b

'_—--L_;I:llt-iﬁ

(W W T

&

A HOARE-STYLE AXIOMATIZATION
OF BURSTALL'S INTERMITTENT ASSERTIONS METHOD
FOR NON-DETERMINISTIC PROGRAMS

Patrick COUSOT

LRIM-83-04 Septembre 1983

UNIVERSITE DE METZ

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
DE METZ

Faculté des Sciences
Ile du Saulcy
57045 METZ CEDEX
FRANCE



A HOARE-STYLE AXIOMATIZATION
OF BURSTALL'S INTERMITTENT ASSERTIONS METHOD
FOR NON-DETERMINISTIC PROGRAMS

Patrick COUSOT

ABSTRACT

We introduce a Hoare-style logic describing, in a unified manner,
Floyd's invariant assertions and Burstall's intermittent assertions total
correctness proof methods for sequential programs with random assignments.
It is shown, using classical examples, that formal proofs can be informally

described as proof outlines, i.e. executable programs with appropriate
comments .

RESUME ~

Nous introduisons une logique de Hoare permettant de décrire d'une
maniére uniforme la méthode des assertions invariantes due & Floyd et celle
des assertions intermittentes due & Burstall pour démontrer la correction
totale de programmes séquentiels avec instruction d'affectation aléatoire.
Nous montrons par des exemples classiques comment présenter informellement

les preuves formelles & 1'aide de commentaires appropriés dans des
programmes exécutables.



o e e e o ow R e e i i e

I

*

A HOARE-STYLE AXIOMATIZATION
OF BURSTALL'S INTERMITTENT ASSERTIONS METHOD
FOR NON-DETERMINISTIC PROGRAMS

Patrick CoOUSOT” §

1. INTRODUCTION

Floyd(671's invariant assertions method for proving total correctness
of sequential programs is based upon computational induction.

It offers the useful advantage that a total correctness proof can be
decomposed into separate proofs of partial correctness, absence of run-time
errors and termination. HoarelBS] introduced a further decomposition of
these separate proofs using induction on the syntax of programs.

Hoare[69] described the partial correctness proof method by a logic in
which the notion of proof is rigorously defined by a Hilbert-style formal
system. This logic can be generalized to total correctness (see e.g. Manna
& Pnuelil741).

Another important property of Hoarel631's logic is that lengthy formal [
proofs can he made much more understandable by means of a proof outline in
which the program is given with comments which are invariant assertions
interleaved at entry and exit points of all program statements. The main

advantage of proof outlines is that the program and its proof constitute a

single piece of text.

Burstalll74]'s intermittent assertions method for proving total

correctness of sequential programs is based upon structural induction on
the data.

Université de Metz, Faculté des Sciences, Ile du Saulcy, 57045 METZ Cedex,
France: - - e

This work was supported by ATP ADI-CNET-CNRS "Parallélisme,Communication,
Synchronisation”.




=

Une criticism (Gries[738]) of its usual presentation (Manna &
Waldinger[78]) is that all parts of the proof (viz. partial correctness,
absence of run-time errors and termination) are packaged together. However
proofs can be freely decomposed into arbitrarily chosen lemmas and theorems.

Almost syntax-directed axiomatizations of Burstall's method have been
proposed using Dynamic Logic (Harel[781), Temporal Logic {Apt &D%iporte[BS]),
etc. However, because of the explicit reference to program points, lemmas
and theorems need not correspond to the syntactic structure of the program.

Consequently, the defect in such formal systems is that proofs
involving intermittent assertions must be presented separately from the
program text. This is also the case of informal presentations based upon

symbolic execution, proof lattices, proof diagrams, etc.

Floyd's and Burstall's methods have contrary advantages and drawbacks.
Moreover Hoare's presentation of Floyd's method enjoys many advantages over
Knowﬁ presentations of Burstall’'s method. In order to {(partly) reconcile
(sometimes antagonistic) qualities of both methods, we introduce a Hoare-
style logic describing Floyd's and Burstall's total correctness proof methods
in a unified manner.

To attain this end, a number of choices have been made

First of all, computational induction (hence Floyd’s method) is
understood as a special instance of structural induction on the data (hence
of Burstall's method).

- The lemmas and theorems in Burstall's method will be restricted so as
to correspond to the syntactic structure of programs (a limitation attenuated
by the possible use of non-recursive parameterless procedures). Consequently,
the explicit use of program points can be avoided because entry and exit
points of program commands are implicitly referred to when using Hoare's
notation for asserted programs.

. Intermittent assertions are needed only for loops. In this case,
informal proofs by symbolic execution and induction can be formally explained
by loop transformations. Moreover, induction can be understood as a
termination argument so that (when considering programs with partial
operations) the traditional decomposition of total correctness proofs into
separate proofs of partial correctness, termination (and absence of run-time

errors) is applicable to Burstall’s method.




S

— [— L

The paper is organized as follows

In paragraph 2 we describe the considered programming language
(nondeterministic imperative while-programs incorporating random assignments
and non-recursive parameterless procedures) and the reasoning language which
consists of the programming language augmented with labels which argeused to
designate loop bodies.

In paragraph 3 we informally describe the meaning of predicates (also
called assertions) and asserted statements. The difference with Hoare's
logic is that we consider total correctness. We also generalize Hoare's
notation so as to be able to express that a given predicate should inevitably
be satisfied after some (unknown)} number of executions of a loop body.

In paragraph 4 we set out the proof system. It contains Hoare[63]'s
proof system extended from partial to total correctness. Burstalll74]'s
"hand simulation” is understood as the use of very simple semantic-preserving
program equivalences. A rule of inference, designed in Hoare[691's style,
provides for Burstalll74]1's proofs by "induction on the data”.

Because of the structural induction rule, the proof system is not a
classical Hilbert-style formal system. Hence formal proofs must be defined.
carefully in paragraph 5.

We give several examples of formal proofs. A program with unbounded
nondeterminism due to Dijkstral76] shows that induction upon non-negative
integers may be adequate with Burstall's method whereas it is not with
Floyd’'s method.

In paragraph 6 we show that formal proofs can be informally described
as proof outlines. We consider the classical proof of Ackermann's function
(Manna & Waldinger[781, Gries[79]) so as to concentrate on the presentation
of a well-known proof using the logic. Finally we show a very simple program
due to Dijkstral77] for which no simple termination function that decreases
monotonically has been found, which is not obtained by recursion elimination
and has a trivial termination proof using Burstall's intermittent assertions

method.

We conclude with empirical justifications of our choices in the design

of the logic.




S

2. THE PROGRAMMING AND REASONING LANGUAGES

2.1 THE PROGRAMMING LANGUAGE PL $ Lol

We consider simple non-deterministic imperative while=-programs with

random assignments. The programming language PL has five syntactic
categories

- Pl=Xa given set of program variables ranged over by X,

« P-E a given set of expressions ranged over by E, not containing "?"

and such that the (free) variables in E all belong to FV(E) c Pl-X,

. P-B a given set of boolean expressions ranged over by B such that the

(free) variables in B all belong to FV(B) cPL-X,
. PN a given set of command names ranged over by N,

. PI-C  a set of commands ranged over by C and with abstract syntax given
by
C::=skipIX:=?IX:=E]C1;Czliﬁ B then C; else Co filwhile B do C od|N

For our purpose it is not necessary to elaborate PI-X, PI-E, PIL-B, PL-N.
Also the abstract syntax does not cope with declarations. However it is
assumed that each program variable X has a type written DomlX] and that
each command name N unambiguously designates a unique command C (not
containing N)}, a fact that we write N:C. For our purpose it is not necessary

to specify how names are associated with commands. For instance, in the

concrete syntax, one could use non-recursive parameterless procedures. lLabels

could also be used as shorthands for procedures only called once.
The random assignment X:=? assigns to X any value of the type Dom[[X] of

X. We write if B then C iy EiOn if B then C else skip fi.

2.2 THE REASONING LANGUAGE RL

In Burstalll74]1's method, intermittent assertions can be restricted to
while-loops. Hence one essentially has to express that "If P holds and
while B do C 0d 1is executed then after some number of iterations § must
hold”. 1In Hoare-style notation we will write {P}L{Q} where L is a 1label
designating the body of loop while BdocC od, a fact that will be denoted

7



while L:B do C od. Then a total correctness proof {P}.ﬂﬂilg BdoC od {g}
(i.e. "if P holds and while B do C od is executed, then execution

terminates with Q true”) by Burstalll[74]'s method essentially consists in
(repeatedly and usually by induction) proving the existence of an intermediate
intermittent assertion R such that {P}L{R} and {R} while B do C od {0}

hold. Consequently overloading the sequential composition meaning of semi-

colon, this fact will be written {P} L;while B do C od {Q}.

The above discussion leads to the consideration of a reasoning language

RL which has the syntactic categories of PL and

« R-L & given set of loop labels ranged over by L,

« RI-S a set of statements ranged over by S and with abstract syntax :
S u= CJLI|S;S

For simplicity we write while L:B do C od to mean that L designates

the body of loop while B do C od.

The distinction between programming and reasoning languages comes from

the fact that we can define a (trivially implementable) operational semantics
for commands but not for loop labels.



3. THE LOGICAL LANGUAGE LL

The logical language LL contains a set LL-P of predicates (alsoc called

assertions) to describe program states and asserted statements of the form

{P}s{q}.

3.1 PREDICATES

The logical language LL includes a first order language such that

. The set of variables of LL is partitionned into the set PL-X (ranged over
by X} of programming variables and a set Ll-x (ranged over by x) of logical

variables. There is an unlimited provision of logical variables,

. The terms (T..) of LL include PL-E,

. The atomic formulas of LL include equality of terms and the truth values
true and false,

- The set LI-P of predicates of LL with typical elements P,Q, .., contains
Pl-B. It is closed under use of the logical connectives =(not), A(and),
vior), =>(implies) and quantifiers over logical (but never programming)

variables VY(for all) and 3(there exists]).

We are faced with the problem that expressions and boolean expressions
should always be well-defined in the logical language LL but should contain
partial operations in the programming language PL. Among the possible
solutions, we have chosen to have only total operations in LL and to model
a partial operation of PL by a total operation of LL together with a
predicate characterizing its domain. For example integer division / may be
defined as a total operation in the logical language LL (if for instance we
let 1/0 be the undefined value L). When used in the programming language PL

integer division is a partial operation so that we have DomlX/Y]=

(min<X<max A min<Y<max A Y#0 A min< X/Y <max]) .

More generally, a predicate DomlX], called the type of X, characterizes
the set of values which can be assigned to X in PL. The only free variable

of DomX] which is a programming variable is X.

To each expression E e PI-E corresponds a predicate DomlE] e LL-P

characterizing the domain of definition of E in PL. All free variables in




DomlE] which are programming variables should appear in E. Similarly the

domain of Be Pl-B is characterized by Dom{BJ.

3.2 THE INFORMAL MEANING OF ASSERTED STATEMENTS

An asserted statement is a triple {P}S{@}. It informally means that
execution of S from a state satisfying P inevitably leads to a state

satisfying Q. More precisely :

- If C4dPL-N then {P}c{Q} is the assertion that "if P is true of the
(vector of) values v of the logical variables and initial values V of the
program variables and command C is executed then execution will terminate
without run-time errors and after execution of C is complete Q will be true
of v and the final values V of the program variables”. Otherwise stated

{P}c{Q} asserts that C is totally correct with respect to pre-condition P
and post-condition Q.

- If N:C then {PIN{Q} stands for {P}c{Q}.

- If while L:B do C od then {P}L{Q} is the assertion that "if P is true
of the values of v of the logical variables and initial values V of the
program variables and command while B do C od 1is executed, then execution
will proceed properly until, after zero or more executions of the loop body,
reaching a state V of the program variables such that Q holds for v and V ”.
(Paraphrasing Manna & Waldinger[741, {P}L{0} asserts that if control is at L
with P true then sometime later control will be at L with § true. Notice

that L can be understood as designating the control point within the loop
body just before the test B).

. {P}Sl;Sz{Q} is a shorthand for the existence of R such that {P}s{r}
and {R}S,2{Q} hold.

(Observe that we have given two different definitions of {Plcysco{q}.
Because they are equivalent when C1,C2 e PL-C, we have chosen to overload the

meaning of semi-colon).




4. THE PROOF SYSTEM

We use the following notations

- If ¢ is a term or predicate of LL then FV($) is the vector of free
variables of ¢, BV(¢) is the set of bound variables of ¢ and ¢L stands for
the result of substituting term T for all free occurences of" variable.

we (Pl-Xu Ll=x) (if necessary, after renaming of the bound variables in ¢ so
that FV(T) nBV(¢) is empty).

. We write WFf(<) to mean that the infix relation symbol < should be

interpreted as a well-founded relation (i.e. there is no sequence {an} such
that a . _<a for all n).
n+1 n

» V5V, .. stand for vectors of logical or programming variables. For vectors

v,v of length IvI=Lzl=2 we write v=v as a shorthand for HvlﬁzllA."A[vzﬁlzn.

The proof system contains a version of Hoare[68]'s proof system extented

to random assignments and from partial to total correctness in the presence
of partial operations.

« Null command :

(N) {P} skip {P}

- Assignment command :

(A) {DomHE]/\[DomEXBAP)i} X:=E {p}

- Random assignment
(R) {Bx.DomHXB;/\Vx.([DomHXD=€>P];]} X:=? {p}
(The effect of X:=? is to assign to X some value x of type

DomlX]. Execution fails when Doml[X] is empty. Else, P holds after

execution if and only if it is true of all values x in Domf[X] which

can be assigned to X).

« Sequential composition

(sc) {P}s1{qQ} , {9}s,{R}

{P} 515, {R}




(Observe that Hoare[69] propounded this rule of inference only
for commands. However it can be consistently extended to loop labels

hence statements by definition of the connector ";" of statements).

- Alternative composition

(AC) {PADamIBIAB} C1 {9} , {PADomlBIA-B} c, {q}

{PADOmIB]} if B then C; else C, fi {0}

Since if B then C fi stands for if B then C else skip fi,

the following rule of inference can be derived from the null command

axiom, the tautology @=>Q and the consequence rule :

(AC')  {PADom(BIAB} C {Q} , (PADom[BIA-B)=>g

{PADomIBI} if B then C f1 {g}

- Iterative composition :

(Ic) {PADOMIBIAB A v=v'} C {PADomIB]IA v<v'}

{PADOMIBI}  while B do C od {P A-B}
when [v]=lv'l, v’ clL.x and Wf(=<)

(As usual total correctness follows from the fact that execution

of the loop body leaves PADomlB} invariant and decreases v with respect
to the well-founded relation < ).

- Consequence rule :

(CR) p=>p' , {P'}s{g'} , g'=q

{P}s{q}

. Ey'Eule 2

(OR) {Pils{o} , {P,}s{g,}

{P1vP2} 5 {Qv@s}

. And rule :

(AR) {Pilc{@:} ., {r,lc{g,}

{P1AP2} C {Q11Q2}




| — " L l‘JI L_J L_Jl L__J! L__Jl L_J'

]

.

[}

J

~-10-

(Observe that contrary to (CR) and (OR), the And rule cannot
be extended to loop labels hence statements. For example we have
{x=0}L{x=0} and {Xx=0}L{X=1} for while L:true do X:=X+1 od but not
{x=0} L {{x=0)A(x=111}).

. Command name rule :
(CN) {Pic{n}
{PIN{Q}

when N:C.

. Eeplacement_zule :

(RR) {Pls{n}

X

{(Ix'.p ')T-AR} S {QT/\R}
Xy y

when xell-x, x4¢FV(Q), yell-x, FV(T) cll-x and FV(R) < Ll-x.

(The predicate R only depends upon logical variables hence it
is invariant because their values cannot be modified by program
execution. A logical variable y stands for any logical term T (i.e. a
logical variable, a constant or an application of a function to logical
terms). A logical variable x e Ll-x designating a value upon which the
final result does not depend (x4 FV(Q)) can be eliminated.

This rule is equivalent to the invariance, elimination,

substitution I and substitution I rules of Aptl81]1).

We now extend the above Hoare-style proof system by considering proof
rules relative to Burstalll74]'s intermittent assertions method. Two
ingredients of Burstall's method can be handled by the above classical part
of the logic. Firstly, proofs can be decomposed into theorems and lemmatas
corresponding to the syntax of programs. These theorems and lemmata can be
given very concise formulations by giving names to commands and using the
command name rule. Secondly, initial or intermediate values of the program
variables can be given symbolic names by means of auxiliary logical
variables and handled by the replacement rule. The two last ingredients of

Burstall's method are "hand-simulation” and "induction upon the data”.




I

o e e o

I
i

F

_11_

"Hand-simulation” or "symbolic execution” will be understood from the
equivalent (but time-independent) point of view of program equivalences.
In fact since hand-simulation (and induction) is only necessary to handle
while-loops, the only program equivalence to be considered is
while B do C od = if B then C fi;while B do C od or using this

transformation recursively while B do Cod =

(if B then C_fi]n;yﬂilg B do C od for all n>0 where C" is skip when n=0,
is C when n=1 else is Cm;C2 when n=m+{. By hand-simulation and using an
intermediate intermittent assertion R, a proof {P} while B do C od {Q} can
be decomposed inte {P} (if B then C fi)" {R} and {R} while B do C od {q}.
In order to avoid awkward manipulations of large pieces of program text we

use loop labels writing {P}L{R} with while L:B do C od instead of
{P} (if B then c f1)" {R} :

._ﬁo.iteration axiom :

(NI) {PIL{P}

. gpe_iteration rule :
(01) {P} if B then C fi {g}

{PIL{q}

when while L:B gg C_gg

5 ﬂpltiple_iterations rule :
(M1) P} L;L {Q}
{PIL{qQ}

. ﬂpndjgimulation rule :

(HS) {P} Lswhile B do C od {Q}

{P} while B do C od {gQ}

when while L:B gg C_gg




-12-

One must ultimately be able to handle the while-lcop in the premise of
the hand-simulation rule. Using (IC) would not be in the spirit of
Burstalll74]. Hence we introduce the following axiom scheme to serve as a

conclusion of hand-simulation
- Escape while axiom :
(EW) {PADOMIBJIA-B} while B do C od {P}

(This axiom scheme can be derived from (IC) using first order

tautologies, {falselc{false} which can be proved by induction on the

syntax of commands and (CR}. Alternatively (IC) can be dispensed with

and derived from the other axiom schemata and rules of inference).

Using the previous axioms and rules of inference one can prove programs
by "hand-simulation”. As stated by Burstalll74] "Since we cannot write out
the whole infinite symbolic computation explicitly we will use mathematical
induction to prove general statements about what happens at a loop point”.

Structural induction can be introduced in several ways within the logic.
One can consider an induction axiom scheme (e.g. 4.10 in Harell[79])
providing for the proof of an arbitrary formula of the logic by structural
induction such as

YLD L Dv < v) = ¢ (v ) D) = ¢(v)] = Yv.$(v]) where Wf(=<).
Such an approach would significantly depart from the style of Hoare’s logics
where quantified asserted programs are not considered. Therefore we will

consider a more restricted form of structural induction limited to induction

upon the data of an asserted statement

» Structural induction rule :

(SI) {v'—<VAPz'}S{QX'} -  {P}s{q}

{rP}s{q}
when [vl=|v'|, vell-x, v'clLl-x and Wf(=<),.

As usual il B

is a rule of inference which permits deduction
of C if B is proved; however it also permits A to be assumed as

hypothesis in the proof of B.




_"['3_

The intuition behind this rule is that in the proof of the
lemma {P}s{Q} for [initial] values v (of, say, the program variables),
we can assume {P }S{Q } when v'<v that is to say that the lemma
holds for smaller (1n1t1a1] values v' (of the program variables).
Observe that when v'<v holds {Pz'}S{Qx'} is equivalent to
{v'=<v APx'}S{QX'}. When v'<v does not hold, no induction hypothesis
can be made. Yet, in the case, the structural induction rule allows
us to make the hypothesis {v'=<v AP }S{Q '} that is to say
{False}S{Q '}, This is correct because {false}S{Q e o tautology

of the loglc so that it can be assumed without harm (nor help) in any
proof.




LM

LM

_']4_
5. FORMAL PROOFS (WITH EXAMPLES)

5.1 DEFINITION

We write H,W ~{P}S{Q} if and only if there is a proof of {P}s{Q}
from the set H of hypotheses and finite set W of well-founded relations.

Since the proposed proof system is not a usual Hilbert-style system in
the sense of first order logic, we must define formal proofs rigorously.

A sequent is a pair Y+¢ (read ¢ yields ¢) where the members wj of the

antecedent Y=Yy, ...,Yx and the succedent ¢ are formulas (i.e. predicates or

asserted statements]).
A proof of & from H,W is a finite sequence wlk¢1,.",wzk¢2 of sequents
with wﬁ empty and ¢2=® such that each sequent wnk-¢n, n=1, «., 4 either

has wn empty and ¢n is an axiom of the proof system or belongs to H,

has wn=¢n and ¢n is (an induction hypothesis) of the form
{v'<vaPY 1s{0] } with <eW, "

. derives from earlier sequents wmlk-ﬂnl,.",wmik-¢mi by the rule of

m m+

¢, ., L
(bn

only if it is a member of one of the antecedents wml,.",wmi,

inference

A : : n .
and any given expression is a member of ¥ if and

' ’ ’ ¥
. derives from an earlier sequent wn }-¢n , n’<n with wn = wnu{ih}, ¢n =¢n
ihp ¢"
n
¢

and

is a rule of inference of the proof system.

5.2 EXAMPLE 1

We formally rephrase Burstall[741's proof of the following program

which Computes oy :

Power: P:=1;
while Loop: N>0 do
P:=2xP; N:=N-1
od

Following Burstalll74], we must show by upward induction on i that
{Osisn/\N=n/\P=p}loop{N=n—i/\P=px2i} holds so as to conclude H,Wpk
{N=n>0}Power{P=2"}. We choose W={=<} with (i’,n')=< (i,n) if and only if

0<i'<is<n'=n. For simplicity we choose H as the set of all theorems of

arithmetic.




| N

" u

-

..15_
For the sake of conciseness obvious steps of the formal derivation are h
omitted :
(1)  {0=i<n AN=nAP=p} Loop {N=n-i A P=px21} NI,CR

(2) ih ~ 1h, where

ih={(3,n)=<(1,n) A(O<i<n A N=n A P=p]Ji’2} Loop {(N=n-1i A P=px213‘;’n}

>

={0<j<isn AN=n AP=p} Loop {N=n-j A p=px2J}

(3 ih + {1<i<nAN=nAP=p} Loop {N>0 A N=n-(i-1) /\P=px2(i_”} 2,RR,CR
(4) F {N>0 AN=n-(1-1) ap=px2tt-1} if N>0 then P:=2xP;N:=N-1 £i
{N=n-1i A P=px21} A,sc,Ac’,cR
(5) - {N>OAIV=n—(i—1J/\B=px2(i—1)} Loop {N=n-i A p=px2i} 4,01
(6 ih p {1<i=nAN=nAP=p} Loop:Loop {N=n-iAP=px2l} 3,5,5C
(73 ih + {1=isn AN=n A P=p} Loop {N=n-1 A P=px2l} 6,MI
(8)  ih + {0<isnAN=nAP=p} Loop {N=n-1 A P=px2i} 1,7,0R,CR
(9) - {0<isn AN=nAP=p} Loop {N=n-i A P=px2i} 8,ST
(10}  {N=n20 A P=1} Loop {N=0A p=2N} 9,RR,CR
(11) ~ {N=0 AP=2"} while N>0 do P:=2xP;N:=N-1 od {pP=2"} EW,CR
(12) k {N=n20 A P=1} Loopswhile N>D do P:=2xP;N:=N-1 od {P=27} 10,11,SC
(13)  {N=n20 A P=1} while N>0 do P:=2xP3N:=N-1 od {p=2"} 12,HS
(14) + {N=n20} Power {P=2"} A,13,SC,CR,CN

5.3 EXAMPLE 2
Consider Dijkstral761's program with unbounded nondeterminism (on
page 77)

U: while L: Xiﬂ_gg
1f X<0 then

Yi=?;X:=Y
else
Xi=X-1

od

when DomlY]=(Y>0). We shall prove H,W F {true}u{x=0} with W={<} such that
m=<n 1if and only if O<m<n and H is the set of all theorems of arithmetic.

Obvious steps of the proof are omitted.

We first prove that execution of the loop body inevitably leads to a
state with X=0.




.

I T R B

|

BN Ly

.

1

N R

L.t L

Ly

B B L B D B

L3
|

_16_
(1 b {x<0} if X#0 then if X<O then Y:=?;X:=Y else X:=X-1 fi fi {Xx=0}
(2)  {x<0} L {x=0} _ 1,01
(3) ~ {x=0} L {x=0} NI
(4)  {true} L {x=0} 2,3,0R,CR

Then we show by induction on the initial value n of X that execution
of the loop starting with X=n20 inevitably leads to a state with X=0. In
the following ih stands for {m<w1APﬁ} L {Q:} with P=(X20 A X=n) and Q=(X=0).

(5) F {X20 A X=n} if X#0 then if X<0 then Y:=7;X:=Y else X:=X-1 i fi
{(X=0)v(X>0 A X=n-1)}
(8) F {x20 AX=n} L {\X=0)v(X>0 A X=n-1)} 5,01
(7)  {x=0} L {x=0} NI
(8] " InuEi
(8} ih + {(m=n szozxx=mJQ‘1} L {x=0} 8,RR, CR
(10)  ih k {X>0 A X=n-1} L {x=0} 9,CR
(11)  ih b {(X=0)V(X>0 A X=n-1)} L {x=0} 7,10,0R,CR
(12} ih  {X20 AX=n} L;L {x=0} 6,11,SC
(13) ih  {X20AX=n} L {x=0} 12,MI
(14) F {X=0 A X=n} L {x=0} 13,81

The proposition easily follows from the previous two lemmas

(15) F {dn'. X>0A X=n'} L {x=0} 14,RR
(16) + {true} L;L {x=0} 4,15,CR,SC
(17) + {true} L {x=0} 16,MI
(18) + {X=0} while X0 do if X<O then Y:=?;X:=Y else X:=X-1 fi od {X=0}
EW,CR
(19) - {true} Lswhile X#0 do if X<O then Y:=?;X:=Y else X:=X-1 fi od

{x=0} 17,18,sC
(20) — {true} U {x=0} 19,HS,CN

Observe that the proof of lemma {X204X=n} L {X=0} can be done using
the natural ordering on non-negative integers. The ability to state this
lemma dispense with the use of a well-ordering of higher order than natural

numbers which would be necessary when using (IC).

e — — —_—




________________————————————————————————————————————————_________________“________77

-17- |

’
6. PROOF OUTLINES (WITH EXAMPLES)

Formal proofs can be made much more understandable by giving a proof
outline in which the proof of each lemma and theorem is presented in a

standard form as a program annotated with assertions. ‘

6.1 INFORMAL DEFINITION

Proof outlines for null, assignment, random assignment commands and
sequential, alternative composition are classical.

When using the consequence rule (CR) we write

{r}
{r'}
S
{9’}
{Q}
and omit P or P' (and §' or Q) when the consequence P=>P' (and Q' =>0Q) is

obvious. The use of the replacement rule is presented in the same way but

without omissions :

{(3x".p*" )T AR}
Xy
i
S
{Q}
T
{0 AR}
Qy
The use of the And-rule is superfluous whereas the Or-rule is only

needed for & la Burstall proofs of while loops. I

In our examples commands will be named using labels so that the use

of the command name rule will be presented as :
N: {P}
C
{q}

The proof outline for while-loops using (IC) is classical. When usipe

.

Burstalll741's method the total correctness proof of a loop
{P} while L:B do C od {9} is better handled by a lemma {P'}L{g'} from which
using (RR) and (CR) one derives {P}L{QADomlBJ}A-B} and concludes by (EW),

(SC) and (HS). This proof can be outlined (within an executable program)
as follows




-18-

{r} ,
{(Ix'.p% J;AR]

{L: {P'}
Q' 1}
{0'] AR}

{QADom[B]A-B}
while {L:} B do
€

od
Q1

The proof of the lemma {P'}L{Q'} can be done by hand-simulation (using
(NI}, (OI)) and induetion (using (SI) and decomposed intoc a number of
disjoint cases (later merged using (OR)). Such a proof can always be
presented as :

{L: {P"}
P} Vv PFO}

So,'
1Pl Mo P%l}

Sp-13 P
1
{P}, RS

{03}

where for i=0,..,n-1, j=1,..,%;, S; is either if B then C fi in which case
{Pg}L{P§+1} holds for some k e 1’""2i+1 by ((NI) and (CR)) or (OI), or else,
. . , i k
S; is L in which case {Pi}L{Pi+1} holds for some ke Towesy,, by (NI) and
(CR) or by induction hypothesis i.e. (SI) (plus (RR),(CR)) applied to
’ ’ . 1 i 1 i+y

lemma {P'}L{Q'}. Then obviously, {Piv...vpi o {Pi+1v"'VPi+1 } follows by
(OR) so that by successive applications of (MI) we derive

{PIv..vPEO} L {Pév.nvPﬁn} and by (CR) we conclude {P'}L{Q'}.

Finally, proofs of partial correctness ([..]), clean behavior ( €..> )
and termination ( €..} ) can be made separately énd the relevant assertions
enclosed within distinct parentheses.

The relative completeness proof of Cousotl 831 shows that a proof

exists for all totally correct programs that can be presented as indicated
above.



LERRE,

e

-t 2T

_19_

6.2 EXAMPLE 1

We consider the outline of the formal total correctness proof of
Burstalll74]'s program which computes 2" given at paragraph 5.2. We also
outline a clean termination proof for implementations of natural numbers

between 0 and max, with max>1

Power : {[N=nAn>0]A ¢2<max >}
P:=1; ’
{[N=n A n20 AP=1] A ¢2N<max ) }
{Loop : {[Os<i<nAN=nAP=pIA €0<px2M<max >}
{v[[0=iSn/\N=n/\P=p]]
([1<isn AN=n AP=p] A ¢ 0<px2N<max » A €0<i-1<i))}
Loop;
{, ([0=i<n AN=n A P=p]) )
([1<i<n AN=p-(i-1) A P=px2(1'1]] A € 0<px2N<max » )}
if N>0 then
T { € 0<ZxP<max A O<N-1<max > }
P:=2xP; N:=N-1
fi; .
TIN=n-1 A P=px211}}
{[N=0 A P=2N7}
while {Loop :} N>0 do
P:=2xP; N:=N-1 ~—
od
1TP=2n1}

6.3 EXAMPLE 2

We consider Manna & Waldinger[78]'s iterative algorithm :

Ack : S:=<M,N>;
while size(S)21 do

if S(2)=0 then

© S:=5(..3)15(1)+1

elsif S(1)=0 then
S:=S(..3)1s(2)-1|1

else
S:=8(..3)IS(2)-1(5(2)[S(1)-1

fi

od

to compute Ackermann's function, defined by :

a=0 - b+1
Ala,b} = { az0, b=0 » A(a-1,1)
az0, bz0 5 A(a-1,A(a,b-1))




-20-

We follow Gries[79]'s notations so that the above algorithm to compute
A(M,N) uses a "sequence” variable S of the form 3=<Sp, .. ,52,51> where
n=size(8)20. Element S; of S is referenced within the algorithm by S(i},
while S(..1i}) refers to the possibly empty sequence <SpsSp-1s e sS{>
Operation S|X denotes the concatenation of the value of X to the right of
seguence S.

The lexicographic ordering on pairs of non-negative integers is <,.

Gries[79]'s proof can be outlined as follows

Ack : {M>0 AN20}
Si=<M,N>;
{S=<M,N> A M0 AN20}

{Loop : {S=slalbra>0 Ab20}
if size(S)#1 then
~ {S=slalb Aa=0 Ab>0}
~1f S(2)=0 then
T {s=slalb Aa=0 Ab=0}
S:=5(...3) |SC1)+1
{S=s|b+1 A a=0 Ab=0}
{s=s |Ala,b) Aa=0 Ab>0}
elsif S{1)=0 then
{S=slalbAa>0 Ab=0}
S:=S(..3)1s(2)-1}1
{s=sla-111 A a>0 Ab=0}
else
{S=slalbAra>0 Ab>0}
S:=S(..3){s(2)-1]|S(2)|S(1)-1
{S=sla-1]lalb-1 Aa>0 Ab>0}
et
fi;
Tv'(s=s|A(a,b] A a=0 A b20)
([S=s]a-111 Aa>0 Ab=01A £<a-1,1> <, <a,b>))
([S=sla-1]alb-1 Aa>0 Ab>0] A €<a,b-1> <, <a,b>})}
Loop;
{,,(S=s|Ala,b) A ((a=0 A b20)v(a>0 Ab=0))

Vi [5=5Es 11Ala,b-1) Aa>DAb>D]A€<a 1,Ala,b-1)> <5 <a,b>)) }

Loop;

{,(S=s[A(a,b) A ((a=0 A b20)V(a>0 A b=0))
V(s=s|Ala-1,Ala,b-1)) A a>0 A b>0)}

{s=slA(a, bJ}}

{s=<Aa(M,N)>}

while {Loop 1} size(S)#1 do
if 5(2)=D then

S:=5(..3)S(1)+1
elsif 8(1) D then
S:=5(...3) IS(27-111

else
~ 5:=5(...3)]S(2)-11S(2)S(1)-1
fi

od

TS=<A(M,N)>}



_2’]_

6.4 EXAMPLE 3
A termination proof of the program :

while X>1 do
if odd(X) then X:=X+1 else X:=X/2‘fi
od

is given by Dijkstral77] using the following variant function t of the binary

representation x of the value of X :

t(x) = 1 + the number of significant digits of x + the number of
"internal” 0's of x (i.e. between the most- and the least-
significant 1's), decreased by 2 if and only if x is a power
of 2,

Because of the ability offered by hand-simulation to look for a guantity
strictly decreased after one iteration when X is even or after two iterations
when X is odd, this program has a trivial termination proof by Burstall's

method which can be outiined as follows

{true}
{In.x=n}
{L: {x=n} 7

if X>1 then 1f odd(X) then X:=X+1 else X:=X/2 f1 fi;

TTx<1)vTeventn) A n22 A X=n/2)v T
(odd(n) A n=3 A X=n+1)}
if X>1 then if odd(X) then X:=X+1 else X:=X/2 1 f1i

{(X=1IV([X=n/2] A €0<n/2<n IV —y
([X=(n+1)/2]a¢€0<(n+1)/2<n))}

L;
{x<1}}

while X>1 do
1f odd(X) then X:=X+1 else X:=X/2 fi

od
Ttrue}




-PD -

7. CONCLUDING DISCUSSION ON THE DESIGN OF THE LOGIC

We have proposed a Hoare-style logic axiomatizing Burstall's
intermittent assertions method. We think that the formalization is faithful
to the design of the originators of the method. Since they have proposed no
accurate definition and a good many of dissimilar descriptions of the
intermittent assertions method have been suggested, this claim can only be
based on the fact that we have been able to work out all examples considered
in Burstalll74] and Manna & Waldinger[78].

However our formalization is not as flexible as some might like. This
is because we deliberately restrict Burstall's lemmas of the general form
"if sometime P at £ then sometime Q at Q'" to the particular case when £ is
the entry point of a command C and &' its exit point. This restriction is
acceptable because contrary to Apt & Delporte[83] we do not consider
arbitrary liveness properties of arbitrary programs but total correctness
of well-structured programs. This choice has several advantages. By using
Hoare-style notation {P}C{Q} there is no need to mention program control
points. Also the formal system leads to syntax directed proofs such that
the decomposition of the proof by syntactic program units exactly correspond
to the logical structure of the proof decomposed into lemmas and theorems.
Moreover since Hoare's logic is included in the formal system there is no
need for two separate proof systems, one for invariance the other for
liveness properties. Finally this homogeneity reduces the number of
supplementary axioms and rules of inference to be remembered (i.e.

essentially six : (NI), (OI), (MI), (EW), (HS), (SI).

Our extension {P}s{Q@} of Hoare's notation P{C}Q cannot be totally
conformable with the original definition. This is because invariant and
intermittent assertions are of different nature.

We have considered, and later abandoned the alternative which consists
in using different notations for invariant and intermittent assertions. The
idea is essentially to write {P} ﬂﬂilﬁ B‘gg C od {Q} for total correctness
and {P} while B do C od [Q] to mean that execution of while B do C od
with precondition P inevitably leads to Q (a fact that we have written
{PIL{Q} with while L:B do C od). The disadvantage of using different

notations for invariant and intermittent assertions is that the proof system




~-23-

is considerably longer (although equivalent, for example (SC) must be split
into four cases). Also proof outlines drag on.

Unce the decision of merging notations for invariant and intermittent
assertions is taken, the praoblem of expressing {P} while B do C od [Q]
must be solved. Our use of a loop-label may seem a bit awkward. Its only
merit is conciseness, particularly for proof ocutlines.

Our decision of using Hoare's notation for both invariant and
intermittent assertions is, (at first glance somewhat surprisingly )}, consistent
with Hoare's original definition. To show this, we consider BDijkstra[787]'s
definition of wp(C,Q) (i.e. the weakest-precondition for the initial state
such that activation of command C will properly terminate, leaving a final
state satisfying the post-condition Q). In order to conform to Dijkstral761's
original definition we consider bounded nondeterminism (alternatively, we
could consider a less restrictive definition of wp which captures weak instead
of strong termination). We have {P}c{Q} if and only if P=>wp(C,Q) which
implies Hoare's P{C}Q (viz. total implies partial correctness). The case of
{PIL{Q} where L is a loop body label while L:B do C od was not previously
considered by Hoare, hence had no pre-existent meaning. This is the only
case when this meaning involves intermittent assertions (i.e.  will hold
after some number of iterations (but not necessarily after any number of
iterations)). Clearly, loops are the only case when intermittent assertions
are really needed so that the extension is minimal. Also the relationship
to weakest-preconditions is preserved. To see this, let us consider an
alternative definition of {P}L{Q} (the general case of unbounded
nondeterminism would only differ by the use of higher order crdinals
instead of natural numbers)

- {PIL°{0} is {P}skip{n}
(this case is handled by (NI))

- (PILMQY is {P} if B then C £1;L7"! {g} (or {P}IL°{g}) for ns0
(this case is handled by (DI),(SC),(MI) (and (OR))

- {PIL{Q} is 3In20.0{P}LN{g}]
(this case is handled by (RR), because n can be incorporated in P

and related to the initial values of the program variables).

Comparing with Dijkstral76] we observe that {P} LD {QADomIBIA-B} holds if
and only if P=$'Hn(Q] where H,(Q) is the weakest precondition such that the

while B do C od command will terminate after (at most) n iterations,




_—

gr— -

_24_

leaving a final state satisfying the post-condition §. Hence the meaning

of {PIL{Q} for loop body labels L is consistent with the meaning P=€j£E[C,Q)
of {P}c{0} for commands C. Moreover we have wp(while B do C od,Q) =
HnZO.Hn(Q) so that {P} E@EEE B EE C 29 {0} holds if and only if we have

{P} L {QrDomlBIA-B}. This case is handled by axiom (EW) and rule (HS)

(which can be merged into a single rule, but this is less convenient for
proof outlines). The last rule to be justified is (SI). It is in general
very hard to exactly determine the Hn(QJ. Hence proof methods should provide
n's such that P =>H_(Q).
With Burstall's method the Pn's can be chosen freely and the proof that

tools to handle approximations from below (i.e. P

Ph=>HR(Q) is by induction on n (up to an order isomorphism using (SI). For
example one can choose P,=H,(Q) as proposed by Basu & Yeh[75] (on very simple
examples). Also one is not tied to any particular form of the recursive
definition of the H,(Q@) (and this is very useful for examples such as
Ackermann’s function).With Floyd's method the Pn's should be of the form
P{x,X) A f(x,X)<n where the loop invariént P and variant function ¥ depend on
(vectors of) logical variables x and program variables X and (x',X')—<(x,X)

in (IC) if and only if f(x',X')<f(x,X), (see Dijkstral76],p.42).Hence Burstalls

method offers a wider range of possible nroofs (as shown by example 6.4} .However

these proofs can always be rephrased using Floyd’'s method (see Cousot&Cousotl83]).

The last choice to be discussed about the design of the logic is that
the rules of inference (IC) and (SI) do not formally state that < is a
well-founded relation. We think this corresponds to the usual practice in
termination proofs of relying upon (order) relations, the well-foundedness
of which is taken for granted. Consequently H,W ¢ means that ¢ is true
for interpretations I satisfying all hypotheses in H and such that the
meaning <1 of all <eW is a well-founded relation. An alternative consists
in choosing a given range R and a given relation < on R to be considered
in (IC) and (SI). (For instance < is the natural ordering on the set R of
non-negative integers in Dijkstral761, Harel[791)). However there may be
interpretations for which = is not well-founded on RI (e.g. non standard
models of arithmetic in Harel[781). Hence again the soundness of H,W ¢
is relative to the hypothesis that-<I is well-founded on RI or (up to an
order-isomorphism) that (Ry,<3) is (a,<) for some ordinal o (o=w in
Harell[791). Another alternative consists in adding to (IC) and (SI) a

premise Which expresses the well-foundedness of <. The difficulty is now



._25_

that well-foundedness cannot be defined by a sentence Wf (<) of ordinary

first order logic not even of L_ . We can resort to L writing
ooy wiw

WF(=<) = =(dxo X1 X2 . “nlw (g, = *ell

but then we have to consider an infinitary logic and countable proofs, an

alternative that would not be in the spirit of Hoare-style logics.



-26-

8. REFERENCES

APT,K.R.[811, Ten years of Hoare's logic, a survey, part I, TOPLAS 3,
4(1881), 431-483.

APT,K.R. & DELPORTE,C.[83], An axiomatization of the intermittent

assertions method, Research report 82-70, LITP, Paris, France, (Jan.
1983), 21p.

BASU,S.K. & YEH,R.T.[75], Strong verification of programs, IEEE Trans.
on Sotware Engineering, SE-1, 3 (Sept. 1975), 339-345,

BURSTALL,R.M.[74], Program proving as hand simulation with q little

induction, Information Processing 74, North-Holland Pub. Co. . (1874},
308-312.

CousoT,P.[83]1, On the soundness and completeness of a Hoare-style
axtomatization of Burstall's intermittent assertions method,
Research report LRIM-83-05, U. of Metz, France, (Sept. 1983).

CousoT,P. & COUSOT,R.[831, SOMETIME = ALWAYS + RECURSION = ALWAYS , on
the equivalence of the intermittent and invariant assertions methods

for proving inevitability properties of programs, Research report
LRIM-83-03, U. of Metz, (July 1983).

DIJKSTRA,E.W.L78]1,4 discipline of programming, Prentice-Hall Inc.,
Englewood Cliffs, N.J., U.S.A., (1978), 217p.

DIJKSTRA, E.W.[77]1, A sequel to EWD592, EWD600, (Jan. 1977).

FLOYD,R.[67]1, Assigning meaning to programs, in Schwartz (ed.), Proc. Symp.
in Applied Math., 19 AMS, Providence, R.I., (1967), 19-32.

GRIES,D.L78], Is SOMETIME ever better than ALWAYS ?, TOPLAS, 1, 2(1979).

HAREL,D.L79], Proving the correctness of regular deterministic programs:
a unifying survey using Dynamic Logic, Research report RC7557, IBM
T.J. Watson research center, Yorktown Heights, N.Y., (Mar. 13973), 28p.

HOARE,C.A.R.[89], An axiomatic basis for computer programming, CACM 12,
10 (1968), 576-580, 583.

MANNA,Z. & PNUELI,A.L74], Axiomatic approach to total correctness of
programs, Acta Informatica, 3(1974), 253-263.

MANNA,Z. & WALDINGER,R.J.[78], Is SOMETIME sometimes better than ALWAYS ?,

Intermittent assertions in proving program correctness, CACM 21,
2(Feb. 1978), 159-172.



