
1

On Various Abstract Understandings of
Abstract Interpretation

Patrick COUSOT

Courant Institute of Mathematical Sciences
New York University

ot m uo udu .s ey@ ns cicp . , n.s . dy /m u eci u ˜ oto spc u

Abstract—We discuss several possible understandings and
misunderstandings of Abstract Interpretation theory and practice
at various levels of abstraction.

Keywords-Abstract Interpretation, Abstraction, Completeness,
Formal methods, Semantics, Semantics, Soundness, Static anal-
ysis, Verification.

ABSTRACT INTERPRETATION FOR STATIC ANALYSIS

Abstract Interpretation (see [10], [11] for gentle introduc-
tions) can be, and is often, understood in a very narrow sense:
an algorithm for static analysis of sequential programs with
widening and narrowing, even maybe restricted to interval
analysis only.

This was indeed the origin of the concept [6] and the very
first fully automatic infinitary static analysis, rapidly followed
by more expressive and costly relational analyzes [15].

For programming languages, i.e. infinitely many pro-
grams, static analysis with infinitary abstractions and widen-
ing/narrowing is always terminating. It is also strictly more
powerful than finite abstractions, including finite abstractions
with refinements (which are often are allowed not to terminate)
[9].

This specific static analysis algorithm is the very minimal
view of Abstract Interpretation necessary to understand how
production-quality static analyzers like ASTRÉE do operate
[14] and why it scales up with high precision for domain-
specific applications including for parallel programs [20] (but
obviously not for all programs out of its application domain).

This algorithmic view is insufficient to understand why
static analyzers produce credible information about program
executions.

By credible, we understand either correct (which is unfor-
tunately not the case of most static analyzers, which are often
incorrect) or with a definite explanation of potential incorrect-
nesses [1]. For example ASTRÉE reports all potential buffer
overruns. But the analysis covers only all prefix executions
prior to the very first such buffer overrun, if any (because the
program behavior is completely unpredictable after a buffer
overrun, including because of the possible destruction of the
executed code).

CONSTRUCTION OF ABSTRACTIONS BY ABSTRACT
INTERPRETATION

A broader acceptation of Abstract Interpretation includes
this soundness problematics. To ensure that the static analysis

is correct/sound for all programs of a programming language,
it is necessary to compare the results of the static analysis
with a formal definition of the program semantics (sometimes
called a model) [7].

Abstract Interpretation goes much further by showing how
to formally construct the static analyzer from the definition of
program properties as specified by the semantics [8].

These ideas lead to mechanically checked static analyzers
[19], and hopefully in the future, to mechanically constructed
static analyzers (as has been done by hand, e.g. in [3] for type
systems).

HIERARCHIES OF ABSTRACTIONS

A more profound understanding of Abstract Interpretation
leads to a much broader scope of application. To cope with
complex problems, e.g. undecidable ones, it is necessary to
abstract the structure of the concrete space on which this
problem is defined into an abstract domain in which the
problem is more tractable. This concrete structure is usually a
concrete domain plus operations on that concrete domain such
as transformers and fixpoint definitions.

Interestingly, the abstraction of the domain of properties of
the concrete space induces the abstraction of properties of op-
erations of the structure (but for extrapolation and interpolation
operators such as widening and narrowing which are orthog-
onal approximation concepts for convergence acceleration of
iterative computations e.g. of fixpoints).

Given a semantics, all possible abstractions form a hierarchy
formalizing all possible ways of reasoning on programs in the
abstract (called the lattice of abstract interpretations [8, Sect.
8]).

COMPLETENESS OF ABSTRACTIONS

The completeness question, is whether solving the problem
in the abstract is always possible.

A common misunderstanding is to claim that Abstract
Interpretation is incomplete by nature.

There are indeed many examples of complete abstractions
from the FIRST algorithm abstracting the language defined
by a context free program [12] to hierarchies of semantics
(operational, denotational, axiomatic, etc) [4].

Any abstraction can indeed be always refined to a complete
one [18] (so there is always a most abstract refinement of an



2

abstraction to make a proof) and symmetrically any abstraction
can always be simplified to achieve the same goals [17].

Incompleteness necessarily appears for undecidable prob-
lems for which all algorithms will ultimately fail on infinitely
many counter-examples (including by not terminating).

Incomputability also appears for decidable problems with
very high complexity leading to the combinatorial explosion
of enumerative methods. The combinatorial explosion problem
has never been solved [2], except by various forms of Abstract
Interpretation. One can claim that the answer might be approx-
imate but it is always correct and obtained in finite time which
is better than a model-checker that run out of memory or a
prover that times out with no clue at all on the problem to be
solved.

SCOPE OF ABSTRACT INTERPRETATION THEORY

The usefulness of a theory lies in its capacity to explain a
broad range of phenomena. In that respect, Abstract Interpre-
tation can easily explain recent program verification methods,
such as those based on Craig interpolation, that did not exist
at the time the theory was elaborated. Abstract Interpretation
even leads to useful generalizations. The key idea is the
abstraction of mathematical induction [5].

At a time where verification techniques tend to be atomized
into a multiplicity of ad-hoc methods, often applicable to a
few well-chosen tiny programs, and requiring clues from the
programmer that are tantamount to solving the problem by
hand, Abstract Interpretation can play the rôle of a unifying
theory.

A unifying theory of formal methods is necessary to get
a global understanding and explanation of a vast and parcel-
lelized research field.

In Abstract Interpretation, everything reduces to the un-
derstanding of a semantics, an abstraction into an abstract
domain, and extrapolation/interpolation operators. This global
understanding is much simpler than a wired algorithm, often
introducing extra imprecisions.

Of course this does not diminish in any way the merits and
originality of new ideas, that is of unexplored abstractions [13].

Acknowledgements: Work supported in part by NSF
Grant CNS-1446511.

REFERENCES

[1] Maria Christakis, Peter Müller, and Valentin Wüstholz. An experimental
evaluation of deliberate unsoundness in a static program analyzer. In
D’Souza et al. [16], pages 336–354.

[2] Edmund M. Clarke. My 27-year quest to overcome the state explosion
problem. In Proceedings of the 24th Annual IEEE Symposium on Logic
in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA,
USA, page 3. IEEE Computer Society, 2009.

[3] Patrick Cousot. Types as abstract interpretations. In Peter Lee, Fritz Hen-
glein, and Neil D. Jones, editors, Conference Record of POPL’97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Papers Presented at the Symposium, Paris, France, 15-17
January 1997, pages 316–331. ACM Press, 1997.

[4] Patrick Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. Theor. Comput. Sci., 277(1-
2):47–103, 2002.

[5] Patrick Cousot. Abstracting induction by extrapolation and interpolation.
In D’Souza et al. [16], pages 19–42.

[6] Patrick Cousot and Radhia Cousot. Static determination of dynamic
properties of programs. In Proceedings of the Second International
Symposium on Programming, pages 106–130. Dunod, Paris, France,
1976.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Robert M. Graham, Michael A. Harrison, and
Ravi Sethi, editors, Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California, USA,
January 1977, pages 238–252. ACM, 1977.

[8] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Alfred V. Aho, Stephen N. Zilles, and Barry K.
Rosen, editors, Conference Record of the Sixth Annual ACM Symposium
on Principles of Programming Languages, San Antonio, Texas, USA,
January 1979, pages 269–282. ACM Press, 1979.

[9] Patrick Cousot and Radhia Cousot. Comparing the galois connection
and widening/narrowing approaches to abstract interpretation. In Mau-
rice Bruynooghe and Martin Wirsing, editors, Programming Language
Implementation and Logic Programming, 4th International Symposium,
PLILP’92, Leuven, Belgium, August 26-28, 1992, Proceedings, volume
631 of Lecture Notes in Computer Science, pages 269–295. Springer,
1992.

[10] Patrick Cousot and Radhia Cousot. Basic concepts of abstract interpre-
tation. In René Jacquart, editor, Building the Information Society, IFIP
18th World Computer Congress, Topical Sessions, 22-27 August 2004,
Toulouse, France, volume 156 of IFIP, pages 359–366. Kluwer/Springer,
2004.

[11] Patrick Cousot and Radhia Cousot. A gentle introduction to formal
verification of computer systems by abstract interpretation. In Javier
Esparza, Bernd Spanfelner, and Orna Grumberg, editors, Logics and
Languages for Reliability and Security, volume 25 of NATO Science
for Peace and Security Series - D: Information and Communication
Security, pages 1–29. IOS Press, 2010.

[12] Patrick Cousot and Radhia Cousot. Grammar semantics, analysis and
parsing by abstract interpretation. Theor. Comput. Sci., 412(44):6135–
6192, 2011.

[13] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present
and future. In Thomas A. Henzinger and Dale Miller, editors, Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, pages 2:1–2:10. ACM, 2014.

[14] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival. Why does astrée scale up? Formal
Methods in System Design, 35(3):229–264, 2009.

[15] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski, editors, Conference Record of the
Fifth Annual ACM Symposium on Principles of Programming Lan-
guages, Tucson, Arizona, USA, January 1978, pages 84–96. ACM Press,
1978.

[16] Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen, editors.
Verification, Model Checking, and Abstract Interpretation - 16th In-
ternational Conference, VMCAI 2015, Mumbai, India, January 12-14,
2015. Proceedings, volume 8931 of Lecture Notes in Computer Science.
Springer, 2014.

[17] Roberto Giacobazzi and Francesco Ranzato. Correctness kernels of
abstract interpretations. Inf. Comput., 237:187–203, 2014.

[18] Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. Mak-
ing abstract interpretations complete. J. ACM, 47(2):361–416, 2000.

[19] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy,
and David Pichardie. A formally-verified C static analyzer. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
247–259. ACM, 2015.

[20] Antoine Miné. Relational thread-modular static value analysis by
abstract interpretation. In Kenneth L. McMillan and Xavier Rival,
editors, Verification, Model Checking, and Abstract Interpretation - 15th
International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings, volume 8318 of Lecture Notes in Computer
Science, pages 39–58. Springer, 2014.


