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℘(℘(Y) × ℘(Z)) where e.g. the postcondition is on final states and unrelated to the initial ones.
This is an abstraction by projection on the second component A◯
⟨℘(X ×Y), ⊆⟩ −−−−−→←−−−−−

𝛼↓2
𝛾↓2 ⟨℘(Y), ⊆⟩, ⟨℘(℘(X ×Y) × ℘(X ×Z)), ⊆⟩ −−−−−→←−−−−−

.
𝛼↓2

.
𝛾↓2 ⟨℘(℘(Y) × ℘(Z)), ⊆⟩ (23)

with
𝛼↓2(𝑃) ≜ {𝜎 ∣ ∃𝜎0 . ⟨𝜎0, 𝜎⟩ ∈ 𝑃} 𝛾↓2(𝑄) ≜ X ×𝑄 (24)
.
𝛼↓2(𝑅) ≜ {⟨𝛼↓2(𝑃), 𝛼↓2(𝑄)⟩ ∣ ⟨𝑃, 𝑄⟩ ∈ 𝑅} .

𝛾↓2(𝑅′) ≜ {⟨𝛾↓2(𝑃 ′), 𝛾↓2(𝑄 ′)⟩ ∣ ⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑃}
Example I.3.9. At this point we have got the theory of Hoare logic as the abstraction

𝛼H({∣S∣}") ≜
assertional↓

𝛼↓2 ○

nontermination
∣∣↓
𝛼2" ○

consequence↓
post(⊇,⊆) ○

graph
∣∣↓
𝛼G ○

trans-
former↓
Post ○

relational
semantics

∣∣↓
𝛼C(

collecting
semantics↓{∣S∣}") (25)

= {⟨𝑃, 𝑄⟩ ∣ ∀𝜎 ∈ 𝑃 . ∀𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ !S"" ⇒ 𝜎 ′ ∈ 𝑄 ∪ {(}}
The set of valid Hoare triples {𝑃}S{𝑄} is the set of pairs ⟨𝑃,𝑄⟩ in 𝛼H(!S"") such that any execution
started in a state 𝜎 of 𝑃 , that terminates, if ever, does terminate in a state 𝜎 ′ of 𝑄 . ∎

Example I.3.10. Similarly the assertional abstraction 𝛼↓2 of Manna and Pnueli logic (17) yields
Apt and Plotkin generalization of Hoare logic to total correctness [Apt and Plotkin 1986, equation
(6), page 749] (generalizing [Harel 1979] using naturals to unbounded nondeterminism using or-
dinals, equivalently a variant function in well-founded sets, as first considered by Turing [Turing
1950] and Floyd [Floyd 1967]). ∎

Similarly, we can define an abstraction by projection on the first component
𝛼−1(𝑟) ≜ 𝑟−1 𝛼↓1 ≜ 𝛼↓2 ○ 𝛼−1 𝛾↓1 ≜ 𝛼−1 ○ 𝛾↓2 (26)

so that by composition of Galois connections and isomorphisms (proposition B.1) and by the forth-
coming (27), we have Galois connection similar to (23) for ⟨𝛼↓1 , 𝛾↓1⟩.

One may wonder why, for such a well-known result, we have considered so many successive
abstractions (six when including the abstraction (5) of the collecting semantics into the relational
semantics). There are three main reasons.
(1) The composition of Galois connections and isomorphisms is a Galois connection (Prop. B.1 in

the appendix). Since abstractions preserves existing joins and concretizations preserve existing
meets, we get “healthiness conditions” (such as [Hoare 1978, (H2), page 469]) as theorems,
not hypotheses. In absence of a Galois connection, there would be no unique, most precise
approximation, of the collecting semantics by a formula of the logic (e.g. [Gotsman et al. 2011]);

(2) By varying slightly the abstractions, we get a hierarchy of transformational logics (which ex-
tends the hierarchy of semantics in [Cousot 2002]), that we can compare without even knowing
their proof systems. This is the objective for the rest of this part I on the theories of logics;

(3) Knowing the program semantics and its abstraction to the theory of a logic, we can construc-
tively design, by calculus, a sound and complete proof system for this logic. This will be devel-
oped in part II.

I.3.7 The Forward Transformational Logics Hierarchy
We have built the theories of logics in Fig. 1 by composition of abstractions. The relational and as-
sertional logics are considered equivalent in practice by using an auxiliary program with phantom
variables recording the values of the initial or final variables (see Sect. E.1 in the appendix). By
allowing the explicit use of nontermination ( in the postcondition, the over/under approximating

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:10 Patrick Cousot

℘(℘(Y) × ℘(Z)) where e.g. the postcondition is on final states and unrelated to the initial ones.
This is an abstraction by projection on the second component A◯
⟨℘(X ×Y), ⊆⟩ −−−−−→←−−−−−

𝛼↓2
𝛾↓2 ⟨℘(Y), ⊆⟩, ⟨℘(℘(X ×Y) × ℘(X ×Z)), ⊆⟩ −−−−−→←−−−−−

.
𝛼↓2

.
𝛾↓2 ⟨℘(℘(Y) × ℘(Z)), ⊆⟩ (23)

with
𝛼↓2(𝑃) ≜ {𝜎 ∣ ∃𝜎0 . ⟨𝜎0, 𝜎⟩ ∈ 𝑃} 𝛾↓2(𝑄) ≜ X ×𝑄 (24)
.
𝛼↓2(𝑅) ≜ {⟨𝛼↓2(𝑃), 𝛼↓2(𝑄)⟩ ∣ ⟨𝑃, 𝑄⟩ ∈ 𝑅} .

𝛾↓2(𝑅′) ≜ {⟨𝛾↓2(𝑃 ′), 𝛾↓2(𝑄 ′)⟩ ∣ ⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑃}
Example I.3.9. At this point we have got the theory of Hoare logic as the abstraction

𝛼H({∣S∣}") ≜
assertional↓

𝛼↓2 ○

nontermination
∣∣↓
𝛼2" ○

consequence↓
post(⊇,⊆) ○

graph
∣∣↓
𝛼G ○

trans-
former↓
Post ○

relational
semantics

∣∣↓
𝛼C(

collecting
semantics↓{∣S∣}") (25)

= {⟨𝑃, 𝑄⟩ ∣ ∀𝜎 ∈ 𝑃 . ∀𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ !S"" ⇒ 𝜎 ′ ∈ 𝑄 ∪ {(}}
The set of valid Hoare triples {𝑃}S{𝑄} is the set of pairs ⟨𝑃,𝑄⟩ in 𝛼H(!S"") such that any execution
started in a state 𝜎 of 𝑃 , that terminates, if ever, does terminate in a state 𝜎 ′ of 𝑄 . ∎

Example I.3.10. Similarly the assertional abstraction 𝛼↓2 of Manna and Pnueli logic (17) yields
Apt and Plotkin generalization of Hoare logic to total correctness [Apt and Plotkin 1986, equation
(6), page 749] (generalizing [Harel 1979] using naturals to unbounded nondeterminism using or-
dinals, equivalently a variant function in well-founded sets, as first considered by Turing [Turing
1950] and Floyd [Floyd 1967]). ∎

Similarly, we can define an abstraction by projection on the first component
𝛼−1(𝑟) ≜ 𝑟−1 𝛼↓1 ≜ 𝛼↓2 ○ 𝛼−1 𝛾↓1 ≜ 𝛼−1 ○ 𝛾↓2 (26)

so that by composition of Galois connections and isomorphisms (proposition B.1) and by the forth-
coming (27), we have Galois connection similar to (23) for ⟨𝛼↓1 , 𝛾↓1⟩.

One may wonder why, for such a well-known result, we have considered so many successive
abstractions (six when including the abstraction (5) of the collecting semantics into the relational
semantics). There are three main reasons.
(1) The composition of Galois connections and isomorphisms is a Galois connection (Prop. B.1 in

the appendix). Since abstractions preserves existing joins and concretizations preserve existing
meets, we get “healthiness conditions” (such as [Hoare 1978, (H2), page 469]) as theorems,
not hypotheses. In absence of a Galois connection, there would be no unique, most precise
approximation, of the collecting semantics by a formula of the logic (e.g. [Gotsman et al. 2011]);

(2) By varying slightly the abstractions, we get a hierarchy of transformational logics (which ex-
tends the hierarchy of semantics in [Cousot 2002]), that we can compare without even knowing
their proof systems. This is the objective for the rest of this part I on the theories of logics;

(3) Knowing the program semantics and its abstraction to the theory of a logic, we can construc-
tively design, by calculus, a sound and complete proof system for this logic. This will be devel-
oped in part II.

I.3.7 The Forward Transformational Logics Hierarchy
We have built the theories of logics in Fig. 1 by composition of abstractions. The relational and as-
sertional logics are considered equivalent in practice by using an auxiliary program with phantom
variables recording the values of the initial or final variables (see Sect. E.1 in the appendix). By
allowing the explicit use of nontermination ( in the postcondition, the over/under approximating

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:10 Patrick Cousot

℘(℘(Y) × ℘(Z)) where e.g. the postcondition is on final states and unrelated to the initial ones.
This is an abstraction by projection on the second component A◯
⟨℘(X ×Y), ⊆⟩ −−−−−→←−−−−−

𝛼↓2
𝛾↓2 ⟨℘(Y), ⊆⟩, ⟨℘(℘(X ×Y) × ℘(X ×Z)), ⊆⟩ −−−−−→←−−−−−

.
𝛼↓2

.
𝛾↓2 ⟨℘(℘(Y) × ℘(Z)), ⊆⟩ (23)

with
𝛼↓2(𝑃) ≜ {𝜎 ∣ ∃𝜎0 . ⟨𝜎0, 𝜎⟩ ∈ 𝑃} 𝛾↓2(𝑄) ≜ X ×𝑄 (24)
.
𝛼↓2(𝑅) ≜ {⟨𝛼↓2(𝑃), 𝛼↓2(𝑄)⟩ ∣ ⟨𝑃, 𝑄⟩ ∈ 𝑅} .

𝛾↓2(𝑅′) ≜ {⟨𝛾↓2(𝑃 ′), 𝛾↓2(𝑄 ′)⟩ ∣ ⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑃}
Example I.3.9. At this point we have got the theory of Hoare logic as the abstraction

𝛼H({∣S∣}") ≜
assertional↓

𝛼↓2 ○

nontermination
∣∣↓
𝛼2" ○

consequence↓
post(⊇,⊆) ○

graph
∣∣↓
𝛼G ○

trans-
former↓
Post ○

relational
semantics

∣∣↓
𝛼C(

collecting
semantics↓{∣S∣}") (25)

= {⟨𝑃, 𝑄⟩ ∣ ∀𝜎 ∈ 𝑃 . ∀𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ !S"" ⇒ 𝜎 ′ ∈ 𝑄 ∪ {(}}
The set of valid Hoare triples {𝑃}S{𝑄} is the set of pairs ⟨𝑃,𝑄⟩ in 𝛼H(!S"") such that any execution
started in a state 𝜎 of 𝑃 , that terminates, if ever, does terminate in a state 𝜎 ′ of 𝑄 . ∎

Example I.3.10. Similarly the assertional abstraction 𝛼↓2 of Manna and Pnueli logic (17) yields
Apt and Plotkin generalization of Hoare logic to total correctness [Apt and Plotkin 1986, equation
(6), page 749] (generalizing [Harel 1979] using naturals to unbounded nondeterminism using or-
dinals, equivalently a variant function in well-founded sets, as first considered by Turing [Turing
1950] and Floyd [Floyd 1967]). ∎

Similarly, we can define an abstraction by projection on the first component
𝛼−1(𝑟) ≜ 𝑟−1 𝛼↓1 ≜ 𝛼↓2 ○ 𝛼−1 𝛾↓1 ≜ 𝛼−1 ○ 𝛾↓2 (26)

so that by composition of Galois connections and isomorphisms (proposition B.1) and by the forth-
coming (27), we have Galois connection similar to (23) for ⟨𝛼↓1 , 𝛾↓1⟩.

One may wonder why, for such a well-known result, we have considered so many successive
abstractions (six when including the abstraction (5) of the collecting semantics into the relational
semantics). There are three main reasons.
(1) The composition of Galois connections and isomorphisms is a Galois connection (Prop. B.1 in

the appendix). Since abstractions preserves existing joins and concretizations preserve existing
meets, we get “healthiness conditions” (such as [Hoare 1978, (H2), page 469]) as theorems,
not hypotheses. In absence of a Galois connection, there would be no unique, most precise
approximation, of the collecting semantics by a formula of the logic (e.g. [Gotsman et al. 2011]);

(2) By varying slightly the abstractions, we get a hierarchy of transformational logics (which ex-
tends the hierarchy of semantics in [Cousot 2002]), that we can compare without even knowing
their proof systems. This is the objective for the rest of this part I on the theories of logics;

(3) Knowing the program semantics and its abstraction to the theory of a logic, we can construc-
tively design, by calculus, a sound and complete proof system for this logic. This will be devel-
oped in part II.

I.3.7 The Forward Transformational Logics Hierarchy
We have built the theories of logics in Fig. 1 by composition of abstractions. The relational and as-
sertional logics are considered equivalent in practice by using an auxiliary program with phantom
variables recording the values of the initial or final variables (see Sect. E.1 in the appendix). By
allowing the explicit use of nontermination ( in the postcondition, the over/under approximating

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.



© P. Cousot 2024 83


