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1. History

Program proofs can be done informally [47] as most mathematical reasonings or as an application
of a formal method. The formal method is a “recipe” to make the prove. In general, it requires
the discovery of an inductive property implying the program property to be proved. The inductive
property is in general stronger/more precise than the one to be proved. The program property to be
proved is given but the inductive property has to be discovered (preferably automatically, but this
is an undecidable problem). It must be shown to satisfy verification conditions that imply that it is
inductive (meaning that it can be proved to hold by recurrence on a well-founded relation based on
the program computation steps [47, 41, 27, 15], the program structure [30], or data manipulated by
the program [2, 17]).

Although initially applied to sequential imperative programs, such program proof methods were
rapidly extended to parallel programs [44, 43, 45, 35] with sequential consistency hypothesis “. . . the
result of any execution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in this sequence in the order
specified by its program.” [36].

2. Empiricism

The verification conditions can be postulated out of thin air (e.g . [27, 25]) and claimed to define the
semantics of the programming language (i.e. to “assign meanings to programs” [27]). The problem is
that the design of the verification conditions is by trial and errors and they can be unsound and/or
incomplete, without any way to prove these facts.

For example the conjunction and disjunction rules of Hoare logic are not sound for all assertion
languages [19, Sect. 5]. Predicate transformers [25] were incomplete for unbounded nondeterminism
and had to be later generalized [26]. For similar reasons of lack of expressiveness of the assertion
language, the Owicki and Gries proof method for parallel programs with shared variables [44] and
without auxiliary variables is incomplete. The Owicki and Gries proof method for parallel programs
with resources [45] as well [37]. The separation logic [42] as well, etc. Moreover, this empirical
approach is completely language-dependent and basic principles have to be rediscovered whenever the
language or its semantics is changed [34].
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3. Constructionism

An alternative to empiricism is to derive the program proof method from an operational semantics by
calculational design [6, Ch. 3], [20], [22]. The general idea is that a program property is an abstraction
of the most general program property induced by the operational semantics of the programming
language.

For example the operational semantics of a program can be defined by a transition system ⟨S, t⟩
where S is a set of states and t ∈ ℘(S × S) a transition relation [6, Ch. 3]. The set of reachable
states from a set of initial states S0 ∈ ℘(S) is r = {s′ ∈ S | ∃s ∈ S0 : ⟨s, s′⟩ ∈ t∗} where
t∗ is the reflexive transitive closure of t. An invariant P ∈ ℘(S) is an over-approximation of the
reachable states r ⊆ P . It is invariant in that during any execution, a reachable state will always
satisfy P (i.e. belong to P ). This can be formulated as a fixpoint problem in that r = lfp F where
F (X) = S0 ∪ {s′ | ∃s ∈ X : ⟨s, s′⟩ ∈ t} [6, 7, Ch. 3] so that we have to prove that lfp F ⊆ P .

4. Fixpoint Induction

Since this strongest/most general property (reachable states r in the above example) can be expressed
as a fixpoint lfp F , and its abstractions as well, the verification conditions directly derive from fixpoint
induction, a direct immediate consequence of Tarski’s theorem lfp F = ⊓{X ∈ L | F (X) ⊑ X} (where
F ∈ L 7→ L on the complete lattice ⟨L, ⊑⟩) [46]. We have lfp F ⊑ P if and only if ∃I : F (I) ⊑ I∧I ⊑ P
(where lfp F is the strongest program property, ⊑ is logical implication, P is the property to be proved,
I is a stronger inductive property, and F (or F (I) ⊑ I) is the verification condition.

For the above example, this is ∃I : S0 ⊆ I ∧ ∀s ∈ I : ∀s′ : ⟨s, s′⟩ ∈ t ⇒ s′ ∈ I i.e. the invariant
must be true for all initial states and if it is true for one state s, it must be true for all its possible
successors s′ by one more transition, if any.

Fixpoint induction is a universal induction principle for proving invariance (with numerous variants
[13], for example backward methods consist in inverting the transition relation [21]).

5. Soundness and Completeness

Soundness consists in proving that the proof method is correct. Soundness follows from I ∈ {X ∈ L |
F (X) ⊑ X} so lfp F = ⊓{X ∈ L | F (X) ⊑ X} ⊑ I and I ⊑ P proving lfp F ⊑ P by transitivity.
Completeness consists in proving that if the property to be proved does hold (i.e. lfp F ⊑ P ) then
the proof method is always applicable.

Completeness follows from the fact that it is always possible to choose I = lfp F so F (I) = I ⊑
I ∧ I ⊑ P . Although I = lfp F can always be calculated iteratively, the iterates might have to be
transfinite [10], and so this does not provide an effective algorithm to compute the inductive property.
This is why in deductive methods the inductive property must be provided by the end-user, the proof
system just generating the verification conditions F (I) ⊑ I and I ⊑ P , and a theorem prover or
SMT-solver is used to check the implication ⊑.

To continue our example, the operational semantics of a parallel program JP1∥. . . ∥PnK with
shared variables x1, . . . , xm and sequential consistency can be formalized by the transition relation
t =

∪n
i=1 ti where ti is the transition relation for process Pi, i = 1, . . . , n. The states are of the

form ⟨c1, . . . , cn, x1, . . . , xm⟩ ∈ S where ci ∈ Ci is the value of the program counter of process Pi,
i = 1, . . . , n and x1, . . . , xm are the values of the shared variables. So a transition ti by process Pi
changes the program counter ci of that process and potentially the values x1, . . . , xm of the shared
variables x1, . . . , xm. The program execution is the interleaving of the process executions. In the
Lamport proof method [35] for parallel programs JP1∥. . . ∥PnK with shared variables x1, . . . , xm, an
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assertion on c1, . . . , ci−1, ci+1, . . . , cn, x1, . . . , xm is attached to each program point ci of each process
Pi, i = 1, . . . , n. The method is sound and complete. The verification condition states that for all
processes i, i = 1, . . . , n, the local assertions attached to program points ci ∈ Ci should be invariant for
transitions ti (so-called sequential proof) as well as transitions tj , j ∈ [1, n] \ {i} (so-called absence of
interference proof). In the Owicki and Gries proof method [44] for parallel programs JP1∥. . . ∥PnK, the
assertion attached to each program point ci of each process Pi, i = 1, . . . , n is on the values x1, . . . , xm

of the shared variables x1, . . . , xm only. This is sound but incomplete (since it is not possible to specify
when process Pi is at some point ci where the other processes should be, e.g . out of a critical section).
Adding auxiliary variables as proposed by [44] makes the method complete (since, as shown in [20,
Th. 10.0.4 applied to Ex. 10.0.5 and Ex. 10.0.6], it is always possible to extend to transition system
with auxiliary variables simulating the program counters of the processes). Rely-guarantee methods
[32, 3] are a different way of expressing the strongest invariant as a fixpoint [38] based on asynchronous
iterations with memory [5].

6. Galois connections

More generally, proof methods do not directly refer to the semantics but to an abstraction of
the semantics [9, 11]. Most often the abstraction can be be formalized by a Galois connection
⟨℘(S), ⊆⟩ −−−→←−−−α

γ
⟨A, ⊑⟩ such that α(P ) ⊑ Q ⇐⇒ P ⊆ γ(Q) where P ∈ ℘(S) is a concrete

property, and Q ∈ A is an abstract property, α(P ) is the best abstraction of the concrete property P ,
and γ(Q) is the concretization of the abstract property Q [9, 11].

For the Owicki-Gries example, A =
∏n

i=1

∏
ci∈Ci

V m where V is the domain of values x1, . . . , xm

of the shared variables. The abstraction is α(P ) ≜
∏n

i=1

∏
ci∈Ci

{⟨x1, . . . , xm⟩ | ∃c1, . . . , ci−1, ci+1,

. . . , cn : ⟨c1, . . . , ci, . . . , cn, x1, . . . , xm⟩ ∈ P}. The concretization is γ(
∏n

i=1

∏
ci∈Ci

Qi,ci) ≜
{⟨c1, . . . , ci−1, ci, ci+1, . . . , cn, x1, . . . , xm⟩ | ∃c1, . . . , ci−1, ci+1, . . . , cn : ⟨x1, . . . , xm⟩ ∈ Qi,ci}.
The local assertions Qi,ci ignore the program counters of other processes (which can be any
c1, . . . , ci−1, ci+1, . . . , cn). This is the source of the incompleteness. The partial order ⊑ is pointwise
set-theoretic implication (i.e. inclusion ⊆ for sets)

∏n
i=1

∏
ci∈Ci

Qi,ci ⊑
∏n

i=1

∏
ci∈Ci

Q′
i,ci

if and only
if ∀i ∈ [1, n] : ∀ci ∈ Ci : Qi,ci ⊆ Q′

i,ci
.

Then for an abstract property Q ∈ A, the program verification consists in proving is α(lfp F ) ⊑ Q.
If α ◦ F = F ◦ α then this is equivalent to lfp F ⊑ Q where F = α ◦ F ◦ γ ∈ A 7→ A defines the

abstract verification conditions [11, theorem 7.1.0.4(3)], [23, lemma 4.3], [1, fact 2.3]. Then, as before
but this time in the abstract, α(lfp F ) ⊑ Q ⇐⇒ ∃I ∈ A : F (I) ⊑ I ∧ I ⊑ Q.

If α ◦ F ⊑̇ F ◦ α (where ⊑̇ is ⊑ pointwise) then the method is sound (i.e. α(lfp F ) ⊑ Q ⇐ ∃I :
F (I) ⊑ I ∧ I ⊑ Q) but in general incomplete ( ̸⇒). This is almost always the case in static analysis
[9, 11].

7. Abstraction

Not all abstractions can be formalized by Galois connections. This is the case when there is no
best/most precise abstraction.

An example is the use of logics like first-order logic, which is an abstraction. In general the
strongest/most general property is not expressible in the logic which makes it incomplete. In that
case only relative completeness is provable (e.g . [4] for Hoare logic [30]) i.e. under the assumption that
the strongest/most general set-theoretic property is expressible in the logic. This is why we represent
properties by the set of all objects which have this property rather than by a logical formula. In
that case only the concretization function γ is used [16]. This is the case for formal logics or types
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which may not way to have a best way to express a property (e.g . a first-order logic with addition
only cannot express a multiplication while a program with addition only can expression multiplication
with a loop. Adding multiplication to the logic, is not enough for exponentiation, etc.).

8. The Hierarchy of Proof Methods

Finally by choosing different abstractions, one obtained a hierarchy of famous (as well as completely
forgotten) proof methods for parallel programs with sequential consistency [6, 20, 14, 37, 38].

9. Methodology

In summary, given a language, an operational semantics, a fixpoint definition of runtime properties,
an abstraction into properties of interest, a further abstraction to express such properties of interest
locally, there is a mathematical methodology, checkable by a proof checker [33], to construct a proof
method which is guaranteed to be sound, and depending on the appropriate choice of the abstractions,
complete. Beyond proof methods, this methodology extends to all program semantics [8, 28].

10. Applications

Using approximate abstractions, this contructive methodology leads to the design of sound program
enumerative checking methods (aiming at checking a given property in the abstract e.g . [18]) and
analysis methods (aiming at automatically infer the invariant property from the program text only
e.g . [9, 11]). For calculability, these abstractions have to be incomplete (sometimes even for sets of
states S which are finite [18, 29]). In particular for parallel programs, approximation is indispensable
for scalability [12, 14], from prototype [31, 40] to production-quality implementations [38, 39].
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