot use Hoare logic either since nontermination {%}S{false} is provable by the logic but
its negation ¬({%}S{false}) is not in the logic. A first method for bounded iteration uses a loop
counter incremented on each iteration and an invariant proving that the counter is bounded (“time
clocks” in [Knuth 1997], [Luckham and Suzuki 1977; Sokolowski 1977]). This is sound but incom-
plete for unbounded nondeterminism. The most popular method uses well-founded sets, which
can be generalized to fixpoints A◯.

TheoRem II.3.8 (Least Fixpoint UndeR AppRoximation with a VaRiant Function). We
assume that (1) 5 is increasing on a cpo ⟨!, ⊑, �, ⊔⟩; (2) that % ∈ !; (3) that there exists a se-
quence ⟨-X , X ∈ O⟩ of elements of ! such that - 0 = �, -X+1 ⊑ 5 (-X) for successor ordinals, and
-_ ⊑ ⊔V<_ -

V for limit ordinals _; and (4) that there exists a well-founded set ⟨,, ⪯⟩ and a variant
function a ∈ {-X ∣ X ∈ O}→, such that for all V < X , we have % /⊑ - V implies a(- V) ≻ a(-X).
Hypotheses(1) to (4) imply that ∃X < l . % ⊑ -X ⊑ 5 X ⊑ lfp⊑ 5 .
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Because X < l inTh. II.3.8, the proof method is sound but incomplete, as shown by the following
counter example where the property holds but the proof method of Th. II.3.8, is inapplicable.
Example II.3.9. Consider the complete lattice ⟨℘(Z), ⊆⟩. Define 5 ∈ ℘(Z) → ℘(Z) by 5 (-) =

{0} ∪ {G ∈ Z ∣ G − 1 ∈ -}. The iterates are 5 0 = ∅, 5 = = {: ∈ N ∣ 0 ⩽ G < =}. The limit is
5 l = ⋃=∈N 5 = = N = lfp⊆ 5 . Take % = N such that % ⊆ lfp⊆ 5 . Then ∀= ∈ N . % /⊆ 5 = . It follows that
Def. II.3.8 is infeasible since ∀= ∈ N . % /⊆ 5 = implies for all V < X that a(- V) ≻ a(-X). This infinite
strictly decreasing chain is in contradiction with the well-foundness hypothesis. ∎

II.3.6 Void Intersection With Fixpoint Using Variant Functions
Turing and Floyd [Floyd 1967; Turing 1950] method for unbounded nondeterminism, uses reduc-
tio ad absurdum, proving that nontermination is impossible. This idea can also be generalized to
fixpoints.

An atom of a poset ⟨!, ⊑⟩ is either a minimal element of ! if ! has no infimum or covers the
infimum � otherwise. So the set of atoms of a poset ⟨!, ⊑⟩ is atoms(!) ≜ {0 ∈ ! ∣ /∃ G ′ ∈ ! . G ′ ⊏ 0}
if ! has no infimum and atoms(!) ≜ {0 ∈ ! ∣/∃ G ′ ∈ ! . � ⊏ G ′ ⊏ 0} if � is the infimum of !. The
atoms of an element G of ! are atoms(G) ≜ {0 ∈ atoms(!) ∣ 0 ⊑ G}. A poset is atomic if the atoms of
any element G of ! have a join which exists and is G , that is, ∀G ∈ ! . G = ⊔ atoms(G). Co-atomicity
is ⊑-order-dual. We have A◯

TheoRem II.3.10 (Void inteRsection with least fixpoint). We assume that (1) ⟨!, ⊑, �, ⊺, ⊓,
⊔⟩ is an atomic complete lattice; (2) 5 ∈ ! → ! preserves non-empty joins; (3) there exists an invariant
� ∈ ! of 5 (i.e. such that 5 (�) ⊑ � ); (4) that there exists a well-founded set ⟨,, ⪯⟩ and a variant
function a ∈ � →, such that ∀G ∈ atoms(�) . (G ≠ 5 (G))⇒ (a(G) ≻ a(5 (G))); (5) & ∈ !; and (6)
∀G ∈ atoms(�) . (a(G) /≻ a(5 (G)))⇒ (G ⊓& = �). Then, hypotheses (1) to (6) imply lfp⊑ 5 ⊓& = �.

Th. II.3.10 is useful, in particular, to prove lfp⊑ 5 = � for & = ⊺. If ! = ℘(Σ�) then % ⊆ & is
% ∩ ¬& = ∅, another possible use of this theorem.

The proof method ofTh. II.3.10 is incomplete, as shown by counter-example H.1 in the appendix.
The completeness of Turing/Floyd variant function method is due to the additional property that
the inverse of the transition relation of a terminating program is well-founded A◯ (see example
H.2 in the appendix).

TheoRem II.3.11 (TuRing/Floyd). Let A ∈ ℘(X ×X ) be a relation on a setX and % ∈ ℘(X ). Then
{G ∈ X ∣ ∃f ∈ N→ X . f0 = G ∈ % ∧ ∀8 ∈ N . ⟨f8 , f8+1⟩ ∈ A} = ∅

⇔ {G ∈ X ∣ G ∈ % ∧ ∃⟨,, ⪯⟩ ∈Wf . ∃� ∈ ℘(X ) . % ∪ post(A)� ⊆ � ∧ ∃a ∈ � →, .

∀~ ∈ � . ∀~′ ∈ X .⟨~, ~′⟩ ∈ A ⇒ a(~) ≻ a(~′)}

Notice that the soundness proof given in the appendix uses (the dual of) Th. II.3.8 which shows
that it is a generalization for Turing/Floyd variant method. Notice that if the intersection of gfp⊑ 5
with& is empty (� in the lattice) then so is the intersection of lfp⊑ 5 with& but not conversely, so
in addition to theorem II.3.10, we also need the following A◯

TheoRem II.3.12 (Void inteRsection with gReatest fixpoint). We assume that (1) ⟨!, ⊑, �,
⊺, ⊓, ⊔⟩ is a coatomic complete lattice; (2) 5 ∈ ! → ! preserves non-empty meets; (3) there exists a
coinvariant � ∈ ! of 5 (i.e. such that � ⊑ 5 (�)); (4) that there exists a well-founded set ⟨,, ⪯⟩ and
a variant function a ∈ � →, such that ∀G ∈ coatoms(�) . (G ≠ 5 (G)) ⇒ (a(G) ≻ a(5 (G))); (5)
& ∈ !; and (6) ∀G ∈ coatoms(�) . (a(G) /≻ a(5 (G)))⇒ (G ⊓& = �). Then, hypotheses (1) to (6) imply
gfp⊑ 5 ⊓& = �.

Notice thatTh. II.3.12, as well as its proof in Sect. H of the appendix, are not the order dual ofTh.
II.3.10 since (6) have the same conclusion G ⊓& = � and the dual of the conclusion lfp⊑ 5 ⊓& = �
would be gfp⊑ 5 ⊔& = ⊺.
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II.3.7 Fixpoint Non Emptiness
Another result to handle greatest fixpoints, e.g. to prove definite nontermination, is the following
theorem A◯.

TheoRem II.3.13 (GReatest fixpoint non emptiness). Let 5 ∈ ! 8
Ð→ ! be an increasing function

of a complete lattice ⟨!, ⊑, �, ⊺, ⊔, ⊓⟩ and % ∈ ! ∖ {�}. Then gfp⊑ 5 ⊓ % ≠ � if and only if ∀- ∈ ! .

(gfp⊑ 5 ⊑ - ∧ 5 (-) ⊑ - ∧- ⊓ % ≠ �)⇒ (5 (-) ⊓ % ≠ �).

A fixpoint induction principle H.3 for U(lfp⊑ 5 ) ⊓ % ≠ � in (39.d) is given in the appendix. A◯

II.4 DEDUCTIVE SYSTEMS OF PROGRAM LOGICS
Logics define the valid properties of a program as all provable facts by the formal proof system of
the logic. These formal systems, introduced by Hilbert [Hilbert and Ackermann 1938, § 5], are “a
system of axioms from which the remaining true sentences may be obtained by means of certain
rules”. Such a formal system is a finitely presented set of axioms 2 and rules %

2
where the axioms

and conclusions 2 of the rules are terms with variables and the premisses % are formulas of a logic.
The semantics/interpretation of the logic maps logical terms to elements of amathematical struc-

ture with universe U . Logical formulas are interpreted as the subsets of U of elements satisfying
the formulas. Therefore logical implication is subset inclusion ⊆ in the complete Boolean lattice
⟨℘(U), ⊆, ∅, U , ∪, ∩, ¬⟩ where ∅ is false, U true, ∪ disjunction, ∩ conjunction, and ¬ negation.
The semantics/interpretation of the formal rules is a deductive system ' = {%8

28
∣ 8 ∈ Δ} where

%8 ∈ ℘(U) is the finite premise and 28 ∈ U the conclusion of the rule. The axioms have %8 = ∅ (false)
as premises. We have ' ∈ ℘(℘(U) × U) where pairs ⟨%, 2⟩ are conventionally written %

2
.

Example II.4.1. The formal system 1 ∈ O and inductive rule = ∈O
=+2 ∈O

(defining the odd naturalsO
on universe N) has the interpretation {∅

1
} ∪ { {=}

=+2
∣ = ∈ N}. For example if 2 ∈ N is odd then 4 is

odd. To prove that 2 is odd, the only way is to prove that 0 is odd which is not an axiom nor the
conclusion of a rule, proving 2 not to be odd. ∎

II.5 THE SEMANTICS OF DEDUCTIVE SYSTEMS
Aczel [Aczel 1977] has shown that there are two equivalent ways of defining the subset UI(') of
the universe U defined by a deductive system ' = {%8

28
∣ 8 ∈ Δ}.

II.5.1 Proof-Theoretic Semantics of Deductive Systems
In the proof-theoretic approach, UI(') is the set of provable elements where a formal proof is
a finite sequence C1 . . . C= of terms (i.e. elements of the universe U ) such that any term is the
conclusion of a rule which premise is implied by (i.e. included in ⊆) the set of previous terms in
the sequence (which have been already proved, starting with axioms). Therefore UI(') = {C= ∈ U ∣
∃C1, . . . , C=−1 ∈ U . ∀: ∈ [1, =] . ∃%

2
∈ ' . % ⊆ {C1, . . . , C:−1} ∧ C: = 2} (this requires % to be finite).

It follows that there is a Galois connection ⟨℘(℘(U) × U), ⊆⟩ −−−−→Ð→←−−−−−−
UI

WI

⟨℘(U), ⊆⟩ where UI is

⊆-increasing (the more rules the larger is the defined set) and WI(-) = {%
2
∣ % ∈ ℘(U) ∧ 2 ∈ -}

including axioms ∅

2
collecting all elements 2 of - . (As discussed thereafter, there are other, more

natural and effective, possible deductive systems. Proof systems are not unique.)
II.5.2 Model-Theoretic Semantics of Deductive Systems
In the model-theoretic approach, the same UI(') is defined as UI(') = lfp⊆ U� (') where the
consequence operator is U� (')- ≜ {2 ∣ ∃%

2
∈ ' . % ⊆ -}. U� (')- is the set of consequences

derivable from the hypotheses - ∈ ℘(U) by one application of an axiom (with % = ∅) or a rule of
the deductive system. U� (') ∈ ℘(U)

⊔

Ð→ ℘(U) preserve nonempty joins and so is increasing. The
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least fixpoint lfp⊆ U� (') of the consequence operator is well-defined [Tarski 1955] and is the set
of all provable terms, that is, UI('). For example II.4.1, O = lfp⊆ ,- .{1} ∪ {= + 2 ∣ {=} ⊆ -}.
II.5.3 Equivalence of the Two Definitions of the Semantics of Deductive Systems
The definitions of a subset of the universe by a deductive system or by a fixpoint are equivalent
[Aczel 1977]. We have recalled that a deductive system can be expressed in fixpoint form. Con-
versely, given any increasing operator � on ⟨U , ⊆⟩, the terms provable by the deductive system
W� (�) = {%

2
∣ % ∈ ℘(U)∧2 ∈ �(%)} (or {%

2
∣ % ∈ ℘(U)∧2 ∈ �(%)∧∀% ′ ∈ ℘(U) . 2 ∈ �(% ′)⇒ % ⊆ % ′})

are exactly its least fixpoint lfp⊆ � . This yields a Galois connection between deductive systems and

increasing consequence operators ⟨℘(℘(U) × U), ⊆⟩ −−−−→Ð→←−−−−−−
U�

W�

⟨℘(U)
8
Ð→ ℘(U),

.
⊆⟩ where

.
⊆ is ⊆,

pointwise. Note that there is also a Galois connection between increasing operators and fixpoints

⟨℘(U)
8
Ð→ ℘(U),

.
⊆⟩ −−−−−−−−−−−−−−−−−−−−−→Ð→←−−−−−−−−−−−−−−−−−−−−−−

lfp⊆

,~ .,G . LG ⊆ ~ ? ~ :U M
⟨℘(U), ⊆⟩ such that UI is the composition of these

two Galois connections.
The order dual of this result is defined by co-induction leading to greatest fixpoints ⟨℘(U) 8

Ð→

℘(U),
.
⊆⟩ −−−−−−−−−−−−−−−−−−−−−→Ð→←−−−−−−−−−−−−−−−−−−−−−−

gfp⊆

,~ .,G . LG ⊇ ~ ? ~ :∅ M
⟨℘(U), ⊆⟩, we get the coinductive interpretation of proof systems.

It can also be biinductive, a mix of the two, taking the lfp of U� (') restricted to a subset of V ⊆ U
of the universe and gfp on U� (') restricted to the complement U ∖ V [Cousot and Cousot 1992,
1995, 2009].

More generally, the results hold for any complete lattice ⟨!, ⪯⟩ thus generalizing the powerset
case ⟨℘(U), ⊆⟩ and its order dual [Cousot and Cousot 1995].

The take away is that, knowing the fixpoint semantics of the logic, there is a method for con-
structing the deductive system for that logic, which is both sound and complete, by construction.
An example I.1 is given in the appendix showing how to construct the deductive natural relational
semantics Sect. I.1.1 from its fixpoint definition of Sect. II.1 A◯.

II.6 CALCULATIONAL DESIGN OF PROOF SYSTEMS
After defining the theory of a logic by abstraction U0 ○ UC(JSK�) of the relational semantics JSK�,
we use the fixpoint abstraction theorems of Sect. II.2 to provide a fixpoint definition of UC(JSK�),
which is most often a transformer or its graph. Then to handle U0 , which is an approximation
abstraction like post(⊆,⊇) or post(⊇,⊆), we use the fixpoint induction theorems of Sect. II.3 to
provide a set-theoretic of the theory of the logic which is then translated in a proof system by
Aczel method of Sect. II.5.3.

Example II.6.1. Assume that UC(JSK�) = lfp⊆ �% and that we must derive the abstract theory
) = U0 ○ UC(JSK�) = {⟨%, &⟩ ∣ lfp⊆ �% ⊆ &} (e.g. to handle the ⊆ part in post(⊆,⊇) = post(=,⊇) ○
post(⊆,=) or post(⊇,⊆), the other part ⊇ being dual). By Th. II.3.1,) = {⟨%, &⟩ ∣ ∃� . �%(�) ⊆ � ∧ � ⊆
&}. By Sect. II.5.2. this set ) is defined by the axiom �% (�)⊆ � , � ⊆&

⟨%, &⟩ ∈) . ∎

RemaRK II.6.2. (On abstraction versus induction) Hoare logic is the post(⊆,⊇) and it’s reverse
is the post(⊇,⊆) abstraction of the transformer graph ) = {⟨%, postJSK%⟩ ∣ % ∈ ℘(Σ)}. Both
proof systems can be designed, by the rules for ) plus the consequence rules for post(⊆,⊇) and
post(⊇,⊆). By (51), the theory ) of the conditional iteration W without breaks would involve ) ′ =
{⟨%, post(lfp⊆ �4)%⟩ ∣ % ∈ ℘(Σ)}. The rule would be (9), using ordinals for unbounded nondeter-
minism. So to prove {%} S{&}, % ≠ ∅, we would have to find a postcondition & ′, prove that it is
the strongest, and then use the consequence rule to prove that & ′ ⊆ &/ This is sound and com-
plete but much too demanding. The fixpoint induction theorems of Sect. II.3 solve this problem
by weakening the rules for iteration while preserving soundness and completeness. Contrary to
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fixpoint abstraction, fixpoint induction allows us to take the consequence rule into account in the
design of proof rules for fixpoint semantics. So partial correctness need not be a consequence of
total correctness and nontermination. ∎

II.7 ON THE COMPARISON OF LOGICS
To compare logics, we first relate their theories, that is compare their expressivity, through their
respective abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect.
II.2). Different abstractions yield different logics, compared though their relation by Galois con-
nections. The logics are equivalent when their theories are linked by a Galois isomorphism. An
example is given in Sect. I.3.14.4 where Hoare logic and subgoal induction have the same theory
but different proof method (as shown in figure 3).

The proof system of a logic is entirely determined by its theory (as proved in Sect. II.4), but
up to an equivalence, since different induction principles may be used, as formalized in Sect. II.3,
to exploit approximation so as to simplify induction. This is exemplified by Rem. II.6.2. Which
induction principle is used is the second characteristic to compare logics.

II.8 APPLICATIONS
The development of Hoare incorrectness logic in Ex. I.3.11 is relegated to the appendix A◯.
II.8.1 Application I: Calculational Design of a New Forward Logic for Termination

with Correct Reachability of a Postcondition or Nontermination
Using � to denote nontermination, we write &� ≜ & ∪ {�} and & /� ≜ & ∖ {�}. The semantics and
predicates/assertions are relational.They can establish a relation between initial and final values of
a loop body to show that a variant function in a well founded set is decreasing (as in Turing/Floyd
method formalized by Th. II.3.11). See example I.3.1.

The language includes a break out of the closest enclosing loop, so the specifications have the
form {%} S{>: ∶ &,1A ∶ )} meaning that any execution of S started in a state of % will terminate
in a state of & /�, or not terminate if � ∈ & , or break out of S to the closest enclosing loop in a state
satisfying ) . So & = {�} and ) = ∅ would mean definite non termination (when % ≠ ∅).

To design the logic, we first formally define the meaning of specifications as an abstraction of
post. Then we proceed by structural induction on the syntax of the language. Using fixpoint over
approximation Th. II.3.1, the iteration rule is (Σ is Σ extended to an auxiliary variable in X for each
variable in X) A◯

{f ∈ ℘(Σ) ∣ fX = fX ∧ fX ∈ %} ⊆ � {BJBK ∩ �/�} S{>: ∶ ',1A ∶ )}
'/� ⊆ � (BJ¬BK ∩ �) ⊆ & ) ⊆ & '� ⊆ &

(� ∉ &)⇒ (∃⟨,, ⪯⟩ ∈Wf . ∃a ∈ � →, . ∀⟨f, f ′⟩ ∈ � . a(f) ≻ a(f ′))
{%} while (B) S{>: ∶ &,1A ∶ )}

(55)

Example II.8.1. For factorial fact, we choose the invariant � = �/� ∪ �� with �/� = {= = = ∧ 5 =

1} ∪ {= > = ⩾ 0 ∧ 5 = ∏
=
8== 8} with ∏∅ = 1 for termination and �� = {= ⩽ = < 0 ∧ 5 =

�} for nontermination, ⟨,, ⪯⟩ = ⟨N, ⩽⟩ ∈ Wf, a(=,=) = =. We have BJBK = = ≠ 0 so that
{BJBK ∩ �/�} f = f*n; n = n-1;{>: ∶ ',1A ∶ )} is {(= = = ≠ 0 ∧ 5 = 1) ∨ (= > = > 0 ∧ 5 =

∏
=
8== 8)} f = f*n; n = n-1;{>: ∶ ',1A ∶ ∅} with ' = '/� = (= = = − 1 ≠ 0∧ 5 = =)∨ (= > = > 0∧ 5 =

∏
=
8== 8) ⊆ � , '� = ∅ and ) = ∅ by termination and absence of break. ∎

II.8.2 Application II: Calculational Design of a New Program Logic for possible
Accessibility of a Postcondition or Nontermination

As a second example, we design a logic {%} S ⃗{>: ∶ &,1A ∶ )} for the language of Sect. II.1 with
natural semantics (54). A quadruple {%} S ⃗{>: ∶ &,1A ∶ )} means that for any state in % there
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exists at least one execution from that state that terminates in a state of & , or ) through a break,
or does not terminate (contrary to incorrectness logic [O’Hearn 2020] requiring termination). For
example if & is bad, � ∉ & , and ) = ∅ then from any state of % there must be a finite execution
reaching a bad state in& (unless all executions from that state in % do not terminate or % is empty),
which corresponds to the incorrectness component of the outcome logic [Zilberstein et al. 2023]
in case � ∉ & . {%} S ⃗{>: ∶ {�}, 1A ∶ ∅} stipulates that any initial state in % can lead to at least one
nonterminating execution (as opposed to the extended Hoare specification {%} S{>: ∶ {�}, 1A ∶ ∅}
stating that no execution from % can terminate). Formally,

{%} S ⃗{>: ∶ &,1A ∶ )} ≜ ⟨%, &, ) ⟩ ∈ Upre(JSK�) (56)
where the abstraction Upre(JSK�) is

{⟨%, &, ) ⟩ ∈ ℘(Σ) × ℘(Σ�) × ℘(Σ) ∣ (% ⊆ pre(JSK4 ∪ JSK�)&) ∨ (% ⊆ pre(JSK1)) )} (57)
that is Upre(JSK�) = {⟨%, &, ) ⟩ ∣ % ⊆ pre(JSK4 ∪ JSK�)&} (A) (58)

∪ {⟨%, &, ) ⟩ ∣ % ⊆ pre(JSK1))} (B) Hdef. union ∪I
We proceed by structural induction on statements (details are found in the appendix A◯). We con-
sider the iteration while(B) S which is the most difficult case. Let us start with the easy case (B)
of (58) for the iteration while(B) S.
{⟨%, &, ) ⟩ ∣ % ⊆ pre(Jwhile(B) SK1))}

= {⟨%, &, ) ⟩ ∣ % ⊆ pre(∅))} = {⟨%, &, ) ⟩ ∣ % ⊆ ∅} Hdef. (52) of Jwhile(B) SK1 and (38) of preI
= {⟨∅, &, ) ⟩ ∣ & ∈ ℘(Σ�) ∧) ∈ ℘(Σ)} Hdef. inclusion ⊆ and empty set ∅I

Following Sect. II.5, (A) ∪ (B) can be defined by a deductive system with separate rules for (A)
and (B). With notation (56), the deductive system for (B) of (58) for the iteration while(B) S is the
axiom ∅

{∅} while(B) S ⃗{>: ∶ &,1A ∶ )}
(59)

meaning that if you never execute a program you can conclude anything on its executions. This
is also valid in Hoare logic but is not given as an explicit axiom since it can be derived from other
rules (by an extensive induction on all program statements).

We now have to consider case (A) of (58) for the iteration while(B) S. This is more difficult and
requires three pages of calculation plus two pages of auxiliary propositions, too much for most
readers. So we will sketch the main steps of this calculation for a global understanding and refer
to Sect. J.4 of the appendix for all further details.

Starting from {⟨%, &, ) ⟩ ∣ % ⊆ pre(Jwhile(B) SK4 ∪ Jwhile(B) SK�)&} we get
{⟨%4 ∪ %�, &, ) ⟩ ∣ %4 ⊆ (pre(lfp⊆ �4 # J¬BK)& /� ∪ pre(lfp⊆ �4 # JBK # JSK1)& /�) ∧

%� ⊆ (pre(lfp⊆ �4 # JBK # JSK�){� ∣ � ∈ &} ∪ pre(gfp⊆ ��){� ∣ � ∈ &}))}
by case analysis and expanding definitions (51) and (53) of the semantics. For states in %4 there is
an execution terminating in& /� ≜ & ∖ {�}, possibly by a break. For states in %�

1
there is an infinite

execution consisting of zero or more finite iterations followed by a nonterminating execution of
the loop body. Finally, for states in %�ℓ there is an execution consisting of infinitely many finite
iterations. These cases are not exclusive and might be empty.

Grouping the cases % = %4 ∪ %�
1
, we get (by case analysis and pre(A)∅ = ∅)

{⟨% ∪ %�ℓ , &, ) ⟩ ∣ % ⊆ lfp
⊆

,- . (preJ¬BK& /�) ∪ (pre(JBK # JSK1)& /�) ∪ (pre(JBK # JSK�){� ∣ � ∈ &}) ∪
(pre(JBK # JSK4)-) ∧ L� ∈ & ? %�ℓ ⊆ pre(gfp

⊆ ��){�} : %�ℓ = ∅ M}
Wemust now handle fixpoint under approximations using induction principles. Since the pre trans-
former preserves arbitrary joins, its least fixpoint iterations are stable at l . So the hypotheses of
Th. II.3.6 for % ⊆ lfp⊆ ,- .� ∪ pre(A)- become
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∃⟨�=, = ∈ N⟩ . � 0 = ∅ ∧ ∀= ∈ N . �= ⊆ �=+1 ⊆ � ∪ pre(A)�= ∧ ∃ℓ ∈ N . % ⊆ � ℓ (60)
Since pre does not preserve meets, we cannot use the dual of the fixpoint abstraction Th. II.2.1
to express pre(gfp⊆ ��){� ∣ � ∈ &} in fixpoint form and then use the dual of fixpoint induction
Th. II.3.4. This is where the order dual Th. II.3.4 is useful to under approximate the image of the
greatest fixpoint gfp⊆ �� by ,A .pre(A){� ∣ � ∈ &}. The dual hypotheses of Th. II.3.4 are that there
exists � ∈ ℘(Σ�) such that, after simplifications for that particular case, are

∃� ∈ ℘(Σ�) . L� ∈ & ? pre(JBK # JSK4)(�) ⊆ � ∧ %�ℓ ⊆ � : true M (61)
so that, by (60), (61), and pre(JBK)' = BJBK ∩ ', we get
{⟨% ∪ %�ℓ , &, ) ⟩ ∣ ∃⟨�

=, = ∈ Q⟩ . � 0 = ∅ ∧ ∀= ∈ N . �= ⊆ �=+1 ⊆ (BJ¬BK ∩& /�) ∪ (BJBK ∩ pre(JSK1)& /�)
∪ (BJBK ∩ preJSK�{� ∣ � ∈ &}) ∪ (JBK ∩ preJSK4(�=)) ∧ ∃ℓ ∈ N . % ⊆ � ℓ ∧ ∃� ∈ ℘(Σ�) . L� ∈ & ?

BJBK ∩ pre(JSK4)(�) ⊆ � ∧ %�ℓ ⊆ � : %
�

ℓ = ∅ M}
Since we proceed by structural induction, we have, by definition (56), to make the under approxi-
mations of preJSK for the loop body S to appear explicitly in the calculations, as follows
{⟨% ∪ %�ℓ , &, ) ⟩ ∣ ∃'

1 . '1 ⊆ pre(JSK1)& /� ∧ ∃'� . ⟨'�, {� ∣ � ∈ &}, ∅⟩ ∈ Upre(JSK�) ∧ ∃⟨�=,
= ∈ Q⟩ . � 0 = ∅∧∀= ∈ N . ∃'4= . ⟨'4=, �

=, ∅⟩ ∈ Upre(JSK�)∧ �= ⊆ �=+1 ⊆ (BJ¬BK∩& /�)∪ (JBK∩'1)∪
(JBK ∩ '�) ∪ (JBK ∩ '4=) ∧ ∃ℓ ∈ N . % ⊆ � ℓ ∧ ∃� ∈ ℘(Σ�) . ∃'�ℓ . ⟨'�ℓ , � , ∅⟩ ∈ Upre(JSK) ∧ L� ∈ & ?
BJBK ∩ '�ℓ ⊆ � ∧ %�ℓ ⊆ � : %

�

ℓ = ∅ M}
Following Sect. II.5 and using the notation (56), the theory Upre(Jwhile(B) SK�) can be equivalently
defined by the following deductive system of the logic.

� 0 = ∅ {'1} S ⃗{>: ∶ ∅, 1A ∶ & /�} {'�} S ⃗{>: ∶ {� ∣ � ∈ &}, 1A ∶ ∅}
∀= ∈ N . {'4=} JSK ⃗{>: ∶ �=, 1A ∶ ∅}

�= ⊆ �=+1 ⊆ (BJ¬BK ∩& /�) ∪ (BJBK ∩ '1) ∪ (BJBK ∩ '�) ∪ (BJBK ∩ '4=) ∃ℓ ∈ N . % ⊆ � ℓ

L� ∈ & ? {'�ℓ } JSK ⃗{>: ∶ � ,1A ∶ ∅} ∧BJBK ∩ '�ℓ ⊆ � ∧ %�ℓ ⊆ � : %
�

ℓ = ∅ M
{% ∪ %�ℓ } while(B) S ⃗{>: ∶ &,1A ∶ ∅} (62)

Example II.8.2. Continuing Ex. I.3.1 and I.3.5, consider the factorial with postcondition contract
f > 0. An interval analysis produces an alarm & = & /� = f ⩽ 0 where � ∉ & so &� = ∅ and %�ℓ = ∅.
Take '� = '1 = ∅ since the loop body terminates with no break. Let �: = = ⩽ :∧ 5 ⩽ 0 and '4: = �

:−1

so that {'4:} Jf = f*n; n = n-1;K ⃗{>: ∶ �: , 1A ∶ ∅}. Take % = � ∣=∣. By (62), {%} fact ⃗{>: ∶ &,1A ∶ ∅}.
But % implies f ⩽ 0 in contradiction {∅} f=1; ⃗{>: ∶ %,1A ∶ ∅} with the initialization f=1 proving
the unreachable alarm to be false, which [O’Hearn 2020; Zilberstein et al. 2023] cannot do. ∎

II.9 CONCLUSION
Related work was moved to the appendix Sect. K A◯. We have shown that the theory of abstract
interpretation can be used to design program transformational logics, including (non)termination,
by defining their theory as an abstraction of the programming language fixpoint natural relational
semantics and then their proof system (useful to support mechanization) by fixpoint induction
and Aczel correspondence between set-theoretic fixpoint definitions and deductive systems [Aczel
1977]. The approach applies to all other abstractions of the collecting semantics into a relation, not
necessarily into a logic. For future work, this same principled approach can be used to design hyper
logics [Dardinier 2023], including dependency logics [Cousot 2019a], to include meta information
in predicates with an instrumented semantics (e.g. [Vanegue 2022; Zhang and Kaminski 2022; Zil-
berstein et al. 2023]), and to extend temporal logics like [Pnueli 1979] to programming languages
by structural induction and local invariants [Bubel et al. 2023].
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