
3

The Systematic Design of Responsibility Analysis
by Abstract Interpretation

CHAOQIANG DENG and PATRICK COUSOT, New York University

Given a behavior of interest, automatically determining the corresponding responsible entity (i.e., the root
cause) is a task of critical importance in program static analysis. In this article, a novel definition of respon-
sibility based on the abstraction of trace semantics is proposed, which takes into account the cognizance of
observer, which, to the best of our knowledge, is a new innovative idea in program analysis. Compared to
current dependency and causality analysis methods, the responsibility analysis is demonstrated to be more
precise on various examples.

However, the concrete trace semantics used in defining responsibility is uncomputable in general, which
makes the corresponding concrete responsibility analysis undecidable. To solve this problem, the article
proposes a sound framework of abstract responsibility analysis, which allows a balance between cost and
precision. Essentially, the abstract analysis builds a trace partitioning automaton by an iteration of over-
approximating forward reachability analysis with trace partitioning and under/over-approximating backward
impossible failure accessibility analysis, and determines the bounds of potentially responsible entities along
paths in the automaton. Unlike the concrete responsibility analysis that identifies exactly a single action as
the responsible entity along every concrete trace, the abstract analysis may lose some precision and find mul-
tiple actions potentially responsible along each automaton path. However, the soundness is preserved, and
every responsible entity in the concrete is guaranteed to be also found responsible in the abstract.

CCS Concepts: • Theory of computation→ Program analysis; Abstraction;

Additional Key Words and Phrases: Responsibility analysis, abstract interpretation, cognizance, forward

reachability analysis, backward accessibility analysis, trace partitioning, dependency, causality

ACM Reference format:

Chaoqiang Deng and Patrick Cousot. 2021. The Systematic Design of Responsibility Analysis by Abstract
Interpretation. ACM Trans. Program. Lang. Syst. 44, 1, Article 3 (December 2021), 90 pages.
https://doi.org/10.1145/3484938

1 INTRODUCTION

Determining the responsible entity (or, say, the root cause) of given behaviors of interest is an
essential problem in the field of program analysis, especially for safety and security critical systems.
For instance, given an undesired behavior (e.g., rounding error, buffer overflow) in the program, it is
of significance to identify the responsible entity and configure the program accordingly, such that
the undesired behavior can be prevented; similarly, determining the responsible entity for desired

The work presented in this article was supported in part by NSF Grant CNS-1446511 and NSF Grant CCF-1617717.
Authors’ address: C. Deng and P. Cousot, New York University, 60 Fifth Avenue, New York City, NY, USA, 10011; emails:
{deng, pcousot}@cs.nyu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0164-0925/2021/12-ART3 $15.00
https://doi.org/10.1145/3484938

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

https://doi.org/10.1145/3484938
mailto:permissions@acm.org
https://doi.org/10.1145/3484938

3:2 C. Deng and P. Cousot

behaviors (e.g., no occurrence of runtime errors, non-interference) helps programmers discovering
solutions that ensure the program safety and security.

In this article, we aim at designing a generic theoretical framework of responsibility analysis,
which can be instantiated in a broad range of cases to determine responsibility automatically. Con-
trary to accountability mechanisms [29, 39, 76] that track down perpetrators after the fact, we
need to detect the responsible entity before deploying the analyzed system. Due to the massive
scale of modern software, it is virtually impossible to identify responsible entities manually. Thus,
the only possible solution is to use the static analysis, which can examine all possible executions
of a program without executing them.

Currently, the existing static analysis techniques, such as dependency analysis [1, 12, 73], taint
analysis [64], and program slicing [75], do help in narrowing down the scope of possible locations
of responsible entities. However, no matter whether adopting semantic or syntactic methods, these
techniques are not precise enough to explicitly identify responsibility. Meanwhile, the recent re-
search on causality, such as the actual causality [34, 35, 63] that is based on the structural equations
model (SEM) [15], succeeds in detecting cause-effect relationships in various scenarios that cannot
be handled well by classic counterfactual causality [51, 52]. While the actual causality analysis is
initially designed for artificial intelligence, it has been extended to reason about computational
models and applied to bounded model checking [9, 47, 49]. Nevertheless, it cannot directly ana-
lyze the program syntax, and the adopted SEM unnecessarily misses some information (e.g., the
temporal ordering of actions, whether an entity is free to make choices or not) that are inherent
in the program semantics and indispensable in determining responsibility accurately.

To solve the above problems, we propose a novel definition of responsibility (Section 3) based
on the abstraction of trace semantics, which is demonstrated to be more precise than current
dependency/causality analysis. Roughly speaking, to the cognizance of an observer, an action a R

is responsible for the behavior B of interest in a given execution if and only if, according to the
observer’s observation, a R is free to make choices, and such a choice is the first one that guarantees
the occurrence of B in that execution. It is worth noting that our definition of responsibility in
this article is a variant of the original one proposed in References [25, 26], such that the revised
definition is more suitable for analyzing programs and handling system behaviors of complex
structure.

In addition, another major challenge encountered is that the concrete trace semantics used in
the definition of responsibility is uncomputable in general, making the corresponding concrete re-
sponsibility analysis undecidable. To solve this problem, this article seeks to compute a sound over-
approximation of responsibility by abstract interpretation [18, 20, 21]. Abstract interpretation is a
general theory to reason on computer programs by the approximations of program semantics, and
its principle is to replace the computations on concrete semantics with computations in computer-
represented abstractions that, for the sake of efficiency, only represent a selected subset of program
properties and ignore others [61]. Specifically, here we propose to abstract the program trace se-
mantics by trace partitioning automata (Section 5) that can be constructed by over-approximating
forward (possible success) reachability analysis with trace partitioning [53, 70]. Furthermore, to-
gether with the under-approximating [60, 61] and over-approximating backward impossible failure
accessibility analysis (Section 4), we present a sound framework of abstract responsibility analysis
(Section 7), which determines the possible range of responsible entities along paths in the automa-
ton. Although the abstract analysis loses precision to some extent, the soundness is preserved.
That is to say, it is guaranteed that every action that is found responsible in the concrete must be
also determined responsible in the abstract, and every action that is not found responsible in the
abstract cannot be responsible in the concrete.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:3

The application of responsibility analysis is pervasive. Although the implementation of an au-
tomatic responsibility analyzer is not provided here, we have demonstrated its effectiveness by
various simple examples (Section 3.3), which includes the access control, negative balance/buffer
overflow, division by zero/login attack, and information leakage.

Contribution. In this article, we present preliminary work towards the fully automatic responsi-
bility analysis by abstract interpretation. To be more precise, the key contributions are:
• A novel definition of responsibility based on the abstract interpretation of trace semantics

is introduced, where the observer’s cognizance allows analyzing the responsibility from the
perspective of different observers. Compared with the initial definition [25, 26] that is defined
on event trace semantics, the revised definition in this article is based on the abstraction of
state trace semantics, making it more suitable to analyze programs. Moreover, the definition
is enhanced to handle the lattice of system behaviors of more complex structures.
• Two types of reachability/accessibility semantics are formalized: the forward possible suc-

cess reachability semantics and the backward impossible failure accessibility semantics.
Similar to the under-approximating backward impossible failure accessibility analysis pro-
posed by Miné [60, 61], we take three popular numerical abstract domains (i.e., inter-
vals [19], polyhedra [24], and octagons [56–58]) as examples, and discuss the design of
an over-approximating forward possible success reachability analysis, as well as an over-
approximating backward impossible failure accessibility analysis.
• The trace partitioning domain proposed by Mauborgne and Rival [53, 70] is extended with

partitioning directives based on program invariants, and trace partitioning automata are
introduced to intuitively represent partitioned trace semantics.
• The method of specifying behaviors of interest and the observer’s cognizance in the abstract

domain is presented, as well as a sound approach of checking the validity of partitioning
directives with respect to the given abstract cognizance.
• A sound framework of abstract responsibility analysis is proposed, which consists of

an iteration of over-approximating forward possible success reachability analysis with
trace partitioning and under/over-approximating backward impossible failure accessibility
analysis.

Outline. Section 2 introduces the syntax and semantics of a transition system, which is generic
to handle programs written in various languages. Section 3 discusses the characteristics of respon-
sibility, formalizes the concrete definition of responsibility as an abstraction of the program trace
semantics, and exemplifies the applications of responsibility analysis. The next two sections are
the basis for abstract responsibility analysis: Section 4 formalizes four types of reachability/accessi-
bility semantics and summarizes the design of over-approximating forward possible success reach-
ability analysis and under/over-approximating backward impossible failure accessibility analysis;
Section 5 proposes to construct the trace partitioning automaton by over-approximating forward
reachability analysis with trace partitioning. Section 6 describes the user specification of behaviors
and cognizance in the abstract, and Section 7 illustrates the framework of abstract responsibility
analysis. Section 8 reviews related work, and Section 9 concludes and discusses future work. Last,
we have the proofs of all non-trivial results, most of which are relegated to Appendix A.

2 PROGRAM SYNTAX AND SEMANTICS

In this article, programs are modeled as transition systems [71, Ch.2.4], providing a language-
independent small-step operational semantics that is generic to handle various programming lan-
guages (including a simple language introduced here, which is similar to a subset of C language).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:4 C. Deng and P. Cousot

Fig. 1. Transition system domains.

2.1 Program Syntax

Transition Systems. As illustrated in Figure 1, V is the set of all possible values. X is the set of
variables. M is the set of environments, each of which maps all the variables to their values. L is
the set of program points; specially, l i ∈ L is the initial program point, and l f ∈ L is the final
program point. S = L ×M is the set of states, each of which is a pair of a program point l ∈ L
and an environment ρ ∈ M. Specially, Si ∈ ℘(S) denotes the set of initial states, which can be
implemented as Si = {l i } × M in practice; Sf ∈ ℘(S) denotes the set of final states, which is
implemented as Sf = {l f } × M and represents correct program termination; and ω denotes the
error state, which represents the incorrect program termination (e.g., division by zero). By abuse
of notation,ω also denotes the error in expression evaluations and the error environment.A is the
set of all actions (i.e., atomic instructions) in the program, e.g., assignments, Boolean tests, skip,
external inputs, random number generations, variable initialization, and so on.

The transition relation can be defined as →∈ ℘(S × A × S), such that 〈s, a, s ′〉 ∈→ (or,

s
a−→ s ′) denotes an atomic step from one state s to another state s ′ after executing the action

a. Alternatively, we can omit the action a, and define the transition relation as → ∈ ℘(S × S),
such that an atomic step from s to s ′ is denoted as s → s ′. To be consistent with the notations in
Reference [70], here we adopt the later definition of transition relation, and the omitted actions
can be easily retrieved from the program source code. In addition, it is assumed that there is no
outgoing transition from final states or the error state (i.e. ∀s ∈ Sf ∪ {ω}. ∀s ′ ∈ S. s 	→ s ′).

A transition system (or, program) P = 〈Si , →〉 is defined as a pair of the set of initial states and
the transition relation, which is generic to represent programs written in various languages.

A Simple Language. To formalize the forward reachability analysis and backward accessibility
analysis for numerical programs in Section 4, we instantiate the transition system by a simple
programming language in Figure 2. It is similar to the language used in Reference [60], except
the ternary operation (or conditional operation) “bexpr ? expr : expr,” which can be equivalently
represented by a conditional. More precisely, X is a finite fixed set of real-valued variables (i.e.,
V = R are real numbers and can be further restricted to integers Z), expr denotes numerical
expressions, and bexpr denotes Boolean expressions. Besides, an interval [a;b] returns a random
number between the left bound a and the right bound b, which facilitates directly representing
non-determinism. Specially, when a = b, the interval [a;b] denotes the constant number a. In
addition, it is assumed that each atomic statement is associated with a unique program point l
from L.

Every program written in this simple language can be modeled by a transition system, in
which each action is either an assignment x := expr or a Boolean test bexpr. In addition, as
shown in Figure 3, for every (numerical or Boolean) expression e, its semantics �e�ρ is defined
as the set of all possible (numerical or Boolean) values that e may take in a given environment
ρ (tt denotes true, while ff denotes false); for each action a, we define an environment transfer

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:5

Fig. 2. The syntax of a simple language.

Fig. 3. The environment transfer functions and expression semantics.

function τ {| a |} ∈ ℘(M) ↗−→ ℘(M ∪ {ω}), which maps a set of environments before a to the set of
reachable environments after it, including the error state ω if the execution of a encounters an
error. From these environment transfer functions, the corresponding transition relation → can
be easily derived: For any atomic action of the form l a l ′ , the transition relation is {〈l , ρ〉 → 〈l ′,
ρ ′〉 | ρ, ρ ′ ∈ M ∧ ρ ′ ∈ τ {| a |}({ρ})} ∪ {〈l , ρ〉 → ω | ρ ∈ M ∧ ω ∈ τ {| a |}({ρ})}; for any program P,
its transition relation is the union of transition relations defined for all its atomic actions.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:6 C. Deng and P. Cousot

2.2 Program Semantics

Traces. For any program (i.e., transition system), an execution is represented by a finite or infi-
nite sequence of states, which is called as a trace; the program semantics is a set of such executions,
and a trace property is a set of traces that have this property.

In the following, we write σ = s0· · ·sn−1 to denote a finite trace of exactly length n, where the
(i + 1)th state si = 〈li , ρi 〉 ∈ S along the trace is denoted as σ[i]; equivalently, such a finite trace of
length n can be represented as a mapping from natural numbers in [0,n − 1] to states. Similarly,
we write σ = s0· · ·si · · · to denote an infinite trace that does not terminate, and such a trace can be
equivalently represented as a mapping from all natural numbers to states. Specially, ε denotes the
empty trace. In addition, by abuse of notation, we say a state s belongs to a trace σ (i.e., s ∈ σ), if
there exists a natural number i ∈ N such that σ[i] = s .

For any trace σ , its length |σ | is the number of states in σ . Specially, the length of the empty
trace |ε | is 0; for an infinite trace σ , its length |σ | is denoted as∞.

σ ∈ S
+ �

⋃
n�1

([0,n − 1]
→ S) finite traces

σ ∈ S
∗ � {ε } ∪ S+ empty or finite traces

σ ∈ S
∞ � N
→ S infinite traces

σ ∈ S
+∞ � S

+ ∪ S∞ finite or infinite traces

σ ∈ S
∗∞ � {ε } ∪ S+∞ empty or finite or infinite traces

The concatenation of a finite trace σ = s0· · ·sn−1 and a state s is defined by juxtaposition σ s such
that σ s = s0· · ·sn−1s ; the concatenation of a finite trace σ = s0· · ·sn−1 and a transition τ = sn−1 → sn

is denoted as στ such that στ = s0· · ·sn−1sn ; the concatenation of a finite traces σ = s0· · ·sn−1 and
another (finite or infinite) trace σ ′ = s ′0· · · is denoted as σσ ′ such that σσ ′ = s0· · ·sn−1s ′0· · ·; the
concatenation of an infinite trace σ and another trace (or a state, a transition) is the same as σ itself.

A trace σ is said to be � - less than or equal to another trace σ ′ if and only if σ is a prefix of σ ′.
Besides, for any set T of traces, we define Pref (T) as the set of prefixes of traces in T .

σ � σ ′ � |σ | � |σ ′ | ∧ ∀ 0 � i < |σ | : σ[i] = σ ′[i] ordering of traces

Pref ∈ ℘(S∗∞)
→ ℘(S∗∞) prefixes of traces

Pref (T) � {σ ′ ∈ S∗∞ | ∃σ ∈ T . σ ′ � σ }

Trace semantics. For a program P = 〈Si , →〉, a valid intermediate (partial) trace σ is a finite or
infinite trace, along which every two successive states are bounded by the transition relation→.
The intermediate (partial) trace semantics �P�It ∈ ℘(S∗∞) is the set of all valid intermediate traces
for P, i.e., �P�It � {s0· · ·sn−1 ∈ S∗ | ∀i ∈ [0,n − 2]. si → si+1} ∪ {s0· · ·si · · · ∈ S∞ | ∀i ∈ N. si → si+1}.
This semantics is a formal description of the executions of P, which start from any state and stop
at any time or do not ever stop.

A valid prefix trace σ is a finite or infinite trace, such that it starts from an initial state s ∈ Si

and every two successive states along the trace are related by the transition relation→. The prefix

trace semantics �P�Pref ∈ ℘(S∗∞) of P is the set of valid prefix traces, i.e., �P�Pref � {σ ∈ �P�It |
σ[0] ∈ Si } = {s0· · ·sn−1 ∈ S∗ | s0 ∈ Si ∧ ∀i ∈ [0,n − 2]. si → si+1} ∪ {s0· · ·si · · · ∈ S∞ | s0 ∈ Si ∧ ∀i ∈
N. si → si+1}. This semantics is a formal description of the executions of P, which start from any
initial state and stop at any time or do not ever stop.

A valid maximal trace σ is a finite or infinite trace, such that it starts from an initial state s ∈ Si ,
every two successive states are related by the transition relation→, and either it terminates at a
final state s ′ ∈ Sf or the error state ω, or it does not ever terminate. The maximal trace semantics

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:7

Fig. 4. Access control program example.

�P�Max ∈ ℘(S∗∞) of P is the set of valid maximal traces, i.e., �P�Max � {s0· · ·sn−1 ∈ S∗ | s0 ∈
S

i ∧ ∀i ∈ [0,n − 2]. si → si+1 ∧ sn−1 ∈ Sf ∪ {ω}} ∪ {s0· · ·si · · · ∈ S∞ | s0 ∈ Si ∧ ∀i ∈ N. si → si+1}.
This semantics is a formal description of the executions of P, which start from any initial state and
stop only at final states or crash or last forever. It is not hard to see that �P�Max ⊆ �P�Pref ⊆ �P�It. In
addition, the prefix trace semantics �P�Pref is an abstraction of the maximal trace semantics �P�Max

via the function Pref, i.e., �P�Pref = Pref (�P�Max).

Example 1 (Access Control). The program in Figure 4 can be interpreted as an access control
program for an object o (e.g., a confidential file) such that o can be accessed if and only if both two
admins approve the access and the permission type of o from system settings is greater than or
equal to “read only.” For the sake of clarity, it is assumed that in this example the evaluation of an
interval returns only integers (i.e., V = Z), and the analysis is similar to analyzing real numbers.
Specifically, in lines 2 and 4, the variable i1 and i2 assigned by a non-deterministic integer from
[−1; 2] are used to mimic external inputs that correspond to the decisions of two independent
admins, where a positive value (i.e., 1 or 2) represents approving the access to o, while 0 or a
negative value (i.e., −1) represents rejecting the access; in line 6, the variable typ assigned by [1; 2]
mimics the action of reading the permission type of o specified in the system settings (e.g., we can
assume that 1 represents “read only,” and 2 represents “read and write,” which is similar to the file
permissions system in Unix); in line 8, the access to o succeeds only when the value of acs is strictly
positive (i.e., 1 or 2), which guarantees that both admins approve the access and the permission
type of o is at least as high as “read only.”

Here, we are interested in: When the access to o fails in the execution (referred as “Access
Failure,” i.e., acs ≤ 0 at point l8), which action (actions) shall be responsible?

Throughout this article, we use this example to illustrate responsibility analysis. To begin
with, we represent the above program as a transition system: the set of program points L =
{l1, l2, l3, l4, l5, l6, l7, l8}; the set of variables X = {apv , i1, i2, typ, acs }; the set of environments M =
X
→ Z, where Z is the set of integers; the set of states S = L × M, the set of initial states
S

i = {l1} ×M, and the set of final states Sf = {l8} ×M. Moreover, the transition relation→ can be
easily derived from the environment transfer functions for the atomic actions (e.g., τ {| i1 := [−1; 2] |},
τ {|apv := (i1 ≤ 0) ? − 1 : apv |}).

Next, consider its trace semantics. It is obvious that there is no valid infinite trace and there is
no possibility to reach the error stateω, thus a valid maximal trace must start from the initial point
l1 and terminate at the final point l8. More precisely, its maximal trace semantics �P�Max = {〈l1,
ρ1〉〈l2, ρ2〉〈l3, ρ3〉〈l4, ρ4〉〈l5, ρ5〉〈l6, ρ6〉〈l7, ρ7〉〈l8, ρ8〉 | (ρ1 ∈ M) ∧ (ρ2 = ρ1[apv
→ 1]) ∧ (ρ3 =

ρ2[i1
→ v1]∧ v1 ∈ {−1, 0, 1, 2}) ∧ (ρ4 = ρ3[apv
→ ((ρ3 (i1) <= 0)? − 1 : ρ3 (apv))]) ∧ (ρ5 = ρ4[i2
→
v2] ∧ v2 ∈ {−1, 0, 1, 2}) ∧ (ρ6 = ρ5[apv
→ ((ρ5 (apv) >= 1 ∧ ρ5 (i2) <= 0)? − 1 : ρ5 (apv))]) ∧ (ρ7 =

ρ6[typ
→ v3] ∧ v3 ∈ {1, 2}) ∧ (ρ8 = ρ7[acs
→ ρ7 (apv) × ρ7 (typ)])}. In addition, the trace property

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:8 C. Deng and P. Cousot

“Access Failure” can be represented by a set of maximal traces in which the value of acs is less than
or equal to 0 at point l8, i.e., {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ (acs) <= 0}.

3 THE DEFINITION OF RESPONSIBILITY

The objective of this section is to give a formal definition of responsibility in the concrete. To start
with, we introduce a simple but thought-provoking example of forest fire, which characterizes the
difference of responsibility with dependency and causality. Inspired by this forest fire example, we
suggest an informal definition of responsibility, which is quite intuitive and applicable to analyz-
ing various behaviors. Furthermore, we design a framework of concrete responsibility analysis, in
which the responsibility is formally defined as an abstraction of the trace semantics. The appli-
cation of responsibility analysis is demonstrated to be pervasive by examples, including negative
balance/buffer overflow, division by zero/login attack, and information leakage.

3.1 The Characteristics of Responsibility

Here, we start with a simple intuitive example of forest fire used in defining actual cause [34, 35]
and further characterize three indispensable elements in defining responsibility.

Example 2 (Forest Fire). Suppose that two arsonists drop lit matches in different parts of a dry
forest on a windy day, and both cause trees to start burning. Here it is assumed that one arsonist
named A drops the lit match before the other arsonist B, and there are two scenarios. In the first
scenario, called the disjunctive scenario, either match by itself suffices to burn down the whole
forest. That is to say, even if only one match were lit, the forest would burn down. In the second
scenario, called the conjunctive scenario, two lit matches are necessary to burn down the whole
forest; if only one match were lit, some trees would be burnt, but the fire dies down before the
whole forest is destroyed.

It is quite natural to bring up this question: Who shall be responsible for burning down the
whole forest? The literature has several possible answers. First, a simple but popular solution is the
dependency analysis [1, 12, 17, 48, 73] that determines how entities (e.g., values of variables) depend
upon other entities. Suppose we use variables to represent all the entities in the forest fire example
(e.g., the decisions of two arsonists, the status of matches, the fire condition of the forest, the
weather), then the real-life example of forest fire can be viewed as an equivalent computer program.
By the definition of dependency, in both scenarios the forest fire depends on those two arsonists,
as well as many other non-decisive factors, such as the wind, which influences the spreading speed
of forest fire. Such a result is correct, but far from precise: The wind could not either enforce or
prevent the fire, and it is against the intuition to take such non-decisive factors as responsible
entities.

Next, the classic counterfactual causality [51, 52] determines causality according to a criterion:
An event e is a cause of the occurrence of another event e ′ if and only if were e not to occur,
e ′ would not happen. Such a criterion excludes non-decisive factors (e.g., the wind) from causes.
For instance, if there was no wind, then the forest would still be burnt down, hence the wind
is not a cause of the forest fire. However, the counterfactual causality may be too strict in some
circumstances. Take the disjunctive scenario of forest fire as an example, if A (respectively, B) did
not drop a lit match, then the forest would still be burnt down due to the other arsonist, hence the
forest fire does not counterfactually depend on any single event, and no entity is determined as
the cause of fire.

Last, consider the actual cause [34, 35, 63] that is based on the structural equations model (SEM)
[15] and allows “contingent counterfactual dependency.” More precisely, events are represented
by variable values in the SEM, and an event e is an actual cause of another event e ′ if there exists a

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:9

contingency (where the values for other variables may be changed) such that e ′ counterfactually
depends on e . Taking the disjunctive scenario of forest fire as an example, the arsonist A is de-
termined as an actual cause of the forest fire, since the forest fire counterfactually depends on A’s
action of dropping a lit match under the contingency where the other arsonist B does not drop a lit
match; in a similar way, the arsonist B is also determined as an actual cause of the forest fire. Such
a structural model method has allowed for a great progress in causality analysis, solving many
problems of previous approaches. In addition, it has been extended to reason about computational
models and applied to bounded model checking [9, 47, 49]. However, as an abstraction of the con-
crete semantics, the SEM unnecessarily misses the following three essential points in determining
responsibility:

(P1) The temporal ordering of events/actions should be taken into account. For instance, in the forest
fire example, the SEM cannot tell the difference whetherA or B drops a lit match first, hence
determines both arsonists as the cause of forest fire. Such a result may not seem to be absurd,
but imagine the case that the forest has already been burnt down by A before B lit her/his
match in the disjunctive scenario. In such a case, it is against intuition to put B as a cause
of the forest fire. To deal with this problem, Reference [11] suggests to modify the SEM and
introduce some new variable to distinguish whether the forest was actually destroyed by A
or B, which is difficult to accomplish in practice for programs. In contrast, a much simpler
method is to keep the temporal ordering of events/actions, such that only the first action that
guarantees the behavior of interest is counted as the responsible entity. For instance, in the
disjunctive scenario of forest fire, the action of dropping a lit match by A ensures burning
down the whole forest even before B makes her/his choice, thus only A is responsible for
burning down the forest; in the conjunctive scenario of forest fire, the lit match dropped by
A starts a forest fire that would die down unless B drops a second lit match, thus A is only
responsible for starting a forest fire, while B is responsible for burning down the whole forest.

(P2) The responsible entity must be free to make choices. In the forest fire example, suppose that the
match is taken as a separate entity, and its value (i.e., lit or not-lit) solely depends on the cor-
responding arsonist. In the SEM of actual cause, both the arsonists and the matches are rep-
resented by endogenous variables and further determined as actual causes of burning down
the forest. However, it is common sense that the match itself does not have a choice to light
or not, and it is inappropriate to identify matches as responsible entities for the forest fire.
Hence, only the action that can make choices at its own discretion can possibly be responsi-
ble for a behavior. Specifically, in computer programs, such actions include but are not lim-
ited to user inputs, system settings, parameters of procedures or modules, variable initializa-
tion, random number generations, and the parallelism. To be more accurate, it is the external
subject (who does the input, configures the system settings, etc.) that is free to make choices,
but we say that actions like user inputs are free to make choices, as an abuse of language.

(P3) It is necessary to explicitly specify “to whose cognizance” when analyzing the responsibility. All
the above reasoning on causality is implicitly based on the cognizance/knowledge of an om-
niscient observer who knows everything that occurred, yet it is non-trivial to consider the
cognizance of a non-omniscient observer. For instance, we can adopt the cognizance of the
second arsonist B in the forest fire example. In the disjunctive scenario, if B is aware that A
has already dropped a lit match in the forest, then B is not responsible to his/her cognizance,
since B knows that the forest is guaranteed to burn down no matter whether she/he drops
a lit match or not; otherwise, if B does not know a lit match has been dropped, then B is re-
sponsible for the forest fire to her/his cognizance, although she/he is not responsible to the
cognizance of an omniscient observer. Similarly, in the conjunctive scenario, if B is aware

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:10 C. Deng and P. Cousot

that A has already dropped a lit match in the forest, then B understands that it is her/his own
action that ensures burning down the whole forest, hence she/he shall take the responsibility
to her/his cognizance; otherwise, if B does not know that a lit match has been dropped, then
she/he does not expect the whole forest to be burnt down, hence to her/his own cognizance
B is only responsible for starting a forest fire, but not burning down the whole forest. In
most cases, the cognizance of an omniscient observer will be adopted, but not always.

An Informal Definition of Responsibility. To take the above three points into account, this article
proposes responsibility whose informal definition is as follows.

Definition 1 (Responsibility, Informally). To the cognizance of an observer, an action a R is
responsible for the behavior B of interest in a given execution if and only if, according to
the observer’s observation, a R is free to make choices, and such a choice is the first one that
guarantees the occurrence of B in that execution.

It is necessary to point out that, for the whole system whose concrete semantics is a set of
executions, there may exist more than one action that is responsible for B. Nevertheless, in every
single execution where B occurs, there is only one action that is responsible for B. To decide
which action in an execution is responsible, the execution alone is not sufficient, and it is required
to reason on the whole semantics to exhibit the action’s “free choices” and guarantee of B. Thus,
responsibility is not a trace property (neither safety nor liveness property), but a hyper-property
[16], which is a property of sets of execution traces.

In the following, we consider the access control program example in Figure 4 again and discuss
the advantage of the responsibility analysis over the classic dependency/causality analysis in an
informal way, while the responsibility analysis procedure of this access control program will be
formalized in Section 3.2.

Example 3 (Access Control, Continued). For the access control program in Figure 4, the question
that we are interested in is: When the access to o fails in the program execution (referred as “Access
Failure,” i.e., acs ≤ 0 at point l8), which action (actions) shall be responsible?

First, we consider the dependency analysis and corresponding slicing techniques. No matter
whether we adopt the syntactic dependency or semantic dependency, it is not hard to see that the
value of acs at point l8 depends on the value of apv and typ at point l7, which further depend on
the inputs from the two admins and system settings. That is to say, the behavior “access failure”
depends on all variables in the program, thus program slicing techniques (both syntactic slicing
[75] and semantic slicing [69]) would take the whole program as the slice related with access
failure. Although the slicing technique intends to rule out parts of the program that are completely
irrelevant with the behavior of interest, it is too imprecise to be practically useful in this example.
For instance, the computed slice includes the actions such as apv := 1, apv := (i1 ≤ 0) ? − 1 : apv
and acs := apv × typ, which have no free choices: They are completely deterministic and act merely
as the intermediary between causes and effects, thus shall not be treated as responsible entities.
Moreover, similar to the wind in the forest fire example, the action typ := [1; 2] representing the
input from system settings is a non-decisive factor for the access failure behavior (i.e., no matter
whether typ is 1 or 2, it cannot either enforce or prevent the access failure), although it does affect
the value of acs at point l8. Therefore, the dependency analysis and slicing are not precise enough
to identify responsible entities.

Second, using the counterfactual causality proposed by Lewis [51, 52], we can exclude non-
decisive factors (i.e., the action typ := [1; 2] in this example), but it fails to find any cause of the
access failure behavior in the executions where the inputs from both admins are negative or zero.
For example, in the execution where i1 = 0 and i2 = 0, neither inputs would be determined as the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:11

cause, because the behavior of access failure does not counterfactually depend on either of them.
More precisely, if the input from one admin (either i1 or i2) is changed to a strictly positive value
(i.e., 1 or 2), then the access failure would still occur due to the input 0 from the other admin.

Third, we consider the definition of actual cause proposed by Halpern and Pearl [34, 35, 63], and
represent the access control program by a SEM: three non-deterministic inputs from admins and
system settings (i.e., [−1; 2] and [1; 2]) are represented by exogenous variables, and each program
variable is presented by an endogenous variable, whose value is deterministically decided by the
values of other (exogenous or endogenous) variables. Similar to the counterfactual causality by
Lewis, non-decisive factors (i.e., the assignment to typ) would not be counted as actual causes. Yet,
the actual cause allows reasoning counterfactual dependency under a contingency, such that it can
identify causes in the executions where the inputs from both two admins are negative or zero. For
example, in the execution where the inputs from two admins are 0, both i1 = 0 and i2 = 0 are de-
termined as actual causes of access failure, because the access failure counterfactually depends on
i1 = 0 (respectively, i2 = 0) under the contingency where the value of i2 (respectively, i1) is changed
to 1 or 2. Besides, similar to the dependency analysis, the intermediate events between causes and
effects (e.g., apv = −1 and acs = −1) are also determined as actual causes of access failure.

Last, compared with the above dependency/causality analysis, the responsibility analysis accord-
ing to the Definition 1 would be much more precise, and it can accurately identify the responsible
entities of access failure in various cases. Here, we list the entire desired responsibility analysis
results, while the detailed procedure of producing such results is formalized in the next section. (1)
To the cognizance of an omniscient observer: For any execution, if the input from the 1st admin
is negative or zero, then no matter what the other two inputs are, only the action i1 := [−1; 2]
(which represents the input from the 1st admin) is responsible for the access failure behavior, be-
cause it guarantees the access failure even before the 2nd admin inputs her/his decision; if the
input from the 1st admin is positive and the input from the 2nd admin is negative or zero, then
only the action i2 := [−1; 2] (which represents the input from the 2nd admin) is responsible for the
access failure behavior, because the positive input from the 1st admin does not either enforce or
prevent the access failure, while the negative or zero input from the 2nd admin is the first action
that guarantees the access failure; otherwise, if the inputs from both admins are positive, then the
access failure behavior does not occur, thus there is no responsible entity. (2) To the cognizance of
a non-omniscient observer who does not know the input from the 1st admin: For any execution, if
the input from the 2nd admin is negative or zero, then no matter what the input from the 1st admin
is, only the action i2 := [−1; 2] (i.e., the input from the 2nd admin) is responsible for the access
failure behavior, because from the knowledge of the non-omniscient observer, the access failure
behavior is ensured only after the 2nd admin inputs a negative value or zero; otherwise, if the in-
put from the 2nd admin is positive, then whether the access failure occurs or not is uncertain from
the perspective of non-omniscient observer, thus no entity is responsible for the access failure.

After finishing the responsibility analysis, it is time for the user to configure permissions
granted to each responsible entity at her/his discretion. In this example, suppose the cognizance
of an omniscient observer is adopted, then we find that only the inputs from two admins are
possibly responsible for the access failure behavior. If the two admins are authorized to control
the access, then their permissions to input negative values or zero can be kept; otherwise, if those
two admins have no authorization to decline the access to o, then their permissions to input
negative values or zero shall be removed.

3.2 The Framework of Concrete Responsibility Analysis

To put the informal definition of responsibility (Definition 1) into effect, we design a framework
of concrete responsibility analysis as illustrated in Figure 5, which essentially consists of three

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:12 C. Deng and P. Cousot

Fig. 5. Framework of concrete responsibility analysis for access control example.

components: (1) Program semantics, i.e., the set of all possible executions, each of which can be
analyzed individually. (2) A lattice of system behaviors of interest, which is ordered such that the
stronger/stricter a behavior is, the lower is its position in the lattice. (3) An observation function for
each observer, which maps every (probably unfinished) execution to a behavior in the lattice that
is guaranteed to occur, even though such a behavior may not have occurred yet.

In this framework of concrete analysis, if an observer’s observation finds that the guaranteed
behavior grows stronger after extending an execution by an action, then the extended part of
execution (i.e., the action) must be responsible for ensuring the occurrence of the stronger behavior.
Consider the example in Figure 5 that sketches the analysis for a certain execution of the access
control program, where the inputs from both admins are zeros while the input from system settings
is one. Suppose in the lattice of system behaviors, the top �Max represents the behavior “not sure
if the access to o fails or not,” AF represents the behavior of access failure, and AS represents the
behavior of access success, whose formal definitions are given in Section 3.2.2. The solid arrow
from executions to the lattice stands for the observation of an omniscient observer who knows
everything, while the dashed arrow stands for the observation of a non-omniscient observer who
is unaware of the input from 1st admin.

As illustrated in Figure 5, the omniscient observer finds that the execution from point l1 to
point l2 can guarantee only �Max (i.e., before the 1st admin inputs her/his decision, whether the
access to o fails or succeeds is undecided), while the stronger behavior AF is guaranteed when the
execution reaches point l3 (i.e., after the 1st admin inputs zero, it is ensured that the access to o
will fail, even though it has not occurred yet). Thus, to the cognizance of the omniscient observer,
the action between point l2 and l3 (i.e., i1 := [−1; 2] representing the input from 1st admin) is
responsible for the access failure behavior. In contrast, the non-omniscient observer finds that all
the executions upto point l4 guarantee �Max (i.e., she/he does not know the 1st admin already
inputs 0, thus believes that the access failure behavior is not guaranteed yet), and AF is guaranteed
only after point l5 is reached (i.e., only after the 2nd admin inputs zero, the non-omniscient observer
knows that the access failure is ensured to occur). Hence, to the cognizance of the non-omniscient
observer, the action between point l4 and point l5 (i.e., i2 := [−1; 2] representing the input from
2nd admin) is responsible for the access failure. It is easy to see that such results are consistent
with Example 3.

More formally, this section presents the program trace semantics, builds a lattice of system be-
haviors by trace properties, proposes an observation function that derives from the observer’s

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:13

cognizance and an inquiry function on system behaviors. Furthermore, this section formally de-
fines responsibility as an abstraction of program semantics, using the observation function. To
strengthen the intuition of responsibility analysis, the analysis of the access control program ex-
ample will be illustrated step-by-step in the following:

3.2.1 Program Semantics. Generally speaking, no matter what type of program we are con-
cerned with and no matter which programming language is used to implement that program, the
corresponding program semantics can be represented as a set of execution traces.

We assume programs to be modeled as a transition system of the form P = 〈Si ,→〉, as introduced
in Section 2, where the intermediate trace semantics �P�It is defined as the set of traces such that
every two successive states are related by →; the prefix trace semantics �P�Pref is defined as the
set of intermediate traces that start from initial states; and the maximal trace semantics �P�Max

is the set of prefix traces that either terminate at final states or the error state ω, or do not ever
terminate. A trace σ is said to be valid for a program P if and only if σ ∈ �P�Pref . Obviously, the
intermediate/prefix/maximal trace semantics do preserve the temporal ordering of actions, which
is missed by the SEM used by actual causes [34, 35, 63].

Specifically, for the access control program example in Figure 4, its definition of maximal trace
semantics refers to Example 1. For the sake of simplicity, it is assumed that the initial environment
is fixed (e.g., the value of each variable is assumed to be 0 at the initial point l1), hence its maximal
trace semantics �P�Max consists of 32 traces that correspond to different input values from two
admins and the system settings.

3.2.2 Lattice of System Behaviors of Interest.

Trace Property. A trace property is a set of traces. For any given system, many behaviors can be
represented as a maximal trace property T ∈ ℘(�P�Max).

Example 4 (Access Control, Continued). For the access control program example in Figure 4, the
behavior “Access Success” AS (i.e., the access to o succeeds) is represented by a set of maximal
traces such that acs is strictly positive at point l8, i.e., AS = {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8,
ρ〉 ∧ ρ (acs) > 0}. More precisely, along every trace in AS, both the admin inputs and the system
settings are either 1 or 2. Since the initial environment is assumed to be fixed, AS consists of eight
different traces.

The behavior “Access Failure” AF (i.e., the access to o fails) is represented as a set of maximal
traces such that the value of acs is less than or equal to zero at point l8, which is the complement
of AS, i.e., AF = �P�Max\AS = {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ (acs) <= 0}. It is not hard to
see that, along every trace in AF, at least one input from the two admin is −1 or 0, while the input
from system settings is 1 or 2. Hence, AF consists of 24 different traces.

Furthermore, the behavior AS can be split into two parts: RO = {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8,
ρ〉 ∧ ρ (acs) = 1} represents a stronger behavior “Read Only access is granted,” which consists of
four traces; and RW = {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ (acs) = 2} represents another
behavior “Read and Write access is granted,” which also consists of four traces.

Lattice of System Behaviors of Interest. Here, we build a complete lattice of maximal trace proper-
ties, each of which represents a behavior of interest. Typically, such a lattice is of the form 〈LMax,
⊆, �Max, ⊥Max, ·∪, ·∩〉, where

—LMax ∈ ℘(℘(�P�Max)) is a set of behaviors of interest, each of which is represented by a
maximal trace property;

—�Max = �P�Max, i.e., the top of the lattice is the weakest maximal trace property, which holds
in every valid maximal trace;

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:14 C. Deng and P. Cousot

—⊥Max = ∅, i.e., the bottom of the lattice is the strongest property such that no valid trace has
this property, hence it is used to represent the property of invalidity;

—⊆ is the standard set inclusion operation;
— ·∪ and ·∩ are join and meet operations, which might not be the standard ∪ and ∩, since LMax

is a subset of ℘(�P�Max) but not necessarily a sublattice.

For any given system, there is possibly more than one way to build the complete lattice of
maximal trace properties, depending on which behaviors are of interest. A special case of lattice is
the power set of maximal trace semantics, i.e.,LMax = ℘(�P�Max), which can be used to examine the
responsibility for every possible behavior in the system. However, in most cases, a single behavior
is of interest, and it is sufficient to adopt a lattice with only four elements: B representing the
behavior of interest, �P�Max\B representing the complement of the behavior of interest, as well as
the top �P�Max and bottom ∅. Particularly, if B is equal to �P�Max, i.e., every valid maximal trace in
the system has this behavior of interest, then a trivial lattice with only the top and bottom is built,
from which no responsibility can be found, making the corresponding analysis futile.

Example 5 (Access Control, Continued). For the access control program, there are two possible
ways to build the lattice of maximal trace properties. To start with, we consider the lattice displayed
in Figure 5, which consists of six elements. Regarding whether the access to o fails or not, the top
�Max = �P�Max is split into two properties “Access Failure” AF and “Access Success” AS, which are
formally defined in Example 4 such that AF ·∪ AS = �P�Max and AF ·∩ AS = ∅. Furthermore, regarding
whether the write access is granted or not, AS is split into “Read Only access is granted” RO and
“Read and Write access is granted” RW, such that RO ·∪ RW = AS and RO ·∩ RW = ∅. With the assistance
of such a lattice of system behaviors, we can determine not only the responsible entity for access
failure/success, but also the entity in charge of the write access.

Meanwhile, if we are interested in only one behavior (e.g., “Access Failure” AF), then RO and RW
can be simply removed from the lattice and we can get a lattice with four elements.

Prediction Abstraction. Although the maximal trace property is well-suited to represent system
behaviors, it does not reveal the point along the maximal trace from which a property is guaranteed
to hold later in the execution. Thus, we propose to abstract every maximal trace propertyX ∈ LMax

into a set αPred (�P�Max)X of prefixes of maximal traces in X, excluding those whose maximal
prolongation may not satisfy the property X. This abstraction is called prediction abstraction, and
αPred (�P�Max)X is called the prediction trace property corresponding to X. It is easy to see that
αPred (�P�Max)X is a superset of X and is not necessarily prefix-closed.

αPred (�P�Max) ∈ ℘(S∗∞)
→ ℘(S∗∞) prediction abstraction

αPred (�P�Max)X � {σ ∈ Pref (X) | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X}
γPred (�P�Max) ∈ ℘(S∗∞)
→ ℘(S∗∞) prediction concretization

γPred (�P�Max)Y � {σ ∈ Y | σ ∈ �P�Max} = Y ∩ �P�Max

By the above definition, for any program P, every valid maximal trace σ ′ that is greater than or
equal to a prefix trace σ in αPred (�P�Max)X is guaranteed to have the maximal trace propertyX (i.e.,
σ ′ ∈ X). Hence, the prefix traces in αPred (�P�Max)X gives a hint on the point along the maximal
trace from which the property X is guaranteed to hold. Formally, we have the following lemma:

Lemma 1. For any maximal trace propertyX ∈ ℘(�P�Max), if a prefix trace σ belongs to the predic-
tion trace property αPred (�P�Max)X, then σ guarantees the satisfaction of property X (i.e., every valid
maximal trace that is greater than or equal to σ is guaranteed to have property X).

Moreover, we have a Galois isomorphism between maximal trace properties and prediction trace
properties:

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:15

〈℘(�P�Max), ⊆〉 −−−−−−−−−−−−→−→←←−−−−−−−−−−−−−
αPred (�P�Max)

γPred (�P�Max)
〈ᾱPred{�P�Max}(℘(�P�Max)), ⊆〉, (1)

where the abstract domain is obtained by a function ᾱPred{�P�Max} ∈ ℘(℘(S∗∞))
→ ℘(℘(S∗∞))

such that ᾱPred{�P�Max}(X) � {αPred (�P�Max)X | X ∈ X}.
Corollary 1. Given the semantics �P�Max and lattice LMax of system behaviors, for any maximal

trace property T ∈ LMax, if a trace σ belongs to the prediction trace property that corresponds to
T , then every valid trace greater than σ belongs to that prediction trace property too. I.e., ∀T ∈
LMax. ∀σ ,σ ′ ∈ �P�Pref . (σ ∈ αPred (�P�Max)T ∧ σ � σ ′) ⇒ σ ′ ∈ αPred (�P�Max)T .

Corollary 2. Given the semantics �P�Max and the lattice LMax of system behaviors, for any max-
imal trace property T ∈ LMax and any valid prefix trace π that is not maximal, if every valid
prefix trace π s that concatenates π with a new event s belongs to the prediction trace property
αPred (�P�Max)T , then π belongs to αPred (�P�Max)T too.

Formally, ∀T ∈ LMax. ∀π ∈ �P�Pref\�P�Max. (∀s ∈ S. π s ∈ �P�Pref ⇒ π s ∈ αPred (�P�Max)T) ⇒
π ∈ αPred (�P�Max)T .

Example 6 (Access Control, Continued). By the functionαPred (�P�Max), each behavior in the lattice
LMax of Example 5 can be abstracted into a prediction trace property:

—αPred (�P�Max)�Max = �P�Pref , i.e., every valid prefix trace in �P�Pref guarantees �Max.
—αPred (�P�Max)AF = {σ ∈ �P�Pref | ∃ρ1 ∈ M, v ∈ {−1, 0}, v ′ ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→

1]〉〈l3, ρ3 = ρ2[i1
→ v]〉 � σ ∨ 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ v ′]〉〈l4,
ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ v]〉 � σ }. For any valid prefix trace σ , if at least one input from
the two admins is −1 or 0, then the behavior “Access Failure” AF is guaranteed to occur in
all the maximal traces that are greater than or equal to σ .

—αPred (�P�Max)AS = {σ ∈ �P�Pref | ∃ρ1 ∈ M, v ∈ {1, 2}, v ′ ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→
1]〉〈l3, ρ3 = ρ2[i1
→ v]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ v ′]〉 � σ }. For any valid prefix trace
σ , if the inputs from both admins are 1 or 2, then “Access Success” AS is guaranteed.

—αPred (�P�Max)RO = {σ ∈ �P�Pref | ∃ρ1 ∈ M, v ∈ {1, 2}, v ′ ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→
1]〉〈l3, ρ3 = ρ2[i1
→ v]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ v ′]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 = ρ6[typ
→
1]〉 � σ }. For any valid trace, if the inputs from both admins are 1 or 2 and the input from
system settings is 1, then it guarantees “Read Only access is granted” RO.

—αPred (�P�Max)RW = {σ ∈ �P�Pref | ∃ρ1 ∈ M, v ∈ {1, 2}, v ′ ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→
1]〉〈l3, ρ3 = ρ2[i1
→ v]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ v ′]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 = ρ6[typ
→
2]〉 � σ }. For any valid trace, if the inputs from both admins are 1 or 2 and the input from
system settings is 2, then it guarantees “Read and Write access is granted” RW.

—αPred (�P�Max)⊥Max = ∅, i.e., no valid trace can guarantee the bottom ⊥Max.

3.2.3 Observation of System Behaviors. Let �P�Max be the maximal trace semantics and LMax

be the lattice of system behaviors designed as in Section 3.2.2. Given any prefix trace σ ∈ S∗∞, an
observer can learn some information from it, more precisely, a maximal trace property T ∈ LMax

that is guaranteed by σ from the observer’s perspective. In this section, an observation function
O is proposed to represent such a “property learning process” of the observer, which is formally
defined in the following three steps.

(1) Inquiry Function. First, an inquiry function I is defined to map every trace σ ∈ S∗∞ to the
strongest maximal trace property in LMax that σ can guarantee.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:16 C. Deng and P. Cousot

I ∈ ℘(S∗∞)
→ ℘(℘(S∗∞))
→ S∗∞
→ ℘(S∗∞) inquiry (2)

I(�P�Max,LMax,σ) �
let αPred (S)T = {ψ ∈ Pref (T) | ∀ψ ′ ∈ S. ψ � ψ ′ ⇒ ψ ′ ∈ T } in abstraction from (1)

·∩{T ∈ LMax | σ ∈ αPred (�P�Max)T }
Specially, for every invalid trace σ � �P�Pref , there does not exist any T ∈ LMax such that

σ ∈ αPred (�P�Max)T , thus I(�P�Max,LMax,σ) = ∅ = ⊥Max. In contrast, for any valid trace σ ∈
�P�Pref , it is ensured that σ ∈ αPred (�P�Max)�Max, hence I(�P�Max,LMax,σ) � ⊥Max. Therefore,
I(�P�Max,LMax,σ) = ⊥Max if and only if σ is invalid.

Example 7 (Access Control, Continued). Using the maximal trace semantics �P�Max from
Example 1 and the lattice of system behaviors LMax from Example 5, here we define the inquiry
function I for the access control program such that for any initial environment ρ1 ∈ M:

— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉) =�Max, i.e., every prefix trace that terminates
at point l2 (before the admins input their decisions) can guarantee only �Max.

— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉) = AF, i.e., after the 1st ad-
min inputs 0, the behavior “Access Failure” AF is guaranteed.

— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉) = I(�P�Max,

LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉〈l4, ρ4 = ρ3〉) = �Max, i.e., if the first
admin inputs 1, then only the top �Max can be guaranteed before the second admin inputs
her/his decision.

— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 =

ρ4[i2
→ 0]〉) = AF, i.e., after the second admin inputs 0, the behavior “Access Failure” AF is
guaranteed.

— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 =

ρ4[i2
→ 1]〉) = AS, i.e., if both two admin inputs 1, then “Access Success” AS is guaranteed.
— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 =

ρ4[i2
→ 1]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 = ρ6[typ
→ 1]〉) = RO, i.e., if both two admin input 1, then
after the input from system settings is set as 1, a stronger property “Read Only access is
granted” RO is guaranteed.

— I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 =

ρ4[i2
→ 1]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 = ρ6[typ
→ 2]〉) = RW, i.e., if both two admin input 1, then
after the input from system settings is set as 2, a stronger property “Read and Write access
is granted” RW is guaranteed.

Corollary 3. Given the semantics �P�Max and lattice LMax of system behaviors, if the inquiry
function I maps a trace σ to a maximal trace property T ∈ LMax, then σ guarantees the satisfaction
of T (i.e., every valid maximal trace that is greater than or equal to σ is guaranteed to have property
T).

Lemma 2. Given the semantics �P�Max and lattice LMax of system behaviors, the inquiry function
I(�P�Max,LMax) is decreasing on the inquired trace σ : the greater (longer) σ is, the stronger property
it can guarantee. I.e., ∀σ ,σ ′ ∈ S∗∞. σ � σ ′ ⇒ I(�P�Max,LMax,σ) ⊇ I(�P�Max,LMax,σ ′).

Corollary 4. Given the semantics �P�Max and lattice LMax of behaviors, ∀σ ∈ �P�Pref\�P�Max.
I(�P�Max,LMax,σ) = ·⋃

s ∈S
I(�P�Max,LMax,σ s) = ·⋃

σ s ∈�P�Pref

I(�P�Max,LMax,σ s).

(2) Cognizance Function. As discussed in (P3) of Section 3.1, it is necessary to take the observer’s
cognizance into account. Specifically, in program security, the cognizance can represent attackers’

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:17

capabilities, e.g., what they can learn from program executions (see Section 3.3.2 for more details).
Given a trace σ (not necessarily valid), if the observer cannot distinguish σ from some other traces,
then she/he does not have an omniscient cognizance of σ , and the cognizance function C(σ) is
defined to include all traces indistinguishable from σ .

C ∈ S
∗∞
→ ℘(S∗∞) cognizance (3)

C(σ) � {σ ′ ∈ S∗∞ | the observer cannot distinguish σ ′ from σ }
Such a cognizance function is extensive, i.e., ∀σ ∈ S∗∞. σ ∈ C(σ). In particular, there is

an omniscient observer and its corresponding cognizance function is denoted as Co such that
∀σ ∈ S∗∞. Co (σ) = {σ }, which means that every trace is unambiguous to the omniscient
observer.

To facilitate the proof of some desired properties for the observation function defined later, two
assumptions are made here without loss of generality:

(A1) The cognizance of a trace σσ ′ is the concatenation of cognizances of σ and σ ′. I.e., ∀σ ,σ ′ ∈
S
∗∞.C(σσ ′) = {ππ ′ | π ∈ C(σ)∧π ′ ∈ C(σ ′)}. Specially, we require thatC(ε) = {ε }, otherwise
C(σ) = C(σε) = {ππ ′ | π ∈ C(σ) ∧ π ′ ∈ C(ε)} would include infinite many traces for any σ .

(A2) Given an invalid trace, the cognizance function would not return a valid trace. I.e.,∀σ ∈ S∗∞.
σ � �P�Pref ⇒ C(σ) ∩ �P�Pref = ∅.

In practice, we can define an equivalence relation on traces that satisfy the above two assump-
tions, thus it is assumed that the observer cannot distinguish two traces if and only if they are
equivalent. That is to say, for any trace σ , C(σ) is a class of traces that are equivalent to σ , and
{〈σ , σ ′〉 | σ ′ ∈ C(σ)} is an equivalence relation. By (A2) the cognizance cannot abstract an invalid
trace into a valid one, it is therefore different from the abstractions in Reference [30] to define the
“power of an attacker.”

Corollary 5. For any cognizance function C, we have ·⋃
s ∈S
C(s) ⊇ S.

Proof. This corollary follows the fact that the cognizance function C is extensive. �

Example 8 (Access Control, Continued). For the access control program, consider the cognizance
function for two different observers.

(i) For an omniscient observer: ∀σ ∈ S∗∞. Co (σ) = {σ }.
(ii) For an observer who is unaware of the input from 1st admin or the value of apv : C(〈l1,

ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉) = {〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 =

ρ2[i1
→ −1]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3,
ρ3 = ρ2[i1
→ 1]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 2]〉}, i.e., this observer cannot
distinguish whether the input from 1st admin is −1 or 0 or 1 or 2.

Similarly, for a prefix trace in which the inputs from both two admins are zeros, C(〈l1, ρ1〉〈l2,
ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 0]〉) = {〈l1, ρ1〉〈l2,
ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ −1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 =

ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→
1]〉〈l3, ρ3 = ρ2[i1
→ 1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3,
ρ3 = ρ2[i1
→ 2]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 0]〉} consists of four traces, such that the value of
i1 is not distinguishable while the value of i2 is. In the same way, the cognizance on other traces
can be defined.

(3) Observation Function. For an observer with cognizance function C, given a single trace σ ,
the observer cannot distinguish σ with other traces in C(σ). To formalize the information that
the observer can learn from σ , we apply the inquiry function I on each trace in C(σ) and get a

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:18 C. Deng and P. Cousot

set of maximal trace properties. By joining them together, we get the strongest property in LMax

that σ can guarantee from the observer’s perspective. Such a process is defined as the observation
function O(�P�Max,LMax,C,σ).

O ∈ ℘(S∗∞)
→ ℘(℘(S∗∞))
→ (S∗∞
→ ℘(S∗∞))
→ S∗∞
→ ℘(S∗∞)

O(�P�Max,LMax,C,σ) � observation (4)

let αPred (S)T = {ψ ∈ Pref (T) | ∀ψ ′ ∈ S. ψ � ψ ′ ⇒ ψ ′ ∈ T } in abstraction from (1)

let I(S,L,ψ) = ·∩{T ∈ L | ψ ∈ αPred (S)T } in inquiry from (2)

·∪{I(�P�Max,LMax,σ ′) | σ ′ ∈ C(σ)}.

From the above definition, it is easy to see that, for every invalid trace σ � �P�Pref , we
have O(�P�Max,LMax,C,σ) = ⊥Max, since every trace σ ′ in C(σ) is invalid by (A2) and
I(�P�Max,LMax,σ ′) = ⊥Max. In addition, for an omniscient observer with cognizance function Co ,
its observation function O(�P�Max,LMax,Co ,σ) = I(�P�Max,LMax,σ).

Corollary 6. Given the semantics �P�Max and lattice LMax of system behaviors, for any observer
with cognizance C, if the corresponding observation function maps a trace σ to a maximal trace
property T ∈ LMax, then σ guarantees the satisfaction of property T (i.e., every valid maximal trace
that is greater than or equal to σ is guaranteed to have property T).

Corollary 7. Given the semantics �P�Max, the lattice LMax of system behaviors,

and the cognizance function C, we have: ∀σ ∈ �P�Pref\�P�Max. O(�P�Max,LMax,C,σ)
= ·⋃s ∈S O(�P�Max,LMax,C,σ s) = ·⋃σ s ∈�P�Pref O(�P�Max,LMax,C,σ s).

Lemma 3. Given the semantics �P�Max, lattice LMax of system behaviors, and cognizance
function C, the observation function O(�P�Max,LMax,C) is decreasing on the observed trace σ :
the greater (longer) σ is, the stronger property it can observe. I.e., ∀σ ,σ ′ ∈ S∗∞. σ � σ ′ ⇒
O(�P�Max,LMax,C,σ) ⊇ O(�P�Max,LMax,C,σ ′).

Example 9 (Access Control, Continued). For an omniscient observer, the observation function is
identical to the inquiry function in Example 7. If the cognizance of a non-omniscient observer
defined in Example 8 is adopted, then we get an observation function that works exactly the same
as the dashed arrows in Figure 5:

—O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉) =
·∪{I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ v]〉) | v ∈ {−1, 0, 1, 2}} =
AF ·∪ AF ·∪�Max ·∪�Max = �Max, i.e., even if the 1st admin already inputs 0, only �Max can be
guaranteed from the perspective of the non-omniscient observer.

—O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉〈l4, ρ4 = ρ3〉〈l5,
ρ5 = ρ4[i2
→ 0]〉) = ·∪{I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ v]〉〈l4,
ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 0]〉) | v ∈ {−1, 0, 1, 2}} = AF ·∪ AF ·∪ AF ·∪ AF = AF, i.e., only after
the 2nd admin inputs 0 (or −1), “Access Failure” AF can be guaranteed from the perspective
of the non-omniscient observer.

—O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ 0]〉〈l4, ρ4 = ρ3〉〈l5,
ρ5 = ρ4[i2
→ 1]〉) = ·∪{I(�P�Max,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv
→ 1]〉〈l3, ρ3 = ρ2[i1
→ v]〉〈l4,
ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2
→ 1]〉) | v ∈ {−1, 0, 1, 2}} = AF ·∪ AF ·∪�Max ·∪�Max = �Max, i.e., if the
2nd admin inputs 1 (or 2), then only the top �Max can be guaranteed from the perspective
of the non-omniscient observer, even if the 1st admin already inputs 0 or −1.

3.2.4 Formal Definition of Responsibility. Using the three components of responsibility analysis
introduced above, responsibility is formally defined as the responsibility abstraction αR in (5).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:19

Responsibility Abstraction αR

αR ∈ ℘(S∗∞)
→ ℘(℘(S∗∞))
→ (S∗∞
→ ℘(S∗∞))
→ ℘(S∗∞)
→ ℘(S∗∞)

→ ℘(S∗ × (S × S) × S∗∞) (5)

αR (�P�Max,LMax,C,B,T) �
let αPred (S)T = {σ ∈ Pref (T) | ∀σ ′ ∈ S. σ � σ ′ ⇒ σ ′ ∈ T } in
let I(S,L,σ) = ·∩{T ∈ L | σ ∈ αPred (S)T } in
let O(S,L,C,σ) = ·∪{I(S,L,σ ′) | σ ′ ∈ C(σ)} in
{〈σH, τR, σF〉 | σHτRσF ∈ T ∧ ∅ � O(�P�Max,LMax,C,σHτR) ⊆ B ∧

O(�P�Max,LMax,C,σH) � B}

Specifically, the first parameter is the maximal trace semantics �P�Max, the second parameter is
the lattice LMax of system behaviors, the third parameter is the cognizance function of a given
observer, the fourth parameter is the behavior B whose responsibility is of interest, and the last
parameter is the analyzed traces T .

For every trace σ ∈ T to be analyzed, we split it into three parts such that σ = σHτRσF, where

σH = s0· · ·sr−1 ∈ S∗ represents the History part of trace σ , the transition τR = sr−1
a R−−→ sr represents

the Responsible part of trace σ (which is a transition between two states, and the corresponding
action a R can be retrieved from the source code), and σF = sr · · · ∈ S∗∞ represents the Future part
of trace σ .

If ∅ � O(�P�Max,LMax,C,σHτR) ⊆ B ∧ O(�P�Max,LMax,C,σH) � B holds, then σH does not
guarantee the behavior B, while σHτR guarantees a behavior that is at least as strong as B and is
not the invalid trace property represented by ⊥Max = ∅. Therefore, to the cognizance C of a given

observer, the transition τR = sr−1
a R−−→ sr (or, say, the action a R) is said to be responsible for the

behavior B in the trace σHτRσF.
Since αR (�P�Max,LMax,C,B) preserves joins on analyzed traces T , we have a Galois connection

[68]: 〈℘(S∗∞), ⊆〉 −−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−
αR (�P�Max, LMax, C, B)

γR (�P�Max, LMax, C, B)
〈℘(S∗ × (S × S) × S∗∞), ⊆〉.

It is worth noting that, compared with our original definition of responsibility abstraction
αR in References [25, 26] (which adopts the condition ∅�O(�P�Max,LMax,C,σHτR) ⊆ B �
O(�P�Max,LMax,C,σH)), definition (5) proposed in this article is more generic: When the lattice
of system behavior LMax is of complex structure (i.e., it consists of more than four elements), the
observation O(�P�Max,LMax,C,σH) may return a behavior that is incomparable with B; as long
as ∅ � O(�P�Max,LMax,C,σHτR) ⊆ B holds after extending σH with τR, we know the transition τR

shall be responsible for B.

Theorem 1. If τR is said to be responsible for a behavior B in a valid trace σHτRσF, then σHτR

guarantees the occurrence of behavior B, and there must exist another valid prefix trace σHτ
′
R such

that the behavior B is not guaranteed.

Now recall the three essential characteristics for defining responsibility (i.e., the temporal or-
dering of actions, free choices, and the observer’s cognizance) in Section 3.1. It is obvious that the
responsibility abstraction αR has taken both the temporal ordering of actions and the observer’s
cognizance into account. As for the free choices, from Theorem 1 it is easy to find that, if the
transition τR is completely determined by its history trace σH and is not free to make choices (i.e.,
∀σHτR,σHτ

′
R ∈ �P�Pref . τR = τ

′
R), then τR cannot be responsible for any behavior in the trace σHτRσF.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:20 C. Deng and P. Cousot

3.2.5 Concrete Responsibility Analysis . To sum up, the responsibility analysis in the concrete
typically consists of four steps: (1) collect the system’s trace semantics �P�Max (in Section 2.2
and 3.2.1); (2) build the lattice of system behaviors of interest LMax (in Section 3.2.2); (3) de-
rive an inquiry function I from LMax, define a cognizance function C for each observer, and
create the corresponding observation function O (in Section 3.2.3); (4) specify the behavior B ∈
LMax of interest and the analyzed traces T ∈ ℘(�P�Max), and apply the responsibility abstraction
αR (�P�Max,LMax,C,B,T) to get the analysis result (in Section 3.2.4). Hence, the responsibility
analysis is essentially an abstract interpretation of the program trace semantics.

Moreover, in definition (5) of responsibility, the sets of traces involved in the trace semantics,
system behaviors, and the cognizance function are concrete. For the simple access control pro-
gram, such concrete traces are explicitly displayed for the sake of clarity. However, they are un-
computable in general, and we cannot require the user to directly provide concrete traces in the
implementation of responsibility analysis. To solve this problem, an abstract responsibility analy-
sis that can soundly over-approximate the concrete responsibility analysis results is proposed in
Section 7.

Example 10 (Access Control, Continued). Using the observation functions in Example 9, the ab-
straction αR can analyze the responsibility of any behavior B in the specified set T of traces.
If we intend to analyze “Access Failure” in every possible execution, then B is set as AF, and
T includes all valid maximal traces, i.e., T = �P�Max. Thus, by the responsibility abstraction
αR (�P�Max,LMax,C, AF, �P�Max), we could compute the responsibility analysis result, which is es-
sential the same as described in Example 3 and omitted here.

In addition, if we would like to analyze the responsibility of “Read and Write access is granted,”
then the behavior of interest B shall be replaced by RW instead, and we can get the following result.
To the cognizance of an omniscient observer, in every execution that both two admins input 1 or 2,
the input from system settings (i.e., typ := [1; 2]) is responsible for RW. Meanwhile, to the cognizance
of the non-omniscient observer who is unaware of the input from 1st admin or the value of apv ,
no one would be found responsible for RW, because whether the write access is granted or not is
always uncertain due to the unknown input from 1st admin.

3.3 Applications of Responsibility Analysis

Responsibility is a broad concept, and our definition of responsibility based on the abstraction of
trace semantics is applicable in various scientific fields. We have examined every example supplied
in actual cause [34, 35] and found that our definition of responsibility can handle them well, in
which events like “drop a lit match in the forest” or “throw a rock at the bottle” are treated as
actions along the trace.

In this section, we focus on analyzing computer programs and illustrate the application of re-
sponsibility analysis by three more examples: (i) the “negative balance” problem of a withdrawal
transaction, which can be equivalently viewed as the “buffer overflow” problem; (ii) a program
with “division by zero” error, which can be also interpreted as a scenario of “login attack”; and
(iii) the “information leakage” problem. It is worth noting that, for any behavior B of interest, our
responsibility analysis is designed to analyze the programs where the behavior B does not always
occur, i.e., B � �P�Max. Yet, for the programs where every trace has the behavior B, we need to
admit that the responsibility analysis cannot identify any responsible entity, unless “launching the
program” is treated as a separate action and it would be found responsible for B.

3.3.1 Example of Negative Balance/Buffer Overflow. Consider a withdrawal transaction sce-
nario, which is simplified into a program with only three lines of code as in Figure 6 for the sake
of clarity. At point l1, we read the bank account balance before the withdrawal transaction, which

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:21

Fig. 6. The withdrawal transaction program with negative balance problem.

Fig. 7. Lattice of system behaviors regarding negative balance.

is assumed to be a positive integer or zero; in practice, this read action is typically implemented
by a query in the database system. At point l2, the user inputs the withdrawal amount, which is
assumed to be a strictly positive integer. At point l3, we update the bank account balance after the
withdrawal transaction by subtracting num from balance. When the withdrawal transaction com-
pletes at point l4, if the account balance is negative (i.e., balance < 0), then it is an error and we
would like to detect the responsible entity for it.

It is not hard to see that, the “negative balance” problem can be transformed into an equivalent
“buffer overflow” problem, where a memory of size balance is allocated, the index at num − 1 is
visited, and a buffer overflow error occurs when balance ≤ num − 1 holds. Although this problem
has been well studied, it suffices to demonstrate the advantages of responsibility analysis over
dependency/causality analysis.

In this example, we consider only the cognizance of the omniscient observer, and the responsi-
bility analysis consists of four steps, as discussed in Section 3.2.5:

(1) Collect the trace semantics �P�Max. In the withdrawal transaction program, each maximal
trace is of length 4, and �P�Max = {〈l1, ρ1〉〈l2, ρ2〉〈l3, ρ3〉〈l4, ρ4〉 | (ρ1 ∈ M) ∧ (ρ2 =

ρ1[balance
→ v] ∧ v ∈ [0; INT_MAX]) ∧ (ρ3 = ρ2[num
→ v ′] ∧ v ′ ∈ [1; INT_MAX]) ∧ (ρ4 =

ρ3[balance
→ ρ3 (balance) − ρ3 (num)])} consists of a very large number of traces. For example,
〈l1, ρ1〉〈l2, ρ2 = ρ1[balance
→ 0]〉〈l3, ρ3 = ρ2[num
→ 1]〉〈l4, ρ4 = ρ3[balance
→ −1]〉 denotes
a maximal trace such that the balance before the transaction is 0 and the withdrawal amount
is 1; and 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance
→ 5]〉〈l3, ρ3 = ρ2[num
→ 9]〉〈l4, ρ4 = ρ3[balance
→ −4]〉
denotes a maximal trace such that the balance before the transaction is 5 and the withdrawal
amount is 9. Both the above two traces have the negative balance problem.

(2) Build the lattice of system behaviors of interest. Since “negative balance” is the only behavior
that we are interested here, we can build the lattice LMax with only four elements, as in
Figure 7, where NB is the set of valid maximal traces where the value of balance is negative
at point l4 (i.e., NB = {σ ∈ �P�Max | ∃ρ ∈ M. σ[3] = 〈l4, ρ〉 ∧ ρ (balance) < 0}), and ¬NB is its
complement (i.e., ¬NB = �P�Max\NB = {σ ∈ �P�Max | ∃ρ ∈ M. σ[3] = 〈l4, ρ〉∧ρ (balance) ≥ 0}).

(3) Create the observation function. Using the omniscient observer’s cognizance Co such that
Co (σ) = {σ }, the observation function O can be easily derived from the lattice LMax of
system behaviors, such that:
—O(�P�Max,LMax,Co , 〈l1, ρ1〉) = �Max, i.e., at the initial point l1, only the top behavior�Max

can be guaranteed.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:22 C. Deng and P. Cousot

Fig. 8. The program with division by zero/login attack problem.

—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance
→ 0]〉) = NB, i.e., if the balance before the
transaction is 0, the occurrence of “negative balance” is guaranteed even before the with-
drawal amount num is entered;

—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance
→ v]〉) = �Max where v > 0, i.e., if the
balance before the transaction is strictly positive, whether “negative balance” occurs or
not is uncertain at point l2;

—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance
→ v]〉〈l3, ρ3 = ρ2[num
→ v ′]〉) = NB
where v > 0 and v ′ > v , i.e., “negative balance” is guaranteed to occur immediately after
the value of num is set strictly greater than balance;

—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance
→ v]〉〈l3, ρ3 = ρ2[num
→ v ′]〉) = ¬NB
where v > 0 and v ′ ≤ v , i.e., “negative balance” is guaranteed not to occur immediately
after the value of num is set less than or equal to balance.

(4) Last, by setting the behavior B = NB and the analyzed traces T = �P�Max, the abstraction
αR (�P�Max,LMax,Co ,B,T) can find: If the balance before the transaction is 0 (e.g., 〈l1, ρ1〉〈l2,
ρ2 = ρ1[balance
→ 0]〉〈l3, ρ3 = ρ2[num
→ 1]〉〈l4, ρ4 = ρ3[balance
→ −1]〉), then no matter
what the withdrawal amount is, the action balance := [0; INT_MAX] is responsible for “neg-
ative balance”; otherwise, if the balance before the transaction is strictly positive (e.g., 〈l1,
ρ1〉〈l2, ρ2 = ρ1[balance
→ 5]〉〈l3, ρ3 = ρ2[num
→ 9]〉〈l4, ρ4 = ρ3[balance
→ −4]〉), then the
action num := [1; INT_MAX] shall take the responsibility.

Using the responsibility analysis result above, we could prevent the “negative balance” behavior
by configuring the program (e.g., a test guard for the withdrawal operation), such that the balance
before the withdrawal transaction is ensured to be strictly positive, and the withdrawal amount is
ensured to be less than or equal to the balance.

3.3.2 Example of Division by Zero/Login Attack. Consider the program in Figure 8, in which
there is obviously a potential division-by-zero error at point l5. Alternatively, the division-by-zero
error can be interpreted as a behavior of “login attack success” by interpreting the program as a
simplified login scenario of some complex system for a malicious user (e.g., an attacker attempts
to login the account of a normal user in a website).

More precisely, at point l1, the program reads the real password of a normal user that is stored in
the system and saves it in the variable pwd . Typically, in practice, a password of valid format con-
sists of letters/numbers and meets the requirement of length, while a password of invalid format
contains special characters or does not meet the length requirement. For the sake of simplicity, it is
assumed that the passwords of valid format are represented by positive integers in this simplified
program, while the passwords of invalid format are represented by zero or negative integers. At
point l2, the input i1 is used to mimic the attacker’s attempt of entering a guessed password of valid
format (i.e., a positive integer). If the guessed password coincides with the real password pwd , then
the attacker succeeds to log into the normal user’s account. Further, at point l3, the input i2 is used

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:23

Fig. 9. Lattice of system behaviors regarding login attack.

to mimic the attacker’s attempt of entering a password that is of invalid format (i.e., zero or a neg-
ative integer). Specially, the value zero represents a piece of malicious code (e.g., SQL statements)
that could bypass the authentication. Thus, the attacker succeeds to log into the normal user’s
account if the guessed password coincides with the real password (i.e., pwd = i1) or the attacker
injects malicious code (i.e., i2 = 0). Such an attack is represented by the computation of res at point
l4, and the division by zero error at point l5 represents the behavior of login attack success.

Now the question is: Which action is responsible for “login attack success” (or, say, “division
by zero”)? In the following, we illustrate the four steps of responsibility analysis for “login attack
success.” Different from the analysis of “negative balance” in Section 3.3.1, in this example, we shall
take the cognizance of an non-omniscient observer.

(1) Collect the trace semantics �P�Max. For the program in Figure 8, each maxi-
mal trace is of length 6, and �P�Max = {〈l1, ρ1〉〈l2, ρ2〉〈l3, ρ3〉〈l4, ρ4〉〈l5, ρ5〉〈l6,
ρ6〉 | (ρ1 ∈ M) ∧ (ρ2 = ρ1[pwd
→ v] ∧ v ∈ [1; INT_MAX]) ∧ (ρ3 = ρ2[i1
→
v ′] ∧ v ′ ∈ [1; INT_MAX]) ∧ (ρ4 = ρ3[i1
→ v ′′] ∧ v ′′ ∈ [INT_MIN; 0]) ∧ (ρ5 = ρ4[res
→
(ρ4 (pwd) − ρ4 (i1)) ∗ ρ4 (i2)]) ∧ (ρ6 = ρ5[check
→ 1\ρ5 (res)])} consists of a large number
of traces. For example, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 911]〉〈l4,
ρ4 = ρ3[i2
→ −5]〉〈l5, ρ5 = ρ4[res
→ 0]〉〈l6, ω〉 denotes a maximal trace such that the
guessed password (i1) coincides with the real password (pwd), and the execution ends with
an error state representing “login attack success”; and 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3,
ρ3 = ρ2[i1
→ 123]〉〈l4, ρ4 = ρ3[i2
→ 0]〉〈l5, ρ5 = ρ4[res
→ 0]〉〈l6, ω〉 denotes a maximal trace
such that the attacker enters a piece of malicious code that bypasses the authentication (i.e.,
i2 = 0). Both the above two traces have the behavior of “login attack success.”

(2) Build the lattice of system behaviors of interest. Here, “login attack success” is
the only behavior that we are interested in, and the corresponding lattice LMax

consists of only four elements as in Figure 9, where AS (login Attack Success)
is the set of valid maximal traces where the value of res is zero at point l5 (i.e.,
AS = {σ ∈ �P�Max | ∃ρ ∈ M. σ[4] = 〈l5, ρ〉 ∧ ρ (res) = 0}), and ¬AS (login Attack Failure) is
its complement (i.e., ¬AS = �P�Max\AS = {σ ∈ �P�Max | ∃ρ ∈ M. σ[4] = 〈l4, ρ〉 ∧ ρ (res) � 0}).

(3) Create the observation function. In this case, it is intuitive to adopt the cognizance of the
attacker, and it is assumed that the attacker does not know the real password of the normal
user (otherwise, there is no way to prevent the login attack). Hence, a non-omniscient
cognizance shall be designed such that it cannot distinguish the value of pwd , e.g., 〈l1, ρ1〉〈l2,
ρ2 = ρ1[pwd
→ 123]〉 ∈ C(〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉) denotes that the attacker does
not know whether the real password is 123 or 911. Then, the observation function O can be
derived from the lattice LMax of system behaviors and the cognizance function C, such that:
—O(�P�Max,LMax,C, ε) = O(�P�Max,LMax,C, 〈l1, ρ1〉) = O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2,
ρ2 = ρ1[pwd
→ 911]〉) = �Max, i.e., before the attacker takes any action at point l2, only
the top behavior �Max can be guaranteed.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:24 C. Deng and P. Cousot

—O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 911]〉) = O(�P�Max,

LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 123]〉) = �Max, i.e.,
after the attacker enters the guessed password, no matter the guessed password coincides
with the real password or not, only the top behavior �Max can be guaranteed to the
cognizance of the attacker. The reason is that the attacker does not know the value of
pwd , thus cannot ensure her/his guessed password is the same as the real password. More
formally, O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 911]〉) =
I(�P�Max,LMax, 〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 911]〉) ·∪ I(�P�Max,LMax, 〈l2,
ρ2 = ρ1[pwd
→ 123]〉〈l3, ρ3 = ρ2[i1
→ 911]〉) ·∪ . . . = AS ·∪�Max = �Max.

—O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 911]〉〈l4,
ρ4 = ρ3[i2
→ −5]〉) = �Max, i.e., if the second input i2 from the attacker is not zero,
then to the cognizance of the attacker, the behavior of login attack success cannot be
guaranteed, even if she/he guesses the correct password in reality.

—O(�P�Max,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd
→ 911]〉〈l3, ρ3 = ρ2[i1
→ 123]〉〈l4,
ρ4 = ρ3[i2
→ 0]〉) = AS, i.e., only after the attacker enters zero as the second input (i.e.,
succeeds to inject malicious code), login attack success is guaranteed to the cognizance
of the attacker.

(4) Last, by setting the behavior B = AS and the analyzed traces T = �P�Max, the abstraction
αR (�P�Max,LMax,C,B,T) can find: Only the action i2 := [INT_MIN; 0] representing
entering passwords of invalid format is responsible for the behavior “login attack success,”
and the action i1 := [1; INT_MAX] representing entering passwords of valid format is not
responsible.

Meanwhile, if we take ¬AS as the behavior of interest B, then the corresponding
responsibility analysis would find that there is no responsible action for ¬AS. That is to
say, we cannot take any action to prevent the attacker from succeeding to login the system,
since there is always a possibility (although it is low) that the attacker succeeds to guess
the correct password.

Using the responsibility analysis result above, we could configure the program to exclude the
value of zero from the range of second input (or, say, we forbid the attacker to enter malicious code
like SQL statements), so the attacker can never ensure to login the account of a normal user.

3.3.3 Example of Information Leakage. From the example of access control in Section 3.2 as well
as the two examples in Sections 3.3.1 and 3.3.2, it is not hard to see that the responsibility analysis
process is essentially the same for all behaviors, and the only significant distinction among these
examples is on defining the behaviors of interest and the cognizance function.

Non-interference. In this section, we consider the responsibility analysis of the behavior “infor-
mation leakage,” which is represented by the notion of non-interference [31]. More precisely, the
inputs and outputs in the analyzed program are classified as either Low (public, low sensitivity) or
High (private, high sensitivity). For any valid maximal trace σ ∈ �P�Max, if there is another valid
maximal trace σ ′ ∈ �P�Max such that they have the same low inputs but different low outputs, then
the trace σ is said to leak private information, and the analyzed program is possibly insecure. If
there is no valid maximal trace in the analyzed program that leaks private information (i.e., every
two valid maximal traces with the same low inputs must have the same low outputs, regardless
of the high inputs), then the program has the “non-interference” property, hence it is secure.

Here, we take the simple program in Figure 10 as an example, which does not have the desired
“non-interference” property. At point l1, a high (private) input of positive integer is read and saved
in the variable input_h . Similarly, at point l2, a low (public) input is stored in the variable input_l ,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:25

Fig. 10. The program with potential information leakage.

Fig. 11. Lattice of behaviors regarding information leakage.

which is assumed to be either zero or one. At point l3, a variable output_l is initialized as zero.
After the execution of the while loop between points l4 and l7, the value of output_l is output
as low (public). It is not hard to find that, although there is no direct data flow from input_h to
output_l (e.g., an assignment output_l := input_h) in the program, the low output output_l at
point l7 is equal to the high input, if the value of low input input_l is 1 at point l3. Therefore, there
is a potential behavior of information leakage from input_h to output_l in this program.

Similar to previous examples, the responsibility analysis of information leakage consists of four
steps, and we adopt the cognizance of omniscient observer.

(1) Collect the trace semantics �P�Max. For the program in Figure 10, �P�Max consists of 2 ×
INT_MAX maximal traces, and here we take two of them as examples:

(i) σ = 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h
→ 2]〉〈l3, ρ3 = ρ2[input_l
→ 1]〉〈l4, ρ4 = ρ3[output_l
→
0]〉〈l5, ρ5 = ρ4〉〈l6, ρ6 = ρ5[output_l
→ 1]〉〈l4, ρ ′4 = ρ6[input_h
→ 1]〉〈l5, ρ ′5 = ρ ′4〉〈l6,
ρ ′6 = ρ ′5[output_l
→ 2]〉〈l4, ρ ′′4 = ρ ′6[input_h
→ 0]〉〈l7, ρ7 = ρ ′′4 〉. In this trace, the high input
is 2, and the low input is 1. After two iterations of the while loop, the value of output_l is
assigned to 2, which is equal to the high input.

(ii) σ ′ = 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h
→ 2]〉〈l3, ρ3 = ρ2[input_l
→ 0]〉〈l4, ρ4 =

ρ3[output_l
→ 0]〉〈l7, ρ7 = ρ4〉. Different from the previous trace σ , the low input in this
trace is 0, such that the while loop is never entered, and the value of output_l remains as 0
at point l7.

(2) Build the lattice of system behaviors of interest. In general, for the responsibility analysis
of information leakage, the corresponding lattice LMax of system behaviors consists of four
elements, as shown in Figure 11.

More specifically, the behavior of “Information Leakage” IL is represented as the set
of valid maximal traces that leak private information, i.e., IL = {σ ∈ �P�Max | ∃σ ′ ∈
�P�Max. low_inputs(σ) = low_inputs(σ ′) ∧ low_outputs(σ) � low_outputs(σ ′)}, where
the functions low_inputs (respectively, low_outputs) collects the list of low inputs (respec-
tively, low outputs) along the trace σ . In contrast, the behavior of “No information Leakage”
¬IL is the complement of IL, which is the set of valid maximal traces that do not leak
private information, i.e., ¬IL = �P�Max\IL = {σ ∈ �P�Max | ∀σ ′ ∈ �P�Max. low_inputs(σ) =
low_inputs(σ ′) ⇒ low_outputs(σ) = low_outputs(σ ′)}.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:26 C. Deng and P. Cousot

For the program in Figure 10, IL = {σ ∈ �P�Max | ∃ρ, ρ ′ ∈ M. σ[1] = 〈l2, ρ〉 ∧σ[|σ |−1] = 〈l7,
ρ ′〉 ∧ ρ (input_h) = ρ ′(output_l)} = {σ ∈ �P�Max | ∃ρ . σ[2] = 〈l3, ρ〉 ∧ ρ (input_l) = 1} (i.e., IL
is the set of valid maximal traces where the value of output_l at l7 is equal to the high input,
which is also the set of valid maximal traces where the value of input_l is 1 at l3); ¬IL =
{σ ∈ �P�Max | ∃ρ ∈ M. σ[|σ |−1] = 〈l7, ρ〉 ∧ ρ (output_l) = 0} = {σ ∈ �P�Max | ∃ρ . σ[2] = 〈l3,
ρ〉 ∧ ρ (input_l) = 0} (i.e., ¬IL is the set of valid maximal traces where the value of output_l
is 0 at l7, which is also the set of valid maximal traces where the value of input_l is 0 at l3).

(3) Create the observation function. Using the omniscient observer’s cognizance Co , the
observation function O can be easily derived from LMax such that:
—O(�P�Max,LMax,Co , 〈l1, ρ1〉) = �Max, i.e., at the initial point l1, it is uncertain if the

information leakage occurs or not, hence only �Max is guaranteed.
—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h
→ v]〉) = �Max, i.e., after the high

input input_h is entered, no matter what value it is, only the top behavior �Max can be
guaranteed before the low input input_l is entered.

—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h
→ v]〉)〈l3, ρ3 = ρ2[input_l
→ 1]〉 = IL,
i.e., the behavior of information leakage is guaranteed to occur immediately after the low
input input_l is set as 1.

—O(�P�Max,LMax,Co , 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h
→ v]〉)〈l3, ρ3 = ρ2[input_l
→ 0]〉 = ¬IL,
i.e., the behavior of information leakage is guaranteed not to occur immediately after the
low input input_l is set as 0.

(4) Last, by setting the behavior B = IL and the analyzed traces T = �P�Max, the abstraction
αR (�P�Max,LMax,Co ,B,T) can find that only the action input_l := [0; 1] representing a low
input is responsible for the information leakage, while the action input_h := [1; INT_MAX]
representing a high input is not responsible.

After the responsibility analysis of information leakage completes, it is of interest to discuss the
procedure of configuring the analyzed program, especially for the programs where the informa-
tion leakage is acceptable or even desirable under certain circumstances. For instance, imagine a
more complex analyzed program that is a social network, where every user can enter some public
information (e.g., name, gender) as well as some private information (e.g., birth date, photos). If the
private information of any user called A flows to another user called B (e.g., the user B accesses a
photo uploaded by A), then it can be viewed as a behavior “information leakage” IL defined above,
and we would like to analyze the corresponding responsibility. After the responsibility analysis
is finished, if the responsible entity is determined as an action of A who is the owner of the pri-
vate information (e.g., A sets her/his own photos public, or A adds B as a friend) or an action of
the system administrator, then this information leakage is safe and the corresponding responsible
actions can be kept. In contrast, if the responsible entity is determined as an action of B or other
unauthorized users (e.g., B exploits a bug of the system such that she/he can access the private
information of any other user without authorization), then such an information leakage behavior
is undesired, and the corresponding responsible actions shall be eliminated to fix the system.

4 FORWARD REACHABILITY AND BACKWARD ACCESSIBILITY ANALYSIS

Abstract interpretation [18, 20, 21] is a mathematical theory to reason on the executions of com-
puter programs. It formalizes formal methods and allows to discuss the guarantees they provide
such as soundness (the conclusions about programs are always correct under suitable explicitly
stated hypotheses), completeness (all true facts are provable), or incompleteness (showing the lim-
its of applicability of the formal method).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:27

This section presents some notations and techniques in the abstract interpretation framework,
which will be referenced later in designing the abstract responsibility analysis. To be more pre-
cise, Section 4.1 introduces the abstract domain of environments and invariants. In Section 4.2,
we define the classic forward (possible success) reachability semantics of a program as an ab-
straction of the trace semantics and sketch the design of an over-approximating abstract forward
reachability analysis, which can automatically infer program invariants. In Section 4.3, the back-
ward impossible failure accessibility semantics is defined as the adjoint of forward reachability
semantics, which specifies the sufficient precondition for a given postcondition to hold. Compared
with the classic forward reachability analysis, the abstract backward impossible failure accessibil-
ity analysis has not been well studied yet, and there are few literature on this topic. We summarize
the under-approximating abstract backward analysis proposed by Miné [60, 61] and propose a
similar over-approximating abstract backward analysis, both of which will be used to determine
responsibility in the abstract.

4.1 Abstract Domains

The concrete trace semantics of transition systems introduced in Section 2.2 is not computable in
general, thus we propose to abstract sets of concrete traces into invariants. To accomplish that,
this section introduces the abstract environment domain, the concrete invariant domain, and the
abstract invariant domain.

4.1.1 Abstract Environment Domain. Let 〈D�
M
, ��
M
, ⊥�
M
, ��
M
, ��
M
, ��
M
〉 be an abstract environ-

ment domain, and γM ∈ D�
M

→ ℘(M) be the corresponding concretization function that associates

each abstract element M� ∈ D�
M

to the set of concrete environments it represents. In particular,

D�
M

features an infimum⊥�
M

and a supremum��
M

such that γM (⊥�
M

) = ∅ and γM (��
M

) = M, and an

abstract join operator ��
M

that soundly approximates the concrete join operator ∪ (more precisely,

∀M�,M�′ ∈ D�
M
. γM (M�) ∪ γM (M�′) ⊆ γM (M� ��

M
M�′)).

This article focuses on the analysis of numerical programs and takes three popular abstract
domains that can express constraints on program variables as examples. The interval domain in-
troduced in Reference [19] bounds the value of numerical variables by minimal and maximal values
between which all reachable values of a variable must stand, and each abstract element in this do-
main can be defined as a mapping from program variables to intervals (e.g., x ∈ [l ,h]∧ y ∈ [l ′,h′]).
It is a simple but useful domain, and it has been applied not only to prove the absence of integers or
array index overflows but also to detect unseen inputs of neural networks [37]. However, the inter-
val domain is not expressive enough to be useful for a relational reachability analysis, in which the
constraints involving more than one variable are needed. One example of relational abstractions is
the polyhedra domain introduced in Reference [24] that can express conjunctions of affine inequal-
ities on variables. In this domain, an abstract element (i.e., polyhedron) is defined as a finite set of
affine constraints of form �a · �x ≥ b (e.g., 2 ∗ x − 3 ∗ y + 5 ∗ z ≥ 4), where �x denotes the vector of all
variables, �a denotes a vector of coefficients, andb denotes a constant. In addition, strict inequalities
are supported in current polyhedron domain [5, 6, 41] . Another example is the octagon domain
[56–58], which restricts the affine constraints used in the polyhedron domain to unit binary in-
equality constraints of form ±x1 ± x2 ≤ c (e.g., x −y ≤ 0). The above three numerical domains are
similar semantically in that they infer conjunctions of inequality constraints and represent convex
sets, but they are based on different algorithms and achieve different tradeoffs between precision
and efficiency. Operators in the interval domain have a linear cost in the number of variables, while
octagon operators have a cubic cost. The cost of polyhedra is unbounded in theory (since it can
construct arbitrarily many constraints), but it is at most exponential in practice [61, 62].

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:28 C. Deng and P. Cousot

It is assumed that, for every concrete environment transfer function F ∈ ℘(M)
→ ℘(M) specified
for atomic actions in the program (e.g., τ {| x := expr |} and τ {| bexpr |} for the simple language

described in Figure 3), the abstract environment domain D�
M

(e.g., interval/polyhedron/octagon)

provides a sound abstract function F� ∈ D�
M

→ D�

M
, such that the soundness condition ∀M� ∈

D�
M
. (F ◦ γM) (M�) ⊆ (γM ◦ F�) (M�) holds.

In addition, it is worth noting that, in some abstract domains, we have an abstraction function

αM ∈ ℘(M)
→ D�
M

such that αM and γM form a Galois connection 〈℘(M), ⊆〉 −−−−→←−−−−
αM

γM
〈D�
M
, ��
M
〉.

In this case, every concrete element M ⊆ M (i.e., every set of concrete environments) has a best

abstraction αM (M) ∈ D�
M

, and every function F ∈ ℘(M)
→ ℘(M) in the concrete domain has also

a best abstraction αM ◦ F ◦ γM ∈ D�
M

→ D�

M
. Specifically, the interval and octagon domain have

this desirable property, while the polyhedron domain does not.

Example 11 (Access Control, Continued). For the access control program in Figure 4, it is sufficient

to use the interval domain asD�
M

to express environment properties such as “the access to o fails”
(i.e., the value of acs is less than or equal to 0 at point l8), since no relational constraints on variables
are required. To be more precise, the abstract environment element M� = apv ∈ [−∞,∞] ∧ i1 ∈
[−∞,∞] ∧ i2 ∈ [−∞,∞] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [−∞, 0] represents the set of environments

γM (M�) = {ρ ∈ M | ρ (acs) ≤ 0}, in which the value of variable acs is less than or equal to 0
while the values of other variables are arbitrary. Similarly, an environment property “the access to
o succeeds” (i.e., the value of acs is greater than or equal to 1 at point l8) can be over-approximated
by M�′ = apv ∈ [−∞,∞] ∧ i1 ∈ [−∞,∞] ∧ i2 ∈ [−∞,∞] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [1,∞].

4.1.2 Concrete Invariant Domain. For any set T of concrete traces (which can be either the pro-
gram semantics or a trace property), we would like to abstract it into an invariant, which collects
the set of environments for each program point that are visited by traces in T . Hence, the concrete
invariant domain DI is defined as 〈L
→ ℘(M), ⊆̇〉, and there exists a Galois connection between
concrete traces and the concrete invariant domain DI:

〈℘(S∗∞), ⊆〉 −−−−−→←−−−−−
αIV

γIV
〈L
→ ℘(M), ⊆̇〉, (6)

where ⊆̇ is the pointwise inclusion relation, and αIV and γIV are defined as:

αIV ∈ ℘(S∗∞)
→ (L
→ ℘(M)) concrete invariant abstraction

αIV (T)l � {ρ ∈ M | ∃σ ∈ T . 〈l , ρ〉 ∈ σ }
γIV ∈ (L
→ ℘(M))
→ ℘(S∗∞) concrete invariant concretization

γIV (I) � {σ ∈ S∗∞ | ∀〈l , ρ〉 ∈ σ . ρ ∈ I(l)}.

4.1.3 Abstract Invariant Domain. The concrete invariants introduced above can be further ab-
stracted into abstract invariants, in which every set of concrete environments is represented by

an abstract element in D�
M

. Here, we define the abstract invariant domain D�
I

as 〈L
→ D�
M
, �̇�
M
〉,

where the program points are mapped to abstract elements inD�
M

, and �̇�
M

is the pointwise order-

ing induced by ��
M

(i.e., ∀I�, I�′ ∈ D�
I
. I� �̇�

M
I�′ ⇔ (∀l ∈ L. I� (l) ��

M
I�′(l))). The corresponding

concretization function γ̇M to the concrete invariant domain is:

γ̇M ∈
(
L
→ D�

M

)

→ (L
→ ℘(M)) abstract invariant concretization

γ̇M (I�)l � γM (I� (l)).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:29

Similar to the abstract environment domain, D�
I

features an infimum ⊥�
I
� λl ∈ L. ⊥�

M
and a

supremum ��
I
� λl ∈ L. ��

M
such that γ̇M (⊥�

I
) = λl ∈ L. ∅ and γ̇M (��

I
) = λl ∈ L. M. When the

environment abstraction αM ∈ ℘(M)
→ D�
M

does exist (e.g., in the interval or octagon domain),
we can construct the corresponding pointwise abstraction function α̇M for the abstract invariant
domain:

α̇M ∈ (L
→ ℘(M))
→
(
L
→ D�

M

)
abstract invariant abstraction

α̇M (I)l � αM (I(l)).

Furthermore, we can build a combination of Galois connections:

〈℘(S∗∞), ⊆〉 −−−−−→←−−−−−
αIV

γIV
〈L
→ ℘(M), ⊆̇〉 −−−−→←−−−−

α̇M

γ̇M
〈L
→ D�

M
, �̇�
M
〉,

such that an abstract invariant I� ∈ L
→ D�
M

over-approximates a set of concrete traces γIV ◦
γ̇M (I�) = {σ ∈ S∗∞ | ∀〈l , ρ〉 ∈ σ . ρ ∈ γM (I� (l))}. Specially, the bottom ⊥�

I
represents the empty

set of concrete traces (γIV ◦ γ̇M (⊥�
I
) = ∅) and the top��

I
represents the set of all possible traces

(γIV ◦ γ̇M (⊥�
I
) = S∗∞).

Example 12 (Access Control, Continued). For the access control program in Figure 4, its maximal
trace semantics �P�Max given in Example 1 can be over-approximated by an abstract invariant

I� ∈ L
→ D�
M

such that: I� (l1) = ��
M
= apv ∈ [−∞,∞] ∧ i1 ∈ [−∞,∞] ∧ i2 ∈ [−∞,∞] ∧ typ ∈

[−∞,∞] ∧ acs ∈ [−∞,∞],
I� (l2) = apv ∈ [1, 1] ∧ i1 ∈ [−∞,∞] ∧ i2 ∈ [−∞,∞] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [−∞,∞],

I� (l3) = apv ∈ [1, 1] ∧ i1 ∈ [−1, 2] ∧ i2 ∈ [−∞,∞] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [−∞,∞],

I� (l4) = apv ∈ [−1, 1] ∧ i1 ∈ [−1, 2] ∧ i2 ∈ [−∞,∞] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [−∞,∞],

I� (l5) = apv ∈ [−1, 1] ∧ i1 ∈ [−1, 2] ∧ i2 ∈ [−1, 2] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [−∞,∞],

I� (l6) = apv ∈ [−1, 1] ∧ i1 ∈ [−1, 2] ∧ i2 ∈ [−1, 2] ∧ typ ∈ [−∞,∞] ∧ acs ∈ [−∞,∞],

I� (l7) = apv ∈ [−1, 1] ∧ i1 ∈ [−1, 2] ∧ i2 ∈ [−1, 2] ∧ typ ∈ [1, 2] ∧ acs ∈ [−∞,∞],

I� (l8) = apv ∈ [−1, 1] ∧ i1 ∈ [−1, 2] ∧ i2 ∈ [−1, 2] ∧ typ ∈ [1, 2] ∧ acs ∈ [−2, 2].

In addition, the concrete trace property “the access to o fails” is over-approximated by another

abstract invariant I�′ ∈ L
→ D�
M

such that its abstract environment element attached to every

program point is the same as I� defined above, except the value bound of acs at point l8 is refined
to [−2, 0]. More precisely, when l = l8, I�′(l) = apv ∈ [0, 1] ∧ i1 ∈ [0, 1] ∧ i2 ∈ [0, 1] ∧ typ ∈
[1, 2] ∧ acs ∈ [−2, 0]; otherwise, I�′(l) = I� (l).

4.2 Forward Reachability Analysis

Given a program P, the corresponding forward reachability semantics specifies the set of states
that are possibly reachable at any program point. Section 4.2.1 formalizes a variant of the classic
forward reachability (invariant) semantics, which is defined as an abstraction of the program’s in-
termediate trace semantics. Section 4.2.2 briefly presents an abstract forward reachability analysis
that soundly over-approximates the concrete forward reachability semantics.

4.2.1 Forward Reachability Semantics.

(1) Classic Forward Reachability Semantics. In the literature, usually the forward reachability
semantics of a program is defined as an abstraction of its prefix trace semantics, which attaches to
each program point a set of environments that are possibly encountered during any execution from

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:30 C. Deng and P. Cousot

a given set of initial environments. More precisely, given a set of initial environments Mi ∈ ℘(M),
the forward reachability semantics S−→r �P�(Mi) ∈ L
→ ℘(M) is defined as a mapping from each
program point l to a set of environments at l that are reachable from Mi . The formal definition
is given as below, where 〈l i , ρi 〉σ 〈l , ρ〉 denotes the concatenation of an initial state 〈l i , ρi 〉, a
(possibly empty) finite trace σ and a state 〈l , ρ〉. Specially, if σ is empty and 〈l , ρ〉 is equal to 〈l i ,
ρi 〉, then 〈l i , ρi 〉σ 〈l , ρ〉 represents a trace with only one state 〈l i , ρi 〉.

S−→r �P� ∈ ℘(M)
→ (L
→ ℘(M)) classic forward reachability semantics

S−→r �P�(Mi)l � {ρ ∈ M | ∃σ ∈ S∗, ρi ∈ Mi . 〈l i , ρi 〉σ 〈l , ρ〉 ∈ �P�Pref }

The classic forward reachability semantics defined above specifies an invariant property of
the program executions. If the set of initial environments Mi is taken as a precondition, then
S−→r �P�(Mi)l is an invariant at l , which holds if and when the execution of P starting with an ini-
tial state satisfying Mi reaches program point l . Such a forward reachability semantics is quite
useful in verifying program correctness.

(2) Forward (Possible Success) Reachability Semantics. To build a Galois connection between the
forward reachability semantics and the backward accessibility semantics (defined in Section 4.3)
and facilitate the trace partitioning by invariants during the forward reachability analysis (intro-
duced later in Section 5), we define a variant of forward reachability semantics, in which the con-
sidered execution traces are not required to start from the initial point l i .

To be more precise, instead of collecting reachable states from a set of initial environments
Mi , here the precondition Ipre ∈ L
→ ℘(M) is specified by sets of environments attached to any
(not necessarily initial) program point, and the forward (possible success) reachability semantics
S−→

ps
�P� collects all the reachable states in the intermediate execution traces, which start from states

satisfying the precondition Ipre.

S−→
ps

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) forward reachability semantics

S−→
ps

�P�(Ipre)l ′ � {ρ ′ ∈ M | ∃σ ∈ S∗, l ∈ L, ρ ∈ Ipre (l). 〈l , ρ〉σ 〈l ′, ρ ′〉 ∈ �P�It}

Given a precondition Ipre ∈ L
→ ℘(M), the forward (possible success) reachability semantics
S−→

ps
�P�(Ipre)l specifies an invariant at each point l , which holds if and when an execution of P

starting with a state satisfying Ipre reaches the point l .
To distinguish from the classic forward reachability semantics and the forward impossible fail-

ure reachability semantics introduced in Reference [18], the semantics S−→
ps

�P� defined above is

formally named “forward possible success reachability semantics.” Nevertheless, in the rest of this
article, the notation of forward reachability semantics (where “possible success” or its abbreviation
“ps” is omitted) refers to S−→

ps
�P�.

It is easy to see that the classic forward reachability semantics S−→r �P� ∈ ℘(M)
→ (L
→ ℘(M))
is an abstraction of our definition S−→

ps
�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)), and S−→r �P�(Mi) is equal

to S−→
ps

�P�(Ipre) if Ipre = λl ∈ L. (l == l i) ? Mi : ∅.

(3) Forward (Possible Success) Reachability Semantics in Fixpoint Form. The forward reachability
semanticsS−→

ps
�P� of a program P = 〈Si ,→〉 can be defined by structural induction on the language-

specific syntax of the program or in the fixpoint form with a forward transfer function F−→
ps

�P�:

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:31

S−→
ps

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) forward reachability semantics

S−→
ps

�P�(Ipre) � lfp ⊆̇
Ipre

F−→
ps

�P�

F−→
ps

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) forward transfer function

F−→
ps

�P�I � I ∪̇ λl ′ ∈ L.{ρ ′ ∈ M | ∃l ∈ L, ρ ∈ I(l). 〈l , ρ〉 → 〈l ′, ρ ′〉},

where ⊆̇ and ∪̇ are pointwise extensions of the standard inclusion relation ⊆ and union operator
∪, respectively, and lfp ⊆̇

I
F denotes the ⊆̇-least fixpoint of F that is ⊆̇-greater than or equal to I, if it

exists, which is the case for F−→
ps

�P� by Tarski’s fixpoint theorem [72].

Essentially, the monotonic function F−→
ps

�P� described above can be constructed by combining

atomic forward transfer functions, each of which is typically defined for an atomic action (instruc-
tion/computation step) in the program and associates a set of environments before the action with
the set of environments reachable after the action.

More formally, here we assume that for every pair of program points 〈l , l ′〉 in the program
P, an atomic transfer function Fl→l ′�P� ∈ ℘(M)
→ ℘(M) is provided such that for any set M of
environments at point l , the function Fl→l ′�P�(M) returns the set of environments at point l ′ that
are reachable from M: (i) if l = l ′, then Fl→l ′�P�(M) = M; (ii) if l � l ′ and there is not an atomic
action from l to l ′, then Fl→l ′�P�(M) = ∅; and (iii) otherwise, there is an atomic action from l
to l ′, then Fl→l ′�P�(M) is the set of environments after executing the action from M. Taking the
simple language in Figure 2 as an example, there are only two types of atomic actions: For an
assignment l1 x := e l2 , the corresponding atomic transfer function Fl1→l2�P�(M) = τ {| x := e |}M,
which is defined in Figure 3; similarly, for a Boolean test l1 b l2 , the corresponding atomic transfer
function Fl1→l2�P�(M) = τ {|b |}M.

Therefore, the definition of forward transfer function F−→
ps

�P� can be rephrased into:

F−→
ps

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) forward transfer function

F−→
ps

�P�I � λl ′ ∈ L. ∪l ∈L Fl→l ′�P�(I(l)).

Example 13 (Access Control, Continued). For the access control program, the forward trans-
fer function F−→

ps
�P� can be derived by combining the following atomic transfer functions:

τ {| apv := 1 |}, τ {| i1 := [−1; 2] |}, τ {| apv := (i1 ≤ 0) ? − 1 : apv |}, τ {| i2 := [−1; 2] |}, τ {|
apv := (apv ≥ 1 ∧ i2 ≤ 0) ? − 1 : apv |}, τ {| typ := [1; 2] |}, and τ {| acs := apv × typ |}. Then, from a
precondition Ipre ∈ L
→ ℘(M) such that Ipre (l1) = M and Ipre (l) = ∅ for l � l1, we can compute
the forward reachability semantics S−→

ps
�P�(Ipre) by the least fixpoint lfp ⊆̇

Ipre
F−→

ps
�P�, which is equal

to the classic invariant semantics.
To be more precise, the result S−→

ps
�P�(Ipre) is listed in Table 1, in which the constraints on envi-

ronment like “ρ (apv) = 1” is written as “apv = 1” for short.

4.2.2 Over-approximating Abstract Forward Reachability Analysis. Although the concrete for-
ward reachability semantics S−→

ps
�P� can be easily computed in the Example 13 (since there are no

infinite loops in the access control program and the variable values are bounded integers), it is not
computable in general, and an over-approximation is necessary.

(1) Over-approximating Abstract Forward Transfer Function. For the forward transfer function
F−→

ps
�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) on the concrete invariant domain, we need to construct

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:32 C. Deng and P. Cousot

Table 1. Concrete Forward Reachability Semantics for the Access Control Program

l S−→
ps

�P�(Ipre)l
l1 M

l2 {ρ ∈ M | apv = 1}
l3 {ρ ∈ M | apv = 1 ∧ i1 ∈ {−1, 0, 1, 2}}
l4 {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2}} ∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0}}
l5 {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0, 1, 2}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2}}

l6 {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2}}

l7 {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2} ∧ typ ∈ {1, 2}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0} ∧ typ ∈ {1, 2}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2} ∧ typ ∈ {1, 2}}

l8 {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2} ∧ typ = 1 ∧ acs = 1}
∪ {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2} ∧ typ = 2 ∧ acs = 2}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0} ∧ typ = 1 ∧ acs = −1}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0} ∧ typ = 2 ∧ acs = −2}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2} ∧ typ = 1 ∧ acs = −1}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2} ∧ typ = 2 ∧ acs = −2}

an abstract forward transfer function F̂
�
−→
ps

�P� ∈ (L
→ D�
M

)
→ (L
→ D�
M

) that over-approximates

F−→
ps

�P�, where the symbol ˆ denotes over-approximations.

In Section 4.1.1, it is assumed that for each transfer function Fl→l ′�P� ∈ ℘(M)
→ ℘(M) defined

for atomic actions, the abstract environment domainD�
M

provides an abstract function F̂
�
l→l ′�P� ∈

D�
M

→ D�

M
such that ∀M� ∈ D�

M
. (Fl→l ′�P� ◦ γM) (M�) ⊆ (γM ◦ F̂

�
l→l ′�P�) (M�). For instance, the

interval/polyhedron/octagon domain provides the over-approximating abstract transfer versions

τ � {|x := e |} and τ � {|b |} for τ {|x := e |} and τ {|b |}. Therefore, F̂
�
−→
ps

�P� can be constructed by the join of

F̂
�
l→l ′�P� functions:

F̂
�
−→
ps

�P� ∈
(
L
→ D�

M

)

→

(
L
→ D�

M

)
abstract forward transfer function

F̂
�
−→
ps

�P�I� � λl ′ ∈ L. ��
M l ∈L F̂

�
l→l ′�P�(I� (l)).

The abstract function F̂
�
−→
ps

�P� is monotonic and obeys soundness condition:

∀I� ∈ L
→ D�
M
. F−→

ps
�P� ◦ γ̇M (I�) ⊆̇ γ̇M ◦ F̂

�
−→
ps

�P�(I�). (7)

By the monotonic property and the soundness condition (7) of F̂
�
−→
ps

�P�, we know that: For any

Ipre ∈ L
→ ℘(M) and I
�
pre ∈ L
→ D

�
M

, if Ipre ⊆̇ γ̇M (I�pre), then lfp ⊆̇
Ipre

F−→
ps

�P� ⊆̇ γ̇M (lfp
�̇�
M

I
�
pre

F̂
�
−→
ps

�P�).

That is to say, the concrete forward reachability semantics S−→
ps

�P�(Ipre) can be soundly over-

approximated by the least fixpoint of the abstract forward transfer function F̂
�
−→
ps

�P�.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:33

(2) Widening. In most abstract environment domains (e.g., intervals, polyhedra, octagons), there

may exist infinite increasing chains, hence the iteration of F̂
�
−→
ps

�P� may not converge in finite time.

To address this problem, we need a widening operator �I ∈ (L
→ D�
M

) × (L
→ D�
M

)
→ (L
→
D�
M

) on the abstract invariant domain, which satisfies the following soundness and termination
conditions:

(i) ∀x �,y� ∈ L
→ D�
M
. γ̇M (x �) ∪̇ γ̇M (y�) ⊆̇ γ̇M (x � �I y�);

(ii) for any sequence (x �
i)i ∈N, the sequence (y�

i)i ∈N defined as y�
0 = x �

0 and ∀i ∈ N. y�
i+1 =

y�
i �I x �

i+1 converges in finite time.

The implementation of �I ∈ (L
→ D�
M

) × (L
→ D�
M

)
→ (L
→ D�
M

) naturally follows the

widening operator �M ∈ D�
M
× D�

M

→ D�

M
provided by the abstract environment domain, such

that I� �I I�′ � λl ∈ L. I� (l) �M I�′(l). It is easy to prove such a definition of �I obeys the
soundness and termination conditions, and we omit it here.

(3) Abstract Forward Reachability Semantics. Given a precondition represented by I
�
pre ∈ L
→

D�
M

, the corresponding concrete reachability semantics S−→
ps

�P�(γ̇M (I�pre)) is the least fixpoint of

function F−→
ps

�P� that is greater than or equal to γ̇M (I�pre). That is to say, S−→
ps

�P�(γ̇M (I�pre)) =

lfp ⊆̇
γ̇M (I

�
pre)

F−→
ps

�P�. By Cousot and Cousot’s upward iteration with widening theorem, lfp ⊆̇
γ̇M (I

�
pre)

F−→
ps

�P�

can be soundly over-approximated by the limit of a ultimately stationary sequence (I�i)i ∈N, where

I
�
0 = I

�
pre and ∀i ∈ N. I�i+1 = I

�
i �I F̂

�
−→
ps

�P�(I�i).

∀I
�
pre ∈ L
→ D

�
M
. lfp ⊆̇

γ̇M (I
�
pre)

F−→
ps

�P� ⊆̇ γ̇M

(
lim

I
�
pre
λI� . I� �I F̂

�
−→
ps

�P�(I�)
)
. (8)

In the rest of this article, the abstract forward reachability semantics S�
−→
ps

�P� refers to the fol-

lowing definition, which gives a sound over-approximation of the concrete reachability semantics
and can be computed in finite time:

S�
−→
ps

�P� ∈
(
L
→ D�

M

)

→

(
L
→ D�

M

)
abstract forward reachability semantics

S�
−→
ps

�P�(I�pre) � lim
I
�
pre
λI� . I� �I F̂

�
−→
ps

�P�(I�).

Example 14 (Access Control, Continued). For the access control program in Figure 4, we use the

interval domain as the abstract environment domain D�
M

. Given an abstract precondition I
�
pre ∈

L
→ D�
M

such that I
�
pre (l1) = ��

M
and I

�
pre (l) = ⊥�

M
for l � l1, the corresponding abstract forward

reachability semantics S�
−→
ps

�P�(I�pre)l is listed in Table 2.

Compared with the concrete reachability semantics S−→
ps

�P�(Ipre)l in Table 1, it is obvious that

S�
−→
ps

�P�(I�pre)l is an over-approximation and contains some spurious environments that are not

reachable in the concrete (e.g., the value of acs cannot be 0 at l8 in the concrete).

4.3 Backward Accessibilty Analysis

Given a precondition on states, the forward reachability analysis collects states that are pos-
sibly reachable by the executions from states satisfying the precondition. Inversely, given a

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:34 C. Deng and P. Cousot

Table 2. Abstract Forward Reachability Semantics for the Access Control Program

l S�
−→
ps

�P�(I�pre)l

l1 ��
M

l2 apv ∈ [1; 1] ∧ i1 ∈ [−∞;∞] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l3 apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l4 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l5 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l6 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l7 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−∞;∞]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 2]

postcondition on states, the backward accessibility analysis collects states from which the
executions reach states satisfying the postcondition.

In general, there are two types of backward accessibility analysis: (1) the backward impossible
failure accessibility analysis computes the states, from which the executions can reach only the
states satisfying the given postcondition (i.e., it is impossible to reach states that fail the postcondi-
tion); (2) the backward possible success accessibility analysis introduced in Reference [18] computes
the states, from which the executions may reach a state satisfying the given postcondition (i.e., it
is possible to succeed to reach a state satisfying the postcondition). This section discusses the back-
ward impossible failure accessibility semantics, which is essentially equivalent to the sufficient con-
dition semantics in References [60, 61]. More precisely, we briefly review the under-approximating
abstract analysis introduced by Miné and propose a new over-approximating abstract backward
impossible failure accessibility analysis.

4.3.1 Backward Impossible Failure Accessibility Semantics. The forward (possible success)
reachability semantics S−→

ps
�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) is the lower adjoint in a Galois con-

nection, and the corresponding upper adjoint is defined as the backward impossible failure accessi-
bility semantics S←−

i f
�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)), such that any execution from states satis-

fying S←−
i f

�P�(Ipost) can reach only the states satisfying the given postcondition Ipost ∈ L
→ ℘(M):

〈L
→ ℘(M), ⊆̇〉 −−−−−−−−→←−−−−−−−−
S−→

ps
�P�

S←−
i f

�P�

〈L
→ ℘(M), ⊆̇〉, (9)

where the definition of S←−
i f

�P� is formalized as

S←−
i f

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M))

S←−
i f

�P�(Ipost)l � {ρ ∈ M | ∀σ ∈ S∗, l ′ ∈ L, ρ ′ ∈ M. (〈l , ρ〉σ 〈l ′, ρ ′〉 ∈ �P�It ⇒ ρ ′ ∈ Ipost (l ′))}.

For any postcondition Ipost ∈ L
→ ℘(M) that can represent a trace property of interestγIV (Ipost),
the backward impossible failure accessibility semantics S←−

i f
�P�(Ipost) computes the states from

which all the execution traces must have the property γIV (Ipost), or, say, it infers the sufficient
preconditions for the postcondition Ipost to hold. It is of great importance to know that our S←−

i f
�P�

is equivalent to the sufficient condition semantics introduced in References [60, 61].

Backward Impossible Failure Accessibility Semantics in Fixpoint Form. Similar to the forward
(possible success) reachability semantics S−→

ps
�P�, the backward impossible failure accessibility

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:35

semanticsS←−
i f

�P� of a program P = 〈Si ,→〉 can be also defined in the fixpoint form with a concrete

backward transfer function F←−
i f

�P�:

S←−
i f

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) backward IF accessibility semantics

S←−
i f

�P�(Ipost) � gfp ⊆̇
Ipost

F←−
i f

�P�

F←−
i f

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) backward IF transfer function

F←−
i f

�P�I � I ∩̇ λl ∈ L.{ρ ∈ M | ∀l ′ ∈ L, ρ ′ ∈ M. 〈l , ρ〉 → 〈l ′, ρ ′〉 ⇒ ρ ′ ∈ I(l ′)},

where ⊆̇ and ∩̇ are pointwise extensions of the standard set inclusion relation ⊆ and intersection
operator ∩, respectively, and gfp ⊆̇

I
F is the order-dual of lfp ⊆̇

I
F.

As F−→
ps

�P� is constructed by combining atomic forward transfer functions Fl→l ′�P�, we can con-

struct F←−
i f

�P� by atomic backward transfer functions Fl←l ′�P� ∈ ℘(M)
→ ℘(M), which are defined

for every pair of program points 〈l , l ′〉 in the program such that, if there exists a single atomic
action from l to l ′, then executions from environments in Fl←l ′�P�M at point l can only reach
environments in M at point l ′. To be more precise: (i) if l = l ′, then Fl←l ′�P�(M) = M; (ii) if
l � l ′ and there is not an atomic action from l to l ′, then Fl←l ′�P�(M) = M; and (iii) otherwise,
there is an atomic action from l to l ′, then Fl←l ′�P�(M) is the set of environments at point l that
guarantee the environments after executing the atomic action belong to M.

Specifically, for the simple language described in Figure 2, there are only two types of atomic
actions, and for each of them we define an atomic backward transfer function. For an assignment
l1 x := e l2 , the corresponding atomic backward transfer function Fl1←l2�P�(M) = ←−τ {| x := e |}M,
which is defined as:

←−τ {|x := e |}M � {ρ ∈ M | ∀v ∈ �e�ρ . ρ[x
→ v] ∈ M}.

Similarly, for a Boolean test l1 b l2 , the atomic backward transfer function Fl1←l2�P�(M) =←−τ {|b |}M,
which is defined as:

←−τ {|b |}M � M ∪ {ρ ∈ M | �b�ρ = {ff }}.
Therefore, the definition of backward transfer function F←−

i f
�P� can be rephrased into:

F←−
i f

�P� ∈ (L
→ ℘(M))
→ (L
→ ℘(M)) backward IF transfer function

F←−
i f

�P�I � λl ∈ L. ∩l ′ ∈L Fl←l ′�P�(I(l ′)).

Example 15 (Access Control, Continued). For the access control program in Figure 4, the
transfer function F←−

i f
�P� can be constructed by combining the atomic backward transfer func-

tions: ←−τ {| apv := 1 |}, ←−τ {| i1 := [−1; 2] |}, ←−τ {| apv := (i1 ≤ 0) ? − 1 : apv |}, ←−τ {| i2 := [−1; 2] |}, ←−τ {|
apv := (apv ≥ 1 ∧ i2 ≤ 0) ? − 1 : apv |},←−τ {|typ := [1; 2] |}, and←−τ {|acs := apv × typ |}.

Suppose we are interested in inferring sufficient preconditions of the trace property “the access
to o fails,” a simple idea is to specify a postcondition Ipost ∈ L
→ ℘(M) such that Ipost (l8) =
{ρ ∈ M | ρ (acs) <= 0} and Ipost (l) = M for l � l8, and then compute the corresponding backward
accessibility semanticsS←−

i f
�P�(Ipost). However, such a result is too imprecise. Take the semantics at

the point l7 as an example:S←−
i f

�P�(Ipost)l7 = Ipost (l7)∩Fl7←l8�P�(Ipost (l8)) = M∩←−τ {|acs := apv × typ |
}({ρ ∈ M | ρ (acs) <= 0}) = {ρ ∈ M | (ρ (apv) <= 0 ∧ ρ (typ) >= 0) ∨ (ρ (apv) >= 0 ∧
ρ (typ) <= 0)}. This semantics does provide correct sufficient preconditions of “the access to o fails,”
but it is not precise enough, since the value of typ is never zero or negative at point l7 in the real
executions.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:36 C. Deng and P. Cousot

Table 3. Concrete Backward Impossible Failure Accessibility Semantics
for the Access Control Program

l S←−
i f

�P�(I′post)l

l1 ∅
l2 ∅
l3 {ρ ∈ M | apv = 1 ∧ i1 ∈ {−1, 0}}
l4 {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0}}
l5 {ρ ∈ M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2}}

l6 {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2}}

l7 {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0} ∧ typ ∈ {1, 2}}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2} ∧ typ ∈ {1, 2}}

l8 {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0} ∧ typ = 1 ∧ acs = −1}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {−1, 0} ∧ typ = 2 ∧ acs = −2}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2} ∧ typ = 1 ∧ acs = −1}
∪ {ρ ∈ M | apv = −1 ∧ i1 ∈ {−1, 0} ∧ i2 ∈ {−1, 0, 1, 2} ∧ typ = 2 ∧ acs = −2}

To get a more precise result, the specified postcondition Ipost can be refined by the intersection
with the forward reachability semanticsS−→

ps
�P�(Ipre) computed in Example 13, i.e., we define I′post =

Ipost ∩̇ S−→ps
�P�(Ipre), and the semantics S←−

i f
�P�(I′post) would be more precise, whose result is in

Table 3, and the constraints on environment like “ρ (apv) = 1” is written as “apv = 1” for short. It is
not hard to see that: At the point l1 or l2, there is no sufficient precondition that can guarantee the
property “the access to o fails”; beginning from the point l3, the negative or zero value of i1 guar-
antees “access failure”; and beginning from the point l5, the negative or zero value of i2 guarantees
“access failure.”

4.3.2 Under-approximating Abstract Backward Impossible Failure Accessibility Analysis. Similar
to the forward reachability semantics, the backward impossible failure accessibility semantics may
be not computable in the concrete, hence it is necessary to reason on the abstract domain instead.
Although classic abstract domains come with abstract transfer functions (operators) for both for-
ward and backward analyses, these functions are over-approximating and are suitable only for
inferring invariants (i.e., reachability semantics) or necessary preconditions, but not for inferring
sufficient preconditions. The reason comes from that an over-approximation of the tightest pro-
gram invariant (respectively, the strongest necessary precondition) is still an invariant (respec-
tively, a necessary precondition), but an over-approximation of the weakest sufficient precondition
is not a sufficient precondition anymore (which will be discussed later in Section 4.3.3), thus under-
approximations are needed instead to preserve the soundness for inferring sufficient preconditions.
To solve this problem, Miné [60, 61] presents under-approximating abstract operators (including a
dual widening) for the classic interval/octagon/polyhedron domain, which makes inferring suffi-
cient preconditions directly by under-approximating backward analysis possible. Other attempts
to infer sufficient preconditions include References [7, 44, 50], but none of them can directly work
on the classic numeric abstract domains.

In this section, we briefly summarize the framework of an under-approximating abstract back-
ward impossible failure accessibility analysis and refer to References [60, 61] and Banal analyzer
[55] for the details of implementing the under-approximating abstract operators (including a dual
widening).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:37

(1) Under-approximating Abstract Backward Transfer Function. For the transfer function F←−
i f

�P� ∈
(L
→ ℘(M))
→ (L
→ ℘(M)) on the concrete invariant domain, we need to construct the corre-

sponding abstract backward transfer function F̌
�
←−
i f

�P� ∈ (L
→ D�
M

)
→ (L
→ D�
M

) (the symbol ˇ

denotes under-approximations), which satisfies the following soundness condition:

∀I� ∈ L
→ D�
M
. γ̇M ◦ F̌

�
←−
i f

�P�(I�) ⊆̇ F←−
i f

�P� ◦ γ̇M (I�). (10)

Since F←−
i f

�P�I is defined by combining atomic backward transfer function Fl←l ′�P� together (i.e.,

F←−
i f

�P�I � λl ∈ L.∩l ′ ∈L Fl←l ′�P�(I(l ′))), it is necessary to build the under-approximating versions

F̌
�
l←l ′�P� ∈ D�

M

→ D�

M
for atomic backward transfer functions Fl←l ′�P� ∈ ℘(M)
→ ℘(M), such

that condition (11) holds:

∀M� ∈ D�
M
. γM ◦ F̌

�
l←l ′�P�(M�) ⊆ Fl←l ′�P� ◦ γM (M�). (11)

To satisfy the soundness condition (11), we design F̌
�
l←l ′�P� such that: (i) if l = l ′, then

F̌
�
l←l ′�P�(M�) = M� ; (ii) if l � l ′ and there is not an atomic action from l to l ′, then F̌

�
l←l ′�P�(M�) =

��
M

; and (iii) otherwise, there is an atomic action from l to l ′, then F̌
�
l←l ′�P�(M�) is an abstract

environment element in D�
M

that guarantees M� to hold after executing the atomic action. It is
obvious that the case (iii) is the difficult one, and fortunately for the atomic actions of assignments
and Boolean tests in the interval/polyhedron/octagon domain, Miné has proposed the correspond-
ing under-approximating atomic backward transfer function←−τ � {|x := e |}M� and←−τ � {|b |}M� , which
satisfies the soundness condition. Details are given in Sections 3.2–3.4 of Reference [61]. Now we

can build the backward transfer function F̌
�
←−
i f

�P� by the following definition:

F̌
�
←−
i f

�P� ∈
(
L
→ D�

M

)

→

(
L
→ D�

M

)
under-approximating backward IF function

F̌
�
←−
i f

�P�I� � λl ∈ L. ��
M l ′ ∈LF̌

�
l←l ′�P�(I� (l ′)).

The backward transfer function F̌
�
←−
i f

�P� satisfies the condition (10), and its greatest fixpoint

soundly under-approximates the concrete backward impossible failure accessibility semantics:

∀I
�
post ∈ L
→ D

�
M
. γ̇M �

�
gfp ⊆̇

I
�
post

F̌
�
←−
i f

�P��
�
⊆̇ gfp ⊆̇

γ̇M

(
I
�
post

) F←−
i f

�P� = S←−
i f

�P�
(
γ̇M

(
I
�
post

))
.

(2) Dual Widening. The iteration of the above defined F̌
�
←−
i f

�P� may not converge in finite time,

since there may exist infinite decreasing chains in the abstract environment domain (e.g., intervals,
polyhedra, octagons). To address this problem, we need a dual widening operator �

I
∈ (L
→

D�
M

) × (L
→ D�
M

)
→ (L
→ D�
M

) on the abstract invariant domain, which obeys the following
soundness and termination conditions:

(i) ∀x �,y� ∈ (L
→ D�
M

). γ̇M (x � �
I
y�) ⊆̇ γ̇M (x �) ∩̇ γ̇M (y�);

(ii) for any sequence (x �
i)i ∈N, the sequence (y�

i)i ∈N defined as y�
0 = x �

0 and ∀i ∈ N. y�
i+1 =

y�
i �

I
x �

i+1 converges in finite time.
Notice that the above soundness condition is different from the one for classic widening �I in

the forward reachability analysis.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:38 C. Deng and P. Cousot

In Section 3.5 of Reference [61], Miné has proposed a so-called “lower widening” operator � ∈
D�
M
×D�

M

→ D�

M
for the interval/polyhedron/octagon domain. Correspondingly, we define �

I
as

the pointwise version of � (i.e., I� �
I

I�′ � λl ∈ L. I� (l) � I�′(l)), and it can satisfy both the
soundness and the termination condition above.

(3) Under-approximating Abstract Backward Accessibility Semantics. Given a postcondition spec-

ified as I
�
post ∈ L
→ D�

M
, the corresponding concrete backward impossible failure accessibil-

ity semantics S←−
i f

�P�(γ̇M (I�post)) is the greatest fixpoint of function F←−
i f

�P�, which is less than or

equal to γ̇M (I�post). That is to say, S←−
i f

�P�(γ̇M (I�post)) = gfp ⊆̇
γ̇M (I

�
post)

F←−
i f

�P�, and it can be soundly

under-approximated by the limit of a ultimately stationary sequence (I�i)i ∈N, where I
�
0 = I

�
post

and ∀i ∈ N. I�i+1 = I
�
i �
I

F̌
�
←−
i f

�P�(I�i).

∀I
�
post ∈ L
→ D

�
M
. γ̇M

(
lim

I
�
post

λI� . I� �
I

F̌
�
←−
i f

�P�(I�)
)
⊆̇ gfp ⊆̇

γ̇M (I
�
post)

F←−
i f

�P�. (12)

In the rest of this article, the under-approximating abstract backward impossible failure ac-

cessibility semantics Š�
←−
i f

�P� refers to the following definition, which computes a sound under-

approximation of the concrete backward impossible failure accessibility semantics and can auto-
matically infer the sufficient precondition of any given postcondition in finite time.

Š�
←−
i f

�P� ∈
(
L
→ D�

M

)

→

(
L
→ D�

M

)
under-approximating backward IF semantics

Š�
←−
i f

�P�(I�post) � lim
I
�
post

λI� . I� �
I

F̌
�
←−
i f

�P�(I�)

Example 16 (Access Control, Continued). Consider the access control program in Figure 4 again.
We are interested in inferring the sufficient preconditions of the trace property “the access to

o fails.” Suppose the abstract environment domain D�
M

is chosen as the interval domain, then

“the access to o fails” can be expressed by an abstract postcondition I
�
post ∈ L
→ D

�
M

such that

I
�
post (l8) = acs ∈ [−∞; 0] and I

�
post (l) = ��

M
for l � l8.

Like in the Example 15, the postcondition I
�
post can be refined by the intersection with the

abstract forward reachability semantics S�
−→
ps

�P�(I�pre) from the Table 2, and we get I
�′
post =

I
�
post �̇

�
M
S�
−→
ps

�P�(I�pre), which is listed in the Table 4.

From the above refined abstract postcondition I
�′
post, there are two possible results of the back-

ward impossible failure accessibility analysis Š�
←−
i f

�P�(I�′post), and they are, respectively, displayed

in Table 5 and Table 6 (in which the interesting part is emphasized in a bold font).
The difference between these two possible results comes from the assignment

“apv := (apv ≥ 1 ∧ i2 ≤ 0) ? − 1 : apv” at the point l5. To guarantee that “apv ≤ 0” at
point l6, we have two possible choices: either “apv ≥ 1 ∧ i2 ≤ 0,” or “apv ≤ 0” at point l5.

Since Š�
←−
i f

�P�(I�′post) is an under-approximation, we cannot join two cases together like in the

over-approximating forward reachability analysis. Instead, we keep one case and discard the
other case (e.g., the Banal analyzer adopts the former choice and produces results as in Table 5).

Alternatively, we could use the disjunctive completion [21] and maintain the abstract environ-
ment elements (i.e., sufficient preconditions) from both two tables. In this example, the disjunctive

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:39

Table 4. Refined Abstract Postcondition for “the Access to o Fails”

l I
�′
post (l)

l1 ��
M

l2 apv ∈ [1; 1] ∧ i1 ∈ [−∞;∞] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l3 apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l4 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l5 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l6 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l7 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−∞;∞]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [–2; 0]

Table 5. The Under-approximating Abstract Backward Impossible Failure Accessibility
Semantics (Option 1) for “the Access to o Fails”

l Š�
←−
i f

�P�(I�′post)l

l1 ⊥�
M

l2 ⊥�
M

l3 ⊥�
M

l4 ⊥�
M

l5 apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 0] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l6 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−∞;∞]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 0]

Table 6. The Under-approximating Abstract Backward Impossible Failure Accessibility
Semantics (Option 2) for “the Access to o Fails”

l Š�
←−
i f

�P�(I�′post)l

l1 ⊥�
M

l2 ⊥�
M

l3 apv ∈ [1; 1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l4 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l5 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l6 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−∞;∞]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 0]

completion could provide us with the exact backward impossible failure accessibility semantics
and its cost is not too heavy, because we need to keep a disjunction of two abstract environment
elements only at the point l5, while the abstract environment elements at other points are either
the same from two tables or the bottom in one table (which can be omitted). To distinguish
from the over-approximating analysis introduced later in Section 4.3.3, here we adopt the result
(from the Banal analyzer) in Table 5 as an under-approximation.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:40 C. Deng and P. Cousot

Therefore, we have successfully inferred some sufficient preconditions of “the Access to o Fails”:
“acs ∈ [−2; 0]” at l8, “apv ∈ [−1; 0]” at l7 and l6, and “apv ∈ [1; 1] ∧ i2 ∈ [−1; 0]” at l5, which implies
that the zero or negative value of i2 (i.e., the input from 2nd admin) guarantees the access failure.

4.3.3 Over-approximating Abstract Backward Impossible Failure Accessibility Analysis. Besides
the under-approximating backward analysis above, we design an over-approximating abstract
backward impossible failure accessibility analysis as well, which computes an over-approximation

of the set of states from which all the executions must satisfy the given postcondition I
�
post.

Such an over-approximation is neither a sufficient precondition for I
�
post to hold, nor a neces-

sary precondition, due to the possible non-determinism of the program. Thus, it may seem to be
not of practical use. However, instead of directly using such an over-approximating abstract back-
ward impossible failure accessibility semantics in the responsibility analysis, we intend to utilize
its set-complement as partitioning directives (which will be further discussed in Section 7), and it
represents a set of states from which there must exist at least one concrete execution trace that

fails the postcondition I
�
post. This may seem to be counter-intuitive at first sight, since most abstract

domains (e.g., intervals, octagons, polyhedra) do not support complements. For instance, the com-
plement of a polyhedron is a disjunction of affine inequalities, which cannot be expressed by a
single polyhedron. However, it would not be a problem for our responsibility analysis, since we
do not require to represent the complement set by a single abstract environment element. Instead,
we could keep multiple partitioning directives at every program point. Take the complement of
a polyhedron as an example: Each affine inequality (or the heuristically selected ones when the
number of affine inequalities exceeds a threshold) can be used as a partitioning directive in the
responsibility analysis.

In the following, we formalize the framework of over-approximating backward impossible fail-
ure accessibility analysis, which essentially corresponds to an over-approximating version of
Section 3 of Reference [61] and Section 4.3.2 of this article. More precisely, it consists of the over-
approximating backward transfer functions (e.g., for the Boolean tests and assignments in our sim-
ple programming language) and a narrowing operator that over-approximates meets and enforces
termination.

(1) Over-approximating Abstract Backward Transfer Function. Here, we need an over-

approximating abstract backward transfer function F̂
�
←−
i f

�P� ∈ (L
→ D�
M

)
→ (L
→ D�
M

) (the

symbol ˆ denotes over-approximations) that satisfies the following soundness condition (13):

∀I� ∈ L
→ D�
M
. F←−

i f
�P� ◦ γ̇M (I�) ⊆̇ γ̇M ◦ F̂

�
←−
i f

�P�(I�). (13)

Like F̌
�
←−
i f

�P� is defined by the combination of F̌
�
l←l ′�P�, the over-approximating version F̂

�
←−
i f

�P�

can be defined by combining F̂
�
l←l ′�P� ∈ D�

M

→ D�

M
:

F̂
�
←−
i f

�P� ∈
(
L
→ D�

M

)

→

(
L
→ D�

M

)
over-approximating backward IF function

F̂
�
←−
i f

�P�I� � λl ∈ L. ��
M l ′ ∈LF̂

�
l←l ′�P�(I� (l ′)),

where the meet ��
M

is exact and F̂
�
l←l ′�P� needs to satisfy the condition (14):

∀M� ∈ D�
M
. Fl←l ′�P� ◦ γM (M�) ⊆ γM ◦ F̂

�
l←l ′�P�(M�). (14)

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:41

Similar to the definition of F̌
�
l←l ′�P�, here F̂

�
l←l ′�P� is defined such that: (i) if l = l ′, then

F̂
�
l←l ′�P�(M�) = M� ; (ii) if l � l ′ and there is not an atomic action from l to l ′, then

F̂
�
l←l ′�P�(M�) = ��

M
; and (iii) otherwise, there is an atomic action from l to l ′, then F̂

�
l←l ′�P�(M�)

over-approximates the sufficient precondition that guarantees M� to hold after executing the
atomic action.

Among the above three cases, (iii) is the difficult one. In the following, we take the simple pro-
gramming language in Figure 2 as an example, mimic Section 3 of Reference [61], and discuss

how F̂
�
l←l ′�P� is implemented for atomic actions of form l1 a l2 (e.g., Boolean tests l1 b l2 , assignments

l1 x := e l2), where F̂
�
l1←l2�P�(M�) � ←̂−τ

�
{|a |}M� such that ∀M� ∈ D�

M
. ←−τ {|a |} ◦ γM (M�) ⊆ γM ◦ ←̂−τ

�
{|

a |}(M�).

(1.1) Boolean tests (guards).
Affine guards. First, we consider the polyhedron domain, and the guard is of form �a · �x ≥ b

such that it can be exactly represented by polyhedra. In this case, the concrete backward transfer
function can be rephrased into:

←−τ {|�a · �x ≥ b |}M = M ∪ {ρ ∈ M | ��a · �x ≥ b�ρ = {ff }} = M ∪ {ρ ∈ M | �a · �ρ < b},
where �ρ denotes the vector of variable values in the environment ρ.

To over-approximate←−τ {|�a · �x ≥ b |}, we define the corresponding abstract transfer function ←̂−τ
�
{|

�a · �x ≥ b |} ∈ D�
M

→ D�

M
as:

←̂−τ
�
{|�a · �x ≥ b |}M� � M� ��

M
�a · �x < b . (15)

Since ��
M

soundly approximates the concrete join operator ∪, it is easy to see the soundness

condition (14) holds. Moreover, if we use the disjunctive completion [21], then both M� and �a ·�x < b

can be kept without the join, i.e., ←̂−τ
�
{|�a · �x ≥ b |}M� � {M�, �a · �x < b}, which can greatly improve

the precision of analysis. When the number of disjunctive elements exceeds a threshold, we can
replace them by their join. It is worth mentioning that current polyhedra abstract domain [41]
supports strict constraints like �a · �x < b. For the original polyhedra abstract domain that cannot
express strict constraints, it is sound to replace �a · �x < b by �a · �x ≤ b in Equation (15).

For the interval domain, the same technique can be applied to ←̂−τ
�
{| ±x ≥ b |}, since a box (i.e.,

a Cartesian products of intervals) is a special case of polyhedron. Similarly, we can handle ←̂−τ
�
{|

±x ± y ≥ b |} for the octagon domain in the same way.
Extended affine guards. For strict guards and the guards with a non-deterministic constant, the

corresponding abstract transfer function is defined as:

←̂−τ
�
{|�a · �x > b |}M� � M� ��

M
�a · �x ≤ b (16)

←̂−τ
�
{|�a · �x > [b; c] |}M� � M� ��

M
�a · �x ≤ c

←̂−τ
�
{|�a · �x = [b; c] |}M� � M� ��

M
�a · �x < b ��

M
�a · �x > c .

Boolean operations. For the Boolean conjunctions and disjunctions of affine guards, Section 3.2
of Reference [61] has shown that the concrete transfer function has the following property:

←−τ {|t1 ∨ t2 |} =←−τ {|t1 |} ∩ ←−τ {|t2 |} (17)
←−τ {|t1 ∧ t2 |} =←−τ {|t1 |} ◦ ←−τ {|t2 |}.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:42 C. Deng and P. Cousot

Since the abstract meet ��
M

is exact in the interval/octagon/polyhedron domain, we can define
the corresponding abstract transfer functions that are also exact:

←̂−τ
�
{|t1 ∨ t2 |} = ←̂−τ

�
{|t1 |} ��M

←̂−τ
�
{|t2 |} (18)

←̂−τ
�
{|t1 ∧ t2 |} = ←̂−τ

�
{|t1 |} ◦ ←̂−τ

�
{|t2 |}.

In addition, the Boolean negation of affine guard←−τ {|¬(�a · �x ≥ b) |} is equivalent to←−τ {|�a · �x < b |},
and the negation of conjunctions or disjunctions can be eliminated by De Morgan’s law.

(1.2) Projection. To reduce the backward transfer function of assignments to the backward trans-
fer function of guards, Reference [61] introduces a projection action x := [−∞;+∞], which is a
special form of assignment that forgets the value of a variable. Here, we do the same and reuse the
under-approximating abstract backward transfer function for projections in Reference [61], since
it is proved to be exact (i.e., it is both an over-approximation and an under-approximation of the
concrete transfer function):

←̂−τ
�
{|x := [−∞;+∞] |}M� �

⎧⎪⎨⎪⎩
M� if γM (τ � {|x := [−∞;+∞] |}M�) = γM (M�)

⊥�
M

otherwise.
(19)

The projection is used to model variable addition “add x ” and removal “del x ,” which are not
included in the language syntax but implicitly created to model assignments. Again, since the
under-approximating abstract backward transfer functions for these two actions in Reference [61]
are exact, we can simply reuse them:

←̂−τ
�
{|del x |} = τ � {|add x |} (20)

←̂−τ
�
{|add x |} = τ � {|del x |} ◦ ←̂−τ

�
{|x := [−∞;+∞] |}.

(1.3) Assignments.
Reduction to guards. As shown in Section 3.4 of Reference [61], assignments x := e can be reduced

to: add a temporary variable x ′, then pass a guard x ′ = e, remove the variable x , and rename x ′ as
x . Furthermore, the backward transfer function is reduced to:

←−τ {|x := e |} = τ {|del x ′ |} ◦ ←−τ {|x ′ := [−∞;+∞] |} ◦ ←−τ {|x ′ = e |} ◦ τ {|add x |} ◦ [x ′/x],

where [x ′/x] represents renaming x as x ′. Correspondingly, the over-approximating backward
transfer function can be defined as:

←̂−τ
�
{|x := e |} = τ � {|del x ′ |} ◦ ←̂−τ

�
{|x ′ := [−∞;+∞] |} ◦ ←̂−τ

�
{|x ′ = e |} ◦ τ � {|add x |} ◦ [x ′/x], (21)

in which ←̂−τ
�
{| x ′ = e |} for the guard x ′ = e is over-approximating, while τ � {| del x ′ |}, ←̂−τ

�
{|

x ′ := [−∞;+∞] |}, τ � {|add x |} and [x ′/x] are exact.
Special cases of assignments. There are a few special cases such that the above general definition

←̂−τ
�
{|x := e |} can be simplified. For the case where x is not used in the expression e, there is no need

to introduce the temporary variable x ′, and the corresponding ←̂−τ
�
{|x := e |} is simplified into:

←̂−τ
�
{|x := e |} = ←̂−τ

�
{|x := [−∞;+∞] |} ◦ ←̂−τ

�
{|x = e |}. (22)

Moreover, for purely non-deterministic assignments x := [a;b], variable shifts x := x + [a;b],
and variable copies x := y , Theorem 9 of Reference [61] yields sound and exact backward transfer
function, thus we can reuse them.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:43

Another case is when the assigned expression e is invertible, i.e., there exists an expression
e−1 that allows recovering the initial value of x . For example, in the assignment x := x + 1, the
expression x + 1 can be inverted by x − 1. In such a case, the backward transfer function for x := e

can be replaced by the forward transfer function for x := e−1, i.e., ←̂−τ
�
{| x := e |} = τ � {| x := e−1 |},

which provides a sound over-approximation.
(1.4) Expression approximation. In the above, we have discussed how to handle affine expres-

sions in guards and assignments. As for non-affine numeric expressions, Reference [61] proposes
to over-approximate arbitrary expressions by affine ones, and this is accomplished by the lineariza-
tion technique [59] that performs interval arithmetic on non-linear expression parts. Similarly,
here we could convert non-affine expressions into affine expressions with some non-determinism
embedded in a constant interval (or constant coefficients), such that the original non-affine ex-
pressions are under-approximated. Then, by replacing the original non-affine expressions with
affine ones, we can reuse the solution designed for affine expressions and correspondingly get
over-approximating backward transfer functions for arbitrary guards and assignments.

(2) Narrowing. Up to now, we have discussed the design of over-approximating backward trans-

fer function F̂
�
←−
i f

�P�. By the soundness condition 10, the greatest fixpoint gfp
�̇�
M

I
�
post

F̂
�
←−
i f

�P� would

be an over-approximation of the concrete backward impossible failure accessibility semantics

gfp ⊆̇
γ̇M (I

�
post)

F←−
i f

�P�. However, it is generally difficult to compute gfp
�̇�
M

I
�
post

F̂
�
←−
i f

�P�, since the decreasing

iteration may be infinite. In many cases, a (dual) widening is used to accelerate the convergence,
but it does not apply here, since the (dual) widening makes downwards extrapolation, which may
jump below the greatest fixpoint. Therefore, we propose to over-approximate a decreasing itera-
tion by narrowing, because the narrowing can only do interpolations that prevent jumping below
any fixpoint.

The narrowing operator !I ∈ (L
→ D�
M

) × (L
→ D�
M

)
→ (L
→ D�
M

) on the abstract invariant
domain satisfies the following soundness and termination conditions:

(i) ∀x �,y� ∈ (L
→ D�
M

). y� �̇�
M
x � ⇒ y� �̇�

M
(x � !I y�) �̇�

M
x � ;

(ii) for any sequence (x �
i)i ∈N, the sequence (y�

i)i ∈N defined as y�
0 = x �

0 and ∀i ∈ N. y�
i+1 =

y�
i !I x

�
i+1 converges in finite time.

The implementation of !I naturally follows the narrowing operator !M ∈ D�
M
× D�

M

→ D�

M

provided by the abstract environment domain D�
M

, such that I� !I I�′ � λl ∈ L. I� (l) !M I�′(l).

(3) Over-approximating Abstract Backward impossible failure Accessibility Semantics. Given a

postcondition specified as I
�
post ∈ L
→ D�

M
, the concrete backward impossible failure accessi-

bility semantics S←−
i f

�P�(γ̇M (I�post)) = gfp ⊆̇
γ̇M (I

�
post)

F←−
i f

�P� can be over-approximated by the limit of a

ultimately stationary sequence (I�i)i ∈N, where I
�
0 = I

�
post and ∀i ∈ N. I�i+1 = I

�
i !I F̂

�
←−
i f

�P�(I�i):

∀I
�
post ∈ L
→ D

�
M
. gfp ⊆̇

γ̇M (I
�
post)

F←−
i f

�P� ⊆̇ γ̇M

(
lim

I
�
post

λI� . I� !I F̂
�
←−
i f

�P�
(
I�
))
. (23)

In the rest of this article, the over-approximating abstract backward impossible failure accessi-

bility semantics Ŝ�
←−
i f

�P� refers to the following definition, which gives an over-approximation of

S←−
i f

�P� and can be computed in finite time:

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:44 C. Deng and P. Cousot

Table 7. Over-approximating Abstract Backward Impossible Failure Accessibility Semantics
for “the Access to o Fails” with Disjunctive Completion

l Ŝ�
←−
i f

�P�(I�′post)l

l1 ⊥�
M

l2 ⊥�
M

l3 apv ∈ [1; 1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l4 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−∞;∞] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l5 {apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞],

apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 0] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]}
l6 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [−∞;∞] ∧ acs ∈ [−∞;∞]
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−∞;∞]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 0]

Ŝ�
←−
i f

�P� ∈
(
L
→ D�

M

)

→

(
L
→ D�

M

)
over-approximating IF semantics

Ŝ�
←−
i f

�P�
(
I
�
post

)
� lim

I
�
post

λI� . I� !I F̂
�
←−
i f

�P�(I�).

In practice, the abstract environment domainD�
M

may not have an effective narrowing operator
!M, which makes the corresponding !I of no practical use. If this is the case, like in the forward

reachability analysis, then we can just omit the narrowing operator and iterate the function F̂
�
←−
i f

�P�

until the analysis result is satisfactory (typically, the number of iterations needed is quite low).

Example 17 (Access Control, Continued). Using the refined abstract postcondition I
�′
post from Ex-

ample 16 that represents the trace property “the access to o fails,” an over-approximating backward

impossible failure accessibility analysis Ŝ�
←−
i f

�P�(I�′post) creates the result displayed in Table 7. Here,

we adopt the disjunctive completion to gain precision, i.e., at point l5, the disjunction of two ab-
stract environment elements are maintained, which gives the most precise backward impossible
failure accessibility semantics. If the disjunctive completion is not used at point l5, then we can
simply join these two abstract elements together and get the result same as abstract forward reach-

ability semantics S�
−→
ps

�P�(I�pre) from the point l5 to the point l1, which is still sound but imprecise

for the further responsibility analysis.

5 TRACE PARTITIONING

The forward reachability analysis discussed in Section 4 intends to compute an over-approximation
of reachable states of the program, while the information about the execution history and concrete
flow paths is lost, making the correspondingly generated over-approximating reachability seman-
tics in some cases imprecise to determine if a behavior really occurs or not.

In References [53, 70], Mauborgne and Rival propose a trace partitioning domain, which
allows partitioning traces by the history of memory and control states. Essentially, for any
given transition system, they build an extended transition system by augmenting the program
points (i.e., control states, labels) with partitioning tokens, which can distinguish traces by the
control flow or variable values. This technique has been successfully implemented in the abstract

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:45

Fig. 12. Motivating example for trace partitioning.

Table 8. Abstract Forward Reachability Semantics
of the Motivating Example

l S�
−→
ps

�P�(I�pre)l

l0 ��
M
= x ∈ [−∞;∞] ∧ sgn ∈ [−∞;∞] ∧ y ∈ [−∞;∞]

l1 x ∈ [−∞;−1] ∧ sgn ∈ [−∞;∞] ∧ y ∈ [−∞;∞]
l2 x ∈ [−∞;−1] ∧ sgn ∈ [−1;−1] ∧ y ∈ [−∞;∞]
l3 x ∈ [0;∞] ∧ sgn ∈ [−∞;∞] ∧ y ∈ [−∞;∞]
l4 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [−∞;∞]
l5 x ∈ [−∞;∞] ∧ sgn ∈ [−1; 1] ∧ y ∈ [−∞;∞]
l6 x ∈ [−∞;∞] ∧ sgn ∈ [−1; 1] ∧ y ∈ [−∞;∞]

interpretation-based Astrée analyzer [22, 23], significantly improving the precision of analysis
and reducing the execution time.

This section briefly summarizes the key idea of trace partitioning, proposes to represent el-
ements in the trace partitioning abstract domain as trace partitioning automata, and extends
the existing types of partitioning directive to include program invariants, which facilitates
determining responsibility in the abstract (see Section 7). For more details about the theo-
retical framework and practical implementation of the trace partitioning domain, we refer to
Reference [70].

5.1 The Trace Partitioning Abstract Domain

This section starts with a simple motivating example from Reference [70] and illustrates how the
trace partitioning improves the precision of forward reachability analysis.

In the program of Figure 12, it is obvious that the value of sgn is either 1 or -1 at point l5, and
in particular it cannot be 0 in the concrete. Therefore, dividing by sgn at point l5 is safe, and there
is no possible “division by zero” error in the program. However, if we use the interval domain as
the abstract environment domain, then by the over-approximating forward reachability analysis
introduced in Section 4.2.2, we would get the reachability semantics (or, say, program invariants)

S�
−→
ps

�P�(I�pre) listed in the Table 8, where I
�
pre ∈ L
→ D

�
M

is defined such that I
�
pre (l0) = ��

M
and

I
�
pre (l) = ⊥�

M
for l � l0. Particularly, the value of sgn at point l5 belongs to the interval [−1; 1],

which is not precise enough to exclude the possibility of “division by zero” in the program.
An intuitive idea to solve the imprecision problem is to relate the value of sgn to the way it

is computed. In this very example here, if the true branch of the conditional was taken, then the
value of sgn at point l5 is −1; otherwise, it is 1. That is to say, we partition the set of all possible

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:46 C. Deng and P. Cousot

Fig. 13. Partitioning directives d ∈ D and tokens t ∈ T.

concrete traces into two parts: in one partition, the true branch is taken; in the other partition, the
false is taken. For each partition, the standard over-approximating forward reachability analysis
can be performed, and the analysis results together would be more precise.

To generalize the idea of partitioning, Mauborgne and Rival [53, 70] propose a trace partitioning
abstract domain, which is flexible and general to analyze and verify semantic properties in the same
way as other classic abstract domains. In the following, we will briefly describe how to construct
the trace partitioning abstract domain.

(1) Extended Transition Systems. Suppose T is a set of partitioning tokens, which are used to cap-
ture useful information about the history of execution and to guide trace partitioning. In practice,
each partitioning token t ∈ T is defined as a stack of partitioning directives that have been encoun-
tered during the execution, and all the possible partitioning directives are listed in Figure 13, each
of which creates a partition as its name implies. For example, in the case of a conditional at point l ,
by the partitioning directives part〈If, l , tt〉 and part〈If, l , ff 〉, two partitions are created right after
testing the Boolean condition, which, respectively, correspond to “true branch of the conditional
at point l ” and “false branch of the conditional at point l .”

Given a set of partitioning tokens T, the extended transition systems are defined as transition
systems over the set of program points (or, control states, labels) extended with the partitioning
tokens T. More formally, let LT � L × T be the set of extended program points, ST � LT ×M be
the set of extended states, Si

T ⊆ ST be the set of extended initial states, and→T ∈ ℘(ST × ST) be the
transition relation among extended states. Then, we define an extended transition system as a tuple
〈T, Si

T, →T〉. In addition, a forget function πτ can be defined to remove the partitioning tokens
from extended program points, extended states, and transition relations, such that an extended
transition system 〈T, Si

T, →T〉 can be transformed back into a standard transition system 〈Si , →〉.

(2) Trace Partitioning Abstract Domain. An extended transition system PT = 〈T, Si
T
, →T〉 is a

covering of the original transition system P = 〈Si , →〉 if and only if every initial state s ∈ Si has at
least one corresponding initial state s ′ ∈ Si

T such that πτ (s ′) = s , and every transition step in P is
simulated (mimicked) by at least one transition step in PT. Therefore, if PT is a covering of P, then
every trace in P is simulated by one or more traces in PT. For the formal definitions of covering
and partition see Section 3.2 of Reference [70].

The trace partitioning abstract domain D� is the set of tuples 〈PT, Φ�〉, where T is a set of parti-
tioning tokens, PT = 〈T, Si

T, →T〉 is a covering of the original transition system P = 〈Si , →〉, and

Φ� ∈ LT
→ D�
M

is a function mapping each extended program point 〈l , t〉 of PT into an abstract

environment in D�
M

that approximates the set of environments observed at point 〈l , t〉.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:47

Table 9. Partitioned Forward Reachability Semantics
of the Motivating Example

〈l , t〉 Φ� (〈l , t〉)
〈l0, ϵ〉 x ∈ [−∞;∞] ∧ sgn ∈ [−∞;∞] ∧ y ∈ [−∞;∞]
〈l1, part〈If, l0, tt〉〉 x ∈ [−∞;−1] ∧ sgn ∈ [−∞;∞] ∧ y ∈ [−∞;∞]
〈l2, part〈If, l0, tt〉〉 x ∈ [−∞;−1] ∧ sgn ∈ [−1;−1] ∧ y ∈ [−∞;∞]
〈l3, part〈If, l0, ff 〉〉 x ∈ [0;∞] ∧ sgn ∈ [−∞;∞] ∧ y ∈ [−∞;∞]
〈l4, part〈If, l0, ff 〉〉 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [−∞;∞]
〈l5, part〈If, l0, tt〉〉 x ∈ [−∞;−1] ∧ sgn ∈ [−1;−1] ∧ y ∈ [−∞;∞]
〈l5, part〈If, l0, ff 〉〉 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [−∞;∞]
〈l6, part〈If, l0, tt〉〉 x ∈ [−∞;−1] ∧ sgn ∈ [−1;−1] ∧ y ∈ [1;∞]
〈l6, part〈If, l0, ff 〉〉 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [0;∞]

Taking the program in Figure 12 as an example, if we use partitioning directives designed for
the conditional, then the forward reachability analysis with trace partitioning would construct the
corresponding Φ� function, which is listed in the Table 9.

From the above table, we can see that there are two extended program points for l5: 〈l5, part〈If,
l0, tt〉〉 and 〈l5, part〈If, l0, ff 〉〉, and the corresponding abstract environments indicates the value
of sgn is either −1 or 1, which is exactly the desired result.

However, if we have successive creations of partitions in the extended transition system, the
cost would be prohibitive in practice. For instance, the partitioning of a conditional multiplies by
2 the number of partitions in the current flow, thus a series of n conditionals would lead to 2n

partitions, which brings an exponential cost. To solve this issue, we can merge partitions together
when they are no longer necessary, which is implemented by popping (or removing) partitioning
directives from the token. For example, at point l6 of the program in Figure 12, the partitions based
on “which branch of the conditional was taken” are not expected to lead to improvement in the
precision of further analysis, so we can merge those two partitions and replace the last two rows
of Table 9 by Φ� (〈l6, ϵ〉) = x ∈ [−∞;∞] ∧ sgn ∈ [−1; 1] ∧ y ∈ [0;∞], which is still more precise
than the standard forward reachability analysis.

5.2 The Trace Partitioning Automata

To facilitate determining abstract responsibility on graph structures (in Section 7), this section pro-
poses to represent the result of forward reachability analysis with trace partitioning as automata,
which are called trace partitioning automata.

More formally, each element 〈PT = 〈T, Si
T, →T〉, Φ�〉 in the trace partitioning abstract domain

D
� can be represented as an automaton A = 〈Qi , δ〉, where:

• The set of initial nodes (extended initial abstract states) Qi = {〈l i , t, M�〉 ∈ LT ×D�
M
| ∃ρ ∈

M. 〈l i , t, ρ〉 ∈ Si
T
∧M� = Φ� (〈l i , t〉)} such that every initial state 〈l i , t, ρ〉 in PT is represented

by an initial node, which is associated with an abstract environment element M� = Φ� (〈l i ,

t〉). By the property of Φ� in the trace partitioning abstract domain, it is guaranteed that
ρ ∈ γM (M�).
• The set of edges (extended abstract transition relations) δ = {〈l , t, M�〉 → 〈l ′, t′, M�′〉 ∈

(LT × D�
M

) × (LT × D�
M

) | ∃ρ, ρ ′ ∈ M. 〈l , t, ρ〉 →T 〈l ′, t′, ρ ′〉 ∧ M� = Φ� (〈l , t〉) ∧M�′ =

Φ� (〈l ′, t′〉)} such that every concrete transition relation in PT has a corresponding edge in
the automaton.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:48 C. Deng and P. Cousot

Fig. 14. Trace partitioning automaton for the motivating example without merge.

Again, consider the program in Figure 12: Its partitioned forward reachability analysis result
from Table 9 can be represented as a trace partitioning automaton, which is depicted as in Figure 14.
For the sake of concision, instead of explicitly drawing partitioning tokens inside the nodes, we
comment some edges with “push d ” such that every node after the edge has the partitioning
directive d pushed into its stack of directives (i.e., its partitioning token). For instance, in Figure 14,
all the nodes after the edge commented with “push part〈If, l0, tt〉” has part〈If, l0, tt〉 in their
partitioning tokens.

In addition, to represent the merge of partitions, we comment some edges with “pop d ” such
that the partitioning directive d is popped from the stack of directives of every node after the
edge. For instance, Figure 15 depicts the trace partitioning automaton for the program in Figure 12
with partitions merged at point l6, so the partitioning token in the node l6 is ϵ (i.e., its stack of
partitioning directives is empty).

5.3 The Extension of Partitioning Directives

As illustrated in Reference [70], partitioning directives are inserted in the source code as special
comments in a preprocessing phase. Specifically, among the six types of partitioning directives
described in Figure 13, five of them partition traces based on the control flow, and only part〈Val,
l , x = n〉 introduces a partition guided by the value of a variable x at some point l . Although
these partitioning directives have successfully handled a broad range of cases, there are still many
cases that cannot be well coped with, and we would like to introduce a new partitioning directive
to partition traces by environment properties (which are represented by abstract environment
elements).

For example, to improve the precision of forward reachability analysis for the access control
program in Figure 4, it is intuitive to partition traces by some environment properties that can

be easily expressed by abstract environment elements in D�
M

(i.e., i1 ∈ [−∞, 0] and i1 ∈ [1;∞]
at point l3; apv ∈ [1,∞] ∧ i2 ∈ [−∞, 0], apv ∈ [−∞, 0] and i2 ∈ [1,∞] at point l5), and such
properties (e.g., apv ∈ [1,∞] ∧ i2 ∈ [−∞, 0]) may not be expressed by directives of form part〈Val,
l , x = n〉 when more than one variables are used in partitioning. Of course, the access control
program can be equivalently transformed into a program with conditionals (by replacing ternary
operators with conditionals), then the problem of partitioning guided by environment properties
is transformed to partitioning based on the branch of conditionals. However, this is not always the
case. For example, consider a simple program “l1 : z := x − y ; l2 :” and suppose we are interested
in whether the value of z is positive or negative at point l2, then it is of value to create partitions

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:49

Fig. 15. Trace partitioning automaton for the motivating example with merge.

guided by x ≥ y and x < y at point l1. Such partitions can be expressed by abstract environment
elements in the polyhedra/octagons domain, but not by the existing partitioning directives.

Therefore, here we propose a new partitioning directive of the form: part〈Inv, l , M�〉 (where M�

is an abstract environment element in D�
M

), which generates a new partition of traces such that

M� is satisfied at point l . In practice, the trace partitioning introduced by a directive part〈Inv, l ,
M�〉 can be simply implemented by creating a new node, such that its partitioning token (i.e., the
stack of partitioning directives) has this directive on the top, and the corresponding abstract envi-

ronment element is the meet of M� and the standard forward reachability semantics S�
−→
ps

�P�(I�pre)l

at point l .

Example 18 (Access Control, Continued). In Example 14, we have discussed the standard abstract
forward reachability semantics of the access control program, in which the abstract environment

domain D�
M

is the interval domain. Now, we can gain more precision by introducing five parti-
tioning directives: d3 : part〈Inv, l3, i1 ∈ [−∞, 0]〉, d′3 : part〈Inv, l3, i1 ∈ [1,∞]〉, d5 : part〈Inv, l5,
apv ∈ [1,∞]∧ i2 ∈ [−∞, 0]〉, d′5 : part〈Inv, l5, apv ∈ [∞, 0]〉, and d′′5 : part〈Inv, l5, i2 ∈ [1,∞]〉, and
the corresponding partitioned forward reachability semantics is listed in Table 10. For the sake
of conciseness, trivial elements like “acs ∈ [−∞;∞]” are omitted, and the forward reachability

analysis stops at invalid extended program points that are associated with ⊥�
M

.
Compared with the standard forward reachability semantics S�

−→
ps

�P�(I�pre)l in Example 14, the

partitioned forward reachability semantics is much more precise, revealing the relation between
acs and other variables, which is of significance in determining responsibility later.

Furthermore, the partitioned forward reachability semantics can be represented by a trace par-
titioning automaton in Figure 16. It is worth mentioning that, as what we have done in Figure 15,
the partitions can be merged after the access check to acs finishes at point l8, such that all the par-
titioning directives pushed at point l3 or l5 can be popped from the partitioning tokens at point l8.

6 USER SPECIFICATION OF BEHAVIORS AND COGNIZANCE

In Section 3.2, the responsibility is defined as an abstraction αR (�P�Max,LMax,C,B,T), where
�P�Max ∈ ℘(S∗∞) is the concrete maximal trace semantics, LMax ∈ ℘(℘(S∗∞)) is a lattice of system
behaviors (i.e., trace properties),C ∈ S∗∞
→ ℘(S∗∞) is the cognizance function of a given observer,
B ∈ LMax is the behavior whose responsibility is of interest, and T ∈ ℘(�P�Max) is the set of valid
traces to be analyzed. Among these parameters, the maximal trace semantics �P�Max is inherent in
the given program P, which can be soundly over-approximated by the abstract trace partitioning
automata introduced in Section 5. Meanwhile, all the other parameters indicate the objective of

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:50 C. Deng and P. Cousot

Table 10. Partitioned Forward Reachability Semantics for the Access Control Program

〈l , t〉 Φ� (〈l , t〉)
〈l1, ϵ〉 ��

M

〈l2, ϵ〉 apv ∈ [1; 1]
〈l3, d3〉 apv ∈ [1; 1] ∧ i1 ∈ [−1; 0]
〈l3, d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2]
〈l4, d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0]
〈l4, d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2]

〈l5, d5 :: d3〉 ⊥�
M

〈l5, d′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [−1; 2]
〈l5, d′′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [1; 2]
〈l5, d5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [−1; 0]

〈l5, d′5 :: d′3〉 ⊥�
M

〈l5, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2]
〈l6, d′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [−1; 2]
〈l6, d′′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [1; 2]
〈l6, d5 :: d′3〉 apv ∈ [−1;−1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [−1; 0]
〈l6, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2]
〈l7, d′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
〈l7, d′′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2]
〈l7, d5 :: d′3〉 apv ∈ [−1;−1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [−1; 0] ∧ typ ∈ [1; 2]
〈l7, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2]
〈l8, d′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2;−1]
〈l8, d′′5 :: d3〉 apv ∈ [−1;−1] ∧ i1 ∈ [−1; 0] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2;−1]
〈l8, d5 :: d′3〉 apv ∈ [−1;−1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [−1; 0] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2;−1]
〈l8, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [1; 2]

responsibility analysis and can be specified only by users. However, it is difficult, if not impossible,
to require users to explicitly specify system behaviors and the cognizance function in the concrete.
Therefore, to implement the static responsibility analysis, the very first step is to specify LMax, C,
B, and T in the abstract.

For the sake of simplicity, here it is assumed that we would like to analyze all the maximal
traces of P, thus T = �P�Max and there is no need for the users to explicitly designate the traces to
be analyzed. As for the behavior B of interest, the lattice LMax of behaviors and the cognizance

function C, this section discusses how to specify them with the abstract invariant domain D�
I
=

〈L
→ D�
M
, �̇�
M
〉 introduced in Section 4.1.3.

6.1 User Specification of Behaviors

6.1.1 The Abstract Behavior of Interest. The behavior of interest is specified by an abstract in-

variant B� ∈ L
→ D�
M

, which associates every program point with an abstract environment ele-

ment. The corresponding behavior B in the concrete is �P�Max∩γIV ◦γ̇M (B�) = {σ ∈ �P�Max | ∀〈l ,
ρ〉 ∈ σ . ρ ∈ γM (B� (l))}, i.e., the set of concrete valid maximal traces such that every state satisfies
the abstract environment assigned by B� at the corresponding program point.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:51

Fig. 16. Trace partitioning automaton for the access control program.

In practice, the user can explicitly designate the chosen program points with some non-trivial

abstract environments fromD�
M

, while all other program points are implicitly associated with��
M

.

Example 19 (Access Control, Continued). Let us consider the access control program in Figure 4
again. There are a few behaviors that the user may be interested in: (1) If the user is interested in

“the access to o fails,” like the abstract postcondition I
�
post defined in Example 16, then the abstract

behavior B� ∈ L
→ D�
M

can be defined such that B� (l8) is explicitly designated as “acs ∈ [−∞; 0],”

while B� (l) is implicitly assigned to ��
M

for other program points l � l8. (2) As we have discussed
in Section 3, the responsibility for the complement behavior “the access to o succeeds” is different
from the one for “the access to o fails.” Thus, if the user is interested in “the access to o succeeds”
instead, then the abstract behavior shall be specified such that B� (l8) is “acs ∈ [1;∞],” while B� (l)

is ��
M

for other program points l � l8. (3) Similarly, to analyze “the read and write access to o is
granted” that requires the value of acs is greater than or equal to 2 at point l8, the corresponding

abstract behavior B� shall be specified such that B� (l8) is “acs ∈ [2;∞],” while B� (l) = ��
M

for
l � l8.

It is worth mentioning that, although in the above example there is only one program point that
is assigned with non-trivial abstract environment elements, in general the user can express behav-
iors that are related to multiple program points. However, we have to admit that the expressiveness

of abstract behaviors depends on the abstract environment domain D�
M

, and not every concrete
behavior (i.e., a set of concrete traces) can be expressed by an abstract behavior. For instance, we
cannot express the relation of variables by the interval domain, and it is impossible to express be-
haviors like “the value of x is increasing along the execution” by the numerical invariance abstract
domains.

In addition, the user specified behavior B� is not directly used in the following backward ac-

cessibility analysis. Instead, as what we have done for I
�
post in Example 16, the abstract behavior

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:52 C. Deng and P. Cousot

Fig. 17. The lattice LMax of behaviors in the concrete.

will be refined by the intersection with the abstract forward reachability semantics, which will be
further illustrated in Section 7.

6.1.2 The Lattice of System Behaviors. For the sake of conciseness, it is assumed that the user
is interested in analyzing the responsibility of only one behavior, and the corresponding lattice of
behaviors in the concrete consists of four elements: the top, the bottom, the behavior of interest,

and the corresponding complement behavior. However, for an abstract behavior B� ∈ L
→ D�
M

,

its complement may not be expressible by the abstract invariant domain L
→ D�
M

, since most
abstract environment domains (e.g., intervals, octagons, polyhedra) do not support complements.
For instance, in general the complement of an interval (e.g., x ∈ [0; 9]) is a disjunction of two
intervals; the complement of a polyhedron is a disjunction of affine inequalities, which cannot
be expressed by a polyhedron. Therefore, for any lattice of behaviors in the concrete, it may be
impossible to construct the corresponding lattice of abstract behaviors, and we cannot require the
user to specify such a lattice.

Fortunately, the abstract responsibility analysis introduced later in Section 7 does not directly
use the lattice of abstract behaviors, and it is sufficient to provide only the abstract behavior B�

of interest to the analyzer. Nevertheless, to prove the soundness of abstract responsibility analysis
for a given abstract behavior B� , the corresponding lattice LMax of behaviors in the concrete can
be easily built as in Figure 17.

More precisely, the lattice LMax of concrete behaviors consists of four elements: the top �Max is
the maximal trace semantics �P�Max, the bottom ⊥Max is the empty set, the behavior B = �P�Max ∩
γIV ◦ γ̇M (B�) = {σ ∈ �P�Max | ∀〈l , ρ〉 ∈ σ . ρ ∈ γM (B� (l))}, and the complement behavior
¬B = �P�Max\B = {σ ∈ �P�Max | ∃〈l , ρ〉 ∈ σ . ρ � γM (B� (l))} is the set of valid maximal traces, in
each of which there exists at least one state that does not satisfy the abstract environment assigned
by B� .

Example 20 (Access Control, Continued). For the access control program, its maximal trace se-
mantics �P�Max is given in example 1. If the behavior of interest is “the access to o fails” (i.e., B�

is specified such that B� (l8) = acs ∈ [−∞; 0]” and B� (l) = ��
M

for l � l8), then the corresponding
concrete behavior B = {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ (acs) ≤ 0}, and the complement
behavior ¬B = {σ ∈ �P�Max | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ (acs) > 0}. Together with the empty set,
the four elements form the lattice of behaviors in the concrete.

6.2 User Specification of the Cognizance

In the concrete, the cognizance function C ∈ S∗∞
→ ℘(S∗∞) of an observer essentially maps a
trace σ to an equivalence class C(σ) of traces such that every trace in C(σ) is equivalent (or, say,
indistinguishable) to σ according to the cognizance of that observer. Specially for an omniscient
observer, every trace is distinguishable from other traces, thus the equivalence class for each trace
is a singleton (i.e., ∀σ ∈ S∗∞. Co (σ) = {σ }). However, it is infeasible to require users to directly

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:53

provide a cognizance function or an equivalence relation on concrete traces, hence the cognizance
function needs to be specified in the abstract instead.

6.2.1 The Abstract Cognizance Function. Formally, the abstract cognizance function C� ∈ L
→
℘(D�

M
) is defined as a function mapping the program point to a set of cognizance directives dc ,

each of which is an element of the numerical abstract domain D�
M

. It is important to note that,

although both the abstract environment element M� and the cognizance directive dc are from the

same abstract domainD�
M

(e.g., intervals, octagons, polyhedra), their meanings in the concrete are

completely different: M� represents a set of concrete environments that satisfy a certain property,
while dc essentially defines an equivalence relation on concrete environments, which is further
used to define an equivalence relation on concrete traces.

To start with, we give several examples of the abstract cognizance functions and explain their
concrete meanings in an informal but intuitive way, while its formal concretization back to the
concrete cognizance function is defined later in this section.

(i) Consider an abstract cognizance function C� such that C� (l) = {x ∈ [−∞;∞]}. When
x ∈ [−∞;∞] is treated as an abstract environment M� , then it represents a set of concrete en-
vironments, i.e., γM (M�) = M, which does not provide any non-trivial information. In contrary, if
we take x ∈ [−∞;∞] as a cognizance directive, then it actually defines an equivalence relation on
environments, such that two environments are equivalent even if their values of x are different,
as long as the values of any other variable (e.g., z) are the same in those two environments. Thus,
such an abstract cognizance function C� indicates that the observer does not know the value of x
at the program point l , but the value of any other variable.

(ii) For another abstract cognizance function such that C� (l) = {x ∈ [−∞;−1], x ∈ [0;∞]},
there are two cognizance directives assigned to point l . Take x ∈ [0;∞] as an example, it does not
mean the value of x is positive or zero at point l . Instead, it means that any two environments ρ
and ρ ′ at point l are equivalent (or indistinguishable) if and only if the value of x in both ρ and
ρ ′ are positive or zero (e.g., ρ (x) = 0 and ρ ′(x) = 5), and the values of any other variable are the
same. Similarly, x ∈ [−∞;−1], as a cognizance directive, means that two environments ρ and ρ ′ at
l are equivalent, as long as their values of x are negative (e.g., ρ (x) = −2 and ρ ′(x) = −5) and the
values of any other variable are the same. Together, the abstract cognizance function C� indicates
that the observer does not know the exact value of x at point l , but only the sign of x (i.e., positive
or zero, or negative), as well as the exact value of other variables.

(iii) The numerical abstract domain used in previous two examples is the interval domain, and
now we consider another example with octagon/polyhedron domains. Suppose the abstract cog-
nizance function C� is specified such that C� (l) = {x ≤ y, y < x }, then the cognizance directive
x ≤ y (respectively, y < x) means that two environments ρ and ρ ′ are equivalent if and only if
ρ (x) ≤ ρ (y) and ρ ′(x) ≤ ρ ′(y) (respectively, ρ (y) < ρ (x) and ρ ′(y) < ρ ′(x)) hold, and the values
of any other variable in ρ and ρ ′ are the same. That is to say, the observer does not know the exact
value of x and y at point l , but the relation between x and y , as well as the exact value of other
variables.

In the following, we formalize the equivalence relations introduced by the abstract cognizance

function and define the concretization from the abstract cognizance C� ∈ L
→ ℘(D�
M

) back to the
corresponding concrete cognizance C ∈ S∗∞
→ ℘(S∗∞).

Equivalence Relation on Environments. Suppose D�
M

is a numerical abstract domain (e.g., inter-

vals, octagons, polyhedra). For any cognizance directive dc ∈ D�
M

, let vars(dc) be the set of vari-
ables used in dc . For instance, vars(x ∈ [−∞;∞]) = {x }, and vars(x ≤ y) = {x , y }. Then, for every

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:54 C. Deng and P. Cousot

cognizance directive dc ∈ D�
M

, we can define an equivalence relation
dc∼ on concrete environments

as follows:

dc∼ ∈ ℘(M ×M) equivalence relation on environments

ρ
dc∼ ρ ′ ⇔ ρ = ρ ′ ∨ (ρ ∈ γM (dc) ∧ ρ ′ ∈ γM (dc) ∧ ∀x ∈ X\vars(dc). ρ (x) = ρ ′(x)).

That is to say, two environments are equivalent (indistinguishable) according to a cognizance
directive dc if and only if either they are equal to each other, or both of them belong to γM (dc) and
the values of any variable not used in dc are the same.

For example, suppose the set of all variables in a program is X = {x , y }, and the cognizance
directive dc is x ∈ [0;∞] from the interval domain such that vars(dc) = {x }. Let [x
→ v , y
→ v ′]
be an environment such that the value of x is v and the value of y is v ′. Then, we have [x
→ 0, y
→
1]

dc∼ [x
→ 5, y
→ 1], since the values of x in both environments are positive or zero, and the values

of y are the same in those two environments. Besides, [x
→ −1, y
→ 1]
dc� [x
→ 5, y
→ 1] and

[x
→ −1, y
→ 1]
dc� [x
→ −2, y
→ 1], since x is negative in at least one environment; and

[x
→ 0, y
→ 1]
dc� [x
→ 5, y
→ 2], because the values of y in those two environments are

different.
Specially, for the cognizance directive ⊥�

M
∈ D�

M
, the set of used variables vars(⊥�

M
) is empty,

thus two environments cannot be equivalent unless they are equal. Thus, the special cognizance

directive ⊥�
M

indicates that every concrete environment is distinguishable from each other.

Equivalence Relation on Traces. Given an abstract cognizance function C� ∈ L
→ ℘(D�
M

), an

equivalence relation
C
�

∼ on concrete traces can be defined as follows (where |σ | denotes the length
of σ , and it is∞ when the trace σ is infinite):

C
�

∼ ∈ ℘(S∗∞ × S∗∞) equivalence relation on traces

σ
C
�

∼ σ ′ ⇔ |σ | = |σ ′ | ∧ ∀i ∈ [0, |σ |). (σ[i] = 〈l , ρ〉 ∧ σ ′[i] = 〈l ′, ρ ′〉)

⇒ (l = l ′ ∧ (∃dc ∈ C� (l). ρ
dc∼ ρ ′)).

That is to say, two concrete traces are equivalent (indistinguishable) according to the abstract
cognizance C� if and only if they are of the same length and have the same control flow, and the
environments at the same location are equivalent according to some cognizance directive assigned
to that point.

For instance, suppose the set of all variables in a program is X = {x , y }, and the abstract

cognizance function C� is defined such that C� (l1) = {⊥�
M
} and C� (l2) = {x ∈ [0;∞]}. Then,

a trace 〈l1, [x
→ −1, y
→ 1]〉 → 〈l2, [x
→ 0, y
→ 1]〉 is equivalent to another trace 〈l1,
[x
→ −1, y
→ 1]〉 → 〈l2, [x
→ 5, y
→ 1]〉, because the two traces have the same control flow,
the two environments at point l1 are equal, and the two environments at point l2 are equivalent
according to the cognizance directive x ∈ [0;∞].

Concretization to the Concrete Cognizance Function. Using the equivalence relation
C
�

∼ introduced
by the abstraction C� , we can define the concretization function:

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:55

γC ∈
(
L
→ ℘

(
D�
M

))

→ (S∗∞
→ ℘(S∗∞)) cognizance concretization

γC (C�) � λσ ∈ S∗∞. [σ]
C�∼

= λσ ∈ S∗∞. {σ ′ ∈ S∗∞ | σ C
�

∼ σ ′}.

According to the above definition, for any abstract cognizance function C� , the corresponding
concrete cognizance function maps a trace σ to its equivalence class [σ]

C�∼
, i.e., the set of traces

that are
C
�

∼ equivalent to σ .
Here, we have to admit that, compared with the concrete cognizance function that could map

a trace to an arbitrary set of traces, the expressiveness of our abstract cognizance function is re-
stricted: Only traces with the same control flow can be specified as equivalent in the abstract, but
it is expressive enough to cover many interesting cases. An alternative way to specify the abstract
cognizance function is to use abstract relational invariants, which could express relational proper-
ties about two executions of a single program on different inputs [3, 4].

6.2.2 Validating Partitioning Directives with Cognizance. As discussed in Section 5, the pro-
gram’s trace semantics is soundly over-approximated by trace partitioning automata, which can
be computed by the abstract forward (possible success) reachability analysis with trace partition-
ing. Hence, every valid maximal trace is represented by at least one (and possibly more than one)
paths in the automaton, and every path in the automaton represents a set of concrete traces, which
may include invalid concrete trace due to the over-approximation.

To implement the cognizance function C� in the abstract responsibility analysis, the key is to
guarantee that: For any two concrete traces σ and σ ′ that are equivalent (indistinguishable) to

each other according to C� (i.e., σ
C
�

∼ σ ′), they must be represented by the same path in the trace
partitioning automaton.

Since the structure of trace partitioning automata is decided by the partitioning directives, we
need to make sure that during the execution of any two equivalent traces, every time when a
partitioning directive dp is encountered, the two traces must belong to the same partition (i.e.,
both of them are in the partition generated by dp , or neither of them are in the partition generated
by dp). If such a property holds, then the partitioning directive dp is said to be valid with respect to

the cognizance C� and will be used to generate trace partitioning automata; otherwise, it is invalid
and will be either removed or revised before it is used in generating trace partitioning automata.

By the definition of
C
�

∼ , equivalent traces are assumed to have the same control flow. Thus, for
all partitioning directives related with the control states (e.g., a partitioning directive part〈If, l ,
b〉 that partitions traces by the branch of a conditional), every two equivalent traces are ensured
to belong to the same partition. That is to say, for any cognizance function, all the control-state-
related partitioning directives are valid. Therefore, when implementing the cognizance function
in the abstract responsibility analysis, we only need to check the validity of partitioning directives
related with memory states (i.e., environments) that is of the form “part〈Inv, l , M�〉,” while the
directive of the form “part〈Val, l , x = n〉” can be treated as a special case of “part〈Inv, l , M�〉.”

In this section, we formalize the validity of a partitioning directive dp with respect to a given
cognizance directive dc and propose a sound approach to check the validity in the abstract.

(1) The Definition of Validity of Partitioning Directives. As explained above, all the control-state-
related partitioning directives in Figure 13 are always valid, and here we only need to consider the
validity of partitioning directives that are related with environments. Intuitively, a partitioning

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:56 C. Deng and P. Cousot

directive dp = part〈Inv, l , M�
p〉 creates a partition at point l such that the environment property

M�
p holds, and this partition is valid if and only if it does not partition any equivalence class of

environments into two separate parts. That is to say, every equivalence class of environments

must be either a subset of γM (M�
p) or completely disjoint from γM (M�

p).

Definition 2. A partitioning directive dp = part〈Inv, l , M�
p〉 is valid with respect to a cognizance

directive dc ∈ D�
M

if and only if

∀ρ ∈ M. [ρ]dc∼
⊆ γM

(
M�

p

)
∨ [ρ]dc∼

∩ γM
(
M�

p

)
= ∅, (24)

where [ρ]dc∼
= {ρ ′ ∈ M | ρ dc∼ ρ ′} and ρ

dc∼ ρ ′ ⇔ ρ = ρ ′ ∨ (ρ ∈ γM (dc) ∧ ρ ′ ∈ γM (dc) ∧ ∀x ∈
X\vars(dc). ρ (x) = ρ ′(x)).

For example, for a cognizance directive dc = x ∈ [0;∞], the partitioning directives part〈Inv,
l , x ∈ [−1;∞]〉, part〈Inv, l , x ∈ [−∞;−2]〉, and part〈Inv, l , y ∈ [1;∞]〉 are valid, since none

of these partitioning directives would partition any equivalence class incurred by
dc∼. Meanwhile,

partitioning directives part〈Inv, l , x ∈ [1;∞]〉 and part〈Inv, l , x ∈ [−9; 9]〉 are invalid: For example,

[x
→ 0, y
→ 1] is equivalent to [x
→ 5, y
→ 1] according to
dc∼, but [x
→ 5, y
→ 1] belongs to the

partition generated by part〈Inv, l , x ∈ [1;∞]〉 while [x
→ 0, y
→ 1] does not belong to it.
In practice, it is difficult or even impossible to directly check if the condition (24) holds or not,

since the number of equivalence classes (or, say, the size of quotient set of M by the equivalence

relation
dc∼) is huge, making the cost of directly checking the condition (24) prohibitive. In the

following, we try to transfer (24) into equivalent forms, which are easier to check in practice.

By the definition of
dc∼, it is trivial that: For every environment ρ ∈ M\γM (dc), its equivalence

class [ρ]dc∼
= {ρ}. Since a singleton is either a subset of another set or completely disjoint from that

set, the condition “[ρ]dc∼
⊆ γM (M�

p) ∨ [ρ]dc∼
∩ γM (M�

p) = ∅” trivially holds for every partitioning

directive part〈Inv, l , M�
p〉 where M�

p ∈ D
�
M

.
Therefore, the condition (24) is equivalent to the the following simplified one:

∀ρ ∈ γM (dc). [ρ]dc∼
⊆ γM

(
M�

p

)
∨ [ρ]dc∼

∩ γM
(
M�

p

)
= ∅. (25)

Compared with checking the condition (24), the cost of checking the condition (25) is lower:

Instead of checking the quotient set of M by
dc∼, now we need to check only the quotient set of

γM (dc) by
dc∼, whose size is reduced.

Further Refinement on the Definition. First, it is not hard to find that, for any abstract environment

element M�
p ∈ D

�
M

, we have:

∀ρ ∈ M.
(
∀x ∈ vars

(
M�

p

)
. ρ (x) = ρ ′(x)

)
⇒

(
ρ ∈ γM

(
M�

p

)
⇔ ρ ′ ∈ γM

(
M�

p

))
. (26)

The intuition is that, whether an environment belongs to γM (M�
p) or not (or, say, whether an

environment property M�
p holds or not) is not affected by the value of variables that are not used

in M�
p . For example, suppose M�

p = x ∈ [0;∞] (where trivial constraints like “y ∈ [−∞;∞]”
are assumed to be omitted in the abstract environment element), then whether an environment

belongs to γM (M�
p) or not is solely decided by the value of x . Hence, if two environments have the

same value of x and may have different values of other variables, then both of them or neither of

them belong to γM (M�
p).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:57

Second, given a cognizance directive dc ∈ D�
M

and a partitioning directive dp = part〈Inv, l ,

M�
p〉 where M�

p ∈ D
�
M

, we define a new equivalence relation ∼
M�

p\dc
on environments:

∼
M�

p \dc
∈ ℘(M ×M) equivalence relation on environments

ρ ∼
M�

p \dc
ρ ′ ⇔ ρ = ρ ′ ∨ (ρ ∈ γM (dc) ∧ ρ ′ ∈ γM (dc) ∧

∀x ∈ vars(M�
p)\vars(dc). ρ (x) = ρ ′(x)).

It is obvious that the size of each equivalence class by ∼
M�

p\dc
is greater than

dc∼:

∀ρ ∈ M. [ρ]dc∼
⊆ [ρ]∼

M
�
p \dc

(27)

where [ρ]dc∼
= {ρ ′ ∈ M | ρ dc∼ ρ ′} and [ρ]∼

M
�
p \dc

= {ρ ′ ∈ M | ρ ∼
M�

p\dc
ρ ′}.

Corollary 8. ∀ρ ∈ M. ∀ρ ′ ∈ [ρ]∼
M
�
p \dc

. ∃ρ ′′ ∈ [ρ]dc∼
. ∀x ∈ vars(M�

p). ρ ′(x) = ρ ′′(x).

Last, using the Corollary 8 and (26), we can prove that the condition (25) is equivalent to the
condition (28), and get the following lemma:

Lemma 4. A partitioning directive dp = part〈Inv, l , M�
p〉 is valid with respect to a cognizance

directive dc ∈ D�
M

if and only if

∀ρ ∈ γM (dc). [ρ]∼
M
�
p \dc

⊆ γM
(
M�

p

)
∨ [ρ]∼

M
�
p \dc

∩ γM
(
M�

p

)
= ∅, (28)

where [ρ]∼
M
�
p \dc

= {ρ ′ ∈ M | ρ ∼
M�

p\dc
ρ ′} and ρ ∼

M�
p\dc

ρ ′ ⇔ ρ = ρ ′ ∨ (ρ ∈ γM (dc) ∧ ρ ′ ∈

γM (dc) ∧ ∀x ∈ vars(M�
p)\vars(dc). ρ (x) = ρ ′(x)).

Intuitively, compared with checking the condition (25), the cost of checking (28) is further re-
duced. Essentially, for both conditions, we need to partition the set of environments γM (dc) into

equivalence classes and check if there exists any equivalence class that overlaps with γM (M�
p).

Since the definition of ∼
M�

p \dc
is looser than

dc∼, the size of each equivalence class created by ∼
M�

p\dc

is larger, thus the number of equivalence classes that need to be checked is smaller.

(2) Checking the Validity of Partitioning Directives in the Abstract. Although we have formally

defined the validity of a partitioning directive dp = part〈Inv, l , M�
p〉 with respect to a cognizance

directive dc ∈ D�
M

, it is impractical to directly use those definitions to check the validity of parti-
tioning directives, since it requires to compare sets of environments in the concrete. The objective
of this section is to propose a sound checking approach, which guarantees that if a partitioning
directive is determined as valid in the abstract, then it is indeed valid in the concrete.

To begin with, we consider the abstract environment domainsD�
M

that have a Galois connection

with the concrete environment domain, i.e., 〈℘(M), ⊆〉 −−−−→←−−−−
αM

γM
〈D�
M
, ��
M
〉. Such abstract domains

include but are not limited to the interval domain and the octagon domain. In this case, we have:

αM ([ρ]∼
M
�
p \dc

) ��
M

M�
p ⇔ [ρ]∼

M
�
p \dc

⊆ γM (M�
p) and αM ([ρ]∼

M
�
p \dc

) ��
M

M�
p = ⊥

�
M
⇒ [ρ]∼

M
�
p \dc

∩

γM (M�
p) = ∅. Therefore, we can infer a sufficient condition for (28) to hold:

∀ρ ∈ γM (dc). αM

(
[ρ]∼

M
�
p \dc

)
��
M

M�
p ∨ αM

(
[ρ]∼

M
�
p \dc

)
��
M

M�
p = ⊥

�
M
. (29)

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:58 C. Deng and P. Cousot

More generally, for abstract domains (e.g., the polyhedron domain) that do not have a corre-

sponding abstraction function αM ∈ ℘(M)
→ D�
M

, we can use the following condition instead as
a sufficient condition to check (28):

∀ρ ∈ γM (dc). ∃d′c ∈ D
�
M
. [ρ]∼

M
�
p \dc

⊆ γM (d′c) ∧
(
d′c �

�
M

M�
p ∨ d′c �

�
M

M�
p = ⊥

�
M

)
. (30)

Now the question is: How to find d′c ∈ D
�
M

such that [ρ]∼
M
�
p \dc

⊆ γM (d′c)? Suppose D�
M

is

a classic numerical domain (including intervals, octagons, and polyhedra), vars(M�
p)\vars(dc) =

{x1, . . . , xn } that are denoted as �x . Then, for any environment ρ ∈ γM (dc), its equivalence class

[ρ]∼
M
�
p \dc

can be soundly over-approximated by d′c = dc ��M (�x = �v), where �v is the values of �x in

ρ. Therefore, we can infer another sufficient condition for (28) to hold, which is more convenient
to check.

Lemma 5. A partitioning directive dp = part〈Inv, l , M�
p〉 is valid with respect to a cognizance

directive dc ∈ D�
M

if

∀�v ∈ Vn . d′c =
(
dc ��M �x = �v

)
∧

(
d′c �

�
M

M�
p ∨ d′c �

�
M

M�
p = ⊥

�
M

)
, (31)

where �x = vars(M�
p)\vars(dc) = {x1, . . . , xn }.

More specifically, �x = �v is expressed as “x1 ∈ [v1; v1]∧ . . .∧xn ∈ [vn ; vn]” in the interval domain,
and as “x1 ≤ v1 ∧ −x1 ≤ −v1 ∧ . . . ∧ xn ≤ vn ∧ −xn ≤ −vn” in the octagon/polyhedron domain.

However, directly checking the condition (31) is still costly, thus we discuss a few special cases
that are common and easy to check in practice:

(S1) If vars(M�
p) ∩ vars(dc) = ∅ (or, say, M�

p and dc do not have commonly used variables, e.g.,

M�
p = x ≤ 1 and dc = y ≤ 0): In this case, �x = vars(M�

p)\vars(dc) = vars(M�
p) includes all the

variables used in M�
p , hence we have ∀�v ∈ Vn . (�x = �v ��

M
M�

p) ∨ (�x = �v ��
M

M�
p = ⊥

�
M

). Since

(dc ��M �x = �v) ��
M
�x = �v , condition (31) always holds. Thus, if vars(M�

p) ∩ vars(dc) = ∅, then the

partitioning directive dp = part〈Inv, l , M�
p〉 is valid with respect to dc ∈ D�

M
.

(S2) If vars(M�
p)\vars(dc) = ∅ (or, say, every variable used in M�

p is also used in dc , e.g., M�
p =

x ≤ 1 and dc = x ≤ 0 ∧ y ≤ 0): In this case, �x = vars(M�
p)\vars(dc) = ∅, hence d′c = dc in the

condition (31). It is obvious that the condition (31) is equivalent to dc ��M M�
p ∨ dc ��M M�

p = ⊥
�
M

.

Thus, when vars(M�
p)\vars(dc) = ∅, the partitioning directive dp = part〈Inv, l , M�

p〉 is valid with

respect to the cognizance directive dc ∈ D�
M

if and only if dc ��M M�
p ∨ dc ��M M�

p = ⊥
�
M

holds.

(S3) If dc ��M M�
p ∨ dc ��M M�

p = ⊥
�
M

holds: Since d′c = (dc ��M �x = �v) ��
M

dc , we always have

d′c �
�
M

M�
p ∨ d′c �

�
M

M�
p = ⊥

�
M

. Thus, if dc ��M M�
p ∨ dc ��MM�

p = ⊥
�
M

, then the partitioning directive

dp = part〈Inv, l , M�
p〉 is valid with respect to the cognizance directive dc ∈ D�

M
.

To sum up the lemma 5 and special cases (S1–S3), now we propose a sound approach to check

if a partitioning directive dp = part〈Inv, l , M�
p〉 is valid with respect to the cognizance directive

dc ∈ D�
M

and formalize it as a function isValidd ∈ D�
M

→ (D�

M

→ B) such that isValidd (dc ,M

�
p)

returns whether the partitioning directive is valid or not. Observe that isValidd (dc ,M
�
p) returns

false in Case (S2), since the condition for Case (S3) is already checked and it is false.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:59

bool isValidd (dc ,M
�
p) {

If (vars(M�
p) ∩ vars(dc) = ∅) return true; // Case (S1)

If (dc ��M M�
p ∨ dc ��M M�

p = ⊥
�
M

) return true; // Case (S3)

If (vars(M�
p)\vars(dc) = ∅) return false; // Case (S2)

Check (31) and return the result. // Lemma 5
}

By the proof of Lemma 5 and the explanation of (S1–S3), we know that the above approach is

sound. More precisely, if the function isValidd (dc ,M
�
p) returns true, then the partitioning directive

dp = part〈Inv, l , M�
p〉 must be valid with respect to the cognizance directive dc ∈ D�

M
in the

concrete (def. 2).

Special Case of the Interval Domain. In particular (but not necessary), the implementation of

isValidd (dc ,M
�
p) can be further simplified if the abstract environment domain D�

M
is the interval

domain. Since the interval domain cannot express the relation among variables and every ele-
ment in the interval domain is simply a conjunction of interval constraints on a set of variables,

for any M�
p , dc ∈ D�

M
, the constraints in M�

p can be split into two parts: M�
p |vars(M�

p)\vars(dc)
de-

notes the constraints on the variables in vars(M�
p)\vars(dc), and M�

p |vars(M�
p)∩vars(dc)

denotes the

constraints on the variables in vars(M�
p) ∩ vars(dc). When the set vars(M�

p)\vars(dc) (respec-

tively, vars(M�
p) ∩ vars(dc)) is empty, M�

p |vars(M�
p)\vars(dc)

(respectively, M�
p |vars(M�

p)∩vars(dc)
) denotes

��
M

. Then, condition (31) is equivalent to: ∀�v ∈ Vn . (dc ��M M�
p |vars(M�

p)∩vars(dc)
∧ �x = �v ��

M

M�
p |vars(M�

p)\vars(dc)
) ∨ (dc ��M M�

p |vars(M�
p)∩vars(dc)

= ⊥�
M
∧ �x = �v ��

M
M�

p |vars(M�
p)\vars(dc)

= ⊥�
M

).

Since (�x = �v ��
M

M�
p |vars(M�

p)\vars(dc)
) ∨ (�x = �v ��

M
M�

p |vars(M�
p)\vars(dc)

= ⊥�
M

) always hold in the

above condition, the condition (31) is equivalent to:

dc ��M M�
p |vars(M�

p)∩vars(dc)
∨ dc ��M M�

p |vars(M�
p)∩vars(dc)

= ⊥�
M
, (32)

and the implementation of isValidd (dc ,M
�
p) for the interval domain could be simplified into check-

ing if the condition (32) holds.

For example, if dc = x ∈ [0;∞]∧y ∈ [0;∞] and dp = part〈Inv, l , M�
p = y ∈ [−5; 5]∧z ∈ [−5; 5]〉,

then M�
p |vars(M�

p)∩vars(dc)
= y ∈ [−5; 5], since vars(M�

p) ∩ vars(dc) = {y }. It is not hard to see that

dc 	��M y ∈ [−5; 5] and dc ��M y ∈ [−5; 5] = x ∈ [0;∞] ∧ y ∈ [0; 5] � ⊥�
M

, thus the condition (32)
does not hold, and dp is invalid with respect to dc .

Example 21 (Checking the Validity of Partitioning Directives). Here, we give some examples of
checking the validity of partitioning directive dp with respect to some cognizance directive dc by
the approach proposed in this section.

(i) dc = x ≤ −1 and dp = part〈Inv, l , M�
p = y ≤ 0〉: dc indicates that the observer does not know

the exact value of x if it is negative, and dp would like to generate a partition such that the value

of y is less than 0. Since vars(M�
p) ∩ vars(dc) = ∅ (Case (S1)) holds, the partitioning directive dp is

valid with respect to dc .

(ii) dc = x ≤ −1 and dp = part〈Inv, l , M�
p = x ≤ 0〉: dc indicates that the observer does not

know the exact value of x if it is negative, and dp intends to generate a partition such that the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:60 C. Deng and P. Cousot

value of x is less than 0. It is obvious that dc ��M M�
p , thus this is case (S3) and the partitioning

directive dp is valid.

(iii) dc = x ≤ 0 and dp = part〈Inv, l , M�
p = x ≤ −1〉: dc indicates that the observer does

not know the exact value of x if it is negative or zero, and dp intends to generate a partition such

that the value of x is negative. In this example, vars(M�
p)\vars(dc) = ∅, and it is easy to see that

dc 	��M M�
p and dc ��M M�

p � ⊥
�
M

, thus this is case (S2) and the partitioning directive dp is invalid
with respect to dc .

(iv) dc = x ≤ y and dp = part〈Inv, l , M�
p = x ≤ z〉: dc indicates that the observer does not know

the exact value of x and y when x ≤ y , but knows the relation between x and y ; and dp would
like to generate a partition such that x ≤ z . It is not hard to see that none of (S1–S3) holds in this
example, thus we need to directly check the condition (31), which is ∀v ∈ V. d′c = (x ≤ y ∧ z =

v)∧ (d′c �
�
M

x ≤ z∨d′c �
�
M

x ≤ z = ⊥�
M

). Such a condition does not hold: for example, if v = 0, then

d′c = (x ≤ y∧z = 0), hence we have dc 	��M x ≤ z and dc ��M x ≤ z = (x ≤ y∧z = 0∧x ≤ 0) � ⊥�
M

.
Therefore, the partitioning directive dp is invalid with respect to dc .

(v) dc = x ≤ y ∧ y ≤ z and dp = part〈Inv, l , M�
p = z < x ∧ w ≤ 0〉: In this example,

vars(M�
p)\vars(dc) = {w }, and none of (S1–S3) holds in this example, thus we need to directly

check the condition (31), which is always true, because ∀v ∈ V. (x ≤ y ∧ y ≤ z ∧w = v) ��
M

(z <

x ∧ w ≤ 0) = ⊥�
M

. Therefore, the partitioning directive dp is valid with respect to dc .

(3) Checking the Validity of a Partition Function in the Abstract. Up to now, we have discussed
how to check if a single partitioning directive is valid with respect to a cognizance directive. For

a program, the user specifies an abstract cognizance function C� ∈ L
→ ℘(D�
M

), and there are

typically more than one partitioning directive of the form part〈Inv, l ,M�
p〉, hence we need to check

the validity of all these partitioning directives with respect to the whole cognizance function. For

the sake of clarity, here we rephrase the set of partitioning directives of the form part〈Inv, l , M�
p〉

as a partition function P� ∈ L
→ ℘(D�
M

), such that ∀l ∈ L. ∀M�
p ∈ P� (l). part〈Inv, l , M�

p〉 is a
partitioning directive in the program.

Formally, here we define a function isValidP that checks if a partition function P� is valid with
respect to a cognizance function C� :

isValidP ∈
(
L
→ ℘

(
D�
M

))

→

((
L
→ ℘

(
D�
M

))

→ B

)
Validity of Partition

isValidP (C�,P�) �
⎧⎪⎨⎪⎩

true if ∀l ∈ L. ∀dc ∈ C� (l),M�
p ∈ P� (l). isValidd

(
dc ,M

�
p

)
false otherwise.

That is to say, a partition function P� is valid with respect to an abstract cognizance function
C
� if and only if, at each program point l , every partitioning directive specified by P� is valid with

respect to every cognizance directive assigned by C� .
Recall that the partitioning directives are designed to create new partitions when constructing

trace partitioning automata, and the sole purpose of checking if a partition function P� is valid
with respect to an abstract cognizance function C� is to ensure that any two indistinguishable
traces would not be partitioned into different partitions, thus are always represented by the same
path in the constructed trace partitioning automaton.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:61

Theorem 2. If the partition function P� is valid with respect to the cognizance function C� , then

every two indistinguishable traces σ
C
�

∼ σ ′ must belong to the same partition created by P� at every
program point along the execution.

Formally, ∀C�,P� ∈ L
→ ℘(D�
M

). isValidP (C�,P�) ⇒ (∀σ ,σ ′ ∈ S∗∞. σ C
�

∼ σ ′ ⇒ (∀i ∈
[0, |σ |). ∃l ∈ L, ρ, ρ ′ ∈ M. σ[i] = 〈l , ρ〉 ∧ σ ′[i] = 〈l , ρ ′〉 ∧ ∀M�

p ∈ P� (l). ρ ∈ γM (M�
p) ⇔ ρ ′ ∈

γM (M�
p))).

6.2.3 Revising Partitioning Directives to Be Valid. In the previous sections, we have introduced
the method to check the validity of partitioning directives (or, say, the partition function), while
the approach of creating partitioning directives will be discussed in Section 7. Intuitively, we could
create partitioning directives based on the information provided by the cognizance function, such
that the created partitioning directives are always valid. For example, if the cognizance function
C
� (l) = {x < 0, x ≥ 0} indicates that the observer knows the sign of x at point l , but not the exact

value of x . It is intuitive to create two partitions according to the sign of x at point l : part〈Inv, l ,
x < 0〉 and part〈Inv, l , x ≥ 0〉, both of which can be simply proved to be valid with respect to C� .
However, this is not always the case, and we may want to create partitioning directives based on
some other criteria, which may bring us invalid partitioning directives. Thus, a missing part here

is: What shall we do if a certain partitioning directive dp = part〈Inv, l , M�
p〉 (or M�

p for short) is

found invalid with respect to a cognizance directive dc at point l (i.e., isValidd (dc ,M
�
p) = false)?

Obviously, we can simply discard the partitioning directive dp , and the correspondingly con-
structed trace partitioning automaton is still guaranteed to be sound. However, this may incur the
loss of precision in the forward reachability analysis, which further affects the result of abstract
responsibility analysis.

Alternatively, we can retrieve the validity by revising M�
p . By the definition of isValidd (dc ,M

�
p),

we know that dc ��M M�
p ∨dc ��MM�

p = ⊥
�
M

does not hold. That is to say, dc 	��M M�
p and dc ��MM�

p �

⊥�
M

, thus there are two possible cases:

(1) M�
p �

�
M

dc : M�
p is strictly less than dc , or γM (M�

p) � γM (dc). In this case, we can just use dc

as a new partitioning directive to replace M�
p , i.e., we define M�′

p = dc , and M�′
p is obviously

valid with respect to dc . For example, dp = part〈Inv, l , M�
p = x < 0〉 is invalid with respect

to dc = x ≤ 0, and we can replace it by a new partitioning directive part〈Inv, l ,M�
p = x ≤ 0〉,

which is trivially valid.

(2) M�
p 	�

�
M

dc ∧ dc 	��M M�
p ∧ dc ��M M�

p � ⊥
�
M

: M�
p overlaps with dc , and they are incomparable.

In this case, there are two possible ways to create new partitioning directives to replace M�
p :

(a) Define a new partitioning directive M�′
p = M�

p �
�
M

dc .

Obviously, M�′
p is valid with respect to dc , since dc ��M M�′

p . For example, dp = part〈Inv,

l , M�
p = x ∈ [1;∞]〉 is invalid with respect to the cognizance directive dc = x ∈ [0; 1]

that indicates the observer cannot distinguish the value 0 and 1 of x , then we can replace

it by a new partitioning directive part〈Inv, l , M�
p = x ∈ [0;∞]〉. It is worth mentioning

that convex abstract domains (e.g., polyhedra) cannot exactly represent unions, which
must be over-approximated (e.g., the convex hull for polyhedra). If the incurred loss of
precision is unacceptable and we need the exact union, then we could use the disjunctive

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:62 C. Deng and P. Cousot

completion as a new partitioning directive, although it may be costly and does not scale
well.

(b) Or, we split M�
p �

�
M

dc by defining two new partitioning directives: M�′
p = dc and M�′′

p =

M�
p �

�
M
¬dc .

It is not hard to see that dc ��M M�′
p and dc��MM�′′

p = ⊥
�
M

, thus these two new partitioning

directives are valid. Specially, M�′′
p under-approximates M�

p , thus the correspondingly cre-

ated partition preserves the desired property of partitioning by M�
p . However, the classic

numerical domains (such as intervals, octagons, polyhedra) do not support the comple-
ment operation ¬, e.g., the complement of a polyhedron is a disjunction of affine inequali-

ties, thus M�
p�

�
M
¬dc may not be expressed by a single element inD�

M
. If this happens, then

instead of defining a single partitioning directive to represent M�
p �

�
M
¬dc , we define a list

of partitioning directives, each of which is a conjunction of M�
p and an affine inequality

from ¬dc . For example, dp = part〈Inv, l , M�
p = x ≤ 10〉 is invalid with respect to the

cognizance directive dc = x ≥ 0∧ y > 0. The complement of dc is the disjunction of x < 0

and y ≤ 0. Thus, we create three new partitioning directives: M�′
p = dc = x ≥ 0 ∧ y > 0,

M�′′
p = M�

p �
�
M

x < 0 = x < 0, and M�′′′
p = M�

p �
�
M

y ≤ 0 = x ≤ 10 ∧ y ≤ 0. In
addition, when the number of affine inequality from ¬dc is large, we could heuristically
select part of them to create new partitioning directives, reducing the cost incurred by
trace partitioning without harm to the soundness.

To sum up, in this section, we have discussed the user specification of system behaviors and
cognizance in the abstract, proposed a sound approach to check if the partitioning directives are
valid with respect to the user specified cognizance, and sketched some possible methods to retrieve
the validity for invalid partitioning directives.

7 ABSTRACT RESPONSIBILITY ANALYSIS

The concrete responsibility analysis αR (�P�Max,LMax,C,B,T) proposed in Section 3.2 is undecid-
able, and an implementation of it has to abstract sets of finite or infinite traces involved in �P�Max,
LMax, C, B, and T . Up to now, we have discussed the abstraction of maximal trace semantics
�P�Max by trace partitioning automata that are constructed by over-approximating forward reach-
ability analysis (Section 4.2) with trace partitioning (Section 5), the abstraction of system behaviors
B by abstract invariants (Section 6.1), and the abstraction of cognizance C by abstract cognizance
function (Section 6.2). Moreover, it is assumed that the lattice of behaviors LMax consists of only
B and its complement (besides the top and bottom), and the set of traces to be analyzed T is
the whole maximal trace semantics, thus all the components in responsibility analysis have been
abstracted.

In this section, we propose the framework of responsibility analysis in the abstract, which essen-
tially consists of an iteration of forward (possible success) reachability analysis with trace partition-
ing and backward impossible failure accessibility analysis. In addition, this abstract responsibility
analysis is proved to be sound.

7.1 The Framework of Abstract Responsibility Analysis

As shown in Figure 18, given a program P with the user-specified behavior of interest B� ∈ L
→
D�
M

and abstract cognizance C� ∈ L
→ ℘(D�
M

), the abstract responsibility analysis can determine

the responsible entities in P that are potentially responsible for B� to the cognizance of C� .

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:63

Fig. 18. Trace framework of abstract responsibility analysis.

More precisely, the abstract responsibility analysis starts with a forward reachability analysis

S�
−→
ps

�P�, which produces an over-approximation of the program’s reachability semantics. Then, af-

ter refining the behavior of interest B� by the intersection with the computed reachability seman-
tics, we perform in parallel both an under-approximating backward impossible failure accessibility

analysis Š�
←−
i f

�P�(B�) and an over-approximating backward impossible failure accessibility analy-

sis Ŝ�
←−
i f

�P�(B�), and the correspondingly computed accessibility semantics (or its complement) are

transformed into partitioning directives of form “dp = part〈Inv, l , M�
p〉.” Further, using the parti-

tioning directives that are valid with respect to C� , a new round of forward reachability analysis is
conducted, which computes a refined reachability semantics and a trace partitioning automaton. In

such an automaton, nodes created by partitioning directives from the complement of Ŝ�
←−
i f

�P�(B�)

are marked as left bounds, while nodes created by partitioning directives from Š�
←−
i f

�P�(B�) are

marked as right bounds. It follows that, along each path in the automaton, the responsible enti-
ties must be located after the left bounds (if any) and before the right bounds (if any). Thus, at
this point we can determine responsible entities in the trace partitioning automaton and stop
if we are satisfied with the results or the cost exceeds the pre-specified threshold. Otherwise,
we start a new round of backward-forward analysis with the behavior B� that is refined again

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:64 C. Deng and P. Cousot

by the new reachability semantics, which may improve the precision of responsibility analysis
result.

It is not hard to see that most components in this framework of abstract responsibility analysis
have been discussed in previous sections. In the rest of this section, we summarize these compo-
nents and illustrate how they collaborate to determine responsibility in the abstract.

7.2 The Preprocessing Phase

The abstract responsibility analysis starts with a preprocessing phase, in which the user specifies
the behavior of interest and the observer’s cognizance, and a preliminary forward reachability
analysis is conducted to compute the reachability semantics.

The abstract behavior B� and the abstract cognizance C� have been elaborated in Section 6,

and the over-approximating forward reachability analysis S�
−→
ps

�P�(I�pre) has been formalized in

Section 4.2, thus here we reuse them and supplement with some practical tips that could facili-
tate the coming analysis phases.

For any program P to be analyzed, we insert a dummy initial program point l0 followed by
a dummy action that does not affect the program execution (e.g., skip) in front of P, such that
the variable initialization action at the beginning of program execution is explicitly mimicked by
this dummy action. Therefore, when the dummy initial action is determined as responsible for a
behavior B� , it means that whether B� occurs or not may be decided by the variable initialization.

In addition, for the over-approximating forward reachability analysis S�
−→
ps

�P�(I�pre), the abstract

precondition I
�
pre ∈ L
→ D

�
M

is always defined such that the abstract environment element for the

dummy initial point is the top (i.e., I
�
pre (l0) = ��

M
) and it is the bottom for all other program points

(i.e., I
�
pre (l) = ⊥�

M
for l � l0). Moreover, the precision of this forward reachability analysis can be

improved by trace partitioning, which is optional. Although until this step we have not obtained

any partitioning directives that are related with memory states and of form “part〈Inv, l , M�
p〉,”

we can still conduct the trace partitioning by partitioning directives related with the control flow
(e.g., part〈If, l , b〉 and part〈While, l , n〉), which can be derived as in the preprocessing phase of
Reference [70].

Example 22 (Access Control, Continued). For the access control program in Figure 4, we insert
a dummy initial point l0 as well as a dummy action before the point l1, which has no affect on
the result of forward reachability analysis in this phase. Suppose the user is interested in the

behavior “the access to o fails,” then the user can specify the abstract behavior B� ∈ L
→ D�
M

such that B� (l8) = acs ∈ [−∞; 0], while B� (l) = ��
M

for other program points l � l8. Here,
we consider two types of observers: an omniscient observer, whose abstract cognizance function

C
�
o ∈ L
→ ℘(D�

M
) is specified such that C�o (l) = {⊥�

M
} for every program point l ∈ L; and an

observer that does not know the input of the 1st admin, and the corresponding abstract cognizance

function C� ∈ L
→ ℘(D�
M

) is defined such that, if l ∈ {l0, l1, l2}, then C� (l) = {⊥�
M
}, otherwise

C
� (l) = {i1 ∈ [−1; 2]}.
Since there is no conditional or while loop in the access control program, we do the forward

reachability analysis without trace partitioning, and the corresponding forward reachability se-

mantics S�
−→
ps

�P�(I�pre) is listed in Table 11 (which is almost the same as the Table 2). For the sake

of clarity and to be consistent with the analysis result from the Interproc analyzer [40], the trivial
constraints like acs ∈ [−∞;∞] are omitted in the table.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:65

Table 11. Abstract Forward Reachability Semantics for the Access Control Program

l S�
−→
ps

�P�(I�pre)l

l0 ��
M

l1 ��
M

l2 apv ∈ [1; 1]
l3 apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
l4 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2]
l5 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2]
l6 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2]
l7 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 2]

7.3 The Backward Analysis Phase

The objective of this backward analysis phase is to create partitioning directives of the form

“part〈Inv, l , M�
p〉” that can either guarantee that the behavior B� always hold or guarantee the

existence of at least one execution trace that fails behavior B� .

7.3.1 Behavior Refinement with Reachability Semantics. After completing a forward reachabil-
ity analysis, the first step is to refine the behavior B� of interest by the intersection with the

computed reachability semantics S�
−→
ps

�P�(I�pre).

If S�
−→
ps

�P�(I�pre) is computed without trace partitioning, then the intersection of S�
−→
ps

�P�(I�pre) ∈

L
→ D�
M

with B� ∈ L
→ D�
M

is simply the pointwise meet ��
M

of abstract environments, and

the refined behavior is S�
−→
ps

�P�(I�pre) �̇�
M
B� . However, if the trace partitioning is involved in the

forward reachability analysis, then S�
−→
ps

�P�(I�pre) ∈ LT
→ D�
M

� L × T
→ D�
M

(where T is the set

of partitioning tokens) has to be transformed into the form L
→ D�
M

before its intersection with

B� .
There are possibly several ways to do so: (1) A naive method is to apply toS�

−→
ps

�P�(I�pre) the forget

function πτ , which is defined in the trace partitioning abstract domain (Section 5.1) to remove
partitioning tokens from extended program points, such that abstract environments at the same

point with different partitioning tokens are joined together. Formally, we construct I� ∈ L
→ D�
M

such that ∀l ∈ L. I� (l) = ��
M
{S�
−→
ps

�P�(I�pre)〈l , t〉 | t ∈ T}, and the refined behavior would be

I� �̇�
M
B� . (2) The naive method can be improved if we do the intersection with B� before joining

the abstract environments together. Formally, the refined behavior is B� ′ ∈ L
→ D�
M

such that

B� ′(l) = ��
M
{S�
−→
ps

�P�(I�pre)〈l , t〉 ��
M
B (l) | t ∈ T}. (3) Another alternative method is to use multiple

behaviors to represent the intersection of B� with S�
−→
ps

�P�(I�pre). More specifically, S�
−→
ps

�P�(I�pre) can

be equivalently viewed as a trace partitioning automaton, thus for each path in this automaton we
can do an intersection with B� and construct a new behavior if the path is still valid (i.e., no node

is attached with ⊥�
M

). This method is the most precise one for refining the behavior of interest,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:66 C. Deng and P. Cousot

but the cost of introducing multiple behaviors to the following backward analysis is prohibitive,
hence it is not adopted in this article.

Example 23 (Access Control, Continued). Following Example 22, the trace partitioning is not used
in the forward reachability analysis, hence the abstract behavior B� can be refined simply by

the pointwise meet �̇�
M

with S�
−→
ps

�P�(I�pre) from Table 11. For the sake of conciseness, the refined

behavior is still called B� , thus we have: B� (l8) = apv ∈ [−1; 1]∧ i1 ∈ [−1; 2]∧ i2 ∈ [−1; 2]∧ typ ∈
[1; 2] ∧ acs ∈ [−2; 0], and B� (l) = S�

−→
ps

�P�(I�pre)l for program points l other than l8.

7.3.2 Under-approximating/Over-approximating Backward Impossible Failure Accessibility Anal-

ysis. Using the under-approximating backward impossible failure accessibility analysis given

in Section 4.3.2, we get Š�
←−
i f

�P�(B�) ∈ L
→ D�
M

such that, for every program point l ,

Š�
←−
i f

�P�(B�)l is an under-approximation of the weakest sufficient precondition for B� . Since an

under-approximation of the weakest sufficient precondition is still a sufficient condition, every

concrete valid trace that begins from a state 〈l , ρ〉 such that ρ ∈ γM (Š�
←−
i f

�P�(B�)l) must satisfy

the behavior B� .
Similarly, using the over-approximating backward impossible failure accessibility analysis for-

malized in Section 4.3.3, we get Ŝ�
←−
i f

�P�(I�′post) ∈ L
→ D�
M

such that, for every program point

l , Ŝ�
←−
i f

�P�(B�)l over-approximates the weakest sufficient precondition for B� . Since an over-

approximation of the weakest sufficient precondition is not necessarily a sufficient condition,

Ŝ�
←−
i f

�P�(B�)l does not guarantee that the occurrence of behavior B� . However, it is guaranteed

that, if all the concrete valid traces that begin from a state 〈l , ρ〉 have the behavior B� , then ρ

must satisfy the environment property Ŝ�
←−
i f

�P�(B�)l (i.e., ρ ∈ γM (Ŝ�
←−
i f

�P�(B�)l)). That is to say,

from a state 〈l , ρ〉 such that ρ does not satisfy Ŝ�
←−
i f

�P�(B�)l (i.e., ρ � γM (Ŝ�
←−
i f

�P�(B�)l)), there

must exist at least one concrete valid trace that fails the behavior B� .
To make use of the environments that do not satisfy Ŝ�

←−
i f

�P�(B�)l , we compute the complement

of Ŝ�
←−
i f

�P�(B�), or even better, S�
−→
ps

�P�(I�pre)\Ŝ�
←−
i f

�P�(B�) (i.e., S�
−→
ps

�P�(I�pre)�̇�
M

(¬̇Ŝ�
←−
i f

�P�(B�))), such

that invalid environments are excluded. Yet, most abstract environment domains do not directly
support the complement operation, including the classic numerical domains (such as the interval,
octagon, and polyhedron domain). For example, the complement of a polyhedron is a disjunction
of affine inequalities. Nevertheless, similar to the disjunctive completion, we can define the com-

plement of Ŝ�
←−
i f

�P�(B�) ∈ L
→ D�
M

as ¬̇Ŝ�
←−
i f

�P�(B�) ∈ L
→ ℘(D�
M

), such that each abstract

environment element in ¬̇Ŝ�
←−
i f

�P�(B�)l represents an affine inequality in the disjunction at the

point l .
It is worth mentioning that the number of affine inequalities in the complement of some ab-

stract environment element from D�
M

may be large, especially for polyhedra. However, it is safe
to remove part of these affine inequalities and keep only the heuristically selected ones, without
any harm to the soundness of abstract responsibility analysis.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:67

Table 12. Under-approximating Backward IF Accessibility Semantics for B�

l Š�
←−
i f

�P�(B�)l

l0 ⊥�
M

l1 ⊥�
M

l2 ⊥�
M

l3 ⊥�
M

l4 ⊥�
M

l5 apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 0]
l6 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2]
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 0]

Table 13. Over-approximating Backward IF Accessibility Semantics for B� with Disjunctive Completion

l Ŝ�
←−
i f

�P�(B�)l

l0 ⊥�
M

l1 ⊥�
M

l2 ⊥�
M

l3 apv ∈ [1; 1] ∧ i1 ∈ [−1; 0]
l4 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2]
l5 {apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2], apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 0]}
l6 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2]
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
l8 apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [−2; 0]

Example 24 (Access Control, Continued). Following Example 23, we conduct an under-
approximating backward impossible failure accessibility analysis on B� , and the correspond-

ing result Š�
←−
i f

�P�(B�) is listed in Table 12. Similarly, the result of the over-approximating

backward impossible failure accessibility analysis on B� is listed in Table 13. Notice that we have

adopted the disjunctive completion in Š�
←−
i f

�P�(B�)l5 to gain the precision, otherwise it would be

apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] instead, which is equal to S�
−→
ps

�P�(I�pre)l .

Furthermore, the complement of Ŝ�
←−
i f

�P�(B�) is listed in Table 14. Notice that, instead of sim-

ply using the direct complement of Ŝ�
←−
i f

�P�(B�), here we adopt S�
−→
ps

�P�(I�pre)\Ŝ�
←−
i f

�P�(B�), or, say,

S�
−→
ps

�P�(I�pre)�̇�
M

(¬̇Ŝ�
←−
i f

�P�(B�)), such that invalid environments would not be included. For ex-

ample, at point l2, the direct complement of Ŝ�
←−
i f

�P�(B�)l2 = ⊥�
M

is ��
M

. After the meet ��
M

with the reachability semantics S�
−→
ps

�P�(I�pre)l2, we can get the more precise apv ∈ [1; 1]. Simi-

larly, at point l3, the direct complement of Ŝ�
←−
i f

�P�(B�)l3 = apv ∈ [1; 1] ∧ i1 ∈ [−1; 0] is the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:68 C. Deng and P. Cousot

Table 14. The Complement of Over-approximating Backward IF Accessibility

Semantics for B�

l S�
−→
ps

�P�(I�pre)l \Ŝ�
←−
i f

�P�(B�)l

l0 {��
M
}

l1 {��
M
}

l2 {apv ∈ [1; 1]}
l3 {apv ∈ [1; 1] ∧ i1 ∈ [1; 2]}
l4 {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]}
l5 {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [1; 2]}
l6 {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2]}
l7 {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]}
l8 {apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [1; 2]}

disjunction of {apv ∈ [−∞; 0], apv ∈ [2;∞], i1 ∈ [−∞;−2], i1 ∈ [1;∞]}, most of which are
invalid (or, say, unreachable in the concrete). After the meet with the reachability semantics

S�
−→
ps

�P�(I�pre)l3 = apv ∈ [1; 1] ∧ i1 ∈ [−1; 2], it is refined to {apv ∈ [1; 1] ∧ i1 ∈ [1; 2]}, which is

much more precise than direct complement.

7.3.3 Partitioning Directives Generation with Validity Check. Using the under-approximating

backward impossible failure accessibility semantics Š�
←−
i f

�P�(B�) and the complement of over-

approximating backward impossible failure accessibility semantics S�
−→
ps

�P�(I�pre)\Ŝ�
←−
i f

�P�(B�), this

step aims at constructing a partition function P� ∈ L
→ ℘(D�
M

), such that ∀l ∈ L. ∀M�
p ∈

P
� (l). part〈Inv, l , M�

p〉 is a partitioning directive that is valid with respect to the specified cog-

nizance functionC� and will be used in the next round of forward reachability analysis. Sometimes,

a partitioning directive dp = part〈Inv, l , M�
p〉 is called as M�

p for short, when the program point l
is known from the context.

More specifically, here we design four types of partitioning directives that are based on the
environments, and accordingly the partition function P� can be split into four parts:

(1) Right-bound partitioning directives. For any point l , Š�
←−
i f

�P�(B�)l is a right-bound partition-

ing directive, if it is not ⊥�
M

and is valid with respect to all cognizance directives assigned to l .

Formally, we define the right-bound partition function P�
R

:

P
�
R
∈ L
→ ℘

(
D�
M

)
right-bound partition function

P
�
R

(l) �
{

M�
p | M

�
p = Š

�
←−
i f

�P�(B�)l ∧M�
p � ⊥

�
M
∧ ∀dc ∈ C� (l). isValidd

(
dc ,M

�
p

)}
.

By the definition of Š�
←−
i f

�P�(B�), the partitions generated by right-bound partitioning directives

during the next forward reachability analysis would guarantee the occurrence of B� .
In addition, the time cost of forward reachability analysis with trace partitioning greatly depends

on the number of created partitions, while typically Š�
←−
i f

�P�(B�) contains redundant elements in

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:69

consecutive program points, thus adopting every element in Š�
←−
i f

�P�(B�) as partitioning directives

may bring unnecessary burden to the forward reachability analysis without benefits in improving
the precision. Therefore, in practice, we can keep the partitioning directives only for the program
points of importance (e.g., the points immediately after external inputs) and discard the rest of
them.

(2) Left-bound partitioning directives. Similar to the generation of right-bound partitioning di-

rectives from Š�
←−
i f

�P�(B�), the left-bound partitioning directives are derived from the comple-

ment of Ŝ�
←−
i f

�P�(B�) (i.e., S�
−→
ps

�P�(I�pre)\Ŝ�
←−
i f

�P�(B�)). Specifically, for any point l , every element

in S�
−→
ps

�P�(I�pre)l \Ŝ�
←−
i f

�P�(B�)l is a left-bound partitioning directive if it is not ⊥�
M

and is valid with

respect to all cognizance directives assigned to l . Formally, the left-bound partition function P�
L

is:

P
�
L
∈ L
→ ℘

(
D�
M

)
left-bound partition function

P
�
L

(l) �
{

M�
p | M

�
p ∈ S

�
−→
ps

�P�(I
�
pre)l \Ŝ�

←−
i f

�P�(B�)l ∧M�
p � ⊥

�
M
∧ ∀dc ∈ C� (l). isValidd

(
dc ,M

�
p

)}
.

By the definition of Ŝ�
←−
i f

�P�(B�), we know that from every partition generated by the left-bound

partitioning directive, there must exist at least one concrete valid trace that fails the behavior
B� . Moreover, similar to the right-bound partitioning directives, it is of practical use to keep the
left-bound partitioning directives only for selected program points and discard the rest.

(3) Dual-right-bound partitioning directives. Intuitively, the left-bound partitioning directives
can determine the points from which there is still possibility to fail B� , and the right-bound parti-
tioning directives are used to determine the points at whichB� is guaranteed and the responsibility
analysis could stop. Besides these two types of partitioning directive, the responsibility analysis
would benefit from another type of partitioning directive, which are used to determine the points
at which the behavior B� is guaranteed to fail and the responsibility analysis can also stop. Such
partitioning directives are called dual-right-bound partitioning directives, which marks the finish-
ing point for responsibility analysis on the traces failing B� ; without such partitioning directives,
the responsibility analysis may last much longer than necessary.

Theoretically, the dual-right-bound partitioning directives can be derived from backward im-
possible failure accessibility analyses for the complements of B, but the cost of doing so would be
prohibitive and the analysis results overlaps with the left-bound partitioning directives. In prac-
tice, to mark the finishing point of responsibility analysis on the traces failing B� , we can simply

use the complements of B� , or more precisely, S�
−→
ps

�P�(I�pre)\B� . Specifically, for every point l of

interest where the original behavior (before the refinement) B� (l) � ��
M

, we compute the com-

plement of B� (l), which is represented by the disjunctive completion (e.g., a disjunction of affine

inequalities for polyhedral), do the meet with S�
−→
ps

�P�(I�pre) for every element in the disjunction,

and collect the valid ones in the dual-right-bound partition function P�
R̃

. Usually, there are not

many dual-right-bound partitioning directives, since the original behavior B� is specified ��
M

at
most program points.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:70 C. Deng and P. Cousot

P
�

R̃
∈ L
→ ℘

(
D�
M

)
dual-right-bound partition function

P
�

R̃
(l) �

{
M�

p | M
�
p ∈ S

�
−→
ps

�P�(I�pre)l \B� (l) ∧M�
p � ⊥

�
M
∧ ∀dc ∈ C� (l). isValidd

(
dc ,M

�
p

)}
.

(4) No-bound partitioning directives. To make sure that the trace partitioning automaton (or, say,
the extended transition system in Reference [70]) constructed by the partitioning directives intro-
duced above is a covering of the original transition system (i.e., every transition in the original
transition system is simulated by at least one transition in the trace partitioning automaton), we
introduce some complementary partitioning directives to ensure every reachable state is covered
by at least one partition. Such partitioning directives are called no-bound partitioning directives,

and we define a no-bound partition function P�o ∈ L
→ ℘(D�
M

).

Formally, it is required that: ∀l ∈ L. ∪ {γM (M�
p) | M�

p ∈ P
�
R

(l) ∪ P�
L

(l) ∪ P�
R̃

(l) ∪ P�o (l)} ⊇
γM (S�

−→
ps

�P�(I�pre)l), where S�
−→
ps

�P�(I�pre)l over-approximates the set of all reachable concrete envi-

ronments at point l . Ideally, the no-bound partitioning directives P�o (l) can be computed by the sub-

traction of P�
R

(l)∪P�
L

(l)∪P�
R̃

(l) fromS�
−→
ps

�P�(I�pre)l . However, in some cases it may be difficult to do

such a subtraction operation. If this happens, then it is always safe to define P�o (l) = S�
−→
ps

�P�(I�pre)l ,

or even, P�o (l) = ��
M

, which are guaranteed to be valid with respect to any cognizance function.
Combining the above four types of partitioning directives together, we can get a partition func-

tion P� ∈ L
→ ℘(D�
M

) such that P� (l) � P�
R

(l)∪P�
L

(l)∪P�
R̃

(l)∪P�o (l). For every program point l ,

every partitioning directive in P� (l) is valid with respect to every cognizance directive dc in C� (l),
thus by the definition of isValidP, the partition function P� is valid with respect to the cognizance
function C� . Besides, it is assumed that P� (l0) = ∅ for the dummy initial point l0, such that the
correspondingly constructed trace partitioning automaton has only one initial node.

Example 25 (Access Control, Continued). Using the backward analysis result Š�
←−
i f

�P�(B�) and

S�
−→
ps

�P�(I�pre)\Ŝ�
←−
i f

�P�(B�) from Example 24, here we generate partitioning directives for two differ-

ent cognizance functions that are specified in Example 22.

(1) Consider the omniscient cognizance function C�o such that C�o (l) = {⊥�
M
} for every point

l ∈ L. In this case, every partitioning directive is trivially valid with respect to C�o , and the corre-
sponding partition function P� is displayed in Table 15. As mentioned before, the partition function
P
� may keep the partitioning directives only for the selected program points of importance, and

in this example such program points include: l1 that is immediately after the variable initialization
action (i.e., the dummy initial action); l3, l5, and l7 that are immediately after external inputs; and
l8 that is specified with the behavior B� of interest. Meanwhile, the partitioning directives at other
points (l2, l4, and l6) are optional and would not affect the final result of abstract responsibility
analysis, thus are omitted here.

Taking the point l5 as an example, the forward reachability semantics S�
−→
ps

�P�(I�pre)l5 = apv ∈
[−1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2] is partitioned into three parts: the right-bound partitioning di-

rectives P�
R

(l5) = {apv ∈ [1; 1]∧ i1 ∈ [−1; 2]∧ i2 ∈ [−1; 0]} that guarantee “the access to o fails”; the

left-bound partitioning directives P�
L

(l5) = {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [1; 2]}, which ensures
there exists at least one valid concrete trace such that “the access to o succeeds”; the no-bound

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:71

Table 15. The Partition Function for the Omnisicent Cognizance

l P
�
R

(l) P
�
L

(l) P
�

R̃
(l) P

�
o (l)

l0 ∅ ∅ ∅ ∅
l1 ∅ {��

M
} ∅ ∅

l2 ∅ ∅ ∅ ∅
l3 ∅ {apv ∈ [1; 1] ∧ i1 ∈ [1; 2]} ∅ {apv ∈ [1; 1]

∧i1 ∈ [−1; 0]}
l4 ∅ ∅ ∅ ∅
l5 {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 0]}

{apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [1; 2]}

∅ {apv ∈ [−1; 0]
∧i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2]}

l6 ∅ ∅ ∅ ∅
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]

{apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]}

∅ ∅

l8 {apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [−2; 0]}

{apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [1; 2]}

P
�
L

(l8) ∅

partitioning directives P�o (l5) = {apv ∈ [−1; 0] ∧i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 2]} are complementary to
the two other types of partitioning directives such that every reachable environment at point l5 is

covered. Although P�o (l5) actually guarantee “the access to o fails” in this very example, we cannot
take advantage of this information, since typically the no-bound partitioning directives cannot
guarantee anything.

(2) Consider a non-omniscient cognizance function C� such that, if l ∈ {l0, l1, l2}, then C� (l) =

{⊥�
M
}, otherwise C� (l) = {i1 ∈ [−1; 2]}. In this case, every partitioning directive from Table 15

needs to be checked with respect to the cognizance. Since the abstract environment domain is the
interval domain, checking the validity of partitioning directives is quite easy by the condition (32),

and we can find that only the partitioning directives at point l3 are invalid. Take M�
p = apv ∈ [1; 1]∧

i1 ∈ [1; 2] ∈ P�
L

(l3) as an example, the only cognizance directive at l3 is dc = i1 ∈ [−1; 2] ∈ C� (l3),

thus M�
p |vars(M�

p)∩vars(dc)
= i1 ∈ [1; 2], and it is obvious the condition (32) does not hold. Similarly,

the partitioning directive in P�o (l3) is found invalid. Therefore, after removing the invalid partition-
ing directives at l3, we get the partition function as in Table 16, which is valid with respect to C� .

7.4 The Forward Analysis Phase

The objective of this forward analysis phase is to construct a trace partitioning automaton with
the partitioning directives from the last phase, mark left bounds and right bounds of responsibility
in the automaton, and determine responsible entities.

(1) Trace Partitioning Automaton Generation. Using the partitioning directives from the back-

ward analysis phase (i.e., {part〈Inv, l , M�
p〉 | l ∈ L∧M�

p ∈ P� (l)}) and optionally the partitioning
directives based on the control flow (e.g., part〈If, l , b〉), we perform an over-approximating for-
ward reachability analysis with trace partitioning (Section 5), compute the refined forward reach-
ability semantics, and construct a trace partitioning automaton. Specially, the nodes generated by
left-bound partitioning directives are marked as “left-bound nodes” in the automaton, the nodes

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:72 C. Deng and P. Cousot

Table 16. The Partition Function for the Non-omniscient Cognizance

l P
�
R

(l) P
�
L

(l) P
�

R̃
(l) P

�
o (l)

l0 ∅ ∅ ∅ ∅
l1 ∅ {��

M
} ∅ ∅

l2 ∅ ∅ ∅ ∅
l3 ∅ ∅ ∅ ∅
l4 ∅ ∅ ∅ ∅
l5 {apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 0]}

{apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [1; 2]}

∅ {apv ∈ [−1; 0]
∧i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2]}

l6 ∅ ∅ ∅ ∅
l7 apv ∈ [−1; 0] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]

{apv ∈ [1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]}

∅ ∅

l8 {apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [−2; 0]}

{apv ∈ [−1; 1] ∧ i1 ∈ [−1; 2]
∧i2 ∈ [−1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [1; 2]}

P
�
L

(l8) ∅

generated by right-bound partitioning directives are marked as “right-bound nodes,” and the nodes
generated by dual-right-bound partitioning directives are marked as “dual-right-bound nodes.”

Furthermore, after the forward reachability analysis with trace partitioning completes, we can
improve the constructed automaton by propagating the right-bounds or dual-right-bounds: For
any node in the automaton that is not marked as any bound, if all its successors are marked as
right-bound nodes (respectively, dual-right-bound nodes), then we mark this node as a right-bound
node (respectively, a dual-right-bound node) as well.

(2) Determining Responsible Entities. Now, we can determine the responsibility in the generated
trace partitioning automaton. The intuition is: Every path in the automaton represents a set of
concrete traces; if a path contains a dual-right-bound node, then the path does not have the be-
havior B� , hence there is no responsible entity along this path; otherwise, the responsible entities
are the edges (i.e., actions), which are located after the left-bound nodes (if any) and before the
right-bound nodes (if any) along the path. That is to say, for any path that does not contain a
dual-right-bound node, all the actions between the rightmost left-bound node (if any) and the left-
most right-bound node (if any) are potentially responsible for the behavior B� . Specially, if there
is neither a left-bound node nor a right-bound node along a certain path, then the analysis is not
precise enough and every action along that path would be determined as potentially responsible.

Since only the actions with free choices can be possibly responsible for a behavior, we can
further restrict the potentially responsible entities to the actions such as external inputs, random
number generation, and variable initialization (which is mimicked as the dummy initial action).

In addition, we do not only find potentially responsible entities, but also get some hints on when
these entities are actually responsible, and this is the so called “responsible under the condition.”
Suppose an edge 〈l , t, M�〉 → 〈l ′, dp :: t, M�′〉 in the automaton is found potentially responsible,
it means that the action a from l to l ′ (which can be retrieved from the program source code)
is potentially responsible under the condition that the partitioning token t holds at point l and
the action a satisfies the partitioning directive dp . For example, for the access control program in

Figure 4, the edge 〈l4, t, M�〉 → 〈l5, dp :: t, M�′〉 is determined responsible, where t = apv ∈

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:73

[1; 1] ∧ i1 ∈ [1; 2] and dp = apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧ i2 ∈ [−1; 0]. Instead of claiming that
the action i2 := [−1; 2] is responsible for “the access to o fails” in all executions, we state that
i2 := [−1; 2] is responsible under the condition that: The partitioning token apv ∈ [1; 1]∧ i1 ∈ [1; 2]
holds at l4, and the action i2 := [−1; 2] satisfies the new partitioning directive apv ∈ [1; 1] ∧ i1 ∈
[−1; 2] ∧ i2 ∈ [−1; 0]. That is to say, the input from 2nd admin is responsible for the behavior
“the access to o fails” if the input from 1st admin is positive and the input from 2nd admin is
negative or zero, which is much more informative than simply claiming the input from 2nd admin
is responsible.

(3) Termination or a New Round of Analysis. Up until this step, we have already successfully
inferred some information about the responsible entities. If such an analysis result is satisfactory
or the time and costs exceeds the prespecified threshold, then we could terminate the analyzer and
return the found responsible entities to the user. Otherwise, if the precision of forward reachability

semantics S�
−→
ps

�P�(I�pre) is improved in the last forward analysis phase, then we could start a new

round of backward accessibility analysis (Section 7.3) followed by the forward reachability analysis
(Section 7.4) to seek for more precise responsibility analysis results.

Intuitively, in the new round of analysis, using the refined behavior of interest (possibly with
the disjunctive completion), the backward impossible failure accessibility analysis is expected to
be more precise, which creates more partitioning directives to construct a refined automaton and
further improves the responsibility analysis result. The extreme case is that we create as many
partitioning directives as possible and construct the most precise trace partitioning automaton,
such that every path in the automaton represents a single concrete valid trace. From such a trace
partitioning automaton, we can get exactly the same analysis result as the concrete responsibility
analysis (Section 3), yet the time cost is in general prohibitive.

Example 26 (Access Control, Continued). Following Example 25, we conduct a forward reacha-
bility analysis with trace partitioning, construct the trace partitioning automaton, and determine
responsible entities. Since the partition function varies for different cognizance functions, the cor-
responding constructed trace partitioning automata are different.

(1) First, consider the omniscient cognizance function C�o . In this case, we adopt the partitioning
directives from the partition function in the Table 15, and the correspondingly constructed trace
partitioning automaton is in Figure 19, in which various types of nodes are represented by different
circles.

Since there is at most one element in P�
L

(l) for every program point l , we simply use the notation

dL(l) for short to refer the partitioning directive part〈Inv, l , M�〉, where M� is the only element in

P
�
L

(l). For instance, dL(l3) refers to the partitioning directive part〈Inv, l , apv ∈ [1; 1] ∧ i1 ∈ [1; 2]〉,
where apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∈ P�

L
(l3). Similarly, we use the notations dR (l), dR̃ (l) and do (l) to

refer the partitioning directives from P�
R

(l), P�
R̃

(l), and P�o (l). Besides, for the sake of conciseness,
instead of explicitly drawing partitioning tokens inside the nodes of the automaton, we label some
edges with a partitioning directive d such that every node after the edge has the partitioning
directive d pushed into its stack of directives (i.e., the partitioning token). For instance, for the
node at point l3 with double dashed circles in upper path of the automaton, its partitioning token
is “dL(l3) :: dL(l1) .”

Furthermore, the automaton in Figure 19 can be refined by removing the invalid node whose

associated abstract environment element is⊥�
M

(i.e., it is unreachable) and propagating right-bound

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:74 C. Deng and P. Cousot

Fig. 19. Trace partitioning automaton for the omniscient cognizance.

Fig. 20. The refined trace partitioning automaton for the omniscient cognizance.

nodes, and we get a simpler trace partitioning automaton as in Figure 20. For example, the node
at point l5 created by do (l5) in the upper path is invalid and can be removed; the node at point l6 in
the lower path has only one valid successor that is marked as a right-bound node, thus we mark
the node at point l6 also as a right-bound node, as well as its predecessors.

From the above automaton, we can clearly see that there are three maximal paths from l0 to l8
in the automaton, which over-approximate all the concrete valid traces of the program.

For the upper path, the rightmost left-bound node is at l3 and the leftmost right-bound node
is at l5, thus the responsible entities must be located between l3 and l5. Since the action “apv :=
(i1 ≤ 0) ? − 1 : apv” has no free choice, only the action “i2 := [−1; 2]” is determined responsible
under the condition: apv ∈ [1; 1]∧ i1 ∈ [1; 2] hold at point l4, and the action “i2 := [−1; 2]” satisfies

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:75

Fig. 21. The trace partitioning automaton for a non-omniscient cognizance.

apv ∈ [1; 1] ∧ i1 ∈ [−1; 2] ∧i2 ∈ [1; 2]. It indicates that the input from 2nd admin is responsible if
the input from 1st admin is positive and the input from 2nd admin is negative or zero.

For the path in the middle, the node at l8 is marked as a dual-right-bound node, which means
that every concrete trace represented by this path does not have the behavior “the access to o fails.”
Thus, there is no responsible entity along this path.

For the lower path, the rightmost left-bound node is at l1 and the leftmost right-bound node is
at l3. Since the action “apv := 1” from l1 to l2 has no free choice, only the action i1 := [−1; 2] from l2
to l3 is determined responsible, under the condition that apv ∈ [1; 1] ∧ i1 ∈ [− 1; 0] holds at point
l3. That is to say, the input from 1st admin is responsible if it is −1 or 0.

To sum up, for the omniscient cognizance in the access control program example, the abstract
responsibility analysis finds that the input from 1st admin or 2nd admin is potentially responsible
for “the access to o fails” under certain conditions, while other actions with free choice (e.g., the
variable initialization and the input from system settings) are not responsible. This analysis result
is almost as precise as the concrete responsibility analysis, thus there is no need to conduct a new
round of analysis and we can terminate the analysis here.

(2) Second, consider the trace partitioning automaton constructed for the non-omniscient cog-
nizance function C� such that the observer does not know the input of 1st admin (i.e., the observer
cannot distinguish the value of i1 in the interval [−1; 2]). In this case, we adopt the partitioning di-
rectives from the partition function defined in Table 16, and the correspondingly constructed trace
partitioning automaton is in Figure 21, in which we represent various types of nodes by different
circles as in Figure 19.

Compared with the trace partitioning automaton for the omniscient cognizance, we do not have
the partitioning directives at point l3, while the partitioning directives at other points are still valid
and preserved. After removing the invalid nodes and propagating right-bound nodes, the refined
trace partitioning automaton is in Figure 22.

Similar to the automaton in Figure 20, there are three maximal paths in the refined automaton
for the non-omniscient cognizance, which over-approximate the concrete valid traces.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:76 C. Deng and P. Cousot

Fig. 22. The refined trace partitioning automaton for a non-omniscient cognizance.

For the lower path, the node at l8 is marked as a dual-right-bound node, which means that the
behavior of interest does not hold, thus there is no responsible entity along the path.

In contrast, along both the upper path and the middle path, the rightmost left-bound node is
at point l1 and the leftmost right-bound node is at point l5, thus the responsible entities must be
located between l1 and l5. After filtering out the actions without free choices, we would determine
both “i1 := [−1; 2]” and “i2 := [−1; 2]” potentially responsible for the behavior. More precisely,
“i1 := [−1; 2]” is responsible under no condition, while “i2 := [−1; 2]” is responsible under the
condition that the partitioning directive apv ∈ [1; 1]∧i1 ∈ [−1; 2]∧i2 ∈ [−1; 0] or apv ∈ [−1; 0]∧i1 ∈
[−1; 2] ∧ i2 ∈ [−1; 2] holds at point l5.

To sum up, for the non-omniscient cognizance such that the observer does not know the input
from 1st admin, the abstract responsibility analysis find both the input from 1st admin and the
input from 2nd admin are potentially responsible for the behavior “the access to o fails” in every
execution where the behavior occurs. Compared with the concrete responsibility analysis that
determines only the input from 2nd admin responsible, this abstract analysis result is less precise,
but it is still sound, since every entity that is responsible in the concrete is also found responsible
in the abstract.

7.5 The Soundness of Abstract Responsibility Analysis

In this section, we prove that the abstract responsibility analysis introduced in Section 7.1 is sound
with respect to the concrete responsibility analysis defined in Section 3.2.4.

Theorem 3. Every entity that is responsible in the concrete must be found responsible in the ab-
stract responsibility analysis.

Proof. Given a program P along with the user specified behavior of interestB� ∈ L
→ D�
M

and

cognizance function C� ∈ L
→ ℘(D�
M

), the corresponding concrete behavior of interest B and
lattice of concrete behaviors LMax are formalized in Section 6.1, as well as the concrete cognizance
function C in Section 6.2. Suppose that the behavior B holds in a valid concrete trace σ of P, and

a concrete transition τ = 〈l , ρ〉 a−→ 〈l ′, ρ ′〉 (in which a may be omitted and can be retrieved
from the source code) in σ is found responsible for B by the Definition 5 of concrete responsibility
analysis (i.e., the trace σ is splitted into σ = σHτσF such that ∅ � O(�P�Max,LMax,C,σHτ) ⊆
B ∧ O(�P�Max,LMax,C,σH) � B), then we would like to prove that the action a must be found
responsible in the abstract responsibility analysis.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:77

Since the trace partitioning automaton constructed in the abstract responsibility analysis is a
covering of the concrete trace semantics of P, every valid concrete trace is simulated by at least
one path in the automaton. Let σ � be a path in the trace partitioning automaton that simulates the

concrete trace σ and τ � = 〈l , t, M�〉 a−→ 〈l ′, t′, M�′〉 ∈ (LT ×D�
M

) × (LT ×D�
M

) be the edge on the

path σ � that represents the transition τ . Thus, we need to prove that τ � must be found responsible
in the abstract responsibility analysis.

To start with, we prove that there is no dual-right-bound node along the abstract path σ � by
contradiction. Assume there is a dual-right-bound node at point lR̃ onσ � , which is created by a dual-

right-bound partitioning directive part〈Inv, lR̃ ,M
�

R̃
〉. By the definition of dual-right-bound partition

function, we know that M�

R̃
guarantees the complement of B� (i.e., M�

R̃
∈ S�

−→
ps

�P�(I�pre)lR̃\B� (lR̃)),

thus all the concrete traces represented by σ � must fail the behavior B at point lR̃ . This contradicts
with our assumption that σ is simulated by σ � and the behavior B holds in σ . Thus, along the
path σ � , there is no dual-right-bound node, and all the edges between the rightmost left-bound-
node (if any) and the leftmost right-bound-node are determined potentially responsible by the
abstract responsibility analysis. Specially, if there is no left-bound-node or right-bound-node along
σ � , every edge is determined potentially responsible, which obviously includes τ � .

Furthermore, we prove that if there is a left-bound node along σ � , then τ � must be located after
that node. Assume that there is a left-bound node along σ � , which is created by a left-bound par-

titioning directive part〈Inv, lL, M�
L
〉, and a concrete state sL = 〈lL, ρL〉 on σ is represented by the

left-bound node. By the definition of the left-bound partition function, the abstract environment

M�
L

is from the complement of the over-approximating backward impossible failure semantics for

the behavior B� (i.e., M�
L
∈ S�

−→
ps

�P�(I�pre)lL\Ŝ�
←−
i f

�P�(B�)lL). That is to say, from every concrete state

that is represented by the left-bound node, there must exist at least one valid concrete trace that
fails the behavior B. If we split σ into σ ′ and σ ′′ such that σ ′ ends with sL while σ ′′ begins with sL ,
then it is obvious that σ ′ cannot guarantee the occurrence of B, thus I(�P�Max,LMax,σ ′) � B.
Since I(�P�Max,LMax,σ ′) ⊆ O(�P�Max,LMax,C,σ ′), we have O(�P�Max,LMax,C,σ ′) � B. As
O(�P�Max,LMax,C,σHτ) ⊆ B and the observation function O is decreasing (Lemma 3), we
find that σHτ must be greater (longer) than σ ′. Therefore, the responsible transition τ must
be located after the state sL , and accordingly the edge τ � must be located after the left-bound
node.

Last, we prove that if there is a right-bound node along σ � , then τ � must be located before
that node. Assume that there is a right-bound node along σ � , which is created by a right-bound

partitioning directive part〈Inv, lR ,M
�
R
〉, and a concrete state sR = 〈lR , ρR〉 onσ is represented by the

right-bound node. By the definition of the right-bound partition function, the abstract environment

M�
R

is from the under-approximating backward impossible failure semantics for the behavior B�

(i.e., M�
R
= Š�

←−
i f

�P�(B�)lR). That is to say, every concrete trace starting from the states represented

by the right-bound node is guaranteed to have the behaviorB. If we splitσ intoσ ′ andσ ′′ such that
σ ′ ends with sR while σ ′′ begins with sR , then it is easy to know B holds in σ ′ (since B holds in the
whole trace σ), and every trace with the prefix σ ′ is guaranteed to have the behavior B. Hence, we
get I(�P�Max,LMax,σ ′) ⊆ B. Now we consider the traces that are equivalent to σ ′ according to the

cognizance C� . For any trace σ ′e such that σ ′e
C
�

∼ σ ′, the behavior B must hold during the execution
of σ ′e (sinceO(�P�Max,LMax,C,σHτ) ⊆ B). By Theorem 2, σ ′e must be represented by the same path
as σ ′ in the automaton, thus the last state in σ ′e is also represented by the same right-bound node

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:78 C. Deng and P. Cousot

in the automaton. Thus, every trace with the prefix σ ′e is guaranteed to have the behaviorB, which
implies that I(�P�Max,LMax,σ ′e) ⊆ B. By the definition of O, we get O(�P�Max,LMax,C,σ ′) ⊆ B.
Since the observation function O is decreasing (Lemma 3) and O(�P�Max,LMax,C,σH) � B, it is
easy to see that σ ′ is strictly greater (longer) than σH. Therefore, the responsible transition τ must
be located before the state sR , and accordingly the edge τ � must be located before the right-bound
node.

To sum up, we have proved that for every concrete trace σ with a responsible entity that is a

transition τ = 〈l , ρ〉 a−→ 〈l ′, ρ ′〉, there exists an abstract path σ � with an edge τ � = 〈l , t,M�〉 a−→ 〈l ′,
t′, M�′〉 in the corresponding trace partitioning automaton, and the edge τ � must be located after
all the left-bound nodes (if any) and before all the right-bound nodes (if any) on the path σ � . Thus,
by the abstract responsibility analysis designed in Section 7.1, the edge τ � must be determined
responsible for B� . �

8 RELATED WORK

Definition of Causality and Responsibility. Hume [38] is the first one to specify causation by
counterfactual dependence [54]. The best-known counterfactual theory of causation is proposed
by Lewis [51], which defines causation as a transitive closure of counterfactual dependencies.
Halpern and Pearl [34, 35, 63] define actual causality based on SEM and extend counterfactual
dependency to allow “contingent dependency.” Chockler and Halpern [13] define responsibility
to have a quantitative measure of the relevance between causes and effects and define blame to
consider the epistemic state of an agent. Their application of actual causality, responsibility, and
blame is mainly on artificial intelligence.

Our definition of responsibility also adopts the idea of counterfactual dependence in the sense
that, suppose an event σR is said to be responsible for behavior B in the trace σHσR, there must
exist another event σ ′R such that, if σR is replaced by σ ′R, then B is not guaranteed (by Lemma 1).

A “naive” definition of causality [51, 52] based on counterfactual dependency could exclude non-
decisive factors (e.g., the wind in this example) from the analysis result. This definition proposed
by Lewis adopts an alternative world semantics and determines causality relations according to a
criterion: An event e is a cause of the occurrence of another event e ′ if and only if, were e not to
occur, e ′would not happen. The testing of this condition hinges upon the availability of alternative
worlds. For instance, in the conjunctive scenario of this forest fire example, we can infer that the
forest would not be burnt down in an alternative world where the arsonist A does not drop a lit
match, thus the arsonist A is causal for the forest fire; yet, in the alternative world where there is no
wind, the forest would still be burnt down, hence the wind is not a cause of the forest fire. However,
the counterfactual causality may be too strict in some circumstances such that no cause could be
found. Taking the disjunctive scenario of forest fire as an example, in the alternative world where
one arsonist A (respectively, B) does not drop a lit match, the forest would still have been burnt
down due to the other arsonist B (respectively, A), hence neither of these two arsonists would be
determined as the cause of forest fire. Thus, it may be inappropriate to directly adopt the idea of
counterfactual dependency in the responsibility analysis.

Error Cause Localization. Classic program analysis techniques, e.g., dependency analysis [1, 12,
73] and program slicing [2, 46, 74, 75], are useful in detecting the code that may be relevant to
errors, but fail to localize the cause of error.

In recent years, there are many papers [8, 32, 33, 42, 43, 65–67] on fault localization for counterex-
ample traces, and most of them compare multiple traces produced by a model checker and build a
heuristic metric to localize the point from which error traces separate from correct traces. Other
related papers include error diagnosis by abductive/backward inference [27], tracking down bugs

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:79

by dynamic invariant detection [36]. Actual causality is applied to explain counterexamples from
model checker [10] and estimate the coverage of specification [14]. Besides, there are researches
on analyzing causes of specific security issues; e.g., King et al. [45] employ a blame dependency
graph to explain the source of information flow violation and generate a program slice as the error
report.

Compared to the above techniques, this article succeeds to formally define the cause or respon-
sibility, and the proposed responsibility analysis, which does not require a counterexample from
the model checker, is sound, scalable, and generic to cope with various problems.

9 CONCLUSION

This article formally defines responsibility as an abstraction of trace semantics. Typically, the re-
sponsibility analysis consists of four steps: collect the trace semantics, build a lattice of system be-
haviors of interest, create an observation function for each observer, and apply the responsibility
abstraction on analyzed traces. Compared to current dependency and causality analysis methods,
the responsibility analysis is demonstrated to be more generic and precise in a few examples. In ad-
dition, a sound framework of abstract responsibility analysis is proposed, which is based on trace
partitioning automata constructed by the iteration of over-approximating forward reachability
analysis with trace partitioning and under-approximating/over-approximating backward impossi-
ble failure accessibility analysis. It is guaranteed that actions that are not found responsible in the
abstract analysis are definitely not responsible in the concrete.

We hope this article has successfully demonstrated that the responsibility analysis constitutes
a worthy avenue of research. In the future, there are a number of directions that deserve further
exploration.

Analysis of Probabilistic Programs. The definition of responsibility proposed in this article can
be extended to probabilistic programming languages such that the degree of responsibility of each
responsible entity can be quantified, which is similar to the degree of blame designed to quantify
actual causality [13]. More precisely, instead of identifying a single responsible entity for each
specific trace as in (5), we can collect all the potentially responsible entities for the whole system
and assign each of them with a probability of being responsible for the behavior of interest.

Generalization of Abstract Analysis. The framework of abstract responsibility analysis can be
applied to new abstract domains other than the classic numeric domains discussed in this article,
such that we can analyze the responsibility of more behaviors (which cannot be expressed by
intervals, octagons, or polyhedra). The main challenges are expected to come from designing a
sound under-approximating backward impossible failure accessibility analysis for the new abstract
domain. In addition, we suggest specifying the abstract cognizance function by abstract relational
invariants [3, 4] that can directly express relational properties about two executions of the program,
such that we do not have the restrictions that two equivalent traces must be of the same length
and have the same control flow.

Alternative Definitions of Responsibility. In the philosophy literature, there is a protracted contro-
versy concerning the meaning of responsibility. Just like the law varies from one nation to another,
there cannot exist a perfect universal rule of defining responsibility [28] that deals well with all
scenarios. In our current definition (5), whether a transition τR (or, say, the corresponding action
a R) is responsible or not in the trace σHτRσF solely depends on its history σH, while its future σF

has no impact on deciding the responsibility. For instance, in the forest fire example, whether an
arsonist A is responsible or not solely depends on if there is another arsonist that already dropped
a lit match before A or not. This definition of responsibility is quite intuitive and works in many
scenarios, but not necessarily all scenarios. In some scenarios, the future part σF may also need to
be taken into account for determining responsibility. We wish to design a lattice of responsibility

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:80 C. Deng and P. Cousot

definitions, each of which adopts a distinct rule of defining responsibility, and for every specific
scenario there is at least one definition from the lattice that can handle it well.

APPENDIX

A APPENDED PROOFS

A.1 Proof of Galois Isomorphism (1)

〈℘(�P�Max), ⊆〉 −−−−−−−−−−−−→−→←←−−−−−−−−−−−−−
αPred (�P�Max)

γPred (�P�Max)
〈ᾱPred{�P�Max}(℘(�P�Max)), ⊆〉

Proof. First, we prove that αPred (�P�Max) and γPred (�P�Max) are increasing.

X ⊆ X′

⇒∀σ ′ ∈ �P�Max. (σ ′ ∈ X) ⇒ (σ ′ ∈ X′) �def. ⊆�

⇒∀σ ∈ S∗∞,σ ′ ∈ �P�Max. (¬(σ � σ ′) ∨ (σ ′ ∈ X)) ⇒ (¬(σ � σ ′) ∨ (σ ′ ∈ X′)) �def. ∨�
⇒ {σ ∈ S∗∞ | ∀σ ′ ∈ �P�Max. ¬(σ � σ ′) ∨ (σ ′ ∈ X)} ⊆
{σ ∈ S∗∞ | ∀σ ′ ∈ �P�Max. ¬(σ � σ ′) ∨ (σ ′ ∈ X′)} �def. ⊆�

⇒ {σ ∈ S∗∞ | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X} ⊆
{σ ∈ S∗∞ | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X′} �def.⇒�

⇒ (Pref (X) ∩ {σ | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X}) ⊆
(Pref (X′) ∩ {σ | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X′}) �def. ∩ and Pref is increasing�

⇒ {σ ∈ Pref (X) | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X} ⊆
{σ ∈ Pref (X′) | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X′} �def. ∩�

⇒ αPred (�P�Max)X ⊆ αPred (�P�Max)X′ �def. αPred (�P�Max)�

Y ⊆ Y′

⇒ (Y ∩ �P�Max) ⊆ (Y′ ∩ �P�Max) �def. ∩�
⇒γPred (�P�Max)Y ⊆ γPred (�P�Max)Y′ �def. γPred (�P�Max)�

Then, we prove that γPred (�P�Max) ◦ αPred (�P�Max) and αPred (�P�Max) ◦γPred (�P�Max) are identity
functions.

γPred (�P�Max) ◦ αPred (�P�Max)X
= γPred (�P�Max) ({σ ∈ Pref (X) | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X}) �def. αPred�

= γPred (�P�Max) (X ∪ {σ ∈ Pref (X)\�P�Max | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X})
�X = Pref (X) ∩ �P�Max, since X ∈ ℘(�P�Max)�

= �P�Max ∩ (X ∪ {σ ∈ Pref (X)\�P�Max | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ X})
�def. γPred�

= �P�Max ∩ X ��P�Max ∩ (Pref (X)\�P�Max) = ∅�
= X �X ∈ ℘(�P�Max)�

αPred (�P�Max) ◦ γPred (�P�Max)Y
= αPred (�P�Max) ◦ γPred (�P�Max) ◦ αPred (�P�Max)X′

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:81

�Y ∈ ᾱPred{�P�Max}(℘(�P�Max)), thus ∃X′. Y = αPred (�P�Max)X′�
= αPred (�P�Max)X′ �γPred (�P�Max) ◦ αPred (�P�Max)X′ = X′�
= Y �by the assumption Y = αPred (�P�Max)X′�

By the four properties proved above, αPred (�P�Max) and γPred (�P�Max) form a Galois isomor-
phism. �

A.2 Proofs of Corollary 1 and 2

Corollary 1. Given the semantics �P�Max and lattice LMax of system behaviors, for any maximal
trace property T ∈ LMax, if a trace σ belongs to the prediction trace property that corresponds to
T , then every valid trace greater than σ belongs to that prediction trace property too. I.e., ∀T ∈
LMax. ∀σ ,σ ′ ∈ �P�Pref . (σ ∈ αPred (�P�Max)T ∧ σ � σ ′) ⇒ σ ′ ∈ αPred (�P�Max)T .

Proof. Proof by contradiction. We assume ∃T ∈ LMax. ∃σ ,σ ′ ∈ �P�Pref . σ ∈ αPred (�P�Max)T ∧
σ � σ ′ ∧ σ ′ � αPred (�P�Max)T . By the definition of prediction abstraction, αPred (�P�Max)T = {σ ∈
Pref (T) | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ T }. There are two possibilities for σ ′ � αPred (�P�Max)T :

(1) σ ′ � Pref (T), hence every maximal trace greater than σ ′ does not belong to T ;
(2) ∃σ ′′ ∈ �P�Max. σ ′ � σ ′′ ∧ σ ′′ � T .
Both cases imply that there is a maximal trace σ ′′ ∈ �P�Max such that σ � σ ′ � σ ′′ ∧ σ ′′ � T ,

which contradicts with the assumption of σ ∈ αPred (�P�Max)T . �

Corollary 2. Given the semantics �P�Max and the lattice LMax of system behaviors, for any
maximal trace property T ∈ LMax and any valid prefix trace π that is not maximal, if every
valid prefix trace π s that concatenates π with a new event s belongs to the prediction trace prop-
erty αPred (�P�Max)T , then π belongs to αPred (�P�Max)T too. More formally, ∀T ∈ LMax. ∀π ∈
�P�Pref\�P�Max. (∀s ∈ S. π s ∈ �P�Pref ⇒ π s ∈ αPred (�P�Max)T) ⇒ π ∈ αPred (�P�Max)T .

Proof. Prove by contradiction, and here we assume that ∃T ∈ LMax. ∃π ∈ �P�Pref\�P�Max.
(∀s ∈ S. π s ∈ �P�Pref ⇒ π s ∈ αPred (�P�Max)T) ∧ π � αPred (�P�Max)T . According to the definition
that αPred (�P�Max)T = {σ ∈ Pref (T) | ∀σ ′ ∈ �P�Max. σ � σ ′ ⇒ σ ′ ∈ T }, there are two
possibilities to have π � αPred (�P�Max)T :

(1) π � Pref (T). This implies that ∀s ∈ S. π s ∈ �P�Pref ⇒ π s � Pref (T), which further implies
that ∀s ∈ S. π s ∈ �P�Pref ⇒ π s � αPred (�P�Max)T . Since π ∈ �P�Pref\ �P�Max, there must exist at
least one s such that π s ∈ �P�Pref ∧ π s � αPred (�P�Max)T .

(2) There is a maximal trace σ ′ ∈ �P�Max such that π ≺ σ ′ ∧ σ ′ � T . Take s = σ ′[|π |], then
π s ∈ �P�Pref∧ π s � σ ′ ∧ σ ′ � T holds, which implies π s ∈ �P�Pref∧ π s � αPred (�P�Max)T .

Both two cases find that ∃s ∈ S. π s ∈ �P�Pref ∧ π s � αPred (�P�Max)T , which contradicts with
the assumption ∀s ∈ S. π s ∈ �P�Pref ⇒ π s ∈ αPred (�P�Max)T . �

A.3 Proof of Lemma 2 and Corollary 4

Lemma 2. Given the semantics �P�Max and lattice LMax of system behaviors, the inquiry function
I(�P�Max,LMax) is decreasing on the inquired trace σ : The greater (longer) σ is, the stronger property
it can guarantee. I.e., ∀σ ,σ ′ ∈ S∗∞. σ � σ ′ ⇒ I(�P�Max,LMax,σ) ⊇ I(�P�Max,LMax,σ ′).

Proof. First, if σ is invalid (i.e., σ � �P�Pref), then every trace σ ′ that is greater than σ must
also be invalid (i.e., σ ′ � �P�Pref), hence it is obvious that I(�P�Max,LMax,σ) = I(�P�Max,LMax,σ ′)
= ⊥Max.

Second, if σ ′ is invalid (σ ′ � �P�Pref), then I(�P�Max,LMax,σ ′) = ⊥Max, hence I(�P�Max,LMax,σ)
⊇ ⊥Max = I(�P�Max,LMax,σ ′).

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:82 C. Deng and P. Cousot

Last, if both σ and σ ′ are valid(σ ,σ ′ ∈ �P�Pref), then we have

σ � σ ′

⇒ ∀T ∈ LMax. σ ∈ αPred (�P�Max)T ⇒ σ ′ ∈ αPred (�P�Max)T �corollary 1�

⇒ {T ∈ LMax | σ ∈ αPred (�P�Max)T } ⊆ {T ∈ LMax | σ ′ ∈ αPred (�P�Max)T } �def.⇒�

⇒ ·∩{T ∈ LMax | σ ∈ αPred (�P�Max)T } ⊇ ·∩{T ∈ LMax | σ ′ ∈ αPred (�P�Max)T } �def. ·∩�
⇒ I(�P�Max,LMax,σ) ⊇ I(�P�Max,LMax,σ ′). �def. I�

To sum up the three cases above, we prove that I(�P�Max,LMax) is decreasing. �

Corollary 4. Given the semantics �P�Max and lattice LMax of behaviors, ∀σ ∈ �P�Pref\�P�Max.
I(�P�Max,LMax,σ) = ·⋃

s ∈S
I(�P�Max,LMax,σ s) = ·⋃

σ s ∈�P�Pref

I(�P�Max,LMax,σ s).

Proof. First, it is easy to see that ·∪{I(�P�Max,LMax,σ s) | s ∈ S} = (·∪{I(�P�Max,LMax,σ s) |
σ s ∈ �P�Pref }) ·∪(·∪{I(�P�Max,LMax,σ s) | σ s � �P�Pref }) = (·∪{I(�P�Max,LMax,σ s) | σ s ∈ �P�Pref }) ·∪
⊥Max = ·∪{I(�P�Max,LMax,σ s) | σ s ∈ �P�Pref }.

Second, we prove ·∪{I(�P�Max,LMax,σ s) | σ s ∈ �P�Pref } = I(�P�Max,LMax,σ) in two steps:
(1) by Lemma 2, it is proved that ∀σ ,σ s ∈ S∗∞. I(�P�Max,LMax,σ) ⊇ I(�P�Max,LMax,σ s), thus
I(�P�Max,LMax,σ) ⊇ ·∪{I(�P�Max,LMax,σ s) | σ s ∈ �P�Pref }. (2) assume I(�P�Max,LMax,σ) �
·∪{I(�P�Max,LMax,σ s) | σ s ∈ �P�Pref } = T . By the definition of I in (2), we know that σ �
αPred (�P�Max)T and ∀σ s ∈ �P�Pref . σ s ∈ αPred (�P�Max)T , which is impossible by Corollary 2.
Thus, by contradiction, I(�P�Max,LMax,σ) = ·∪{I(�P�Max,LMax,σ s) | σ s ∈ �P�Pref }. �

A.4 Proofs of Corollary 6, 7, and Lemma 3

Corollary 6. Given the semantics �P�Max and lattice LMax of system behaviors, for any observer
with cognizance C, if the corresponding observation function maps a trace σ to a maximal trace
property T ∈ LMax, then σ guarantees the satisfaction of property T (i.e., every valid maximal trace
that is greater than or equal to σ is guaranteed to have property T).

Proof. Suppose I(�P�Max,LMax,σ) = T ′. By Corollary 3, σ guarantees the property T ′, i.e.,
every valid maximal trace that is greater than or equal to σ belongs to T ′.

In addition, since the cognizance is extensive (i.e., σ ∈ C(σ)), then from the definition of observa-
tion function in (4), we know that T =O(�P�Max,LMax,C,σ) = ·∪{I(�P�Max,LMax,σ ′) | σ ′ ∈ C(σ)}
⊇ I(�P�Max,LMax,σ) = T ′. Therefore, every valid maximal trace that is greater than or equal to σ
belongs to T . That is to say, σ guarantees the satisfaction of property T . �

Corollary 7. Given the semantics �P�Max, the latticeLMax of system behaviors and the cognizance

function C, we have: ∀σ ∈ �P�Pref\�P�Max. O(�P�Max,LMax,C,σ) = ·⋃
s ∈S
O(�P�Max,LMax,C,σ s) =

·⋃
σ s ∈�P�Pref

O(�P�Max,LMax,C,σ s).

Proof. We start the proof from the right side:

·∪
σ s ∈�P�Pref

O(�P�Max,LMax,C,σ s)

= (·∪
σ s ∈�P�Pref

O(�P�Max,LMax,C,σ s)) ·∪⊥Max �def.⊥Max�

= ·∪
σ s ∈�P�Pref

O(�P�Max,LMax,C,σ s) ·∪ ·∪
σ s��P�Pref

O(�P�Max,LMax,C,σ s) �def. O�

= ·∪
s ∈S
O(�P�Max,LMax,C,σ s) �merge two cases�

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:83

= ·∪{I(�P�Max,LMax,π) | π ∈ C(σ s) ∧ s ∈ S} �def. O�

= ·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′σ ′′ ∈ C(σ s) ∧ s ∈ S} �replace π with σ ′σ ′′�

= ·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S} �assumption (A1)�

= (·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S ∧ |σ ′′ | = 1}) ·∪
(·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S ∧ |σ ′′ | = 0}) ·∪
(·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S ∧ |σ ′′ | > 1}).

In the above, the formula is split into three cases by the length of σ ′′. The first case:

·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S ∧ |σ ′′ | = 1}
= ·∪{I(�P�Max,LMax,σ ′s) | σ ′ ∈ C(σ) ∧ s ∈ S} �corollary 5�

= ·∪{I(�P�Max,LMax,σ ′) | σ ′ ∈ C(σ)} �corollary 4�

= O(�P�Max,LMax,C,σ). �def. O�

The second case: If there is s ∈ S such that ε ∈ C(s), then ·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈
C(σ)∧σ ′′ ∈ C(s)∧s ∈ S∧|σ ′′ | = 0} = ·∪{I(�P�Max,LMax,σ ′) | σ ′ ∈ C(σ)} = O(�P�Max,LMax,C,σ).
Otherwise, it is an empty set.

The third case:

·∪{I(�P�Max,LMax,σ ′σ ′′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S ∧ |σ ′′ | > 1}
⊆ ·∪{I(�P�Max,LMax,σ ′) | σ ′ ∈ C(σ) ∧ σ ′′ ∈ C(s) ∧ s ∈ S ∧ |σ ′′ | > 1} �lemma 2�

⊆ ·∪{I(�P�Max,LMax,σ ′) | σ ′ ∈ C(σ)} �def. ·∪�
= O(�P�Max,LMax,C,σ). �def. O�

Joining the above three cases together, we have proved that

·⋃
σ s ∈�P�Pref

O(�P�Max,LMax,C,σ s) = O(�P�Max,LMax,C,σ). �

Lemma 3. Given the semantics �P�Max, latticeLMax of system behaviors and cognizance function C,
the observation functionO(�P�Max,LMax,C) is decreasing on the observed traceσ : The greater (longer)
σ is, the stronger property it can observe. I.e., ∀σ ,σ ′ ∈ S∗∞. σ � σ ′ ⇒ O(�P�Max,LMax,C,σ) ⊇
O(�P�Max,LMax,C,σ ′).

Proof. We only need to consider the case where σ ≺ σ ′. First, if σ is invalid (i.e., σ � �P�Pref),
then every trace σ ′ that is greater than σ must also be invalid (i.e., σ ′ � �P�Pref), hence we have
O(�P�Max,LMax,C,σ) = O(�P�Max,LMax,C,σ ′) = ⊥Max.

Second, if σ ′ � �P�Pref , then we have O(�P�Max,LMax,C,σ ′) = ⊥Max. Hence, it is trivial to find
O(�P�Max,LMax,C,σ) ⊇ ⊥Max = O(�P�Max,LMax,C,σ ′).

Last, if σ ,σ ′ ∈ �P�Pref , then σ must be a valid non-maximal trace, i.e., σ ∈ �P�Pref\�P�Max. From
Corollary 7, it is easy to see ∀s ∈ S. O(�P�Max,LMax,C,σ) ⊇ O(�P�Max,LMax,C,σ s). Since σ ′ is
greater than σ (or, say, σ ′ is a prolongation of σ with states), then by the transitivity of ⊇, it is not
hard to see that O(�P�Max,LMax,C,σ) ⊇ O(�P�Max,LMax,C,σ ′). �

A.5 Proof of Theorem 1

Theorem 1. If τR is said to be responsible for a behavior B in a valid trace σHτRσF, then σHτR

guarantees the occurrence of behavior B, and there must exist another valid prefix trace σHτ
′
R such

that the behavior B is not guaranteed.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:84 C. Deng and P. Cousot

Proof. First, from the definition of responsibility, we know O(SMax,LMax,C,σHτR) ⊆ B. By
Corollary 6, σHτR guarantees the satisfaction ofO(SMax,LMax,C,σHτR), which is at least as strong
as B. Thus, the occurrence of behavior B is guaranteed.

Second, we prove by contradiction. Assume that every valid trace σHτ
′
R guarantees the

occurrence of behavior B (i.e., ∀σHτ
′
R ∈ SPref . O(SMax,LMax,C,σHτ

′
R) ⊆ B). By Corol-

lary 7, we can prove that O(SMax,LMax,C,σH) ⊆ B, which contradicts with the condition
O(�P�Max,LMax,C,σH) � B for τR to be responsible for the behavior B. �

A.6 Proof of Galois Connection (6)

〈℘(S∗∞), ⊆〉 −−−−−→←−−−−−
αIV

γIV
〈L
→ ℘(M), ⊆̇〉.

Proof. For any T ∈ ℘(S∗∞) and I ∈ L
→ ℘(M), we can prove that:

αIV (T) ⊆̇ I

⇔∀l ∈ L. αIV (T)l ⊆ I(l) �def. ⊆̇�

⇔∀l ∈ L. {ρ ∈ M | ∃σ ∈ T . 〈l , ρ〉 ∈ σ } ⊆ I(l) �def. αIV (S)l �

⇔∀l ∈ L. ∀ρ ∈ M. (∃σ ∈ T . 〈l , ρ〉 ∈ σ) ⇒ ρ ∈ I(l) �def. ⊆�

⇔∀l ∈ L. ∀ρ ∈ M. ∀σ ∈ S∗∞. (σ ∈ T ∧ 〈l , ρ〉 ∈ σ) ⇒ ρ ∈ I(l) �def. ∃�
⇔∀σ ∈ T . ∀〈l , ρ〉 ∈ σ . ρ ∈ I(l) �def. ∀ and⇒�

⇔T ⊆ {σ ∈ S∗∞ | ∀〈l , ρ〉 ∈ σ . ρ ∈ I(l)} �def. ⊆�

⇔T ⊆ γIV (I). �def. γIV�

By the above property, we have proved that αIV and γIV form a Galois connection. �

A.7 Proof of the Soundness Condition (7)

The abstract function F̂
�
−→
ps

�P� obeys the following soundness condition (F̂
�
−→
ps

�P�):

∀I� ∈ L
→ D�
M
. F−→

ps
�P� ◦ γ̇M (I�) ⊆̇ γ̇M ◦ F̂

�
−→
ps

�P�(I�).

Proof. We start with the soundness of abstract atomic transfer function F̂
�
l→l ′�P�:

∀l , l ′ ∈ L. ∀M� ∈ D�
M
. Fl→l ′�P� ◦ γM (M�) ⊆ γM ◦ F̂

�
l→l ′�P�(M�)

⇒∀l , l ′ ∈ L. ∀I� ∈ L
→ D�
M
. Fl→l ′�P� ◦ γM (I� (l)) ⊆ γM ◦ F̂

�
l→l ′�P�(I� (l))

�by replacing M� with I� (l)�

⇒∀l ′ ∈ L. ∀I� ∈ L
→ D�
M
. ∪l ∈L Fl→l ′�P�(γM (I� (l))) ⊆ γM (��

Ml ∈L F̂
�
l→l ′�P�(I� (l)))

�join on l ∈ L, and ��
M

soundly approximates ∪�
⇒∀l ′ ∈ L. ∀I� ∈ L
→ D�

M
. (F−→

ps
�P� ◦ γ̇M (I�)) (l ′) ⊆ (γ̇M ◦ F̂

�
−→
ps

�P�(I�)) (l ′)

�def. F−→
ps

�P� and F̂
�
−→
ps

�P��

⇒∀I� ∈ L
→ D�
M
. F−→

ps
�P� ◦ γ̇M (I�) ⊆̇ γ̇M ◦ F̂

�
−→
ps

�P�(I�). �def. ⊆̇�

�

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:85

A.8 Proof of Galois Connection (9)

〈L
→ ℘(M), ⊆̇〉 −−−−−−−−→←−−−−−−−−
S−→

ps
�P�

S←−
i f

�P�

〈L
→ ℘(M), ⊆̇〉

Proof. For any Ipre, Ipost ∈ L
→ ℘(M), we can prove that:

S−→
ps

�P�(Ipre) ⊆̇ Ipost

⇔∀l ′ ∈ L. S−→
ps

�P�(Ipre)l ′ ⊆ Ipost (l ′) �def. ⊆̇�

⇔∀l ′ ∈ L. {ρ ′ ∈ M | ∃σ ∈ S∗, l ∈ L, ρ ∈ Ipre (l). 〈l , ρ〉σ 〈l ′, ρ ′〉 ∈ �P�It} ⊆ Ipost (l ′)

�def. S−→
ps

�P��

⇔∀l ′ ∈ L. {ρ ′ ∈ M | ¬(∀σ ∈ S∗, l ∈ L, ρ ∈ Ipre (l). 〈l , ρ〉σ 〈l ′, ρ ′〉 � �P�It)} ⊆ {ρ ′ ∈ M | ρ ′ ∈
Ipost (l ′)} �def. ∃ and ∀�

⇔∀l ′ ∈ L. {ρ ′ ∈ M | ∀σ ∈ S∗, l ∈ L, ρ ∈ Ipre (l). 〈l , ρ〉σ 〈l ′, ρ ′〉 � �P�It} ∪ {ρ ′ ∈ M | ρ ′ ∈
Ipost (l ′)} = M �def. ¬ and ∪�

⇔∀l ′ ∈ L. ∀ρ ′ ∈ M. (∀σ ∈ S∗, l ∈ L, ρ ∈ Ipre (l). 〈l , ρ〉σ 〈l ′, ρ ′〉 � �P�It) ∨ ρ ′ ∈ Ipost (l ′) �def. ∨�
⇔∀l ∈ L. ∀ρ ∈ Ipre (l). ∀σ ∈ S∗, l ′ ∈ L, ρ ′ ∈ M. 〈l , ρ〉σ 〈l ′, ρ ′〉 ∈ �P�It ⇒ ρ ′ ∈ Ipost (l ′) �def.⇒�

⇔∀l ∈ L. Ipre (l) ⊆ {ρ ∈ M | ∀σ ∈ S∗, l ′ ∈ L, ρ ′ ∈ M. 〈l , ρ〉σ 〈l ′, ρ ′〉 ∈ �P�It ⇒ ρ ′ ∈ Ipost (l ′)}
�def. ⊆�

⇔∀l ∈ L. Ipre (l) ⊆ S←−
i f

�P�(Ipost)l �def. S←−
i f

�P��

⇔ Ipre ⊆̇ S←−
i f

�P�(Ipost). �def. ⊆̇�

Thus, the forward (possible success) reachability semanticsS−→
ps

�P� and the backward impossible

failure accessibility semantics S←−
i f

�P� form a Galois connection. �

A.9 Proof of Corollary 8, Lemma 4, and Theorem 2

Corollary 8. ∀ρ ∈ M. ∀ρ ′ ∈ [ρ]∼
M
�
p \dc

. ∃ρ ′′ ∈ [ρ]dc∼
. ∀x ∈ vars(M�

p). ρ ′(x) = ρ ′′(x).

Proof. The key is to prove there exists an environment ρ ′′ in [ρ]dc∼
that satisfies all the re-

quirements. Here, we construct ρ ′′ = ρ[∀x ∈ vars(M�
p) ∪ vars(dc). x
→ ρ ′(x)] such that (i)

∀x ∈ vars(M�
p) ∪ vars(dc). ρ ′(x) = ρ ′′(x) and (ii) ∀x ∈ X\(vars(M�

p) ∪ vars(dc)). ρ (x) = ρ ′′(x).

Thus, the constructed environment ρ ′′ satisfies the requirement ∀x ∈ vars(M�
p). ρ ′(x) = ρ ′′(x).

Now, we only need to prove that ρ ′′ ∈ [ρ]dc∼
. Since ρ ′ ∈ [ρ]∼

M
�
p \dc

, by the definition of ∼
M�

p\dc
,

we know that there are two possible cases: The first case is ρ = ρ ′, then ρ ′′ is also equal to
ρ, which makes ρ ′′ ∈ [ρ]dc∼

trivial; the second case is ρ ∈ γM (dc) ∧ ρ ′ ∈ γM (dc) and (iii)

∀x ∈ vars(M�
p)\vars(dc). ρ (x) = ρ ′(x). Since ∀x ∈ vars(dc). ρ ′(x) = ρ ′′(x), by (26) we

can prove that ρ ′′ ∈ γM (dc) holds. Moreover, combining (i) and (iii) together, we get ∀x ∈
vars(M�

p)\vars(dc). ρ (x) = ρ ′′(x), which further implies that ∀x ∈ X\vars(dc). ρ (x) = ρ ′′(x).

By the definition of
dc∼, we have proved that ρ ′′ ∈ [ρ]dc∼

. �

Lemma 4. A partitioning directive dp = part〈Inv, l , M�
p〉 is valid with respect to a cognizance

directive dc ∈ D�
M

if and only if

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

3:86 C. Deng and P. Cousot

∀ρ ∈ γM (dc). [ρ]∼
M
�
p \dc

⊆ γM (M�
p) ∨ [ρ]∼

M
�
p \dc

∩ γM (M�
p) = ∅,

where [ρ]∼
M
�
p \dc

= {ρ ′ ∈ M | ρ ∼
M�

p\dc
ρ ′} and ρ ∼

M�
p \dc

ρ ′ ⇔ ρ = ρ ′ ∨ (ρ ∈ γM (dc) ∧ ρ ′ ∈

γM (dc) ∧ ∀x ∈ vars(M�
p)\vars(dc). ρ (x) = ρ ′(x)).

Proof. To prove that the condition (25) is equivalent to the condition (28), we first need to show

that: ∀dc ,M
�
p ∈ D

�
M
. ∀ρ ∈ M. [ρ]dc∼

⊆ γM (M�
p) ⇔ [ρ]∼

M
�
p \dc

⊆ γM (M�
p). The proof of this statement

from right to left is trivial, since [ρ]dc∼
⊆ [ρ]∼

M
�
p \dc

(27). Here, we consider the opposite direction:

[ρ]dc∼
⊆ γM (M�

p) ⇒ [ρ]∼
M
�
p \dc

⊆ γM (M�
p). By Corollary (8), we have ∀ρ ′ ∈ [ρ]∼

M
�
p \dc

. ∃ρ ′′ ∈

[ρ]dc∼
. ∀x ∈ vars(M�

p). ρ ′(x) = ρ ′′(x). Since the assumption [ρ]dc∼
⊆ γM (M�

p) implies that ρ ′′ ∈
γM (M�

p), then by (26), we prove that ρ ′ ∈ γM (M�
p), which implies that [ρ]∼

M
�
p \dc

⊆ γM (M�
p).

Similarly, we can prove that [ρ]dc∼
∩ γM (M�

p) = ∅ ⇔ [ρ]∼
M
�
p \dc

∩ γM (M�
p) = ∅.

Together, we have proved that ∀dc ,M
�
p ∈ D

�
M
. ∀ρ ∈ M. ([ρ]dc∼

⊆ γM (M�
p) ∨ [ρ]dc∼

∩ γM (M�
p) =

∅) ⇔ ([ρ]∼
M
�
p \dc

⊆ γM (M�
p) ∨ [ρ]∼

M
�
p \dc

∩ γM (M�
p) = ∅). �

Theorem 2. If the partition function P� is valid with respect to the cognizance function C� , then

every two indistinguishable traces σ
C
�

∼ σ ′ must belong to the same partition created by P� at every
program point along the execution.

Formally, ∀C�,P� ∈ L
→ ℘(D�
M

). isValidP (C�,P�) ⇒ (∀σ ,σ ′ ∈ S∗∞. σ C
�

∼ σ ′ ⇒ (∀i ∈
[0, |σ |). ∃l ∈ L, ρ, ρ ′ ∈ M. σ[i] = 〈l , ρ〉 ∧ σ ′[i] = 〈l , ρ ′〉 ∧ ∀M�

p ∈ P� (l). ρ ∈ γM (M�
p) ⇔ ρ ′ ∈

γM (M�
p))).

Proof. The contraposition of this theorem states that, suppose P� is valid with respect to
C
� , if two traces do not belong to the same partition created by P� at some program point

along the execution, then these two traces cannot be equivalent according to C� . More formally,

∀C�,P� ∈ L
→ ℘(D�
M

). isValidP (C�,P�) ⇒ (∀σ ,σ ′ ∈ S∗∞. (∃i ∈ [0, |σ |), l ∈ L, ρ, ρ ′ ∈ M,M�
p ∈

P
� (l). σ[i] = 〈l , ρ〉 ∧ σ ′[i] = 〈l , ρ ′〉 ∧ ρ ∈ γM (M�

p) ∧ ρ ′ � γM (M�
p)) ⇒ σ

C
�

� σ ′).

Here, we prove by contradiction. Assume that there exist two traces σ
C
�

∼ σ ′ such that they do

not belong to the same partition at some location i , i.e., M�
p ∈ P� (l) ∧ σ[i] = 〈l , ρ〉 ∧ σ ′[i] = 〈l ,

ρ ′〉 ∧ ρ ∈ γM (M�
p) ∧ ρ ′ � γM (M�

p).

Since σ
C
�

∼ σ ′, there must exist some dc ∈ C� (l) such that ρ
dc∼ ρ ′. By the definition of

dc∼, there
are two possible cases:

(1) ρ = ρ ′. In this case, it is impossible to have ρ ∈ γM (M�
p) ∧ ρ ′ � γM (M�

p), which simply
introduces a contradiction.

(2) ρ ∈ γM (dc) ∧ ρ ′ ∈ γM (dc) ∧∀x ∈ X\vars(dc). ρ (x) = ρ ′(x). Since isValidP (C�,P�) is true, we

know isValidd (dc ,M
�
p) must hold, which further implies [ρ]dc∼

⊆ γM (M�
p) ∨ [ρ]dc∼

∩ γM (M�
p) = ∅

(24). By the assumption ρ ∈ γM (M�
p) and the fact that ρ ∈ [ρ]dc∼

, we know [ρ]dc∼
∩γM (M�

p) � ∅, thus

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:87

[ρ]dc∼
⊆ γM (M�

p) must hold. Since ρ
dc∼ ρ ′, we have ρ ′ ∈ [ρ]dc∼

, thus ρ ′ ∈ γM (M�
p), which contradicts

with the assumption ρ ′ � γM (M�
p). �

ACKNOWLEDGMENTS

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A core calculus of dependency. In POPL.
ACM, 147–160.

[2] Hiralal Agrawal and Joseph Robert Horgan. 1990. Dynamic Program Slicing. In PLDI. ACM, 246–256.
[3] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A relational logic for

higher-order programs. Proc. ACM Program. Lang. 1, ICFP (2017), 21:1–21:29.
[4] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2019. A relational logic for

higher-order programs.J. Funct. Program. 29 (2019), e16. DOI: https://doi.org/10.1017/S0956796819000145
[5] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2008. The Parma Polyhedra Library: Toward a complete set

of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program.

72, 1-2 (2008), 3–21. DOI: https://doi.org/10.1016/j.scico.2007.08.001
[6] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill. 2002. Possibly not closed convex polyhedra and

the Parma Polyhedra Library. In Static Analysis, 9th International Symposium, SAS 2002, Madrid, Spain, September

17–20, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2477), Manuel V. Hermenegildo and Germán Puebla
(Eds.). Springer, 213–229. DOI: https://doi.org/10.1007/3-540-45789-5_17

[7] Alexey Bakhirkin, Josh Berdine, and Nir Piterman. 2014. Backward analysis via over-approximate abstraction and
under-approximate subtraction. In Static Analysis - 21st International Symposium, SAS 2014, Munich, Germany, Sep-

tember 11–13, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8723), Markus Müller-Olm and Helmut Seidl
(Eds.). Springer, 34–50. DOI: https://doi.org/10.1007/978-3-319-10936-7_3

[8] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From symptom to cause: Localizing errors in counterexam-
ple traces. In POPL. ACM, 97–105.

[9] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and Stefan Leue. 2015. Symbolic causality
checking using bounded model checking. In Model Checking Software - 22nd International Symposium, SPIN 2015,

Stellenbosch, South Africa, August 24–26, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9232), Bernd Fischer
and Jaco Geldenhuys (Eds.). Springer, 203–221. DOI: https://doi.org/10.1007/978-3-319-23404-5_14

[10] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler. 2012. Explaining counterexamples
using causality. Form. Meth. Syst. Des. 40, 1 (2012), 20–40.

[11] Bryant Chen, Judea Pearl, and Elias Bareinboim. 2016. Incorporating knowledge into structural equation models
using auxiliary variables. In IJCAI. IJCAI/AAAI Press, 3577–3583.

[12] James Cheney, Amal Ahmed, and Umut A. Acar. 2011. Provenance as dependency analysis. Math. Struct. Comput. Sci.

21, 6 (2011), 1301–1337.
[13] Hana Chockler and Joseph Y. Halpern. 2004. Responsibility and blame: A structural-model approach. J. Artif. Intell.

Res. 22 (2004), 93–115.
[14] Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. 2008. What causes a system to satisfy a specification? ACM

Trans. Comput. Log. 9, 3 (2008), 20:1–20:26.
[15] Westland J. Christopher. 2015. Structural Equation Models, from Paths to Networks. Springer.
[16] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In CSF. IEEE Computer Society, 51–65. DOI:

https://doi.org/10.1109/CSF.2008.7
[17] Patrick Cousot. 2019. Abstract semantic dependency. In Static Analysis - 26th International Symposium, SAS 2019,

Porto, Portugal, October 8–11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11822), Bor-Yuh Evan Chang
(Ed.). Springer, 389–410. DOI: https://doi.org/10.1007/978-3-030-32304-2_19

[18] Patrick Cousot. 2021. Principles of Abstract Interpretation. The MIT Press.
[19] Patrick Cousot and Radhia Cousot. 1976. Static determination of dynamic properties of programs. In Proceedings of

the Second International Symposium on Programming. Dunod, Paris, France, 106–130.
[20] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A unified lattice model for static analysis of pro-

grams by construction or approximation of fixpoints. In POPL. ACM, 238–252.
[21] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In POPL. ACM Press,

269–282.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

https://doi.org/10.1017/S0956796819000145
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/978-3-319-10936-7_3
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-030-32304-2_19

3:88 C. Deng and P. Cousot

[22] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier
Rival. 2005. The ASTREÉ analyzer. In Programming Languages and Systems, 14th European Symposium on Program-

ming,ESOP 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Ed-

inburgh, UK, April 4–8, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3444), Shmuel Sagiv (Ed.). Springer,
21–30. DOI: https://doi.org/10.1007/978-3-540-31987-0_3

[23] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival. 2009. Why does
Astrée scale up?Form. Meth. Syst. Des. 35, 3 (2009), 229–264. DOI: https://doi.org/10.1007/s10703-009-0089-6

[24] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program.
In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press, New York, NY, 84–97.

[25] Chaoqiang Deng and Patrick Cousot. 2019. Responsibility analysis by abstract interpretation. In Static Analysis - 26th

International Symposium, SAS 2019, Porto, Portugal, October 8–11, 2019, Proceedings (Lecture Notes in Computer Science,

Vol. 11822), Bor-Yuh Evan Chang (Ed.). Springer, 368–388. DOI: https://doi.org/10.1007/978-3-030-32304-2_18
[26] Chaoqiang Deng and Patrick Cousot. 2019. Responsibility analysis by abstract interpretation. Retrieved from

http://arxiv.org/abs/1907.08251.
[27] Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated error diagnosis using abductive inference. In PLDI. ACM,

181–192.
[28] Henry Frankel. 1976. Harré on causation. Philos. Sci. 43, 4 (Dec. 1976), 560–569.
[29] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel J. Weitzner. 2018. Practical accountability

of secret processes. In USENIX Security Symposium. USENIX Association, 657–674.
[30] Roberto Giacobazzi and Isabella Mastroeni. 2018. Abstract non-interference: A unifying framework for weakening

information-flow. ACM Trans. Priv. Secur. 21, 2 (2018), 9:1–9:31.
[31] Joseph A. Goguen and José Meseguer. 1982. Security policies and security models. In IEEE Symposium on Security

and Privacy. IEEE Computer Society, 11–20.
[32] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. 2007. Automated fault localization for C programs. Electr.

Notes Theor. Comput. Sci. 174, 4 (2007), 95–111.
[33] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. 2006. Error explanation with distance metrics. Int. J.

Softw. Tools Technol. Transf. 8, 3 (2006), 229–247.
[34] Joseph Y. Halpern and Judea Pearl. 2001. Causes and explanations: A structural-model approach: Part 1: Causes. In

UAI. Morgan Kaufmann, 194–202.
[35] Joseph Y. Halpern and Judea Pearl. 2005. Causes and explanations: A structural-model approach. Part I: Causes. Brit.

J. Philos. Sci. 56, 4 (2005), 843–887.
[36] Sudheendra Hangal and Monica S. Lam. 2002. Tracking down software bugs using automatic anomaly detection. In

ICSE. ACM, 291–301.
[37] Thomas A. Henzinger, Anna Lukina, and Christian Schilling. 2019. Outside the Box: Abstraction-Based Monitoring

of Neural Networks. arXiv preprint arXiv:1911.09032 (2019).
[38] David Hume. 1748. An Enquiry Concerning Human Understanding. A. Millar, London. Retrieved from http://www.

davidhume.org/texts/ehu.html.
[39] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2009. Towards a theory of accountability and audit.

In ESORICS (Lecture Notes in Computer Science, Vol. 5789). Springer, 152–167.
[40] Bertrand Jeannet. 2009.The Interproc Analyzer. Retrieved from http://pop-art.inrialpes.fr/interproc/interprocweb.cgi.
[41] Bertrand Jeannet and Antoine Miné. 2009. Apron: A library of numerical abstract domains for static analysis. In

Computer-aided Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26–July 2, 2009. Proceed-

ings (Lecture Notes in Computer Science, Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer, 661–667. DOI:
https://doi.org/10.1007/978-3-642-02658-4_52

[42] HoonSang Jin, Kavita Ravi, and Fabio Somenzi. 2002. Fate and free will in error traces. In TACAS (Lecture Notes in

Computer Science, Vol. 2280). Springer, 445–459.
[43] Manu Jose and Rupak Majumdar. 2011. Cause clue clauses: Error localization using maximum satisfiability. In PLDI.

ACM, 437–446.
[44] Bishoksan Kafle, John P. Gallagher, Graeme Gange, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2018.

An iterative approach to precondition inference using constrained Horn clauses. Theor. Pract. Log. Program. 18, 3–4
(2018), 553–570. DOI: https://doi.org/10.1017/S1471068418000091

[45] Dave King, Trent Jaeger, Somesh Jha, and Sanjit A. Seshia. 2008. Effective blame for information-flow violations. In
SIGSOFT FSE. ACM, 250–260.

[46] Bogdan Korel and Juergen Rilling. 1998. Dynamic program slicing methods. Inf. Softw. Technol. 40, 11–12 (1998),
647–659.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/978-3-030-32304-2_18
http://arxiv.org/abs/1907.08251
http://www.davidhume.org/texts/ehu.html
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1017/S1471068418000091

The Systematic Design of Responsibility Analysis by Abstract Interpretation 3:89

[47] Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. 2011. From probabilistic counterexamples via causality
to fault trees. In Computer Safety, Reliability, and Security - 30th International Conference, SAFECOMP 2011, Naples,

Italy, September 19–22, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6894), Francesco Flammini, Sandro
Bologna, and Valeria Vittorini (Eds.). Springer, 71–84. DOI: https://doi.org/10.1007/978-3-642-24270-0_6

[48] Janusz Laski and William Stanley. 2009. Program Dependencies. Springer London, 125–142. DOI: https://doi.org/10.
1007/978-1-84882-240-5_6

[49] Florian Leitner-Fischer and Stefan Leue. 2013. Causality checking for complex system models. In Verification, Model

Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20–22, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 7737), Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni
(Eds.). Springer, 248–267. DOI: https://doi.org/10.1007/978-3-642-35873-9_16

[50] Tal Lev-Ami, Mooly Sagiv, Thomas Reps, and Sumit Gulwani. 2007. Backward Analysis for Inferring Quantified Pre-

conditions. Tr-2007-12-01, Tel Aviv University.
[51] David Lewis. 1973. Causation. J. Philos. 70, 17 (1973), 556–567.
[52] David Lewis. 2013. Counterfactuals. John Wiley & Sons.
[53] Laurent Mauborgne and Xavier Rival. 2005. Trace partitioning in abstract interpretation-based static analyzers. In

ESOP (Lecture Notes in Computer Science, Vol. 3444). Springer, 5–20.
[54] Peter Menzies. 2017. Counterfactual theories of causation. In the Stanford Encyclopedia of Philosophy (winter 2017

ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University.
[55] Antoine Miné. 2012.The Banal Static Analyzer Prototype. Retrieved from https://www-apr.lip6.fr/~mine/banal/.
[56] Antoine Miné. 2001. A new numerical abstract domain based on difference-bound matrices. In Programs as Data

Objects, Second Symposium, PADO 2001, Aarhus, Denmark, May 21–23, 2001, Proceedings (Lecture Notes in Computer

Science, Vol. 2053), Olivier Danvy and Andrzej Filinski (Eds.). Springer, 155–172. DOI: https://doi.org/10.1007/3-540-
44978-7_10

[57] Antoine Miné. 2001. The octagon abstract domain. In Proceedings of the Eighth Working Conference on Reverse En-

gineering, WCRE’01, Stuttgart, Germany, October 2–5, 2001, Elizabeth Burd, Peter Aiken, and Rainer Koschke (Eds.).
IEEE Computer Society, 310. DOI: https://doi.org/10.1109/WCRE.2001.957836

[58] Antoine Miné. 2006. The octagon abstract domain. High. Order Symb. Comput. 19, 1 (2006), 31–100. DOI: https://doi.
org/10.1007/s10990-006-8609-1

[59] Antoine Miné. 2006. Symbolic methods to enhance the precision of numerical abstract domains. In Verification, Model

Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8–10,

2006, Proceedings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S. Namjoshi (Eds.).
Springer, 348–363. DOI: https://doi.org/10.1007/11609773_23

[60] Antoine Miné. 2012. Inferring sufficient conditions with backward polyhedral under-approximations. Electron. Notes

Theor. Comput. Sci. 287 (2012), 89–100. DOI: https://doi.org/10.1016/j.entcs.2012.09.009
[61] Antoine Miné. 2014. Backward under-approximations in numeric abstract domains to automatically infer sufficient

program conditions. Sci. Comput. Program. 93 (2014), 154–182. DOI: https://doi.org/10.1016/j.scico.2013.09.014
[62] Duong Nguyen Que. 2010. Robust and Generic Abstract Domain for Static Program Analyses: The Polyhedral Case.

Ph.D. Dissertation. Paris, ENMP.
[63] Judea Pearl. 2013. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press.
[64] Marco Pistoia, Robert J. Flynn, Larry Koved, and Vugranam C. Sreedhar. 2005. Interprocedural analysis for privileged

code placement and tainted variable detection. In ECOOP (Lecture Notes in Computer Science, Vol. 3586). Springer,
362–386.

[65] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2009. Darwin: An approach for debugging
evolving programs. In ESEC/SIGSOFT FSE. ACM, 33–42.

[66] Kavita Ravi and Fabio Somenzi. 2004. Minimal assignments for bounded model checking. In TACAS (Lecture Notes

in Computer Science, Vol. 2988). Springer, 31–45.
[67] Manos Renieris and Steven P. Reiss. 2003. Fault localization with nearest neighbor queries. In ASE. IEEE Computer

Society, 30–39.
[68] Jacques Riguet. 1948. Relations binaires, fermetures, correspondances de Galois. Bulletin de la S.M.F., Tome 76 (1948),

114–155.
[69] Xavier Rival. 2005. Understanding the origin of alarms in Astrée. In SAS (Lecture Notes in Computer Science, Vol. 3672).

Springer, 303–319.
[70] Xavier Rival and Laurent Mauborgne. 2007. The trace partitioning abstract domain. ACM Trans. Program. Lang. Syst.

29, 5 (2007), 26.
[71] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis. The MIT Press.
[72] Alfred Tarski et al. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacif. J. Math. 5, 2 (1955), 285–309.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

https://doi.org/10.1007/978-3-642-24270-0_6
https://doi.org/10.1007/978-1-84882-240-5_6
https://doi.org/10.1007/978-3-642-35873-9_16
https://www-apr.lip6.fr/~mine/banal/
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/11609773_23
https://doi.org/10.1016/j.entcs.2012.09.009
https://doi.org/10.1016/j.scico.2013.09.014

3:90 C. Deng and P. Cousot

[73] Caterina Urban and Peter Müller. 2018. An abstract interpretation framework for input data usage. In ESOP (Lecture

Notes in Computer Science, Vol. 10801). Springer, 683–710.
[74] Mark Weiser. 1981. Program slicing. In ICSE. IEEE Computer Society, 439–449.
[75] Mark Weiser. 1984. Program slicing. IEEE Trans. Softw. Eng. 10, 4 (1984), 352–357.
[76] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James A. Hendler, and Gerald J. Sussman.

2008. Information accountability. Commun. ACM 51, 6 (2008), 82–87.

Received March 2021; revised September 2021; accepted September 2021

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 3. Publication date: December 2021.

